perf/x86: Enable Intel Cedarview Atom suppport
[deliverable/linux.git] / include / linux / perf_event.h
1 /*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <linux/types.h>
18 #include <linux/ioctl.h>
19 #include <asm/byteorder.h>
20
21 /*
22 * User-space ABI bits:
23 */
24
25 /*
26 * attr.type
27 */
28 enum perf_type_id {
29 PERF_TYPE_HARDWARE = 0,
30 PERF_TYPE_SOFTWARE = 1,
31 PERF_TYPE_TRACEPOINT = 2,
32 PERF_TYPE_HW_CACHE = 3,
33 PERF_TYPE_RAW = 4,
34 PERF_TYPE_BREAKPOINT = 5,
35
36 PERF_TYPE_MAX, /* non-ABI */
37 };
38
39 /*
40 * Generalized performance event event_id types, used by the
41 * attr.event_id parameter of the sys_perf_event_open()
42 * syscall:
43 */
44 enum perf_hw_id {
45 /*
46 * Common hardware events, generalized by the kernel:
47 */
48 PERF_COUNT_HW_CPU_CYCLES = 0,
49 PERF_COUNT_HW_INSTRUCTIONS = 1,
50 PERF_COUNT_HW_CACHE_REFERENCES = 2,
51 PERF_COUNT_HW_CACHE_MISSES = 3,
52 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4,
53 PERF_COUNT_HW_BRANCH_MISSES = 5,
54 PERF_COUNT_HW_BUS_CYCLES = 6,
55 PERF_COUNT_HW_STALLED_CYCLES_FRONTEND = 7,
56 PERF_COUNT_HW_STALLED_CYCLES_BACKEND = 8,
57 PERF_COUNT_HW_REF_CPU_CYCLES = 9,
58
59 PERF_COUNT_HW_MAX, /* non-ABI */
60 };
61
62 /*
63 * Generalized hardware cache events:
64 *
65 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x
66 * { read, write, prefetch } x
67 * { accesses, misses }
68 */
69 enum perf_hw_cache_id {
70 PERF_COUNT_HW_CACHE_L1D = 0,
71 PERF_COUNT_HW_CACHE_L1I = 1,
72 PERF_COUNT_HW_CACHE_LL = 2,
73 PERF_COUNT_HW_CACHE_DTLB = 3,
74 PERF_COUNT_HW_CACHE_ITLB = 4,
75 PERF_COUNT_HW_CACHE_BPU = 5,
76 PERF_COUNT_HW_CACHE_NODE = 6,
77
78 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */
79 };
80
81 enum perf_hw_cache_op_id {
82 PERF_COUNT_HW_CACHE_OP_READ = 0,
83 PERF_COUNT_HW_CACHE_OP_WRITE = 1,
84 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2,
85
86 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */
87 };
88
89 enum perf_hw_cache_op_result_id {
90 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0,
91 PERF_COUNT_HW_CACHE_RESULT_MISS = 1,
92
93 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */
94 };
95
96 /*
97 * Special "software" events provided by the kernel, even if the hardware
98 * does not support performance events. These events measure various
99 * physical and sw events of the kernel (and allow the profiling of them as
100 * well):
101 */
102 enum perf_sw_ids {
103 PERF_COUNT_SW_CPU_CLOCK = 0,
104 PERF_COUNT_SW_TASK_CLOCK = 1,
105 PERF_COUNT_SW_PAGE_FAULTS = 2,
106 PERF_COUNT_SW_CONTEXT_SWITCHES = 3,
107 PERF_COUNT_SW_CPU_MIGRATIONS = 4,
108 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5,
109 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6,
110 PERF_COUNT_SW_ALIGNMENT_FAULTS = 7,
111 PERF_COUNT_SW_EMULATION_FAULTS = 8,
112
113 PERF_COUNT_SW_MAX, /* non-ABI */
114 };
115
116 /*
117 * Bits that can be set in attr.sample_type to request information
118 * in the overflow packets.
119 */
120 enum perf_event_sample_format {
121 PERF_SAMPLE_IP = 1U << 0,
122 PERF_SAMPLE_TID = 1U << 1,
123 PERF_SAMPLE_TIME = 1U << 2,
124 PERF_SAMPLE_ADDR = 1U << 3,
125 PERF_SAMPLE_READ = 1U << 4,
126 PERF_SAMPLE_CALLCHAIN = 1U << 5,
127 PERF_SAMPLE_ID = 1U << 6,
128 PERF_SAMPLE_CPU = 1U << 7,
129 PERF_SAMPLE_PERIOD = 1U << 8,
130 PERF_SAMPLE_STREAM_ID = 1U << 9,
131 PERF_SAMPLE_RAW = 1U << 10,
132 PERF_SAMPLE_BRANCH_STACK = 1U << 11,
133
134 PERF_SAMPLE_MAX = 1U << 12, /* non-ABI */
135 };
136
137 /*
138 * values to program into branch_sample_type when PERF_SAMPLE_BRANCH is set
139 *
140 * If the user does not pass priv level information via branch_sample_type,
141 * the kernel uses the event's priv level. Branch and event priv levels do
142 * not have to match. Branch priv level is checked for permissions.
143 *
144 * The branch types can be combined, however BRANCH_ANY covers all types
145 * of branches and therefore it supersedes all the other types.
