Merge branch 'topic/asoc' into for-linus
[deliverable/linux.git] / include / linux / perf_event.h
1 /*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <linux/types.h>
18 #include <linux/ioctl.h>
19 #include <asm/byteorder.h>
20
21 /*
22 * User-space ABI bits:
23 */
24
25 /*
26 * attr.type
27 */
28 enum perf_type_id {
29 PERF_TYPE_HARDWARE = 0,
30 PERF_TYPE_SOFTWARE = 1,
31 PERF_TYPE_TRACEPOINT = 2,
32 PERF_TYPE_HW_CACHE = 3,
33 PERF_TYPE_RAW = 4,
34 PERF_TYPE_BREAKPOINT = 5,
35
36 PERF_TYPE_MAX, /* non-ABI */
37 };
38
39 /*
40 * Generalized performance event event_id types, used by the
41 * attr.event_id parameter of the sys_perf_event_open()
42 * syscall:
43 */
44 enum perf_hw_id {
45 /*
46 * Common hardware events, generalized by the kernel:
47 */
48 PERF_COUNT_HW_CPU_CYCLES = 0,
49 PERF_COUNT_HW_INSTRUCTIONS = 1,
50 PERF_COUNT_HW_CACHE_REFERENCES = 2,
51 PERF_COUNT_HW_CACHE_MISSES = 3,
52 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4,
53 PERF_COUNT_HW_BRANCH_MISSES = 5,
54 PERF_COUNT_HW_BUS_CYCLES = 6,
55
56 PERF_COUNT_HW_MAX, /* non-ABI */
57 };
58
59 /*
60 * Generalized hardware cache events:
61 *
62 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU } x
63 * { read, write, prefetch } x
64 * { accesses, misses }
65 */
66 enum perf_hw_cache_id {
67 PERF_COUNT_HW_CACHE_L1D = 0,
68 PERF_COUNT_HW_CACHE_L1I = 1,
69 PERF_COUNT_HW_CACHE_LL = 2,
70 PERF_COUNT_HW_CACHE_DTLB = 3,
71 PERF_COUNT_HW_CACHE_ITLB = 4,
72 PERF_COUNT_HW_CACHE_BPU = 5,
73
74 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */
75 };
76
77 enum perf_hw_cache_op_id {
78 PERF_COUNT_HW_CACHE_OP_READ = 0,
79 PERF_COUNT_HW_CACHE_OP_WRITE = 1,
80 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2,
81
82 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */
83 };
84
85 enum perf_hw_cache_op_result_id {
86 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0,
87 PERF_COUNT_HW_CACHE_RESULT_MISS = 1,
88
89 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */
90 };
91
92 /*
93 * Special "software" events provided by the kernel, even if the hardware
94 * does not support performance events. These events measure various
95 * physical and sw events of the kernel (and allow the profiling of them as
96 * well):
97 */
98 enum perf_sw_ids {
99 PERF_COUNT_SW_CPU_CLOCK = 0,
100 PERF_COUNT_SW_TASK_CLOCK = 1,
101 PERF_COUNT_SW_PAGE_FAULTS = 2,
102 PERF_COUNT_SW_CONTEXT_SWITCHES = 3,
103 PERF_COUNT_SW_CPU_MIGRATIONS = 4,
104 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5,
105 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6,
106 PERF_COUNT_SW_ALIGNMENT_FAULTS = 7,
107 PERF_COUNT_SW_EMULATION_FAULTS = 8,
108
109 PERF_COUNT_SW_MAX, /* non-ABI */
110 };
111
112 /*
113 * Bits that can be set in attr.sample_type to request information
114 * in the overflow packets.
115 */
116 enum perf_event_sample_format {
117 PERF_SAMPLE_IP = 1U << 0,
118 PERF_SAMPLE_TID = 1U << 1,
119 PERF_SAMPLE_TIME = 1U << 2,
120 PERF_SAMPLE_ADDR = 1U << 3,
121 PERF_SAMPLE_READ = 1U << 4,
122 PERF_SAMPLE_CALLCHAIN = 1U << 5,
123 PERF_SAMPLE_ID = 1U << 6,
124 PERF_SAMPLE_CPU = 1U << 7,
125 PERF_SAMPLE_PERIOD = 1U << 8,
126 PERF_SAMPLE_STREAM_ID = 1U << 9,
127 PERF_SAMPLE_RAW = 1U << 10,
128
129 PERF_SAMPLE_MAX = 1U << 11, /* non-ABI */
130 };
131
132 /*
133 * The format of the data returned by read() on a perf event fd,
134 * as specified by attr.read_format:
135 *
136 * struct read_format {
137 * { u64 value;
138 * { u64 time_enabled; } && PERF_FORMAT_ENABLED
139 * { u64 time_running; } && PERF_FORMAT_RUNNING
140 * { u64 id; } && PERF_FORMAT_ID
141 * } && !PERF_FORMAT_GROUP
142 *
143 * { u64 nr;
144 * { u64 time_enabled; } && PERF_FORMAT_ENABLED
145 * { u64 time_running; } && PERF_FORMAT_RUNNING
146 * { u64 value;
147 * { u64 id; } && PERF_FORMAT_ID
148 * } cntr[nr];
149 * } && PERF_FORMAT_GROUP
150 * };
151 */
152 enum perf_event_read_format {
153 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0,
154 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1,
155 PERF_FORMAT_ID = 1U << 2,
156 PERF_FORMAT_GROUP = 1U << 3,
157
158 PERF_FORMAT_MAX = 1U << 4, /* non-ABI */
159 };
160
161 #define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */
162
163 /*
164 * Hardware event_id to monitor via a performance monitoring event:
165 */
166 struct perf_event_attr {
167
168 /*
169 * Major type: hardware/software/tracepoint/etc.
