perf: Store active software events in a hashlist
[deliverable/linux.git] / include / linux / perf_event.h
1 /*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <linux/types.h>
18 #include <linux/ioctl.h>
19 #include <asm/byteorder.h>
20
21 /*
22 * User-space ABI bits:
23 */
24
25 /*
26 * attr.type
27 */
28 enum perf_type_id {
29 PERF_TYPE_HARDWARE = 0,
30 PERF_TYPE_SOFTWARE = 1,
31 PERF_TYPE_TRACEPOINT = 2,
32 PERF_TYPE_HW_CACHE = 3,
33 PERF_TYPE_RAW = 4,
34 PERF_TYPE_BREAKPOINT = 5,
35
36 PERF_TYPE_MAX, /* non-ABI */
37 };
38
39 /*
40 * Generalized performance event event_id types, used by the
41 * attr.event_id parameter of the sys_perf_event_open()
42 * syscall:
43 */
44 enum perf_hw_id {
45 /*
46 * Common hardware events, generalized by the kernel:
47 */
48 PERF_COUNT_HW_CPU_CYCLES = 0,
49 PERF_COUNT_HW_INSTRUCTIONS = 1,
50 PERF_COUNT_HW_CACHE_REFERENCES = 2,
51 PERF_COUNT_HW_CACHE_MISSES = 3,
52 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4,
53 PERF_COUNT_HW_BRANCH_MISSES = 5,
54 PERF_COUNT_HW_BUS_CYCLES = 6,
55
56 PERF_COUNT_HW_MAX, /* non-ABI */
57 };
58
59 /*
60 * Generalized hardware cache events:
61 *
62 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU } x
63 * { read, write, prefetch } x
64 * { accesses, misses }
65 */
66 enum perf_hw_cache_id {
67 PERF_COUNT_HW_CACHE_L1D = 0,
68 PERF_COUNT_HW_CACHE_L1I = 1,
69 PERF_COUNT_HW_CACHE_LL = 2,
70 PERF_COUNT_HW_CACHE_DTLB = 3,
71 PERF_COUNT_HW_CACHE_ITLB = 4,
72 PERF_COUNT_HW_CACHE_BPU = 5,
73
74 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */
75 };
76
77 enum perf_hw_cache_op_id {
78 PERF_COUNT_HW_CACHE_OP_READ = 0,
79 PERF_COUNT_HW_CACHE_OP_WRITE = 1,
80 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2,
81
82 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */
83 };
84
85 enum perf_hw_cache_op_result_id {
86 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0,
87 PERF_COUNT_HW_CACHE_RESULT_MISS = 1,
88
89 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */
90 };
91
92 /*
93 * Special "software" events provided by the kernel, even if the hardware
94 * does not support performance events. These events measure various
95 * physical and sw events of the kernel (and allow the profiling of them as
96 * well):
97 */
98 enum perf_sw_ids {
99 PERF_COUNT_SW_CPU_CLOCK = 0,
100 PERF_COUNT_SW_TASK_CLOCK = 1,
101 PERF_COUNT_SW_PAGE_FAULTS = 2,
102 PERF_COUNT_SW_CONTEXT_SWITCHES = 3,
103 PERF_COUNT_SW_CPU_MIGRATIONS = 4,
104 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5,
105 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6,
106 PERF_COUNT_SW_ALIGNMENT_FAULTS = 7,
107 PERF_COUNT_SW_EMULATION_FAULTS = 8,
108
109 PERF_COUNT_SW_MAX, /* non-ABI */
110 };
111
112 /*
113 * Bits that can be set in attr.sample_type to request information
114 * in the overflow packets.
