ptrace: remove PTRACE_SEIZE_DEVEL bit
[deliverable/linux.git] / include / linux / ptrace.h
1 #ifndef _LINUX_PTRACE_H
2 #define _LINUX_PTRACE_H
3 /* ptrace.h */
4 /* structs and defines to help the user use the ptrace system call. */
5
6 /* has the defines to get at the registers. */
7
8 #define PTRACE_TRACEME 0
9 #define PTRACE_PEEKTEXT 1
10 #define PTRACE_PEEKDATA 2
11 #define PTRACE_PEEKUSR 3
12 #define PTRACE_POKETEXT 4
13 #define PTRACE_POKEDATA 5
14 #define PTRACE_POKEUSR 6
15 #define PTRACE_CONT 7
16 #define PTRACE_KILL 8
17 #define PTRACE_SINGLESTEP 9
18
19 #define PTRACE_ATTACH 16
20 #define PTRACE_DETACH 17
21
22 #define PTRACE_SYSCALL 24
23
24 /* 0x4200-0x4300 are reserved for architecture-independent additions. */
25 #define PTRACE_SETOPTIONS 0x4200
26 #define PTRACE_GETEVENTMSG 0x4201
27 #define PTRACE_GETSIGINFO 0x4202
28 #define PTRACE_SETSIGINFO 0x4203
29
30 /*
31 * Generic ptrace interface that exports the architecture specific regsets
32 * using the corresponding NT_* types (which are also used in the core dump).
33 * Please note that the NT_PRSTATUS note type in a core dump contains a full
34 * 'struct elf_prstatus'. But the user_regset for NT_PRSTATUS contains just the
35 * elf_gregset_t that is the pr_reg field of 'struct elf_prstatus'. For all the
36 * other user_regset flavors, the user_regset layout and the ELF core dump note
37 * payload are exactly the same layout.
38 *
39 * This interface usage is as follows:
40 * struct iovec iov = { buf, len};
41 *
42 * ret = ptrace(PTRACE_GETREGSET/PTRACE_SETREGSET, pid, NT_XXX_TYPE, &iov);
43 *
44 * On the successful completion, iov.len will be updated by the kernel,
45 * specifying how much the kernel has written/read to/from the user's iov.buf.
46 */
47 #define PTRACE_GETREGSET 0x4204
48 #define PTRACE_SETREGSET 0x4205
49
50 #define PTRACE_SEIZE 0x4206
51 #define PTRACE_INTERRUPT 0x4207
52 #define PTRACE_LISTEN 0x4208
53
54 /* Wait extended result codes for the above trace options. */
55 #define PTRACE_EVENT_FORK 1
56 #define PTRACE_EVENT_VFORK 2
57 #define PTRACE_EVENT_CLONE 3
58 #define PTRACE_EVENT_EXEC 4
59 #define PTRACE_EVENT_VFORK_DONE 5
60 #define PTRACE_EVENT_EXIT 6
61 /* Extended result codes which enabled by means other than options. */
62 #define PTRACE_EVENT_STOP 128
63
64 /* Options set using PTRACE_SETOPTIONS or using PTRACE_SEIZE @data param */
65 #define PTRACE_O_TRACESYSGOOD 1
66 #define PTRACE_O_TRACEFORK (1 << PTRACE_EVENT_FORK)
67 #define PTRACE_O_TRACEVFORK (1 << PTRACE_EVENT_VFORK)
68 #define PTRACE_O_TRACECLONE (1 << PTRACE_EVENT_CLONE)
69 #define PTRACE_O_TRACEEXEC (1 << PTRACE_EVENT_EXEC)
70 #define PTRACE_O_TRACEVFORKDONE (1 << PTRACE_EVENT_VFORK_DONE)
71 #define PTRACE_O_TRACEEXIT (1 << PTRACE_EVENT_EXIT)
72
73 #define PTRACE_O_MASK 0x0000007f
74
75 #include <asm/ptrace.h>
76
77 #ifdef __KERNEL__
78 /*
79 * Ptrace flags
80 *
81 * The owner ship rules for task->ptrace which holds the ptrace
82 * flags is simple. When a task is running it owns it's task->ptrace
83 * flags. When the a task is stopped the ptracer owns task->ptrace.