170 */
171 __u32 type;
172
173 /*
174 * Size of the attr structure, for fwd/bwd compat.
175 */
176 __u32 size;
177
178 /*
179 * Type specific configuration information.
180 */
181 __u64 config;
182
183 union {
184 __u64 sample_period;
185 __u64 sample_freq;
186 };
187
188 __u64 sample_type;
189 __u64 read_format;
190
191 __u64 disabled : 1, /* off by default */
192 inherit : 1, /* children inherit it */
193 pinned : 1, /* must always be on PMU */
194 exclusive : 1, /* only group on PMU */
195 exclude_user : 1, /* don't count user */
196 exclude_kernel : 1, /* ditto kernel */
197 exclude_hv : 1, /* ditto hypervisor */
198 exclude_idle : 1, /* don't count when idle */
199 mmap : 1, /* include mmap data */
200 comm : 1, /* include comm data */
201 freq : 1, /* use freq, not period */
202 inherit_stat : 1, /* per task counts */
203 enable_on_exec : 1, /* next exec enables */
204 task : 1, /* trace fork/exit */
205 watermark : 1, /* wakeup_watermark */
206 /*
207 * precise_ip:
208 *
209 * 0 - SAMPLE_IP can have arbitrary skid
210 * 1 - SAMPLE_IP must have constant skid
211 * 2 - SAMPLE_IP requested to have 0 skid
212 * 3 - SAMPLE_IP must have 0 skid
213 *
214 * See also PERF_RECORD_MISC_EXACT_IP
215 */
216 precise_ip : 2, /* skid constraint */
217 mmap_data : 1, /* non-exec mmap data */
218 sample_id_all : 1, /* sample_type all events */
219
220 __reserved_1 : 45;
221
222 union {
223 __u32 wakeup_events; /* wakeup every n events */
224 __u32 wakeup_watermark; /* bytes before wakeup */
225 };
226
227 __u32 bp_type;
228 __u64 bp_addr;
229 __u64 bp_len;
230 };
231
232 /*
233 * Ioctls that can be done on a perf event fd:
234 */
235 #define PERF_EVENT_IOC_ENABLE _IO ('$', 0)
236 #define PERF_EVENT_IOC_DISABLE _IO ('$', 1)
237 #define PERF_EVENT_IOC_REFRESH _IO ('$', 2)
238 #define PERF_EVENT_IOC_RESET _IO ('$', 3)
239 #define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64)
240 #define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5)
241 #define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *)
242
243 enum perf_event_ioc_flags {
244 PERF_IOC_FLAG_GROUP = 1U << 0,
245 };
246
247 /*
248 * Structure of the page that can be mapped via mmap
249 */
250 struct perf_event_mmap_page {
251 __u32 version; /* version number of this structure */
252 __u32 compat_version; /* lowest version this is compat with */
253
254 /*
255 * Bits needed to read the hw events in user-space.
256 *
257 * u32 seq;
258 * s64 count;
259 *
260 * do {
261 * seq = pc->lock;
262 *
263 * barrier()
264 * if (pc->index) {
265 * count = pmc_read(pc->index - 1);
266 * count += pc->offset;
267 * } else
268 * goto regular_read;
269 *
270 * barrier();
271 * } while (pc->lock != seq);
272 *
273 * NOTE: for obvious reason this only works on self-monitoring
274 * processes.
275 */
276 __u32 lock; /* seqlock for synchronization */
277 __u32 index; /* hardware event identifier */
278 __s64 offset; /* add to hardware event value */
279 __u64 time_enabled; /* time event active */
280 __u64 time_running; /* time event on cpu */
281
282 /*
283 * Hole for extension of the self monitor capabilities
284 */
285
286 __u64 __reserved[123]; /* align to 1k */
287
288 /*
289 * Control data for the mmap() data buffer.
290 *
291 * User-space reading the @data_head value should issue an rmb(), on
292 * SMP capable platforms, after reading this value -- see
293 * perf_event_wakeup().