146 */
147 enum perf_branch_sample_type {
148 PERF_SAMPLE_BRANCH_USER = 1U << 0, /* user branches */
149 PERF_SAMPLE_BRANCH_KERNEL = 1U << 1, /* kernel branches */
150 PERF_SAMPLE_BRANCH_HV = 1U << 2, /* hypervisor branches */
151
152 PERF_SAMPLE_BRANCH_ANY = 1U << 3, /* any branch types */
153 PERF_SAMPLE_BRANCH_ANY_CALL = 1U << 4, /* any call branch */
154 PERF_SAMPLE_BRANCH_ANY_RETURN = 1U << 5, /* any return branch */
155 PERF_SAMPLE_BRANCH_IND_CALL = 1U << 6, /* indirect calls */
156
157 PERF_SAMPLE_BRANCH_MAX = 1U << 7, /* non-ABI */
158 };
159
160 #define PERF_SAMPLE_BRANCH_PLM_ALL \
161 (PERF_SAMPLE_BRANCH_USER|\
162 PERF_SAMPLE_BRANCH_KERNEL|\
163 PERF_SAMPLE_BRANCH_HV)
164
165 /*
166 * The format of the data returned by read() on a perf event fd,
167 * as specified by attr.read_format:
168 *
169 * struct read_format {
170 * { u64 value;
171 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
172 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
173 * { u64 id; } && PERF_FORMAT_ID
174 * } && !PERF_FORMAT_GROUP
175 *
176 * { u64 nr;
177 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
178 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
179 * { u64 value;
180 * { u64 id; } && PERF_FORMAT_ID
181 * } cntr[nr];
182 * } && PERF_FORMAT_GROUP
183 * };
184 */
185 enum perf_event_read_format {
186 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0,
187 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1,
188 PERF_FORMAT_ID = 1U << 2,
189 PERF_FORMAT_GROUP = 1U << 3,
190
191 PERF_FORMAT_MAX = 1U << 4, /* non-ABI */
192 };
193
194 #define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */
195 #define PERF_ATTR_SIZE_VER1 72 /* add: config2 */
196 #define PERF_ATTR_SIZE_VER2 80 /* add: branch_sample_type */
197
198 /*
199 * Hardware event_id to monitor via a performance monitoring event:
200 */
201 struct perf_event_attr {
202
203 /*
204 * Major type: hardware/software/tracepoint/etc.
205 */
206 __u32 type;
207
208 /*
209 * Size of the attr structure, for fwd/bwd compat.
210 */
211 __u32 size;
212
213 /*
214 * Type specific configuration information.
215 */
216 __u64 config;
217
218 union {
219 __u64 sample_period;
220 __u64 sample_freq;
221 };
222
223 __u64 sample_type;
224 __u64 read_format;
225
226 __u64 disabled : 1, /* off by default */
227 inherit : 1, /* children inherit it */
228 pinned : 1, /* must always be on PMU */
229 exclusive : 1, /* only group on PMU */
230 exclude_user : 1, /* don't count user */
231 exclude_kernel : 1, /* ditto kernel */
232 exclude_hv : 1, /* ditto hypervisor */
233 exclude_idle : 1, /* don't count when idle */
234 mmap : 1, /* include mmap data */
235 comm : 1, /* include comm data */
236 freq : 1, /* use freq, not period */
237 inherit_stat : 1, /* per task counts */
238 enable_on_exec : 1, /* next exec enables */
239 task : 1, /* trace fork/exit */
240 watermark : 1, /* wakeup_watermark */
241 /*
242 * precise_ip:
243 *
244 * 0 - SAMPLE_IP can have arbitrary skid
245 * 1 - SAMPLE_IP must have constant skid
246 * 2 - SAMPLE_IP requested to have 0 skid
247 * 3 - SAMPLE_IP must have 0 skid
248 *
249 * See also PERF_RECORD_MISC_EXACT_IP
250 */
251 precise_ip : 2, /* skid constraint */
252 mmap_data : 1, /* non-exec mmap data */
253 sample_id_all : 1, /* sample_type all events */
254
255 exclude_host : 1, /* don't count in host */
256 exclude_guest : 1, /* don't count in guest */
257
258 __reserved_1 : 43;
259
260 union {
261 __u32 wakeup_events; /* wakeup every n events */
262 __u32 wakeup_watermark; /* bytes before wakeup */
263 };
264
265 __u32 bp_type;
266 union {
267 __u64 bp_addr;
268 __u64 config1; /* extension of config */
269 };
270 union {
271 __u64 bp_len;
272 __u64 config2; /* extension of config1 */
273 };
274 __u64 branch_sample_type; /* enum branch_sample_type */
275 };
276
277 /*
278 * Ioctls that can be done on a perf event fd:
279 */
280 #define PERF_EVENT_IOC_ENABLE _IO ('$', 0)
281 #define PERF_EVENT_IOC_DISABLE _IO ('$', 1)
282 #define PERF_EVENT_IOC_REFRESH _IO ('$', 2)
283 #define PERF_EVENT_IOC_RESET _IO ('$', 3)
284 #define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64)
285 #define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5)
286 #define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *)
287
288 enum perf_event_ioc_flags {
289 PERF_IOC_FLAG_GROUP = 1U << 0,
290 };
291
292 /*
293 * Structure of the page that can be mapped via mmap
294 */
295 struct perf_event_mmap_page {
296 __u32 version; /* version number of this structure */
297 __u32 compat_version; /* lowest version this is compat with */
298
299 /*
300 * Bits needed to read the hw events in user-space.
301 *
302 * u32 seq, time_mult, time_shift, idx, width;
303 * u64 count, enabled, running;
304 * u64 cyc, time_offset;
305 * s64 pmc = 0;
306 *
307 * do {
308 * seq = pc->lock;
309 * barrier()
310 *
311 * enabled = pc->time_enabled;
312 * running = pc->time_running;
313 *
314 * if (pc->cap_usr_time && enabled != running) {
315 * cyc = rdtsc();
316 * time_offset = pc->time_offset;
317 * time_mult = pc->time_mult;
318 * time_shift = pc->time_shift;
319 * }
320 *
321 * idx = pc->index;
322 * count = pc->offset;
323 * if (pc->cap_usr_rdpmc && idx) {
324 * width = pc->pmc_width;
325 * pmc = rdpmc(idx - 1);
326 * }
327 *
328 * barrier();
329 * } while (pc->lock != seq);
330 *
331 * NOTE: for obvious reason this only works on self-monitoring
332 * processes.