84 */
85
86 #define PT_SEIZED 0x00010000 /* SEIZE used, enable new behavior */
87 #define PT_PTRACED 0x00000001
88 #define PT_DTRACE 0x00000002 /* delayed trace (used on m68k, i386) */
89 #define PT_PTRACE_CAP 0x00000004 /* ptracer can follow suid-exec */
90
91 #define PT_OPT_FLAG_SHIFT 3
92 /* PT_TRACE_* event enable flags */
93 #define PT_EVENT_FLAG(event) (1 << (PT_OPT_FLAG_SHIFT + (event)))
94 #define PT_TRACESYSGOOD PT_EVENT_FLAG(0)
95 #define PT_TRACE_FORK PT_EVENT_FLAG(PTRACE_EVENT_FORK)
96 #define PT_TRACE_VFORK PT_EVENT_FLAG(PTRACE_EVENT_VFORK)
97 #define PT_TRACE_CLONE PT_EVENT_FLAG(PTRACE_EVENT_CLONE)
98 #define PT_TRACE_EXEC PT_EVENT_FLAG(PTRACE_EVENT_EXEC)
99 #define PT_TRACE_VFORK_DONE PT_EVENT_FLAG(PTRACE_EVENT_VFORK_DONE)
100 #define PT_TRACE_EXIT PT_EVENT_FLAG(PTRACE_EVENT_EXIT)
101
102 /* single stepping state bits (used on ARM and PA-RISC) */
103 #define PT_SINGLESTEP_BIT 31
104 #define PT_SINGLESTEP (1<<PT_SINGLESTEP_BIT)
105 #define PT_BLOCKSTEP_BIT 30
106 #define PT_BLOCKSTEP (1<<PT_BLOCKSTEP_BIT)
107
108 #include <linux/compiler.h> /* For unlikely. */
109 #include <linux/sched.h> /* For struct task_struct. */
110 #include <linux/err.h> /* for IS_ERR_VALUE */
111
112
113 extern long arch_ptrace(struct task_struct *child, long request,
114 unsigned long addr, unsigned long data);
115 extern int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len);
116 extern int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len);
117 extern void ptrace_disable(struct task_struct *);
118 extern int ptrace_check_attach(struct task_struct *task, bool ignore_state);
119 extern int ptrace_request(struct task_struct *child, long request,
120 unsigned long addr, unsigned long data);
121 extern void ptrace_notify(int exit_code);
122 extern void __ptrace_link(struct task_struct *child,
123 struct task_struct *new_parent);
124 extern void __ptrace_unlink(struct task_struct *child);
125 extern void exit_ptrace(struct task_struct *tracer);
126 #define PTRACE_MODE_READ 0x01
127 #define PTRACE_MODE_ATTACH 0x02
128 #define PTRACE_MODE_NOAUDIT 0x04
129 /* Returns 0 on success, -errno on denial. */
130 extern int __ptrace_may_access(struct task_struct *task, unsigned int mode);
131 /* Returns true on success, false on denial. */
132 extern bool ptrace_may_access(struct task_struct *task, unsigned int mode);
133
134 static inline int ptrace_reparented(struct task_struct *child)
135 {
136 return !same_thread_group(child->real_parent, child->parent);
137 }
138
139 static inline void ptrace_unlink(struct task_struct *child)
140 {
141 if (unlikely(child->ptrace))
142 __ptrace_unlink(child);
143 }
144
145 int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr,
146 unsigned long data);
147 int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr,
148 unsigned long data);
149
150 /**
151 * ptrace_parent - return the task that is tracing the given task
152 * @task: task to consider
153 *
154 * Returns %NULL if no one is tracing @task, or the &struct task_struct
155 * pointer to its tracer.
156 *
157 * Must called under rcu_read_lock(). The pointer returned might be kept
158 * live only by RCU. During exec, this may be called with task_lock() held
159 * on @task, still held from when check_unsafe_exec() was called.
160 */
161 static inline struct task_struct *ptrace_parent(struct task_struct *task)
162 {
163 if (unlikely(task->ptrace))
164 return rcu_dereference(task->parent);
165 return NULL;
166 }
167
168 /**
169 * ptrace_event_enabled - test whether a ptrace event is enabled
170 * @task: ptracee of interest
171 * @event: %PTRACE_EVENT_* to test
172 *
173 * Test whether @event is enabled for ptracee @task.