294 *
295 * When the mapping is PROT_WRITE the @data_tail value should be
296 * written by userspace to reflect the last read data. In this case
297 * the kernel will not over-write unread data.
298 */
299 __u64 data_head; /* head in the data section */
300 __u64 data_tail; /* user-space written tail */
301 };
302
303 #define PERF_RECORD_MISC_CPUMODE_MASK (7 << 0)
304 #define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0)
305 #define PERF_RECORD_MISC_KERNEL (1 << 0)
306 #define PERF_RECORD_MISC_USER (2 << 0)
307 #define PERF_RECORD_MISC_HYPERVISOR (3 << 0)
308 #define PERF_RECORD_MISC_GUEST_KERNEL (4 << 0)
309 #define PERF_RECORD_MISC_GUEST_USER (5 << 0)
310
311 /*
312 * Indicates that the content of PERF_SAMPLE_IP points to
313 * the actual instruction that triggered the event. See also
314 * perf_event_attr::precise_ip.
315 */
316 #define PERF_RECORD_MISC_EXACT_IP (1 << 14)
317 /*
318 * Reserve the last bit to indicate some extended misc field
319 */
320 #define PERF_RECORD_MISC_EXT_RESERVED (1 << 15)
321
322 struct perf_event_header {
323 __u32 type;
324 __u16 misc;
325 __u16 size;
326 };
327
328 enum perf_event_type {
329
330 /*
331 * If perf_event_attr.sample_id_all is set then all event types will
332 * have the sample_type selected fields related to where/when
333 * (identity) an event took place (TID, TIME, ID, CPU, STREAM_ID)
334 * described in PERF_RECORD_SAMPLE below, it will be stashed just after
335 * the perf_event_header and the fields already present for the existing
336 * fields, i.e. at the end of the payload. That way a newer perf.data
337 * file will be supported by older perf tools, with these new optional
338 * fields being ignored.
339 *
340 * The MMAP events record the PROT_EXEC mappings so that we can
341 * correlate userspace IPs to code. They have the following structure:
342 *
343 * struct {
344 * struct perf_event_header header;
345 *
346 * u32 pid, tid;
347 * u64 addr;
348 * u64 len;
349 * u64 pgoff;
350 * char filename[];
351 * };
352 */
353 PERF_RECORD_MMAP = 1,
354
355 /*
356 * struct {
357 * struct perf_event_header header;
358 * u64 id;
359 * u64 lost;
360 * };
361 */
362 PERF_RECORD_LOST = 2,
363
364 /*
365 * struct {
366 * struct perf_event_header header;
367 *
368 * u32 pid, tid;
369 * char comm[];
370 * };
371 */
372 PERF_RECORD_COMM = 3,
373
374 /*
375 * struct {
376 * struct perf_event_header header;
377 * u32 pid, ppid;
378 * u32 tid, ptid;
379 * u64 time;
380 * };
381 */
382 PERF_RECORD_EXIT = 4,
383
384 /*
385 * struct {
386 * struct perf_event_header header;
387 * u64 time;
388 * u64 id;
389 * u64 stream_id;
390 * };
391 */
392 PERF_RECORD_THROTTLE = 5,
393 PERF_RECORD_UNTHROTTLE = 6,
394
395 /*
396 * struct {
397 * struct perf_event_header header;
398 * u32 pid, ppid;
399 * u32 tid, ptid;
400 * u64 time;
401 * };
402 */
403 PERF_RECORD_FORK = 7,
404
405 /*
406 * struct {
407 * struct perf_event_header header;
408 * u32 pid, tid;
409 *
410 * struct read_format values;
411 * };
412 */
413 PERF_RECORD_READ = 8,
414
415 /*
416 * struct {
417 * struct perf_event_header header;
418 *
419 * { u64 ip; } && PERF_SAMPLE_IP
420 * { u32 pid, tid; } && PERF_SAMPLE_TID
421 * { u64 time; } && PERF_SAMPLE_TIME
422 * { u64 addr; } && PERF_SAMPLE_ADDR
423 * { u64 id; } && PERF_SAMPLE_ID
424 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID
425 * { u32 cpu, res; } && PERF_SAMPLE_CPU
426 * { u64 period; } && PERF_SAMPLE_PERIOD
427 *
428 * { struct read_format values; } && PERF_SAMPLE_READ
429 *
430 * { u64 nr,
431 * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN
432 *
433 * #
434 * # The RAW record below is opaque data wrt the ABI
435 * #
436 * # That is, the ABI doesn't make any promises wrt to
437 * # the stability of its content, it may vary depending
438 * # on event, hardware, kernel version and phase of
439 * # the moon.
440 * #
441 * # In other words, PERF_SAMPLE_RAW contents are not an ABI.