333 */
334 __u32 lock; /* seqlock for synchronization */
335 __u32 index; /* hardware event identifier */
336 __s64 offset; /* add to hardware event value */
337 __u64 time_enabled; /* time event active */
338 __u64 time_running; /* time event on cpu */
339 union {
340 __u64 capabilities;
341 __u64 cap_usr_time : 1,
342 cap_usr_rdpmc : 1,
343 cap_____res : 62;
344 };
345
346 /*
347 * If cap_usr_rdpmc this field provides the bit-width of the value
348 * read using the rdpmc() or equivalent instruction. This can be used
349 * to sign extend the result like:
350 *
351 * pmc <<= 64 - width;
352 * pmc >>= 64 - width; // signed shift right
353 * count += pmc;
354 */
355 __u16 pmc_width;
356
357 /*
358 * If cap_usr_time the below fields can be used to compute the time
359 * delta since time_enabled (in ns) using rdtsc or similar.
360 *
361 * u64 quot, rem;
362 * u64 delta;
363 *
364 * quot = (cyc >> time_shift);
365 * rem = cyc & ((1 << time_shift) - 1);
366 * delta = time_offset + quot * time_mult +
367 * ((rem * time_mult) >> time_shift);
368 *
369 * Where time_offset,time_mult,time_shift and cyc are read in the
370 * seqcount loop described above. This delta can then be added to
371 * enabled and possible running (if idx), improving the scaling:
372 *
373 * enabled += delta;
374 * if (idx)
375 * running += delta;
376 *
377 * quot = count / running;
378 * rem = count % running;
379 * count = quot * enabled + (rem * enabled) / running;
380 */
381 __u16 time_shift;
382 __u32 time_mult;
383 __u64 time_offset;
384
385 /*
386 * Hole for extension of the self monitor capabilities
387 */
388
389 __u64 __reserved[120]; /* align to 1k */
390
391 /*
392 * Control data for the mmap() data buffer.
393 *
394 * User-space reading the @data_head value should issue an rmb(), on
395 * SMP capable platforms, after reading this value -- see
396 * perf_event_wakeup().
397 *
398 * When the mapping is PROT_WRITE the @data_tail value should be
399 * written by userspace to reflect the last read data. In this case
400 * the kernel will not over-write unread data.
401 */
402 __u64 data_head; /* head in the data section */
403 __u64 data_tail; /* user-space written tail */
404 };
405
406 #define PERF_RECORD_MISC_CPUMODE_MASK (7 << 0)
407 #define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0)
408 #define PERF_RECORD_MISC_KERNEL (1 << 0)
409 #define PERF_RECORD_MISC_USER (2 << 0)
410 #define PERF_RECORD_MISC_HYPERVISOR (3 << 0)
411 #define PERF_RECORD_MISC_GUEST_KERNEL (4 << 0)
412 #define PERF_RECORD_MISC_GUEST_USER (5 << 0)
413
414 /*
415 * Indicates that the content of PERF_SAMPLE_IP points to
416 * the actual instruction that triggered the event. See also
417 * perf_event_attr::precise_ip.
418 */
419 #define PERF_RECORD_MISC_EXACT_IP (1 << 14)
420 /*
421 * Reserve the last bit to indicate some extended misc field
422 */
423 #define PERF_RECORD_MISC_EXT_RESERVED (1 << 15)
424
425 struct perf_event_header {
426 __u32 type;
427 __u16 misc;
428 __u16 size;
429 };
430
431 enum perf_event_type {
432
433 /*
434 * If perf_event_attr.sample_id_all is set then all event types will
435 * have the sample_type selected fields related to where/when
436 * (identity) an event took place (TID, TIME, ID, CPU, STREAM_ID)
437 * described in PERF_RECORD_SAMPLE below, it will be stashed just after
438 * the perf_event_header and the fields already present for the existing
439 * fields, i.e. at the end of the payload. That way a newer perf.data
440 * file will be supported by older perf tools, with these new optional
441 * fields being ignored.
442 *
443 * The MMAP events record the PROT_EXEC mappings so that we can
444 * correlate userspace IPs to code. They have the following structure:
445 *
446 * struct {
447 * struct perf_event_header header;
448 *
449 * u32 pid, tid;
450 * u64 addr;
451 * u64 len;
452 * u64 pgoff;
453 * char filename[];
454 * };
455 */
456 PERF_RECORD_MMAP = 1,
457
458 /*
459 * struct {
460 * struct perf_event_header header;
461 * u64 id;
462 * u64 lost;
463 * };
464 */
465 PERF_RECORD_LOST = 2,
466
467 /*
468 * struct {
469 * struct perf_event_header header;
470 *
471 * u32 pid, tid;
472 * char comm[];
473 * };
474 */
475 PERF_RECORD_COMM = 3,
476
477 /*
478 * struct {
479 * struct perf_event_header header;
480 * u32 pid, ppid;
481 * u32 tid, ptid;
482 * u64 time;
483 * };
484 */
485 PERF_RECORD_EXIT = 4,
486
487 /*
488 * struct {
489 * struct perf_event_header header;
490 * u64 time;
491 * u64 id;
492 * u64 stream_id;
493 * };
494 */
495 PERF_RECORD_THROTTLE = 5,
496 PERF_RECORD_UNTHROTTLE = 6,
497
498 /*
499 * struct {
500 * struct perf_event_header header;
501 * u32 pid, ppid;
502 * u32 tid, ptid;
503 * u64 time;
504 * };
505 */
506 PERF_RECORD_FORK = 7,
507
508 /*
509 * struct {
510 * struct perf_event_header header;
511 * u32 pid, tid;
512 *
513 * struct read_format values;
514 * };
515 */
516 PERF_RECORD_READ = 8,
517
518 /*
519 * struct {
520 * struct perf_event_header header;
521 *
522 * { u64 ip; } && PERF_SAMPLE_IP
523 * { u32 pid, tid; } && PERF_SAMPLE_TID
524 * { u64 time; } && PERF_SAMPLE_TIME
525 * { u64 addr; } && PERF_SAMPLE_ADDR
526 * { u64 id; } && PERF_SAMPLE_ID
527 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID
528 * { u32 cpu, res; } && PERF_SAMPLE_CPU
529 * { u64 period; } && PERF_SAMPLE_PERIOD
530 *
531 * { struct read_format values; } && PERF_SAMPLE_READ
532 *
533 * { u64 nr,
534 * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN
535 *
536 * #
537 * # The RAW record below is opaque data wrt the ABI
538 * #
539 * # That is, the ABI doesn't make any promises wrt to
540 * # the stability of its content, it may vary depending
541 * # on event, hardware, kernel version and phase of
542 * # the moon.