174 *
175 * Returns %true if @event is enabled, %false otherwise.
176 */
177 static inline bool ptrace_event_enabled(struct task_struct *task, int event)
178 {
179 return task->ptrace & PT_EVENT_FLAG(event);
180 }
181
182 /**
183 * ptrace_event - possibly stop for a ptrace event notification
184 * @event: %PTRACE_EVENT_* value to report
185 * @message: value for %PTRACE_GETEVENTMSG to return
186 *
187 * Check whether @event is enabled and, if so, report @event and @message
188 * to the ptrace parent.
189 *
190 * Called without locks.
191 */
192 static inline void ptrace_event(int event, unsigned long message)
193 {
194 if (unlikely(ptrace_event_enabled(current, event))) {
195 current->ptrace_message = message;
196 ptrace_notify((event << 8) | SIGTRAP);
197 } else if (event == PTRACE_EVENT_EXEC) {
198 /* legacy EXEC report via SIGTRAP */
199 if ((current->ptrace & (PT_PTRACED|PT_SEIZED)) == PT_PTRACED)
200 send_sig(SIGTRAP, current, 0);
201 }
202 }
203
204 /**
205 * ptrace_init_task - initialize ptrace state for a new child
206 * @child: new child task
207 * @ptrace: true if child should be ptrace'd by parent's tracer
208 *
209 * This is called immediately after adding @child to its parent's children
210 * list. @ptrace is false in the normal case, and true to ptrace @child.
211 *
212 * Called with current's siglock and write_lock_irq(&tasklist_lock) held.
213 */
214 static inline void ptrace_init_task(struct task_struct *child, bool ptrace)
215 {
216 INIT_LIST_HEAD(&child->ptrace_entry);
217 INIT_LIST_HEAD(&child->ptraced);
218 #ifdef CONFIG_HAVE_HW_BREAKPOINT
219 atomic_set(&child->ptrace_bp_refcnt, 1);
220 #endif
221 child->jobctl = 0;
222 child->ptrace = 0;
223 child->parent = child->real_parent;
224
225 if (unlikely(ptrace) && current->ptrace) {
226 child->ptrace = current->ptrace;
227 __ptrace_link(child, current->parent);
228
229 if (child->ptrace & PT_SEIZED)
230 task_set_jobctl_pending(child, JOBCTL_TRAP_STOP);
231 else
232 sigaddset(&child->pending.signal, SIGSTOP);
233
234 set_tsk_thread_flag(child, TIF_SIGPENDING);
235 }
236 }
237
238 /**
239 * ptrace_release_task - final ptrace-related cleanup of a zombie being reaped
240 * @task: task in %EXIT_DEAD state
241 *
242 * Called with write_lock(&tasklist_lock) held.
243 */
244 static inline void ptrace_release_task(struct task_struct *task)
245 {
246 BUG_ON(!list_empty(&task->ptraced));
247 ptrace_unlink(task);
248 BUG_ON(!list_empty(&task->ptrace_entry));
249 }
250
251 #ifndef force_successful_syscall_return
252 /*
253 * System call handlers that, upon successful completion, need to return a
254 * negative value should call force_successful_syscall_return() right before
255 * returning. On architectures where the syscall convention provides for a
256 * separate error flag (e.g., alpha, ia64, ppc{,64}, sparc{,64}, possibly
257 * others), this macro can be used to ensure that the error flag will not get
258 * set. On architectures which do not support a separate error flag, the macro
259 * is a no-op and the spurious error condition needs to be filtered out by some
260 * other means (e.g., in user-level, by passing an extra argument to the
261 * syscall handler, or something along those lines).
262 */
263 #define force_successful_syscall_return() do { } while (0)
264 #endif
265
266 #ifndef is_syscall_success
267 /*
268 * On most systems we can tell if a syscall is a success based on if the retval
269 * is an error value. On some systems like ia64 and powerpc they have different
270 * indicators of success/failure and must define their own.
271 */
272 #define is_syscall_success(regs) (!IS_ERR_VALUE((unsigned long)(regs_return_value(regs))))
273 #endif
274
275 /*
276 * <asm/ptrace.h> should define the following things inside #ifdef __KERNEL__.