442 * #
443 *
444 * { u32 size;
445 * char data[size];}&& PERF_SAMPLE_RAW
446 * };
447 */
448 PERF_RECORD_SAMPLE = 9,
449
450 PERF_RECORD_MAX, /* non-ABI */
451 };
452
453 enum perf_callchain_context {
454 PERF_CONTEXT_HV = (__u64)-32,
455 PERF_CONTEXT_KERNEL = (__u64)-128,
456 PERF_CONTEXT_USER = (__u64)-512,
457
458 PERF_CONTEXT_GUEST = (__u64)-2048,
459 PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176,
460 PERF_CONTEXT_GUEST_USER = (__u64)-2560,
461
462 PERF_CONTEXT_MAX = (__u64)-4095,
463 };
464
465 #define PERF_FLAG_FD_NO_GROUP (1U << 0)
466 #define PERF_FLAG_FD_OUTPUT (1U << 1)
467
468 #ifdef __KERNEL__
469 /*
470 * Kernel-internal data types and definitions:
471 */
472
473 #ifdef CONFIG_PERF_EVENTS
474 # include <asm/perf_event.h>
475 # include <asm/local64.h>
476 #endif
477
478 struct perf_guest_info_callbacks {
479 int (*is_in_guest) (void);
480 int (*is_user_mode) (void);
481 unsigned long (*get_guest_ip) (void);
482 };
483
484 #ifdef CONFIG_HAVE_HW_BREAKPOINT
485 #include <asm/hw_breakpoint.h>
486 #endif
487
488 #include <linux/list.h>
489 #include <linux/mutex.h>
490 #include <linux/rculist.h>
491 #include <linux/rcupdate.h>
492 #include <linux/spinlock.h>
493 #include <linux/hrtimer.h>
494 #include <linux/fs.h>
495 #include <linux/pid_namespace.h>
496 #include <linux/workqueue.h>
497 #include <linux/ftrace.h>
498 #include <linux/cpu.h>
499 #include <linux/irq_work.h>
500 #include <linux/jump_label_ref.h>
501 #include <asm/atomic.h>
502 #include <asm/local.h>
503
504 #define PERF_MAX_STACK_DEPTH 255
505
506 struct perf_callchain_entry {
507 __u64 nr;
508 __u64 ip[PERF_MAX_STACK_DEPTH];
509 };
510
511 struct perf_raw_record {
512 u32 size;
513 void *data;
514 };
515
516 struct perf_branch_entry {
517 __u64 from;
518 __u64 to;
519 __u64 flags;
520 };
521
522 struct perf_branch_stack {
523 __u64 nr;
524 struct perf_branch_entry entries[0];
525 };
526
527 struct task_struct;
528
529 /**
530 * struct hw_perf_event - performance event hardware details:
531 */
532 struct hw_perf_event {
533 #ifdef CONFIG_PERF_EVENTS
534 union {
535 struct { /* hardware */
536 u64 config;
537 u64 last_tag;
538 unsigned long config_base;
539 unsigned long event_base;
540 int idx;
541 int last_cpu;
542 };
543 struct { /* software */
544 struct hrtimer hrtimer;
545 };
546 #ifdef CONFIG_HAVE_HW_BREAKPOINT
547 struct { /* breakpoint */
548 struct arch_hw_breakpoint info;
549 struct list_head bp_list;
550 /*
551 * Crufty hack to avoid the chicken and egg
552 * problem hw_breakpoint has with context
553 * creation and event initalization.
554 */
555 struct task_struct *bp_target;
556 };
557 #endif
558 };
559 int state;
560 local64_t prev_count;
561 u64 sample_period;
562 u64 last_period;
563 local64_t period_left;
564 u64 interrupts;
565
566 u64 freq_time_stamp;
567 u64 freq_count_stamp;
568 #endif
569 };
570
571 /*
572 * hw_perf_event::state flags
573 */
574 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */
575 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
576 #define PERF_HES_ARCH 0x04
577
578 struct perf_event;
579
580 /*
581 * Common implementation detail of pmu::{start,commit,cancel}_txn
582 */
583 #define PERF_EVENT_TXN 0x1
584
585 /**
586 * struct pmu - generic performance monitoring unit
587 */
588 struct pmu {
589 struct list_head entry;
590
591 struct device *dev;
592 char *name;
593 int type;
594
595 int * __percpu pmu_disable_count;
596 struct perf_cpu_context * __percpu pmu_cpu_context;
597 int task_ctx_nr;
598
599 /*
600 * Fully disable/enable this PMU, can be used to protect from the PMI
601 * as well as for lazy/batch writing of the MSRs.
602 */
603 void (*pmu_enable) (struct pmu *pmu); /* optional */
604 void (*pmu_disable) (struct pmu *pmu); /* optional */
605
606 /*
607 * Try and initialize the event for this PMU.
608 * Should return -ENOENT when the @event doesn't match this PMU.