115 */
116 enum perf_event_sample_format {
117 PERF_SAMPLE_IP = 1U << 0,
118 PERF_SAMPLE_TID = 1U << 1,
119 PERF_SAMPLE_TIME = 1U << 2,
120 PERF_SAMPLE_ADDR = 1U << 3,
121 PERF_SAMPLE_READ = 1U << 4,
122 PERF_SAMPLE_CALLCHAIN = 1U << 5,
123 PERF_SAMPLE_ID = 1U << 6,
124 PERF_SAMPLE_CPU = 1U << 7,
125 PERF_SAMPLE_PERIOD = 1U << 8,
126 PERF_SAMPLE_STREAM_ID = 1U << 9,
127 PERF_SAMPLE_RAW = 1U << 10,
128
129 PERF_SAMPLE_MAX = 1U << 11, /* non-ABI */
130 };
131
132 /*
133 * The format of the data returned by read() on a perf event fd,
134 * as specified by attr.read_format:
135 *
136 * struct read_format {
137 * { u64 value;
138 * { u64 time_enabled; } && PERF_FORMAT_ENABLED
139 * { u64 time_running; } && PERF_FORMAT_RUNNING
140 * { u64 id; } && PERF_FORMAT_ID
141 * } && !PERF_FORMAT_GROUP
142 *
143 * { u64 nr;
144 * { u64 time_enabled; } && PERF_FORMAT_ENABLED
145 * { u64 time_running; } && PERF_FORMAT_RUNNING
146 * { u64 value;
147 * { u64 id; } && PERF_FORMAT_ID
148 * } cntr[nr];
149 * } && PERF_FORMAT_GROUP
150 * };
151 */
152 enum perf_event_read_format {
153 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0,
154 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1,
155 PERF_FORMAT_ID = 1U << 2,
156 PERF_FORMAT_GROUP = 1U << 3,
157
158 PERF_FORMAT_MAX = 1U << 4, /* non-ABI */
159 };
160
161 #define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */
162
163 /*
164 * Hardware event_id to monitor via a performance monitoring event:
165 */
166 struct perf_event_attr {
167
168 /*
169 * Major type: hardware/software/tracepoint/etc.
170 */
171 __u32 type;
172
173 /*
174 * Size of the attr structure, for fwd/bwd compat.
175 */
176 __u32 size;
177
178 /*
179 * Type specific configuration information.
180 */
181 __u64 config;
182
183 union {
184 __u64 sample_period;
185 __u64 sample_freq;
186 };
187
188 __u64 sample_type;
189 __u64 read_format;
190
191 __u64 disabled : 1, /* off by default */
192 inherit : 1, /* children inherit it */
193 pinned : 1, /* must always be on PMU */
194 exclusive : 1, /* only group on PMU */
195 exclude_user : 1, /* don't count user */
196 exclude_kernel : 1, /* ditto kernel */
197 exclude_hv : 1, /* ditto hypervisor */
198 exclude_idle : 1, /* don't count when idle */
199 mmap : 1, /* include mmap data */
200 comm : 1, /* include comm data */
201 freq : 1, /* use freq, not period */
202 inherit_stat : 1, /* per task counts */
203 enable_on_exec : 1, /* next exec enables */
204 task : 1, /* trace fork/exit */
205 watermark : 1, /* wakeup_watermark */
206 precise : 1, /* OoO invariant counter */
207
208 __reserved_1 : 48;
209
210 union {
211 __u32 wakeup_events; /* wakeup every n events */
212 __u32 wakeup_watermark; /* bytes before wakeup */
213 };
214
215 __u32 bp_type;
216 __u64 bp_addr;
217 __u64 bp_len;
218 };
219
220 /*
221 * Ioctls that can be done on a perf event fd:
222 */
223 #define PERF_EVENT_IOC_ENABLE _IO ('$', 0)
224 #define PERF_EVENT_IOC_DISABLE _IO ('$', 1)
225 #define PERF_EVENT_IOC_REFRESH _IO ('$', 2)
226 #define PERF_EVENT_IOC_RESET _IO ('$', 3)
227 #define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64)
228 #define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5)
229 #define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *)
230
231 enum perf_event_ioc_flags {
232 PERF_IOC_FLAG_GROUP = 1U << 0,
233 };
234
235 /*
236 * Structure of the page that can be mapped via mmap
237 */
238 struct perf_event_mmap_page {
239 __u32 version; /* version number of this structure */
240 __u32 compat_version; /* lowest version this is compat with */
241
242 /*
243 * Bits needed to read the hw events in user-space.
