kernel: delete __cpuinit usage from all core kernel files
[deliverable/linux.git] / include / linux / perf_event.h
1 /*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <uapi/linux/perf_event.h>
18
19 /*
20 * Kernel-internal data types and definitions:
21 */
22
23 #ifdef CONFIG_PERF_EVENTS
24 # include <asm/perf_event.h>
25 # include <asm/local64.h>
26 #endif
27
28 struct perf_guest_info_callbacks {
29 int (*is_in_guest)(void);
30 int (*is_user_mode)(void);
31 unsigned long (*get_guest_ip)(void);
32 };
33
34 #ifdef CONFIG_HAVE_HW_BREAKPOINT
35 #include <asm/hw_breakpoint.h>
36 #endif
37
38 #include <linux/list.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/rcupdate.h>
42 #include <linux/spinlock.h>
43 #include <linux/hrtimer.h>
44 #include <linux/fs.h>
45 #include <linux/pid_namespace.h>
46 #include <linux/workqueue.h>
47 #include <linux/ftrace.h>
48 #include <linux/cpu.h>
49 #include <linux/irq_work.h>
50 #include <linux/static_key.h>
51 #include <linux/atomic.h>
52 #include <linux/sysfs.h>
53 #include <linux/perf_regs.h>
54 #include <asm/local.h>
55
56 struct perf_callchain_entry {
57 __u64 nr;
58 __u64 ip[PERF_MAX_STACK_DEPTH];
59 };
60
61 struct perf_raw_record {
62 u32 size;
63 void *data;
64 };
65
66 /*
67 * single taken branch record layout:
68 *
69 * from: source instruction (may not always be a branch insn)
70 * to: branch target
71 * mispred: branch target was mispredicted
72 * predicted: branch target was predicted
73 *
74 * support for mispred, predicted is optional. In case it
75 * is not supported mispred = predicted = 0.
76 *
77 * in_tx: running in a hardware transaction
78 * abort: aborting a hardware transaction
79 */
80 struct perf_branch_entry {
81 __u64 from;
82 __u64 to;
83 __u64 mispred:1, /* target mispredicted */
84 predicted:1,/* target predicted */
85 in_tx:1, /* in transaction */
86 abort:1, /* transaction abort */
87 reserved:60;
88 };
89
90 /*
91 * branch stack layout:
92 * nr: number of taken branches stored in entries[]
93 *
94 * Note that nr can vary from sample to sample
95 * branches (to, from) are stored from most recent
96 * to least recent, i.e., entries[0] contains the most
97 * recent branch.
98 */
99 struct perf_branch_stack {
100 __u64 nr;
101 struct perf_branch_entry entries[0];
102 };
103
104 struct perf_regs_user {
105 __u64 abi;
106 struct pt_regs *regs;
107 };
108
109 struct task_struct;
110
111 /*
112 * extra PMU register associated with an event
113 */
114 struct hw_perf_event_extra {
115 u64 config; /* register value */
116 unsigned int reg; /* register address or index */
117 int alloc; /* extra register already allocated */
118 int idx; /* index in shared_regs->regs[] */
119 };
120
121 struct event_constraint;
122
123 /**
124 * struct hw_perf_event - performance event hardware details:
125 */
126 struct hw_perf_event {
127 #ifdef CONFIG_PERF_EVENTS
128 union {
129 struct { /* hardware */
130 u64 config;
131 u64 last_tag;
132 unsigned long config_base;
133 unsigned long event_base;
134 int event_base_rdpmc;
135 int idx;
136 int last_cpu;
137 int flags;
138
139 struct hw_perf_event_extra extra_reg;
140 struct hw_perf_event_extra branch_reg;
141
142 struct event_constraint *constraint;
143 };
144 struct { /* software */
145 struct hrtimer hrtimer;
146 };
147 struct { /* tracepoint */
148 struct task_struct *tp_target;
149 /* for tp_event->class */
150 struct list_head tp_list;
151 };
152 #ifdef CONFIG_HAVE_HW_BREAKPOINT
153 struct { /* breakpoint */
154 /*
155 * Crufty hack to avoid the chicken and egg
156 * problem hw_breakpoint has with context
157 * creation and event initalization.