609 */
610 int (*event_init) (struct perf_event *event);
611
612 #define PERF_EF_START 0x01 /* start the counter when adding */
613 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
614 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
615
616 /*
617 * Adds/Removes a counter to/from the PMU, can be done inside
618 * a transaction, see the ->*_txn() methods.
619 */
620 int (*add) (struct perf_event *event, int flags);
621 void (*del) (struct perf_event *event, int flags);
622
623 /*
624 * Starts/Stops a counter present on the PMU. The PMI handler
625 * should stop the counter when perf_event_overflow() returns
626 * !0. ->start() will be used to continue.
627 */
628 void (*start) (struct perf_event *event, int flags);
629 void (*stop) (struct perf_event *event, int flags);
630
631 /*
632 * Updates the counter value of the event.
633 */
634 void (*read) (struct perf_event *event);
635
636 /*
637 * Group events scheduling is treated as a transaction, add
638 * group events as a whole and perform one schedulability test.
639 * If the test fails, roll back the whole group
640 *
641 * Start the transaction, after this ->add() doesn't need to
642 * do schedulability tests.
643 */
644 void (*start_txn) (struct pmu *pmu); /* optional */
645 /*
646 * If ->start_txn() disabled the ->add() schedulability test
647 * then ->commit_txn() is required to perform one. On success
648 * the transaction is closed. On error the transaction is kept
649 * open until ->cancel_txn() is called.
650 */
651 int (*commit_txn) (struct pmu *pmu); /* optional */
652 /*
653 * Will cancel the transaction, assumes ->del() is called
654 * for each successfull ->add() during the transaction.
655 */
656 void (*cancel_txn) (struct pmu *pmu); /* optional */
657 };
658
659 /**
660 * enum perf_event_active_state - the states of a event
661 */
662 enum perf_event_active_state {
663 PERF_EVENT_STATE_ERROR = -2,
664 PERF_EVENT_STATE_OFF = -1,
665 PERF_EVENT_STATE_INACTIVE = 0,
666 PERF_EVENT_STATE_ACTIVE = 1,
667 };
668
669 struct file;
670
671 #define PERF_BUFFER_WRITABLE 0x01
672
673 struct perf_buffer {
674 atomic_t refcount;
675 struct rcu_head rcu_head;
676 #ifdef CONFIG_PERF_USE_VMALLOC
677 struct work_struct work;
678 int page_order; /* allocation order */
679 #endif
680 int nr_pages; /* nr of data pages */
681 int writable; /* are we writable */
682
683 atomic_t poll; /* POLL_ for wakeups */
684
685 local_t head; /* write position */
686 local_t nest; /* nested writers */
687 local_t events; /* event limit */
688 local_t wakeup; /* wakeup stamp */
689 local_t lost; /* nr records lost */
690
691 long watermark; /* wakeup watermark */
692
693 struct perf_event_mmap_page *user_page;
694 void *data_pages[0];
695 };
696
697 struct perf_sample_data;
698
699 typedef void (*perf_overflow_handler_t)(struct perf_event *, int,
700 struct perf_sample_data *,
701 struct pt_regs *regs);
702
703 enum perf_group_flag {
704 PERF_GROUP_SOFTWARE = 0x1,
705 };
706
707 #define SWEVENT_HLIST_BITS 8
708 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
709
710 struct swevent_hlist {
711 struct hlist_head heads[SWEVENT_HLIST_SIZE];
712 struct rcu_head rcu_head;
713 };
714
715 #define PERF_ATTACH_CONTEXT 0x01
716 #define PERF_ATTACH_GROUP 0x02
717 #define PERF_ATTACH_TASK 0x04
718
719 /**
720 * struct perf_event - performance event kernel representation:
721 */
722 struct perf_event {
723 #ifdef CONFIG_PERF_EVENTS
724 struct list_head group_entry;
725 struct list_head event_entry;
726 struct list_head sibling_list;
727 struct hlist_node hlist_entry;
728 int nr_siblings;
729 int group_flags;
730 struct perf_event *group_leader;
731 struct pmu *pmu;
732
733 enum perf_event_active_state state;
734 unsigned int attach_state;
735 local64_t count;
736 atomic64_t child_count;
737
738 /*
739 * These are the total time in nanoseconds that the event
740 * has been enabled (i.e. eligible to run, and the task has
741 * been scheduled in, if this is a per-task event)
742 * and running (scheduled onto the CPU), respectively.
743 *
744 * They are computed from tstamp_enabled, tstamp_running and
745 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
746 */
747 u64 total_time_enabled;
748 u64 total_time_running;
749
750 /*
751 * These are timestamps used for computing total_time_enabled
752 * and total_time_running when the event is in INACTIVE or
753 * ACTIVE state, measured in nanoseconds from an arbitrary point
754 * in time.
755 * tstamp_enabled: the notional time when the event was enabled
756 * tstamp_running: the notional time when the event was scheduled on
757 * tstamp_stopped: in INACTIVE state, the notional time when the
758 * event was scheduled off.