543 * #
544 * # In other words, PERF_SAMPLE_RAW contents are not an ABI.
545 * #
546 *
547 * { u32 size;
548 * char data[size];}&& PERF_SAMPLE_RAW
549 *
550 * { u64 from, to, flags } lbr[nr];} && PERF_SAMPLE_BRANCH_STACK
551 * };
552 */
553 PERF_RECORD_SAMPLE = 9,
554
555 PERF_RECORD_MAX, /* non-ABI */
556 };
557
558 #define PERF_MAX_STACK_DEPTH 127
559
560 enum perf_callchain_context {
561 PERF_CONTEXT_HV = (__u64)-32,
562 PERF_CONTEXT_KERNEL = (__u64)-128,
563 PERF_CONTEXT_USER = (__u64)-512,
564
565 PERF_CONTEXT_GUEST = (__u64)-2048,
566 PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176,
567 PERF_CONTEXT_GUEST_USER = (__u64)-2560,
568
569 PERF_CONTEXT_MAX = (__u64)-4095,
570 };
571
572 #define PERF_FLAG_FD_NO_GROUP (1U << 0)
573 #define PERF_FLAG_FD_OUTPUT (1U << 1)
574 #define PERF_FLAG_PID_CGROUP (1U << 2) /* pid=cgroup id, per-cpu mode only */
575
576 #ifdef __KERNEL__
577 /*
578 * Kernel-internal data types and definitions:
579 */
580
581 #ifdef CONFIG_PERF_EVENTS
582 # include <linux/cgroup.h>
583 # include <asm/perf_event.h>
584 # include <asm/local64.h>
585 #endif
586
587 struct perf_guest_info_callbacks {
588 int (*is_in_guest)(void);
589 int (*is_user_mode)(void);
590 unsigned long (*get_guest_ip)(void);
591 };
592
593 #ifdef CONFIG_HAVE_HW_BREAKPOINT
594 #include <asm/hw_breakpoint.h>
595 #endif
596
597 #include <linux/list.h>
598 #include <linux/mutex.h>
599 #include <linux/rculist.h>
600 #include <linux/rcupdate.h>
601 #include <linux/spinlock.h>
602 #include <linux/hrtimer.h>
603 #include <linux/fs.h>
604 #include <linux/pid_namespace.h>
605 #include <linux/workqueue.h>
606 #include <linux/ftrace.h>
607 #include <linux/cpu.h>
608 #include <linux/irq_work.h>
609 #include <linux/static_key.h>
610 #include <linux/atomic.h>
611 #include <linux/sysfs.h>
612 #include <asm/local.h>
613
614 struct perf_callchain_entry {
615 __u64 nr;
616 __u64 ip[PERF_MAX_STACK_DEPTH];
617 };
618
619 struct perf_raw_record {
620 u32 size;
621 void *data;
622 };
623
624 /*
625 * single taken branch record layout:
626 *
627 * from: source instruction (may not always be a branch insn)
628 * to: branch target
629 * mispred: branch target was mispredicted
630 * predicted: branch target was predicted
631 *
632 * support for mispred, predicted is optional. In case it
633 * is not supported mispred = predicted = 0.
634 */
635 struct perf_branch_entry {
636 __u64 from;
637 __u64 to;
638 __u64 mispred:1, /* target mispredicted */
639 predicted:1,/* target predicted */
640 reserved:62;
641 };
642
643 /*
644 * branch stack layout:
645 * nr: number of taken branches stored in entries[]
646 *
647 * Note that nr can vary from sample to sample
648 * branches (to, from) are stored from most recent
649 * to least recent, i.e., entries[0] contains the most
650 * recent branch.
651 */
652 struct perf_branch_stack {
653 __u64 nr;
654 struct perf_branch_entry entries[0];
655 };
656
657 struct task_struct;
658
659 /*
660 * extra PMU register associated with an event
661 */
662 struct hw_perf_event_extra {
663 u64 config; /* register value */
664 unsigned int reg; /* register address or index */
665 int alloc; /* extra register already allocated */
666 int idx; /* index in shared_regs->regs[] */
667 };
668
669 /**
670 * struct hw_perf_event - performance event hardware details:
671 */
672 struct hw_perf_event {
673 #ifdef CONFIG_PERF_EVENTS
674 union {
675 struct { /* hardware */
676 u64 config;
677 u64 last_tag;
678 unsigned long config_base;
679 unsigned long event_base;
680 int event_base_rdpmc;
681 int idx;
682 int last_cpu;
683
684 struct hw_perf_event_extra extra_reg;
685 struct hw_perf_event_extra branch_reg;
686 };
687 struct { /* software */
688 struct hrtimer hrtimer;
689 };
690 #ifdef CONFIG_HAVE_HW_BREAKPOINT
691 struct { /* breakpoint */
692 struct arch_hw_breakpoint info;
693 struct list_head bp_list;
694 /*
695 * Crufty hack to avoid the chicken and egg
696 * problem hw_breakpoint has with context
697 * creation and event initalization.