244 *
245 * u32 seq;
246 * s64 count;
247 *
248 * do {
249 * seq = pc->lock;
250 *
251 * barrier()
252 * if (pc->index) {
253 * count = pmc_read(pc->index - 1);
254 * count += pc->offset;
255 * } else
256 * goto regular_read;
257 *
258 * barrier();
259 * } while (pc->lock != seq);
260 *
261 * NOTE: for obvious reason this only works on self-monitoring
262 * processes.
263 */
264 __u32 lock; /* seqlock for synchronization */
265 __u32 index; /* hardware event identifier */
266 __s64 offset; /* add to hardware event value */
267 __u64 time_enabled; /* time event active */
268 __u64 time_running; /* time event on cpu */
269
270 /*
271 * Hole for extension of the self monitor capabilities
272 */
273
274 __u64 __reserved[123]; /* align to 1k */
275
276 /*
277 * Control data for the mmap() data buffer.
278 *
279 * User-space reading the @data_head value should issue an rmb(), on
280 * SMP capable platforms, after reading this value -- see
281 * perf_event_wakeup().
282 *
283 * When the mapping is PROT_WRITE the @data_tail value should be
284 * written by userspace to reflect the last read data. In this case
285 * the kernel will not over-write unread data.
286 */
287 __u64 data_head; /* head in the data section */
288 __u64 data_tail; /* user-space written tail */
289 };
290
291 #define PERF_RECORD_MISC_CPUMODE_MASK (3 << 0)
292 #define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0)
293 #define PERF_RECORD_MISC_KERNEL (1 << 0)
294 #define PERF_RECORD_MISC_USER (2 << 0)
295 #define PERF_RECORD_MISC_HYPERVISOR (3 << 0)
296
297 #define PERF_RECORD_MISC_EXACT (1 << 14)
298 /*
299 * Reserve the last bit to indicate some extended misc field
300 */
301 #define PERF_RECORD_MISC_EXT_RESERVED (1 << 15)
302
303 struct perf_event_header {
304 __u32 type;
305 __u16 misc;
306 __u16 size;
307 };
308
309 enum perf_event_type {
310
311 /*
312 * The MMAP events record the PROT_EXEC mappings so that we can
313 * correlate userspace IPs to code. They have the following structure:
314 *
315 * struct {
316 * struct perf_event_header header;
317 *
318 * u32 pid, tid;
319 * u64 addr;
320 * u64 len;
321 * u64 pgoff;
322 * char filename[];
323 * };
324 */
325 PERF_RECORD_MMAP = 1,
326
327 /*
328 * struct {
329 * struct perf_event_header header;
330 * u64 id;
331 * u64 lost;
332 * };
333 */
334 PERF_RECORD_LOST = 2,
335
336 /*
337 * struct {
338 * struct perf_event_header header;
339 *
340 * u32 pid, tid;
341 * char comm[];
342 * };
343 */
344 PERF_RECORD_COMM = 3,
345
346 /*
347 * struct {
348 * struct perf_event_header header;
349 * u32 pid, ppid;
350 * u32 tid, ptid;
351 * u64 time;
352 * };
353 */
354 PERF_RECORD_EXIT = 4,
355
356 /*
357 * struct {
358 * struct perf_event_header header;
359 * u64 time;
360 * u64 id;
361 * u64 stream_id;
362 * };
363 */
364 PERF_RECORD_THROTTLE = 5,
365 PERF_RECORD_UNTHROTTLE = 6,
366
367 /*
368 * struct {
369 * struct perf_event_header header;
370 * u32 pid, ppid;
371 * u32 tid, ptid;
372 * u64 time;
373 * };
374 */
375 PERF_RECORD_FORK = 7,
376
377 /*
378 * struct {
379 * struct perf_event_header header;
380 * u32 pid, tid;
381 *
382 * struct read_format values;
383 * };
384 */
385 PERF_RECORD_READ = 8,
386
387 /*
388 * struct {
389 * struct perf_event_header header;
390 *
391 * { u64 ip; } && PERF_SAMPLE_IP
392 * { u32 pid, tid; } && PERF_SAMPLE_TID
393 * { u64 time; } && PERF_SAMPLE_TIME
394 * { u64 addr; } && PERF_SAMPLE_ADDR
395 * { u64 id; } && PERF_SAMPLE_ID
396 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID
397 * { u32 cpu, res; } && PERF_SAMPLE_CPU
398 * { u64 period; } && PERF_SAMPLE_PERIOD
399 *
400 * { struct read_format values; } && PERF_SAMPLE_READ
401 *
402 * { u64 nr,
403 * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN
404 *
405 * #
406 * # The RAW record below is opaque data wrt the ABI
407 * #
408 * # That is, the ABI doesn't make any promises wrt to
409 * # the stability of its content, it may vary depending
410 * # on event, hardware, kernel version and phase of
411 * # the moon.