158 */
159 struct task_struct *bp_target;
160 struct arch_hw_breakpoint info;
161 struct list_head bp_list;
162 };
163 #endif
164 };
165 int state;
166 local64_t prev_count;
167 u64 sample_period;
168 u64 last_period;
169 local64_t period_left;
170 u64 interrupts_seq;
171 u64 interrupts;
172
173 u64 freq_time_stamp;
174 u64 freq_count_stamp;
175 #endif
176 };
177
178 /*
179 * hw_perf_event::state flags
180 */
181 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */
182 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
183 #define PERF_HES_ARCH 0x04
184
185 struct perf_event;
186
187 /*
188 * Common implementation detail of pmu::{start,commit,cancel}_txn
189 */
190 #define PERF_EVENT_TXN 0x1
191
192 /**
193 * struct pmu - generic performance monitoring unit
194 */
195 struct pmu {
196 struct list_head entry;
197
198 struct device *dev;
199 const struct attribute_group **attr_groups;
200 const char *name;
201 int type;
202
203 int * __percpu pmu_disable_count;
204 struct perf_cpu_context * __percpu pmu_cpu_context;
205 int task_ctx_nr;
206 int hrtimer_interval_ms;
207
208 /*
209 * Fully disable/enable this PMU, can be used to protect from the PMI
210 * as well as for lazy/batch writing of the MSRs.
211 */
212 void (*pmu_enable) (struct pmu *pmu); /* optional */
213 void (*pmu_disable) (struct pmu *pmu); /* optional */
214
215 /*
216 * Try and initialize the event for this PMU.
217 * Should return -ENOENT when the @event doesn't match this PMU.
218 */
219 int (*event_init) (struct perf_event *event);
220
221 #define PERF_EF_START 0x01 /* start the counter when adding */
222 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
223 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
224
225 /*
226 * Adds/Removes a counter to/from the PMU, can be done inside
227 * a transaction, see the ->*_txn() methods.
228 */
229 int (*add) (struct perf_event *event, int flags);
230 void (*del) (struct perf_event *event, int flags);
231
232 /*
233 * Starts/Stops a counter present on the PMU. The PMI handler
234 * should stop the counter when perf_event_overflow() returns
235 * !0. ->start() will be used to continue.
236 */
237 void (*start) (struct perf_event *event, int flags);
238 void (*stop) (struct perf_event *event, int flags);
239
240 /*
241 * Updates the counter value of the event.
242 */
243 void (*read) (struct perf_event *event);
244
245 /*
246 * Group events scheduling is treated as a transaction, add
247 * group events as a whole and perform one schedulability test.
248 * If the test fails, roll back the whole group
249 *
250 * Start the transaction, after this ->add() doesn't need to
251 * do schedulability tests.
252 */
253 void (*start_txn) (struct pmu *pmu); /* optional */
254 /*
255 * If ->start_txn() disabled the ->add() schedulability test
256 * then ->commit_txn() is required to perform one. On success
257 * the transaction is closed. On error the transaction is kept
258 * open until ->cancel_txn() is called.
259 */
260 int (*commit_txn) (struct pmu *pmu); /* optional */
261 /*
262 * Will cancel the transaction, assumes ->del() is called
263 * for each successful ->add() during the transaction.
264 */
265 void (*cancel_txn) (struct pmu *pmu); /* optional */
266
267 /*
268 * Will return the value for perf_event_mmap_page::index for this event,
269 * if no implementation is provided it will default to: event->hw.idx + 1.
270 */
271 int (*event_idx) (struct perf_event *event); /*optional */
272
273 /*
274 * flush branch stack on context-switches (needed in cpu-wide mode)
275 */
276 void (*flush_branch_stack) (void);
277 };
278
279 /**
280 * enum perf_event_active_state - the states of a event
281 */
282 enum perf_event_active_state {
283 PERF_EVENT_STATE_ERROR = -2,
284 PERF_EVENT_STATE_OFF = -1,
285 PERF_EVENT_STATE_INACTIVE = 0,
286 PERF_EVENT_STATE_ACTIVE = 1,
287 };
288
289 struct file;
290 struct perf_sample_data;
291
292 typedef void (*perf_overflow_handler_t)(struct perf_event *,
293 struct perf_sample_data *,
294 struct pt_regs *regs);
295
296 enum perf_group_flag {
297 PERF_GROUP_SOFTWARE = 0x1,
298 };
299
300 #define SWEVENT_HLIST_BITS 8
301 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
302
303 struct swevent_hlist {
304 struct hlist_head heads[SWEVENT_HLIST_SIZE];
305 struct rcu_head rcu_head;
306 };
307
308 #define PERF_ATTACH_CONTEXT 0x01
309 #define PERF_ATTACH_GROUP 0x02
310 #define PERF_ATTACH_TASK 0x04
311
312 struct perf_cgroup;
313 struct ring_buffer;
314
315 /**
316 * struct perf_event - performance event kernel representation:
317 */
318 struct perf_event {
319 #ifdef CONFIG_PERF_EVENTS
320 struct list_head group_entry;
321 struct list_head event_entry;
322 struct list_head sibling_list;
323 struct hlist_node hlist_entry;
324 int nr_siblings;
325 int group_flags;
326 struct perf_event *group_leader;
327 struct pmu *pmu;
328
329 enum perf_event_active_state state;
330 unsigned int attach_state;
331 local64_t count;
332 atomic64_t child_count;
333
334 /*
335 * These are the total time in nanoseconds that the event
336 * has been enabled (i.e. eligible to run, and the task has
337 * been scheduled in, if this is a per-task event)
338 * and running (scheduled onto the CPU), respectively.