698 */
699 struct task_struct *bp_target;
700 };
701 #endif
702 };
703 int state;
704 local64_t prev_count;
705 u64 sample_period;
706 u64 last_period;
707 local64_t period_left;
708 u64 interrupts_seq;
709 u64 interrupts;
710
711 u64 freq_time_stamp;
712 u64 freq_count_stamp;
713 #endif
714 };
715
716 /*
717 * hw_perf_event::state flags
718 */
719 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */
720 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
721 #define PERF_HES_ARCH 0x04
722
723 struct perf_event;
724
725 /*
726 * Common implementation detail of pmu::{start,commit,cancel}_txn
727 */
728 #define PERF_EVENT_TXN 0x1
729
730 /**
731 * struct pmu - generic performance monitoring unit
732 */
733 struct pmu {
734 struct list_head entry;
735
736 struct device *dev;
737 const struct attribute_group **attr_groups;
738 char *name;
739 int type;
740
741 int * __percpu pmu_disable_count;
742 struct perf_cpu_context * __percpu pmu_cpu_context;
743 int task_ctx_nr;
744
745 /*
746 * Fully disable/enable this PMU, can be used to protect from the PMI
747 * as well as for lazy/batch writing of the MSRs.
748 */
749 void (*pmu_enable) (struct pmu *pmu); /* optional */
750 void (*pmu_disable) (struct pmu *pmu); /* optional */
751
752 /*
753 * Try and initialize the event for this PMU.
754 * Should return -ENOENT when the @event doesn't match this PMU.
755 */
756 int (*event_init) (struct perf_event *event);
757
758 #define PERF_EF_START 0x01 /* start the counter when adding */
759 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
760 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
761
762 /*
763 * Adds/Removes a counter to/from the PMU, can be done inside
764 * a transaction, see the ->*_txn() methods.
765 */
766 int (*add) (struct perf_event *event, int flags);
767 void (*del) (struct perf_event *event, int flags);
768
769 /*
770 * Starts/Stops a counter present on the PMU. The PMI handler
771 * should stop the counter when perf_event_overflow() returns
772 * !0. ->start() will be used to continue.
773 */
774 void (*start) (struct perf_event *event, int flags);
775 void (*stop) (struct perf_event *event, int flags);
776
777 /*
778 * Updates the counter value of the event.
779 */
780 void (*read) (struct perf_event *event);
781
782 /*
783 * Group events scheduling is treated as a transaction, add
784 * group events as a whole and perform one schedulability test.
785 * If the test fails, roll back the whole group
786 *
787 * Start the transaction, after this ->add() doesn't need to
788 * do schedulability tests.
789 */
790 void (*start_txn) (struct pmu *pmu); /* optional */
791 /*
792 * If ->start_txn() disabled the ->add() schedulability test
793 * then ->commit_txn() is required to perform one. On success
794 * the transaction is closed. On error the transaction is kept
795 * open until ->cancel_txn() is called.
796 */
797 int (*commit_txn) (struct pmu *pmu); /* optional */
798 /*
799 * Will cancel the transaction, assumes ->del() is called
800 * for each successful ->add() during the transaction.
801 */
802 void (*cancel_txn) (struct pmu *pmu); /* optional */
803
804 /*
805 * Will return the value for perf_event_mmap_page::index for this event,
806 * if no implementation is provided it will default to: event->hw.idx + 1.
807 */
808 int (*event_idx) (struct perf_event *event); /*optional */
809
810 /*
811 * flush branch stack on context-switches (needed in cpu-wide mode)
812 */
813 void (*flush_branch_stack) (void);
814 };
815
816 /**
817 * enum perf_event_active_state - the states of a event
818 */
819 enum perf_event_active_state {
820 PERF_EVENT_STATE_ERROR = -2,
821 PERF_EVENT_STATE_OFF = -1,
822 PERF_EVENT_STATE_INACTIVE = 0,
823 PERF_EVENT_STATE_ACTIVE = 1,
824 };
825
826 struct file;
827 struct perf_sample_data;
828
829 typedef void (*perf_overflow_handler_t)(struct perf_event *,
830 struct perf_sample_data *,
831 struct pt_regs *regs);
832
833 enum perf_group_flag {
834 PERF_GROUP_SOFTWARE = 0x1,
835 };
836
837 #define SWEVENT_HLIST_BITS 8
838 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
839
840 struct swevent_hlist {
841 struct hlist_head heads[SWEVENT_HLIST_SIZE];
842 struct rcu_head rcu_head;
843 };
844
845 #define PERF_ATTACH_CONTEXT 0x01
846 #define PERF_ATTACH_GROUP 0x02
847 #define PERF_ATTACH_TASK 0x04
848
849 #ifdef CONFIG_CGROUP_PERF
850 /*
851 * perf_cgroup_info keeps track of time_enabled for a cgroup.
852 * This is a per-cpu dynamically allocated data structure.