412 * #
413 * # In other words, PERF_SAMPLE_RAW contents are not an ABI.
414 * #
415 *
416 * { u32 size;
417 * char data[size];}&& PERF_SAMPLE_RAW
418 * };
419 */
420 PERF_RECORD_SAMPLE = 9,
421
422 PERF_RECORD_MAX, /* non-ABI */
423 };
424
425 enum perf_callchain_context {
426 PERF_CONTEXT_HV = (__u64)-32,
427 PERF_CONTEXT_KERNEL = (__u64)-128,
428 PERF_CONTEXT_USER = (__u64)-512,
429
430 PERF_CONTEXT_GUEST = (__u64)-2048,
431 PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176,
432 PERF_CONTEXT_GUEST_USER = (__u64)-2560,
433
434 PERF_CONTEXT_MAX = (__u64)-4095,
435 };
436
437 #define PERF_FLAG_FD_NO_GROUP (1U << 0)
438 #define PERF_FLAG_FD_OUTPUT (1U << 1)
439
440 #ifdef __KERNEL__
441 /*
442 * Kernel-internal data types and definitions:
443 */
444
445 #ifdef CONFIG_PERF_EVENTS
446 # include <asm/perf_event.h>
447 #endif
448
449 #ifdef CONFIG_HAVE_HW_BREAKPOINT
450 #include <asm/hw_breakpoint.h>
451 #endif
452
453 #include <linux/list.h>
454 #include <linux/mutex.h>
455 #include <linux/rculist.h>
456 #include <linux/rcupdate.h>
457 #include <linux/spinlock.h>
458 #include <linux/hrtimer.h>
459 #include <linux/fs.h>
460 #include <linux/pid_namespace.h>
461 #include <linux/workqueue.h>
462 #include <linux/ftrace.h>
463 #include <linux/cpu.h>
464 #include <asm/atomic.h>
465
466 #define PERF_MAX_STACK_DEPTH 255
467
468 struct perf_callchain_entry {
469 __u64 nr;
470 __u64 ip[PERF_MAX_STACK_DEPTH];
471 };
472
473 struct perf_raw_record {
474 u32 size;
475 void *data;
476 };
477
478 struct perf_branch_entry {
479 __u64 from;
480 __u64 to;
481 __u64 flags;
482 };
483
484 struct perf_branch_stack {
485 __u64 nr;
486 struct perf_branch_entry entries[0];
487 };
488
489 struct task_struct;
490
491 /**
492 * struct hw_perf_event - performance event hardware details:
493 */
494 struct hw_perf_event {
495 #ifdef CONFIG_PERF_EVENTS
496 union {
497 struct { /* hardware */
498 u64 config;
499 u64 last_tag;
500 unsigned long config_base;
501 unsigned long event_base;
502 int idx;
503 int last_cpu;
504 };
505 struct { /* software */
506 s64 remaining;
507 struct hrtimer hrtimer;
508 };
509 #ifdef CONFIG_HAVE_HW_BREAKPOINT
510 /* breakpoint */
511 struct arch_hw_breakpoint info;
512 #endif
513 };
514 atomic64_t prev_count;
515 u64 sample_period;
516 u64 last_period;
517 atomic64_t period_left;
518 u64 interrupts;
519
520 u64 freq_time_stamp;
521 u64 freq_count_stamp;
522 #endif
523 };
524
525 struct perf_event;
526
527 /**
528 * struct pmu - generic performance monitoring unit
529 */
530 struct pmu {
531 int (*enable) (struct perf_event *event);
532 void (*disable) (struct perf_event *event);
533 int (*start) (struct perf_event *event);
534 void (*stop) (struct perf_event *event);
535 void (*read) (struct perf_event *event);
536 void (*unthrottle) (struct perf_event *event);
537 };
538
539 /**
540 * enum perf_event_active_state - the states of a event
541 */
542 enum perf_event_active_state {
543 PERF_EVENT_STATE_ERROR = -2,
544 PERF_EVENT_STATE_OFF = -1,
545 PERF_EVENT_STATE_INACTIVE = 0,
546 PERF_EVENT_STATE_ACTIVE = 1,