339 *
340 * They are computed from tstamp_enabled, tstamp_running and
341 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
342 */
343 u64 total_time_enabled;
344 u64 total_time_running;
345
346 /*
347 * These are timestamps used for computing total_time_enabled
348 * and total_time_running when the event is in INACTIVE or
349 * ACTIVE state, measured in nanoseconds from an arbitrary point
350 * in time.
351 * tstamp_enabled: the notional time when the event was enabled
352 * tstamp_running: the notional time when the event was scheduled on
353 * tstamp_stopped: in INACTIVE state, the notional time when the
354 * event was scheduled off.
355 */
356 u64 tstamp_enabled;
357 u64 tstamp_running;
358 u64 tstamp_stopped;
359
360 /*
361 * timestamp shadows the actual context timing but it can
362 * be safely used in NMI interrupt context. It reflects the
363 * context time as it was when the event was last scheduled in.
364 *
365 * ctx_time already accounts for ctx->timestamp. Therefore to
366 * compute ctx_time for a sample, simply add perf_clock().
367 */
368 u64 shadow_ctx_time;
369
370 struct perf_event_attr attr;
371 u16 header_size;
372 u16 id_header_size;
373 u16 read_size;
374 struct hw_perf_event hw;
375
376 struct perf_event_context *ctx;
377 atomic_long_t refcount;
378
379 /*
380 * These accumulate total time (in nanoseconds) that children
381 * events have been enabled and running, respectively.
382 */
383 atomic64_t child_total_time_enabled;
384 atomic64_t child_total_time_running;
385
386 /*
387 * Protect attach/detach and child_list:
388 */
389 struct mutex child_mutex;
390 struct list_head child_list;
391 struct perf_event *parent;
392
393 int oncpu;
394 int cpu;
395
396 struct list_head owner_entry;
397 struct task_struct *owner;
398
399 /* mmap bits */
400 struct mutex mmap_mutex;
401 atomic_t mmap_count;
402
403 struct ring_buffer *rb;
404 struct list_head rb_entry;
405
406 /* poll related */
407 wait_queue_head_t waitq;
408 struct fasync_struct *fasync;
409
410 /* delayed work for NMIs and such */
411 int pending_wakeup;
412 int pending_kill;
413 int pending_disable;
414 struct irq_work pending;
415
416 atomic_t event_limit;
417
418 void (*destroy)(struct perf_event *);
419 struct rcu_head rcu_head;
420
421 struct pid_namespace *ns;
422 u64 id;
423
424 perf_overflow_handler_t overflow_handler;
425 void *overflow_handler_context;
426
427 #ifdef CONFIG_EVENT_TRACING
428 struct ftrace_event_call *tp_event;
429 struct event_filter *filter;
430 #ifdef CONFIG_FUNCTION_TRACER
431 struct ftrace_ops ftrace_ops;
432 #endif
433 #endif
434
435 #ifdef CONFIG_CGROUP_PERF
436 struct perf_cgroup *cgrp; /* cgroup event is attach to */
437 int cgrp_defer_enabled;
438 #endif
439
440 #endif /* CONFIG_PERF_EVENTS */
441 };
442
443 enum perf_event_context_type {
444 task_context,
445 cpu_context,
446 };
447
448 /**
449 * struct perf_event_context - event context structure
450 *
451 * Used as a container for task events and CPU events as well:
452 */
453 struct perf_event_context {
454 struct pmu *pmu;
455 enum perf_event_context_type type;
456 /*
457 * Protect the states of the events in the list,
458 * nr_active, and the list:
459 */
460 raw_spinlock_t lock;
461 /*
462 * Protect the list of events. Locking either mutex or lock
463 * is sufficient to ensure the list doesn't change; to change
464 * the list you need to lock both the mutex and the spinlock.