853 */
854 struct perf_cgroup_info {
855 u64 time;
856 u64 timestamp;
857 };
858
859 struct perf_cgroup {
860 struct cgroup_subsys_state css;
861 struct perf_cgroup_info *info; /* timing info, one per cpu */
862 };
863 #endif
864
865 struct ring_buffer;
866
867 /**
868 * struct perf_event - performance event kernel representation:
869 */
870 struct perf_event {
871 #ifdef CONFIG_PERF_EVENTS
872 struct list_head group_entry;
873 struct list_head event_entry;
874 struct list_head sibling_list;
875 struct hlist_node hlist_entry;
876 int nr_siblings;
877 int group_flags;
878 struct perf_event *group_leader;
879 struct pmu *pmu;
880
881 enum perf_event_active_state state;
882 unsigned int attach_state;
883 local64_t count;
884 atomic64_t child_count;
885
886 /*
887 * These are the total time in nanoseconds that the event
888 * has been enabled (i.e. eligible to run, and the task has
889 * been scheduled in, if this is a per-task event)
890 * and running (scheduled onto the CPU), respectively.
891 *
892 * They are computed from tstamp_enabled, tstamp_running and
893 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
894 */
895 u64 total_time_enabled;
896 u64 total_time_running;
897
898 /*
899 * These are timestamps used for computing total_time_enabled
900 * and total_time_running when the event is in INACTIVE or
901 * ACTIVE state, measured in nanoseconds from an arbitrary point
902 * in time.
903 * tstamp_enabled: the notional time when the event was enabled
904 * tstamp_running: the notional time when the event was scheduled on
905 * tstamp_stopped: in INACTIVE state, the notional time when the
906 * event was scheduled off.
907 */
908 u64 tstamp_enabled;
909 u64 tstamp_running;
910 u64 tstamp_stopped;
911
912 /*
913 * timestamp shadows the actual context timing but it can
914 * be safely used in NMI interrupt context. It reflects the
915 * context time as it was when the event was last scheduled in.
916 *
917 * ctx_time already accounts for ctx->timestamp. Therefore to
918 * compute ctx_time for a sample, simply add perf_clock().
919 */
920 u64 shadow_ctx_time;
921
922 struct perf_event_attr attr;
923 u16 header_size;
924 u16 id_header_size;
925 u16 read_size;
926 struct hw_perf_event hw;
927
928 struct perf_event_context *ctx;
929 atomic_long_t refcount;
930
931 /*
932 * These accumulate total time (in nanoseconds) that children
933 * events have been enabled and running, respectively.
934 */
935 atomic64_t child_total_time_enabled;
936 atomic64_t child_total_time_running;
937
938 /*
939 * Protect attach/detach and child_list:
940 */
941 struct mutex child_mutex;
942 struct list_head child_list;
943 struct perf_event *parent;
944
945 int oncpu;
946 int cpu;
947
948 struct list_head owner_entry;
949 struct task_struct *owner;
950
951 /* mmap bits */
952 struct mutex mmap_mutex;
953 atomic_t mmap_count;
954 int mmap_locked;
955 struct user_struct *mmap_user;
956 struct ring_buffer *rb;
957 struct list_head rb_entry;
958
959 /* poll related */
960 wait_queue_head_t waitq;
961 struct fasync_struct *fasync;
962
963 /* delayed work for NMIs and such */
964 int pending_wakeup;
965 int pending_kill;
966 int pending_disable;
967 struct irq_work pending;
968
969 atomic_t event_limit;
970
971 void (*destroy)(struct perf_event *);
972 struct rcu_head rcu_head;
973
974 struct pid_namespace *ns;
975 u64 id;
976
977 perf_overflow_handler_t overflow_handler;
978 void *overflow_handler_context;
979
980 #ifdef CONFIG_EVENT_TRACING
981 struct ftrace_event_call *tp_event;
982 struct event_filter *filter;
983 #ifdef CONFIG_FUNCTION_TRACER
984 struct ftrace_ops ftrace_ops;
985 #endif
986 #endif
987
988 #ifdef CONFIG_CGROUP_PERF
989 struct perf_cgroup *cgrp; /* cgroup event is attach to */
990 int cgrp_defer_enabled;
991 #endif
992
993 #endif /* CONFIG_PERF_EVENTS */
994 };
995
996 enum perf_event_context_type {
997 task_context,
998 cpu_context,
999 };
1000
1001 /**
1002 * struct perf_event_context - event context structure
1003 *
1004 * Used as a container for task events and CPU events as well:
1005 */
1006 struct perf_event_context {
1007 struct pmu *pmu;
1008 enum perf_event_context_type type;
1009 /*
1010 * Protect the states of the events in the list,
1011 * nr_active, and the list:
1012 */
1013 raw_spinlock_t lock;
1014 /*
1015 * Protect the list of events. Locking either mutex or lock
1016 * is sufficient to ensure the list doesn't change; to change
1017 * the list you need to lock both the mutex and the spinlock.
1018 */
1019 struct mutex mutex;
1020
1021 struct list_head pinned_groups;
1022 struct list_head flexible_groups;
1023 struct list_head event_list;
1024 int nr_events;
1025 int nr_active;
1026 int is_active;
1027 int nr_stat;
1028 int nr_freq;
1029 int rotate_disable;
1030 atomic_t refcount;
1031 struct task_struct *task;
1032
1033 /*
1034 * Context clock, runs when context enabled.
1035 */
1036 u64 time;
1037 u64 timestamp;
1038
1039 /*
1040 * These fields let us detect when two contexts have both
1041 * been cloned (inherited) from a common ancestor.
1042 */
1043 struct perf_event_context *parent_ctx;
1044 u64 parent_gen;
1045 u64 generation;
1046 int pin_count;
1047 int nr_cgroups; /* cgroup evts */
1048 int nr_branch_stack; /* branch_stack evt */
1049 struct rcu_head rcu_head;
1050 };
1051
1052 /*
1053 * Number of contexts where an event can trigger:
1054 * task, softirq, hardirq, nmi.