547 };
548
549 struct file;
550
551 struct perf_mmap_data {
552 struct rcu_head rcu_head;
553 #ifdef CONFIG_PERF_USE_VMALLOC
554 struct work_struct work;
555 #endif
556 int data_order;
557 int nr_pages; /* nr of data pages */
558 int writable; /* are we writable */
559 int nr_locked; /* nr pages mlocked */
560
561 atomic_t poll; /* POLL_ for wakeups */
562 atomic_t events; /* event_id limit */
563
564 atomic_long_t head; /* write position */
565 atomic_long_t done_head; /* completed head */
566
567 atomic_t lock; /* concurrent writes */
568 atomic_t wakeup; /* needs a wakeup */
569 atomic_t lost; /* nr records lost */
570
571 long watermark; /* wakeup watermark */
572
573 struct perf_event_mmap_page *user_page;
574 void *data_pages[0];
575 };
576
577 struct perf_pending_entry {
578 struct perf_pending_entry *next;
579 void (*func)(struct perf_pending_entry *);
580 };
581
582 struct perf_sample_data;
583
584 typedef void (*perf_overflow_handler_t)(struct perf_event *, int,
585 struct perf_sample_data *,
586 struct pt_regs *regs);
587
588 enum perf_group_flag {
589 PERF_GROUP_SOFTWARE = 0x1,
590 };
591
592 #define SWEVENT_HLIST_BITS 8
593 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
594
595 struct swevent_hlist {
596 struct hlist_head heads[SWEVENT_HLIST_SIZE];
597 struct rcu_head rcu_head;
598 };
599
600 /**
601 * struct perf_event - performance event kernel representation:
602 */
603 struct perf_event {
604 #ifdef CONFIG_PERF_EVENTS
605 struct list_head group_entry;
606 struct list_head event_entry;
607 struct list_head sibling_list;
608 struct hlist_node hlist_entry;
609 int nr_siblings;
610 int group_flags;
611 struct perf_event *group_leader;
612 struct perf_event *output;
613 const struct pmu *pmu;
614
615 enum perf_event_active_state state;
616 atomic64_t count;
617
618 /*
619 * These are the total time in nanoseconds that the event
620 * has been enabled (i.e. eligible to run, and the task has
621 * been scheduled in, if this is a per-task event)
622 * and running (scheduled onto the CPU), respectively.
623 *
624 * They are computed from tstamp_enabled, tstamp_running and
625 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
626 */
627 u64 total_time_enabled;
628 u64 total_time_running;
629
630 /*
631 * These are timestamps used for computing total_time_enabled
632 * and total_time_running when the event is in INACTIVE or
633 * ACTIVE state, measured in nanoseconds from an arbitrary point
634 * in time.
635 * tstamp_enabled: the notional time when the event was enabled
636 * tstamp_running: the notional time when the event was scheduled on
637 * tstamp_stopped: in INACTIVE state, the notional time when the
638 * event was scheduled off.
639 */
640 u64 tstamp_enabled;
641 u64 tstamp_running;
642 u64 tstamp_stopped;
643
644 struct perf_event_attr attr;
645 struct hw_perf_event hw;
646
647 struct perf_event_context *ctx;
648 struct file *filp;
649
650 /*
651 * These accumulate total time (in nanoseconds) that children
652 * events have been enabled and running, respectively.