465 */
466 struct mutex mutex;
467
468 struct list_head pinned_groups;
469 struct list_head flexible_groups;
470 struct list_head event_list;
471 int nr_events;
472 int nr_active;
473 int is_active;
474 int nr_stat;
475 int nr_freq;
476 int rotate_disable;
477 atomic_t refcount;
478 struct task_struct *task;
479
480 /*
481 * Context clock, runs when context enabled.
482 */
483 u64 time;
484 u64 timestamp;
485
486 /*
487 * These fields let us detect when two contexts have both
488 * been cloned (inherited) from a common ancestor.
489 */
490 struct perf_event_context *parent_ctx;
491 u64 parent_gen;
492 u64 generation;
493 int pin_count;
494 int nr_cgroups; /* cgroup evts */
495 int nr_branch_stack; /* branch_stack evt */
496 struct rcu_head rcu_head;
497 };
498
499 /*
500 * Number of contexts where an event can trigger:
501 * task, softirq, hardirq, nmi.
502 */
503 #define PERF_NR_CONTEXTS 4
504
505 /**
506 * struct perf_event_cpu_context - per cpu event context structure
507 */
508 struct perf_cpu_context {
509 struct perf_event_context ctx;
510 struct perf_event_context *task_ctx;
511 int active_oncpu;
512 int exclusive;
513 struct hrtimer hrtimer;
514 ktime_t hrtimer_interval;
515 struct list_head rotation_list;
516 struct pmu *unique_pmu;
517 struct perf_cgroup *cgrp;
518 };
519
520 struct perf_output_handle {
521 struct perf_event *event;
522 struct ring_buffer *rb;
523 unsigned long wakeup;
524 unsigned long size;
525 void *addr;
526 int page;
527 };
528
529 #ifdef CONFIG_PERF_EVENTS
530
531 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
532 extern void perf_pmu_unregister(struct pmu *pmu);
533
534 extern int perf_num_counters(void);
535 extern const char *perf_pmu_name(void);
536 extern void __perf_event_task_sched_in(struct task_struct *prev,
537 struct task_struct *task);
538 extern void __perf_event_task_sched_out(struct task_struct *prev,
539 struct task_struct *next);
540 extern int perf_event_init_task(struct task_struct *child);
541 extern void perf_event_exit_task(struct task_struct *child);
542 extern void perf_event_free_task(struct task_struct *task);
543 extern void perf_event_delayed_put(struct task_struct *task);
544 extern void perf_event_print_debug(void);
545 extern void perf_pmu_disable(struct pmu *pmu);
546 extern void perf_pmu_enable(struct pmu *pmu);
547 extern int perf_event_task_disable(void);
548 extern int perf_event_task_enable(void);
549 extern int perf_event_refresh(struct perf_event *event, int refresh);
550 extern void perf_event_update_userpage(struct perf_event *event);
551 extern int perf_event_release_kernel(struct perf_event *event);
552 extern struct perf_event *
553 perf_event_create_kernel_counter(struct perf_event_attr *attr,
554 int cpu,
555 struct task_struct *task,
556 perf_overflow_handler_t callback,
557 void *context);
558 extern void perf_pmu_migrate_context(struct pmu *pmu,
559 int src_cpu, int dst_cpu);
560 extern u64 perf_event_read_value(struct perf_event *event,
561 u64 *enabled, u64 *running);
562
563
564 struct perf_sample_data {
565 u64 type;
566
567 u64 ip;
568 struct {
569 u32 pid;
570 u32 tid;
571 } tid_entry;
572 u64 time;
573 u64 addr;
574 u64 id;
575 u64 stream_id;
576 struct {
577 u32 cpu;
578 u32 reserved;
579 } cpu_entry;
580 u64 period;
581 union perf_mem_data_src data_src;
582 struct perf_callchain_entry *callchain;
583 struct perf_raw_record *raw;
584 struct perf_branch_stack *br_stack;
585 struct perf_regs_user regs_user;
586 u64 stack_user_size;
587 u64 weight;
588 };
589
590 static inline void perf_sample_data_init(struct perf_sample_data *data,
591 u64 addr, u64 period)
592 {
593 /* remaining struct members initialized in perf_prepare_sample() */
594 data->addr = addr;
595 data->raw = NULL;
596 data->br_stack = NULL;
597 data->period = period;
598 data->regs_user.abi = PERF_SAMPLE_REGS_ABI_NONE;
599 data->regs_user.regs = NULL;
600 data->stack_user_size = 0;
601 data->weight = 0;
602 data->data_src.val = 0;
603 }
604
605 extern void perf_output_sample(struct perf_output_handle *handle,
606 struct perf_event_header *header,
607 struct perf_sample_data *data,
608 struct perf_event *event);
609 extern void perf_prepare_sample(struct perf_event_header *header,
610 struct perf_sample_data *data,
611 struct perf_event *event,
612 struct pt_regs *regs);
613
614 extern int perf_event_overflow(struct perf_event *event,
615 struct perf_sample_data *data,
616 struct pt_regs *regs);