1055 */
1056 #define PERF_NR_CONTEXTS 4
1057
1058 /**
1059 * struct perf_event_cpu_context - per cpu event context structure
1060 */
1061 struct perf_cpu_context {
1062 struct perf_event_context ctx;
1063 struct perf_event_context *task_ctx;
1064 int active_oncpu;
1065 int exclusive;
1066 struct list_head rotation_list;
1067 int jiffies_interval;
1068 struct pmu *active_pmu;
1069 struct perf_cgroup *cgrp;
1070 };
1071
1072 struct perf_output_handle {
1073 struct perf_event *event;
1074 struct ring_buffer *rb;
1075 unsigned long wakeup;
1076 unsigned long size;
1077 void *addr;
1078 int page;
1079 };
1080
1081 #ifdef CONFIG_PERF_EVENTS
1082
1083 extern int perf_pmu_register(struct pmu *pmu, char *name, int type);
1084 extern void perf_pmu_unregister(struct pmu *pmu);
1085
1086 extern int perf_num_counters(void);
1087 extern const char *perf_pmu_name(void);
1088 extern void __perf_event_task_sched_in(struct task_struct *prev,
1089 struct task_struct *task);
1090 extern void __perf_event_task_sched_out(struct task_struct *prev,
1091 struct task_struct *next);
1092 extern int perf_event_init_task(struct task_struct *child);
1093 extern void perf_event_exit_task(struct task_struct *child);
1094 extern void perf_event_free_task(struct task_struct *task);
1095 extern void perf_event_delayed_put(struct task_struct *task);
1096 extern void perf_event_print_debug(void);
1097 extern void perf_pmu_disable(struct pmu *pmu);
1098 extern void perf_pmu_enable(struct pmu *pmu);
1099 extern int perf_event_task_disable(void);
1100 extern int perf_event_task_enable(void);
1101 extern int perf_event_refresh(struct perf_event *event, int refresh);
1102 extern void perf_event_update_userpage(struct perf_event *event);
1103 extern int perf_event_release_kernel(struct perf_event *event);
1104 extern struct perf_event *
1105 perf_event_create_kernel_counter(struct perf_event_attr *attr,
1106 int cpu,
1107 struct task_struct *task,
1108 perf_overflow_handler_t callback,
1109 void *context);
1110 extern void perf_pmu_migrate_context(struct pmu *pmu,
1111 int src_cpu, int dst_cpu);
1112 extern u64 perf_event_read_value(struct perf_event *event,
1113 u64 *enabled, u64 *running);
1114
1115
1116 struct perf_sample_data {
1117 u64 type;
1118
1119 u64 ip;
1120 struct {
1121 u32 pid;
1122 u32 tid;
1123 } tid_entry;
1124 u64 time;
1125 u64 addr;
1126 u64 id;
1127 u64 stream_id;
1128 struct {
1129 u32 cpu;
1130 u32 reserved;
1131 } cpu_entry;
1132 u64 period;
1133 struct perf_callchain_entry *callchain;
1134 struct perf_raw_record *raw;
1135 struct perf_branch_stack *br_stack;
1136 };
1137
1138 static inline void perf_sample_data_init(struct perf_sample_data *data,
1139 u64 addr, u64 period)
1140 {
1141 /* remaining struct members initialized in perf_prepare_sample() */
1142 data->addr = addr;
1143 data->raw = NULL;
1144 data->br_stack = NULL;
1145 data->period = period;
1146 }
1147
1148 extern void perf_output_sample(struct perf_output_handle *handle,
1149 struct perf_event_header *header,
1150 struct perf_sample_data *data,
1151 struct perf_event *event);
1152 extern void perf_prepare_sample(struct perf_event_header *header,
1153 struct perf_sample_data *data,
1154 struct perf_event *event,
1155 struct pt_regs *regs);
1156
1157 extern int perf_event_overflow(struct perf_event *event,
1158 struct perf_sample_data *data,
1159 struct pt_regs *regs);
1160
1161 static inline bool is_sampling_event(struct perf_event *event)
1162 {
1163 return event->attr.sample_period != 0;
1164 }
1165
1166 /*
1167 * Return 1 for a software event, 0 for a hardware event
1168 */
1169 static inline int is_software_event(struct perf_event *event)
1170 {
1171 return event->pmu->task_ctx_nr == perf_sw_context;
1172 }
1173
1174 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1175
1176 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1177
1178 #ifndef perf_arch_fetch_caller_regs
1179 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1180 #endif
1181
1182 /*
1183 * Take a snapshot of the regs. Skip ip and frame pointer to
1184 * the nth caller. We only need a few of the regs:
1185 * - ip for PERF_SAMPLE_IP
1186 * - cs for user_mode() tests
1187 * - bp for callchains
1188 * - eflags, for future purposes, just in case
1189 */
1190 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1191 {
1192 memset(regs, 0, sizeof(*regs));
1193
1194 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1195 }
1196
1197 static __always_inline void
1198 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1199 {
1200 struct pt_regs hot_regs;
1201
1202 if (static_key_false(&perf_swevent_enabled[event_id])) {
1203 if (!regs) {
1204 perf_fetch_caller_regs(&hot_regs);
1205 regs = &hot_regs;
1206 }
1207 __perf_sw_event(event_id, nr, regs, addr);
1208 }
1209 }
1210
1211 extern struct static_key_deferred perf_sched_events;
1212
1213 static inline void perf_event_task_sched_in(struct task_struct *prev,
1214 struct task_struct *task)
1215 {
1216 if (static_key_false(&perf_sched_events.key))
1217 __perf_event_task_sched_in(prev, task);
1218 }
1219
1220 static inline void perf_event_task_sched_out(struct task_struct *prev,
1221 struct task_struct *next)
1222 {
1223 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, NULL, 0);
1224
1225 if (static_key_false(&perf_sched_events.key))
1226 __perf_event_task_sched_out(prev, next);
1227 }
1228
1229 extern void perf_event_mmap(struct vm_area_struct *vma);
1230 extern struct perf_guest_info_callbacks *perf_guest_cbs;
1231 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1232 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1233