653 */
654 atomic64_t child_total_time_enabled;
655 atomic64_t child_total_time_running;
656
657 /*
658 * Protect attach/detach and child_list:
659 */
660 struct mutex child_mutex;
661 struct list_head child_list;
662 struct perf_event *parent;
663
664 int oncpu;
665 int cpu;
666
667 struct list_head owner_entry;
668 struct task_struct *owner;
669
670 /* mmap bits */
671 struct mutex mmap_mutex;
672 atomic_t mmap_count;
673 struct perf_mmap_data *data;
674
675 /* poll related */
676 wait_queue_head_t waitq;
677 struct fasync_struct *fasync;
678
679 /* delayed work for NMIs and such */
680 int pending_wakeup;
681 int pending_kill;
682 int pending_disable;
683 struct perf_pending_entry pending;
684
685 atomic_t event_limit;
686
687 void (*destroy)(struct perf_event *);
688 struct rcu_head rcu_head;
689
690 struct pid_namespace *ns;
691 u64 id;
692
693 perf_overflow_handler_t overflow_handler;
694
695 #ifdef CONFIG_EVENT_TRACING
696 struct event_filter *filter;
697 #endif
698
699 #endif /* CONFIG_PERF_EVENTS */
700 };
701
702 /**
703 * struct perf_event_context - event context structure
704 *
705 * Used as a container for task events and CPU events as well:
706 */
707 struct perf_event_context {
708 /*
709 * Protect the states of the events in the list,
710 * nr_active, and the list:
711 */
712 raw_spinlock_t lock;
713 /*
714 * Protect the list of events. Locking either mutex or lock
715 * is sufficient to ensure the list doesn't change; to change
716 * the list you need to lock both the mutex and the spinlock.
717 */
718 struct mutex mutex;
719
720 struct list_head pinned_groups;
721 struct list_head flexible_groups;
722 struct list_head event_list;
723 int nr_events;
724 int nr_active;
725 int is_active;
726 int nr_stat;
727 atomic_t refcount;
728 struct task_struct *task;
729
730 /*
731 * Context clock, runs when context enabled.
732 */
733 u64 time;
734 u64 timestamp;
735
736 /*
737 * These fields let us detect when two contexts have both
738 * been cloned (inherited) from a common ancestor.
739 */
740 struct perf_event_context *parent_ctx;
741 u64 parent_gen;
742 u64 generation;
743 int pin_count;
744 struct rcu_head rcu_head;
745 };
746
747 /**
748 * struct perf_event_cpu_context - per cpu event context structure
749 */
750 struct perf_cpu_context {
751 struct perf_event_context ctx;
752 struct perf_event_context *task_ctx;
753 int active_oncpu;
754 int max_pertask;
755 int exclusive;
756 struct swevent_hlist *swevent_hlist;
757 struct mutex hlist_mutex;
758 int hlist_refcount;
759
760 /*
761 * Recursion avoidance:
762 *
763 * task, softirq, irq, nmi context
764 */
765 int recursion[4];
766 };
767
768 struct perf_output_handle {
769 struct perf_event *event;
770 struct perf_mmap_data *data;
771 unsigned long head;
772 unsigned long offset;
773 int nmi;
774 int sample;
775 int locked;
776 };
777
778 #ifdef CONFIG_PERF_EVENTS
779
780 /*
781 * Set by architecture code:
782 */
783 extern int perf_max_events;
784
785 extern const struct pmu *hw_perf_event_init(struct perf_event *event);
786
787 extern void perf_event_task_sched_in(struct task_struct *task);
788 extern void perf_event_task_sched_out(struct task_struct *task, struct task_struct *next);
789 extern void perf_event_task_tick(struct task_struct *task);
790 extern int perf_event_init_task(struct task_struct *child);
791 extern void perf_event_exit_task(struct task_struct *child);
792 extern void perf_event_free_task(struct task_struct *task);
793 extern void set_perf_event_pending(void);
794 extern void perf_event_do_pending(void);
795 extern void perf_event_print_debug(void);
796 extern void __perf_disable(void);
797 extern bool __perf_enable(void);
798 extern void perf_disable(void);
799 extern void perf_enable(void);
800 extern int perf_event_task_disable(void);
801 extern int perf_event_task_enable(void);