759 */
760 u64 tstamp_enabled;
761 u64 tstamp_running;
762 u64 tstamp_stopped;
763
764 /*
765 * timestamp shadows the actual context timing but it can
766 * be safely used in NMI interrupt context. It reflects the
767 * context time as it was when the event was last scheduled in.
768 *
769 * ctx_time already accounts for ctx->timestamp. Therefore to
770 * compute ctx_time for a sample, simply add perf_clock().
771 */
772 u64 shadow_ctx_time;
773
774 struct perf_event_attr attr;
775 u16 header_size;
776 u16 id_header_size;
777 u16 read_size;
778 struct hw_perf_event hw;
779
780 struct perf_event_context *ctx;
781 struct file *filp;
782
783 /*
784 * These accumulate total time (in nanoseconds) that children
785 * events have been enabled and running, respectively.
786 */
787 atomic64_t child_total_time_enabled;
788 atomic64_t child_total_time_running;
789
790 /*
791 * Protect attach/detach and child_list:
792 */
793 struct mutex child_mutex;
794 struct list_head child_list;
795 struct perf_event *parent;
796
797 int oncpu;
798 int cpu;
799
800 struct list_head owner_entry;
801 struct task_struct *owner;
802
803 /* mmap bits */
804 struct mutex mmap_mutex;
805 atomic_t mmap_count;
806 int mmap_locked;
807 struct user_struct *mmap_user;
808 struct perf_buffer *buffer;
809
810 /* poll related */
811 wait_queue_head_t waitq;
812 struct fasync_struct *fasync;
813
814 /* delayed work for NMIs and such */
815 int pending_wakeup;
816 int pending_kill;
817 int pending_disable;
818 struct irq_work pending;
819
820 atomic_t event_limit;
821
822 void (*destroy)(struct perf_event *);
823 struct rcu_head rcu_head;
824
825 struct pid_namespace *ns;
826 u64 id;
827
828 perf_overflow_handler_t overflow_handler;
829
830 #ifdef CONFIG_EVENT_TRACING
831 struct ftrace_event_call *tp_event;
832 struct event_filter *filter;
833 #endif
834
835 #endif /* CONFIG_PERF_EVENTS */
836 };
837
838 enum perf_event_context_type {
839 task_context,
840 cpu_context,
841 };
842
843 /**
844 * struct perf_event_context - event context structure
845 *
846 * Used as a container for task events and CPU events as well:
847 */
848 struct perf_event_context {
849 enum perf_event_context_type type;
850 struct pmu *pmu;
851 /*
852 * Protect the states of the events in the list,
853 * nr_active, and the list:
854 */
855 raw_spinlock_t lock;
856 /*
857 * Protect the list of events. Locking either mutex or lock
858 * is sufficient to ensure the list doesn't change; to change
859 * the list you need to lock both the mutex and the spinlock.
860 */
861 struct mutex mutex;
862
863 struct list_head pinned_groups;
864 struct list_head flexible_groups;
865 struct list_head event_list;
866 int nr_events;
867 int nr_active;
868 int is_active;
869 int nr_stat;
870 int rotate_disable;
871 atomic_t refcount;
872 struct task_struct *task;
873
874 /*
875 * Context clock, runs when context enabled.
876 */
877 u64 time;
878 u64 timestamp;
879
880 /*
881 * These fields let us detect when two contexts have both
882 * been cloned (inherited) from a common ancestor.
883 */
884 struct perf_event_context *parent_ctx;
885 u64 parent_gen;
886 u64 generation;
887 int pin_count;
888 struct rcu_head rcu_head;
889 };
890
891 /*
892 * Number of contexts where an event can trigger:
893 * task, softirq, hardirq, nmi.