1234 extern void perf_event_comm(struct task_struct *tsk);
1235 extern void perf_event_fork(struct task_struct *tsk);
1236
1237 /* Callchains */
1238 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1239
1240 extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs);
1241 extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs);
1242
1243 static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
1244 {
1245 if (entry->nr < PERF_MAX_STACK_DEPTH)
1246 entry->ip[entry->nr++] = ip;
1247 }
1248
1249 extern int sysctl_perf_event_paranoid;
1250 extern int sysctl_perf_event_mlock;
1251 extern int sysctl_perf_event_sample_rate;
1252
1253 extern int perf_proc_update_handler(struct ctl_table *table, int write,
1254 void __user *buffer, size_t *lenp,
1255 loff_t *ppos);
1256
1257 static inline bool perf_paranoid_tracepoint_raw(void)
1258 {
1259 return sysctl_perf_event_paranoid > -1;
1260 }
1261
1262 static inline bool perf_paranoid_cpu(void)
1263 {
1264 return sysctl_perf_event_paranoid > 0;
1265 }
1266
1267 static inline bool perf_paranoid_kernel(void)
1268 {
1269 return sysctl_perf_event_paranoid > 1;
1270 }
1271
1272 extern void perf_event_init(void);
1273 extern void perf_tp_event(u64 addr, u64 count, void *record,
1274 int entry_size, struct pt_regs *regs,
1275 struct hlist_head *head, int rctx,
1276 struct task_struct *task);
1277 extern void perf_bp_event(struct perf_event *event, void *data);
1278
1279 #ifndef perf_misc_flags
1280 # define perf_misc_flags(regs) \
1281 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1282 # define perf_instruction_pointer(regs) instruction_pointer(regs)
1283 #endif
1284
1285 static inline bool has_branch_stack(struct perf_event *event)
1286 {
1287 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1288 }
1289
1290 extern int perf_output_begin(struct perf_output_handle *handle,
1291 struct perf_event *event, unsigned int size);
1292 extern void perf_output_end(struct perf_output_handle *handle);
1293 extern void perf_output_copy(struct perf_output_handle *handle,
1294 const void *buf, unsigned int len);
1295 extern int perf_swevent_get_recursion_context(void);
1296 extern void perf_swevent_put_recursion_context(int rctx);
1297 extern void perf_event_enable(struct perf_event *event);
1298 extern void perf_event_disable(struct perf_event *event);
1299 extern void perf_event_task_tick(void);
1300 #else
1301 static inline void
1302 perf_event_task_sched_in(struct task_struct *prev,
1303 struct task_struct *task) { }
1304 static inline void
1305 perf_event_task_sched_out(struct task_struct *prev,
1306 struct task_struct *next) { }
1307 static inline int perf_event_init_task(struct task_struct *child) { return 0; }
1308 static inline void perf_event_exit_task(struct task_struct *child) { }
1309 static inline void perf_event_free_task(struct task_struct *task) { }
1310 static inline void perf_event_delayed_put(struct task_struct *task) { }
1311 static inline void perf_event_print_debug(void) { }
1312 static inline int perf_event_task_disable(void) { return -EINVAL; }
1313 static inline int perf_event_task_enable(void) { return -EINVAL; }
1314 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1315 {
1316 return -EINVAL;
1317 }
1318
1319 static inline void
1320 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
1321 static inline void
1322 perf_bp_event(struct perf_event *event, void *data) { }
1323
1324 static inline int perf_register_guest_info_callbacks
1325 (struct perf_guest_info_callbacks *callbacks) { return 0; }
1326 static inline int perf_unregister_guest_info_callbacks
1327 (struct perf_guest_info_callbacks *callbacks) { return 0; }
1328
1329 static inline void perf_event_mmap(struct vm_area_struct *vma) { }
1330 static inline void perf_event_comm(struct task_struct *tsk) { }
1331 static inline void perf_event_fork(struct task_struct *tsk) { }
1332 static inline void perf_event_init(void) { }
1333 static inline int perf_swevent_get_recursion_context(void) { return -1; }
1334 static inline void perf_swevent_put_recursion_context(int rctx) { }
1335 static inline void perf_event_enable(struct perf_event *event) { }
1336 static inline void perf_event_disable(struct perf_event *event) { }
1337 static inline void perf_event_task_tick(void) { }
1338 #endif
1339
1340 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1341
1342 /*
1343 * This has to have a higher priority than migration_notifier in sched.c.
1344 */
1345 #define perf_cpu_notifier(fn) \
1346 do { \
1347 static struct notifier_block fn##_nb __cpuinitdata = \
1348 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \
1349 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \
1350 (void *)(unsigned long)smp_processor_id()); \
1351 fn(&fn##_nb, (unsigned long)CPU_STARTING, \
1352 (void *)(unsigned long)smp_processor_id()); \
1353 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \
1354 (void *)(unsigned long)smp_processor_id()); \
1355 register_cpu_notifier(&fn##_nb); \
1356 } while (0)
1357
1358
1359 #define PMU_FORMAT_ATTR(_name, _format) \
1360 static ssize_t \
1361 _name##_show(struct device *dev, \
1362 struct device_attribute *attr, \
1363 char *page) \
1364 { \
1365 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
1366 return sprintf(page, _format "\n"); \
1367 } \
1368 \
1369 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1370
1371 #endif /* __KERNEL__ */
1372 #endif /* _LINUX_PERF_EVENT_H */
This page took 0.102651 seconds and 6 git commands to generate.