617
618 static inline bool is_sampling_event(struct perf_event *event)
619 {
620 return event->attr.sample_period != 0;
621 }
622
623 /*
624 * Return 1 for a software event, 0 for a hardware event
625 */
626 static inline int is_software_event(struct perf_event *event)
627 {
628 return event->pmu->task_ctx_nr == perf_sw_context;
629 }
630
631 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
632
633 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
634
635 #ifndef perf_arch_fetch_caller_regs
636 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
637 #endif
638
639 /*
640 * Take a snapshot of the regs. Skip ip and frame pointer to
641 * the nth caller. We only need a few of the regs:
642 * - ip for PERF_SAMPLE_IP
643 * - cs for user_mode() tests
644 * - bp for callchains
645 * - eflags, for future purposes, just in case
646 */
647 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
648 {
649 memset(regs, 0, sizeof(*regs));
650
651 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
652 }
653
654 static __always_inline void
655 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
656 {
657 struct pt_regs hot_regs;
658
659 if (static_key_false(&perf_swevent_enabled[event_id])) {
660 if (!regs) {
661 perf_fetch_caller_regs(&hot_regs);
662 regs = &hot_regs;
663 }
664 __perf_sw_event(event_id, nr, regs, addr);
665 }
666 }
667
668 extern struct static_key_deferred perf_sched_events;
669
670 static inline void perf_event_task_sched_in(struct task_struct *prev,
671 struct task_struct *task)
672 {
673 if (static_key_false(&perf_sched_events.key))
674 __perf_event_task_sched_in(prev, task);
675 }
676
677 static inline void perf_event_task_sched_out(struct task_struct *prev,
678 struct task_struct *next)
679 {
680 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, NULL, 0);
681
682 if (static_key_false(&perf_sched_events.key))
683 __perf_event_task_sched_out(prev, next);
684 }
685
686 extern void perf_event_mmap(struct vm_area_struct *vma);
687 extern struct perf_guest_info_callbacks *perf_guest_cbs;
688 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
689 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
690
691 extern void perf_event_comm(struct task_struct *tsk);
692 extern void perf_event_fork(struct task_struct *tsk);
693
694 /* Callchains */
695 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
696
697 extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs);
698 extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs);
699
700 static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
701 {
702 if (entry->nr < PERF_MAX_STACK_DEPTH)
703 entry->ip[entry->nr++] = ip;
704 }
705
706 extern int sysctl_perf_event_paranoid;
707 extern int sysctl_perf_event_mlock;
708 extern int sysctl_perf_event_sample_rate;
709 extern int sysctl_perf_cpu_time_max_percent;
710
711 extern void perf_sample_event_took(u64 sample_len_ns);
712
713 extern int perf_proc_update_handler(struct ctl_table *table, int write,
714 void __user *buffer, size_t *lenp,
715 loff_t *ppos);
716 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
717 void __user *buffer, size_t *lenp,
718 loff_t *ppos);
719
720
721 static inline bool perf_paranoid_tracepoint_raw(void)
722 {
723 return sysctl_perf_event_paranoid > -1;
724 }
725
726 static inline bool perf_paranoid_cpu(void)
727 {
728 return sysctl_perf_event_paranoid > 0;
729 }
730
731 static inline bool perf_paranoid_kernel(void)
732 {
733 return sysctl_perf_event_paranoid > 1;
734 }
735
736 extern void perf_event_init(void);
737 extern void perf_tp_event(u64 addr, u64 count, void *record,
738 int entry_size, struct pt_regs *regs,
739 struct hlist_head *head, int rctx,
740 struct task_struct *task);
741 extern void perf_bp_event(struct perf_event *event, void *data);
742
743 #ifndef perf_misc_flags
744 # define perf_misc_flags(regs) \
745 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
746 # define perf_instruction_pointer(regs) instruction_pointer(regs)
747 #endif
748
749 static inline bool has_branch_stack(struct perf_event *event)
750 {
751 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
752 }
753
754 extern int perf_output_begin(struct perf_output_handle *handle,
755 struct perf_event *event, unsigned int size);
756 extern void perf_output_end(struct perf_output_handle *handle);
757 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
758 const void *buf, unsigned int len);