894 */
895 #define PERF_NR_CONTEXTS 4
896
897 /**
898 * struct perf_event_cpu_context - per cpu event context structure
899 */
900 struct perf_cpu_context {
901 struct perf_event_context ctx;
902 struct perf_event_context *task_ctx;
903 int active_oncpu;
904 int exclusive;
905 struct list_head rotation_list;
906 int jiffies_interval;
907 struct pmu *active_pmu;
908 };
909
910 struct perf_output_handle {
911 struct perf_event *event;
912 struct perf_buffer *buffer;
913 unsigned long wakeup;
914 unsigned long size;
915 void *addr;
916 int page;
917 int nmi;
918 int sample;
919 };
920
921 #ifdef CONFIG_PERF_EVENTS
922
923 extern int perf_pmu_register(struct pmu *pmu, char *name, int type);
924 extern void perf_pmu_unregister(struct pmu *pmu);
925
926 extern int perf_num_counters(void);
927 extern const char *perf_pmu_name(void);
928 extern void __perf_event_task_sched_in(struct task_struct *task);
929 extern void __perf_event_task_sched_out(struct task_struct *task, struct task_struct *next);
930 extern int perf_event_init_task(struct task_struct *child);
931 extern void perf_event_exit_task(struct task_struct *child);
932 extern void perf_event_free_task(struct task_struct *task);
933 extern void perf_event_delayed_put(struct task_struct *task);
934 extern void perf_event_print_debug(void);
935 extern void perf_pmu_disable(struct pmu *pmu);
936 extern void perf_pmu_enable(struct pmu *pmu);
937 extern int perf_event_task_disable(void);
938 extern int perf_event_task_enable(void);
939 extern void perf_event_update_userpage(struct perf_event *event);
940 extern int perf_event_release_kernel(struct perf_event *event);
941 extern struct perf_event *
942 perf_event_create_kernel_counter(struct perf_event_attr *attr,
943 int cpu,
944 struct task_struct *task,
945 perf_overflow_handler_t callback);
946 extern u64 perf_event_read_value(struct perf_event *event,
947 u64 *enabled, u64 *running);
948
949 struct perf_sample_data {
950 u64 type;
951
952 u64 ip;
953 struct {
954 u32 pid;
955 u32 tid;
956 } tid_entry;
957 u64 time;
958 u64 addr;
959 u64 id;
960 u64 stream_id;
961 struct {
962 u32 cpu;
963 u32 reserved;
964 } cpu_entry;
965 u64 period;
966 struct perf_callchain_entry *callchain;
967 struct perf_raw_record *raw;
968 };
969
970 static inline
971 void perf_sample_data_init(struct perf_sample_data *data, u64 addr)
972 {
973 data->addr = addr;
974 data->raw = NULL;
975 }
976
977 extern void perf_output_sample(struct perf_output_handle *handle,
978 struct perf_event_header *header,
979 struct perf_sample_data *data,
980 struct perf_event *event);
981 extern void perf_prepare_sample(struct perf_event_header *header,
982 struct perf_sample_data *data,
983 struct perf_event *event,
984 struct pt_regs *regs);
985
986 extern int perf_event_overflow(struct perf_event *event, int nmi,
987 struct perf_sample_data *data,
988 struct pt_regs *regs);
989
990 static inline bool is_sampling_event(struct perf_event *event)
991 {
992 return event->attr.sample_period != 0;
993 }
994
995 /*
996 * Return 1 for a software event, 0 for a hardware event
997 */
998 static inline int is_software_event(struct perf_event *event)
999 {
1000 return event->pmu->task_ctx_nr == perf_sw_context;
1001 }
1002
1003 extern atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
1004
1005 extern void __perf_sw_event(u32, u64, int, struct pt_regs *, u64);
1006
1007 #ifndef perf_arch_fetch_caller_regs
1008 static inline void
1009 perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1010 #endif
1011
1012 /*
1013 * Take a snapshot of the regs. Skip ip and frame pointer to
1014 * the nth caller. We only need a few of the regs:
1015 * - ip for PERF_SAMPLE_IP
1016 * - cs for user_mode() tests
1017 * - bp for callchains
1018 * - eflags, for future purposes, just in case
1019 */
1020 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1021 {
1022 memset(regs, 0, sizeof(*regs));
1023
1024 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1025 }
1026
1027 static __always_inline void
1028 perf_sw_event(u32 event_id, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
1029 {
1030 struct pt_regs hot_regs;
1031
1032 JUMP_LABEL(&perf_swevent_enabled[event_id], have_event);
1033 return;
1034
1035 have_event:
1036 if (!regs) {
1037 perf_fetch_caller_regs(&hot_regs);
1038 regs = &hot_regs;
1039 }
1040 __perf_sw_event(event_id, nr, nmi, regs, addr);
1041 }
1042
1043 extern atomic_t perf_task_events;
1044
1045 static inline void perf_event_task_sched_in(struct task_struct *task)
1046 {
1047 COND_STMT(&perf_task_events, __perf_event_task_sched_in(task));
1048 }
1049
1050 static inline
1051 void perf_event_task_sched_out(struct task_struct *task, struct task_struct *next)
1052 {
1053 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1054
1055 COND_STMT(&perf_task_events, __perf_event_task_sched_out(task, next));
1056 }
1057
1058 extern void perf_event_mmap(struct vm_area_struct *vma);
1059 extern struct perf_guest_info_callbacks *perf_guest_cbs;