802 extern int hw_perf_group_sched_in(struct perf_event *group_leader,
803 struct perf_cpu_context *cpuctx,
804 struct perf_event_context *ctx);
805 extern void perf_event_update_userpage(struct perf_event *event);
806 extern int perf_event_release_kernel(struct perf_event *event);
807 extern struct perf_event *
808 perf_event_create_kernel_counter(struct perf_event_attr *attr,
809 int cpu,
810 pid_t pid,
811 perf_overflow_handler_t callback);
812 extern u64 perf_event_read_value(struct perf_event *event,
813 u64 *enabled, u64 *running);
814
815 struct perf_sample_data {
816 u64 type;
817
818 u64 ip;
819 struct {
820 u32 pid;
821 u32 tid;
822 } tid_entry;
823 u64 time;
824 u64 addr;
825 u64 id;
826 u64 stream_id;
827 struct {
828 u32 cpu;
829 u32 reserved;
830 } cpu_entry;
831 u64 period;
832 struct perf_callchain_entry *callchain;
833 struct perf_raw_record *raw;
834 };
835
836 static inline
837 void perf_sample_data_init(struct perf_sample_data *data, u64 addr)
838 {
839 data->addr = addr;
840 data->raw = NULL;
841 }
842
843 extern void perf_output_sample(struct perf_output_handle *handle,
844 struct perf_event_header *header,
845 struct perf_sample_data *data,
846 struct perf_event *event);
847 extern void perf_prepare_sample(struct perf_event_header *header,
848 struct perf_sample_data *data,
849 struct perf_event *event,
850 struct pt_regs *regs);
851
852 extern int perf_event_overflow(struct perf_event *event, int nmi,
853 struct perf_sample_data *data,
854 struct pt_regs *regs);
855
856 /*
857 * Return 1 for a software event, 0 for a hardware event
858 */
859 static inline int is_software_event(struct perf_event *event)
860 {
861 switch (event->attr.type) {
862 case PERF_TYPE_SOFTWARE:
863 case PERF_TYPE_TRACEPOINT:
864 /* for now the breakpoint stuff also works as software event */
865 case PERF_TYPE_BREAKPOINT:
866 return 1;
867 }
868 return 0;
869 }
870
871 extern atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
872
873 extern void __perf_sw_event(u32, u64, int, struct pt_regs *, u64);
874
875 extern void
876 perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int skip);
877
878 /*
879 * Take a snapshot of the regs. Skip ip and frame pointer to
880 * the nth caller. We only need a few of the regs:
881 * - ip for PERF_SAMPLE_IP
882 * - cs for user_mode() tests
883 * - bp for callchains
884 * - eflags, for future purposes, just in case
885 */
886 static inline void perf_fetch_caller_regs(struct pt_regs *regs, int skip)
887 {
888 unsigned long ip;
889
890 memset(regs, 0, sizeof(*regs));
891
892 switch (skip) {
893 case 1 :
894 ip = CALLER_ADDR0;
895 break;
896 case 2 :
897 ip = CALLER_ADDR1;
898 break;
899 case 3 :
900 ip = CALLER_ADDR2;
901 break;
902 case 4:
903 ip = CALLER_ADDR3;
904 break;
905 /* No need to support further for now */
906 default:
907 ip = 0;
908 }
909
910 return perf_arch_fetch_caller_regs(regs, ip, skip);
911 }
912
913 static inline void
914 perf_sw_event(u32 event_id, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
915 {
916 if (atomic_read(&perf_swevent_enabled[event_id])) {
917 struct pt_regs hot_regs;
918
919 if (!regs) {
920 perf_fetch_caller_regs(&hot_regs, 1);
921 regs = &hot_regs;
922 }
923 __perf_sw_event(event_id, nr, nmi, regs, addr);
924 }
925 }
926
927 extern void __perf_event_mmap(struct vm_area_struct *vma);
928
929 static inline void perf_event_mmap(struct vm_area_struct *vma)
930 {
931 if (vma->vm_flags & VM_EXEC)
932 __perf_event_mmap(vma);
933 }
934
935 extern void perf_event_comm(struct task_struct *tsk);
936 extern void perf_event_fork(struct task_struct *tsk);
937
938 extern struct perf_callchain_entry *perf_callchain(struct pt_regs *regs);
939
940 extern int sysctl_perf_event_paranoid;
941 extern int sysctl_perf_event_mlock;
942 extern int sysctl_perf_event_sample_rate;
943