759 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
760 unsigned int len);
761 extern int perf_swevent_get_recursion_context(void);
762 extern void perf_swevent_put_recursion_context(int rctx);
763 extern u64 perf_swevent_set_period(struct perf_event *event);
764 extern void perf_event_enable(struct perf_event *event);
765 extern void perf_event_disable(struct perf_event *event);
766 extern int __perf_event_disable(void *info);
767 extern void perf_event_task_tick(void);
768 #else
769 static inline void
770 perf_event_task_sched_in(struct task_struct *prev,
771 struct task_struct *task) { }
772 static inline void
773 perf_event_task_sched_out(struct task_struct *prev,
774 struct task_struct *next) { }
775 static inline int perf_event_init_task(struct task_struct *child) { return 0; }
776 static inline void perf_event_exit_task(struct task_struct *child) { }
777 static inline void perf_event_free_task(struct task_struct *task) { }
778 static inline void perf_event_delayed_put(struct task_struct *task) { }
779 static inline void perf_event_print_debug(void) { }
780 static inline int perf_event_task_disable(void) { return -EINVAL; }
781 static inline int perf_event_task_enable(void) { return -EINVAL; }
782 static inline int perf_event_refresh(struct perf_event *event, int refresh)
783 {
784 return -EINVAL;
785 }
786
787 static inline void
788 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
789 static inline void
790 perf_bp_event(struct perf_event *event, void *data) { }
791
792 static inline int perf_register_guest_info_callbacks
793 (struct perf_guest_info_callbacks *callbacks) { return 0; }
794 static inline int perf_unregister_guest_info_callbacks
795 (struct perf_guest_info_callbacks *callbacks) { return 0; }
796
797 static inline void perf_event_mmap(struct vm_area_struct *vma) { }
798 static inline void perf_event_comm(struct task_struct *tsk) { }
799 static inline void perf_event_fork(struct task_struct *tsk) { }
800 static inline void perf_event_init(void) { }
801 static inline int perf_swevent_get_recursion_context(void) { return -1; }
802 static inline void perf_swevent_put_recursion_context(int rctx) { }
803 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; }
804 static inline void perf_event_enable(struct perf_event *event) { }
805 static inline void perf_event_disable(struct perf_event *event) { }
806 static inline int __perf_event_disable(void *info) { return -1; }
807 static inline void perf_event_task_tick(void) { }
808 #endif
809
810 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_NO_HZ_FULL)
811 extern bool perf_event_can_stop_tick(void);
812 #else
813 static inline bool perf_event_can_stop_tick(void) { return true; }
814 #endif
815
816 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
817 extern void perf_restore_debug_store(void);
818 #else
819 static inline void perf_restore_debug_store(void) { }
820 #endif
821
822 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
823
824 /*
825 * This has to have a higher priority than migration_notifier in sched/core.c.
826 */
827 #define perf_cpu_notifier(fn) \
828 do { \
829 static struct notifier_block fn##_nb = \
830 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \
831 unsigned long cpu = smp_processor_id(); \
832 unsigned long flags; \
833 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \
834 (void *)(unsigned long)cpu); \
835 local_irq_save(flags); \
836 fn(&fn##_nb, (unsigned long)CPU_STARTING, \
837 (void *)(unsigned long)cpu); \
838 local_irq_restore(flags); \
839 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \
840 (void *)(unsigned long)cpu); \
841 register_cpu_notifier(&fn##_nb); \
842 } while (0)
843
844
845 struct perf_pmu_events_attr {
846 struct device_attribute attr;
847 u64 id;
848 const char *event_str;
849 };
850
851 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \
852 static struct perf_pmu_events_attr _var = { \
853 .attr = __ATTR(_name, 0444, _show, NULL), \
854 .id = _id, \
855 };
856
857 #define PMU_FORMAT_ATTR(_name, _format) \
858 static ssize_t \
859 _name##_show(struct device *dev, \
860 struct device_attribute *attr, \
861 char *page) \
862 { \
863 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
864 return sprintf(page, _format "\n"); \
865 } \
866 \
867 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
868
869 #endif /* _LINUX_PERF_EVENT_H */
This page took 0.049269 seconds and 6 git commands to generate.