1060 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1061 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1062
1063 extern void perf_event_comm(struct task_struct *tsk);
1064 extern void perf_event_fork(struct task_struct *tsk);
1065
1066 /* Callchains */
1067 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1068
1069 extern void perf_callchain_user(struct perf_callchain_entry *entry,
1070 struct pt_regs *regs);
1071 extern void perf_callchain_kernel(struct perf_callchain_entry *entry,
1072 struct pt_regs *regs);
1073
1074
1075 static inline void
1076 perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
1077 {
1078 if (entry->nr < PERF_MAX_STACK_DEPTH)
1079 entry->ip[entry->nr++] = ip;
1080 }
1081
1082 extern int sysctl_perf_event_paranoid;
1083 extern int sysctl_perf_event_mlock;
1084 extern int sysctl_perf_event_sample_rate;
1085
1086 static inline bool perf_paranoid_tracepoint_raw(void)
1087 {
1088 return sysctl_perf_event_paranoid > -1;
1089 }
1090
1091 static inline bool perf_paranoid_cpu(void)
1092 {
1093 return sysctl_perf_event_paranoid > 0;
1094 }
1095
1096 static inline bool perf_paranoid_kernel(void)
1097 {
1098 return sysctl_perf_event_paranoid > 1;
1099 }
1100
1101 extern void perf_event_init(void);
1102 extern void perf_tp_event(u64 addr, u64 count, void *record,
1103 int entry_size, struct pt_regs *regs,
1104 struct hlist_head *head, int rctx);
1105 extern void perf_bp_event(struct perf_event *event, void *data);
1106
1107 #ifndef perf_misc_flags
1108 #define perf_misc_flags(regs) (user_mode(regs) ? PERF_RECORD_MISC_USER : \
1109 PERF_RECORD_MISC_KERNEL)
1110 #define perf_instruction_pointer(regs) instruction_pointer(regs)
1111 #endif
1112
1113 extern int perf_output_begin(struct perf_output_handle *handle,
1114 struct perf_event *event, unsigned int size,
1115 int nmi, int sample);
1116 extern void perf_output_end(struct perf_output_handle *handle);
1117 extern void perf_output_copy(struct perf_output_handle *handle,
1118 const void *buf, unsigned int len);
1119 extern int perf_swevent_get_recursion_context(void);
1120 extern void perf_swevent_put_recursion_context(int rctx);
1121 extern void perf_event_enable(struct perf_event *event);
1122 extern void perf_event_disable(struct perf_event *event);
1123 extern void perf_event_task_tick(void);
1124 #else
1125 static inline void
1126 perf_event_task_sched_in(struct task_struct *task) { }
1127 static inline void
1128 perf_event_task_sched_out(struct task_struct *task,
1129 struct task_struct *next) { }
1130 static inline int perf_event_init_task(struct task_struct *child) { return 0; }
1131 static inline void perf_event_exit_task(struct task_struct *child) { }
1132 static inline void perf_event_free_task(struct task_struct *task) { }
1133 static inline void perf_event_delayed_put(struct task_struct *task) { }
1134 static inline void perf_event_print_debug(void) { }
1135 static inline int perf_event_task_disable(void) { return -EINVAL; }
1136 static inline int perf_event_task_enable(void) { return -EINVAL; }
1137
1138 static inline void
1139 perf_sw_event(u32 event_id, u64 nr, int nmi,
1140 struct pt_regs *regs, u64 addr) { }
1141 static inline void
1142 perf_bp_event(struct perf_event *event, void *data) { }
1143
1144 static inline int perf_register_guest_info_callbacks
1145 (struct perf_guest_info_callbacks *callbacks) { return 0; }
1146 static inline int perf_unregister_guest_info_callbacks
1147 (struct perf_guest_info_callbacks *callbacks) { return 0; }
1148
1149 static inline void perf_event_mmap(struct vm_area_struct *vma) { }
1150 static inline void perf_event_comm(struct task_struct *tsk) { }
1151 static inline void perf_event_fork(struct task_struct *tsk) { }
1152 static inline void perf_event_init(void) { }
1153 static inline int perf_swevent_get_recursion_context(void) { return -1; }
1154 static inline void perf_swevent_put_recursion_context(int rctx) { }
1155 static inline void perf_event_enable(struct perf_event *event) { }
1156 static inline void perf_event_disable(struct perf_event *event) { }
1157 static inline void perf_event_task_tick(void) { }
1158 #endif
1159
1160 #define perf_output_put(handle, x) \
1161 perf_output_copy((handle), &(x), sizeof(x))
1162
1163 /*
1164 * This has to have a higher priority than migration_notifier in sched.c.
1165 */
1166 #define perf_cpu_notifier(fn) \
1167 do { \
1168 static struct notifier_block fn##_nb __cpuinitdata = \
1169 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \
1170 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \
1171 (void *)(unsigned long)smp_processor_id()); \
1172 fn(&fn##_nb, (unsigned long)CPU_STARTING, \
1173 (void *)(unsigned long)smp_processor_id()); \
1174 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \
1175 (void *)(unsigned long)smp_processor_id()); \
1176 register_cpu_notifier(&fn##_nb); \
1177 } while (0)
1178
1179 #endif /* __KERNEL__ */
1180 #endif /* _LINUX_PERF_EVENT_H */
This page took 0.180721 seconds and 5 git commands to generate.