944 static inline bool perf_paranoid_tracepoint_raw(void)
945 {
946 return sysctl_perf_event_paranoid > -1;
947 }
948
949 static inline bool perf_paranoid_cpu(void)
950 {
951 return sysctl_perf_event_paranoid > 0;
952 }
953
954 static inline bool perf_paranoid_kernel(void)
955 {
956 return sysctl_perf_event_paranoid > 1;
957 }
958
959 extern void perf_event_init(void);
960 extern void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
961 int entry_size, struct pt_regs *regs);
962 extern void perf_bp_event(struct perf_event *event, void *data);
963
964 #ifndef perf_misc_flags
965 #define perf_misc_flags(regs) (user_mode(regs) ? PERF_RECORD_MISC_USER : \
966 PERF_RECORD_MISC_KERNEL)
967 #define perf_instruction_pointer(regs) instruction_pointer(regs)
968 #endif
969
970 extern int perf_output_begin(struct perf_output_handle *handle,
971 struct perf_event *event, unsigned int size,
972 int nmi, int sample);
973 extern void perf_output_end(struct perf_output_handle *handle);
974 extern void perf_output_copy(struct perf_output_handle *handle,
975 const void *buf, unsigned int len);
976 extern int perf_swevent_get_recursion_context(void);
977 extern void perf_swevent_put_recursion_context(int rctx);
978 extern void perf_event_enable(struct perf_event *event);
979 extern void perf_event_disable(struct perf_event *event);
980 #else
981 static inline void
982 perf_event_task_sched_in(struct task_struct *task) { }
983 static inline void
984 perf_event_task_sched_out(struct task_struct *task,
985 struct task_struct *next) { }
986 static inline void
987 perf_event_task_tick(struct task_struct *task) { }
988 static inline int perf_event_init_task(struct task_struct *child) { return 0; }
989 static inline void perf_event_exit_task(struct task_struct *child) { }
990 static inline void perf_event_free_task(struct task_struct *task) { }
991 static inline void perf_event_do_pending(void) { }
992 static inline void perf_event_print_debug(void) { }
993 static inline void perf_disable(void) { }
994 static inline void perf_enable(void) { }
995 static inline int perf_event_task_disable(void) { return -EINVAL; }
996 static inline int perf_event_task_enable(void) { return -EINVAL; }
997
998 static inline void
999 perf_sw_event(u32 event_id, u64 nr, int nmi,
1000 struct pt_regs *regs, u64 addr) { }
1001 static inline void
1002 perf_bp_event(struct perf_event *event, void *data) { }
1003
1004 static inline void perf_event_mmap(struct vm_area_struct *vma) { }
1005 static inline void perf_event_comm(struct task_struct *tsk) { }
1006 static inline void perf_event_fork(struct task_struct *tsk) { }
1007 static inline void perf_event_init(void) { }
1008 static inline int perf_swevent_get_recursion_context(void) { return -1; }
1009 static inline void perf_swevent_put_recursion_context(int rctx) { }
1010 static inline void perf_event_enable(struct perf_event *event) { }
1011 static inline void perf_event_disable(struct perf_event *event) { }
1012 #endif
1013
1014 #define perf_output_put(handle, x) \
1015 perf_output_copy((handle), &(x), sizeof(x))
1016
1017 /*
1018 * This has to have a higher priority than migration_notifier in sched.c.
1019 */
1020 #define perf_cpu_notifier(fn) \
1021 do { \
1022 static struct notifier_block fn##_nb __cpuinitdata = \
1023 { .notifier_call = fn, .priority = 20 }; \
1024 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \
1025 (void *)(unsigned long)smp_processor_id()); \
1026 fn(&fn##_nb, (unsigned long)CPU_STARTING, \
1027 (void *)(unsigned long)smp_processor_id()); \
1028 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \
1029 (void *)(unsigned long)smp_processor_id()); \
1030 register_cpu_notifier(&fn##_nb); \
1031 } while (0)
1032
1033 #endif /* __KERNEL__ */
1034 #endif /* _LINUX_PERF_EVENT_H */
This page took 0.132577 seconds and 6 git commands to generate.