277 *
278 * These do-nothing inlines are used when the arch does not
279 * implement single-step. The kerneldoc comments are here
280 * to document the interface for all arch definitions.
281 */
282
283 #ifndef arch_has_single_step
284 /**
285 * arch_has_single_step - does this CPU support user-mode single-step?
286 *
287 * If this is defined, then there must be function declarations or
288 * inlines for user_enable_single_step() and user_disable_single_step().
289 * arch_has_single_step() should evaluate to nonzero iff the machine
290 * supports instruction single-step for user mode.
291 * It can be a constant or it can test a CPU feature bit.
292 */
293 #define arch_has_single_step() (0)
294
295 /**
296 * user_enable_single_step - single-step in user-mode task
297 * @task: either current or a task stopped in %TASK_TRACED
298 *
299 * This can only be called when arch_has_single_step() has returned nonzero.
300 * Set @task so that when it returns to user mode, it will trap after the
301 * next single instruction executes. If arch_has_block_step() is defined,
302 * this must clear the effects of user_enable_block_step() too.
303 */
304 static inline void user_enable_single_step(struct task_struct *task)
305 {
306 BUG(); /* This can never be called. */
307 }
308
309 /**
310 * user_disable_single_step - cancel user-mode single-step
311 * @task: either current or a task stopped in %TASK_TRACED
312 *
313 * Clear @task of the effects of user_enable_single_step() and
314 * user_enable_block_step(). This can be called whether or not either
315 * of those was ever called on @task, and even if arch_has_single_step()
316 * returned zero.
317 */
318 static inline void user_disable_single_step(struct task_struct *task)
319 {
320 }
321 #else
322 extern void user_enable_single_step(struct task_struct *);
323 extern void user_disable_single_step(struct task_struct *);
324 #endif /* arch_has_single_step */
325
326 #ifndef arch_has_block_step
327 /**
328 * arch_has_block_step - does this CPU support user-mode block-step?
329 *
330 * If this is defined, then there must be a function declaration or inline
331 * for user_enable_block_step(), and arch_has_single_step() must be defined
332 * too. arch_has_block_step() should evaluate to nonzero iff the machine
333 * supports step-until-branch for user mode. It can be a constant or it
334 * can test a CPU feature bit.
335 */
336 #define arch_has_block_step() (0)
337
338 /**
339 * user_enable_block_step - step until branch in user-mode task
340 * @task: either current or a task stopped in %TASK_TRACED
341 *
342 * This can only be called when arch_has_block_step() has returned nonzero,
343 * and will never be called when single-instruction stepping is being used.
344 * Set @task so that when it returns to user mode, it will trap after the
345 * next branch or trap taken.
346 */
347 static inline void user_enable_block_step(struct task_struct *task)
348 {
349 BUG(); /* This can never be called. */
350 }
351 #else
352 extern void user_enable_block_step(struct task_struct *);
353 #endif /* arch_has_block_step */
354
355 #ifdef ARCH_HAS_USER_SINGLE_STEP_INFO
356 extern void user_single_step_siginfo(struct task_struct *tsk,
357 struct pt_regs *regs, siginfo_t *info);
358 #else
359 static inline void user_single_step_siginfo(struct task_struct *tsk,
360 struct pt_regs *regs, siginfo_t *info)
361 {
362 memset(info, 0, sizeof(*info));
363 info->si_signo = SIGTRAP;
364 }
365 #endif
366
367 #ifndef arch_ptrace_stop_needed
368 /**
369 * arch_ptrace_stop_needed - Decide whether arch_ptrace_stop() should be called
370 * @code: current->exit_code value ptrace will stop with
371 * @info: siginfo_t pointer (or %NULL) for signal ptrace will stop with
372 *
373 * This is called with the siglock held, to decide whether or not it's
374 * necessary to release the siglock and call arch_ptrace_stop() with the
375 * same @code and @info arguments. It can be defined to a constant if
376 * arch_ptrace_stop() is never required, or always is. On machines where
377 * this makes sense, it should be defined to a quick test to optimize out
378 * calling arch_ptrace_stop() when it would be superfluous. For example,
379 * if the thread has not been back to user mode since the last stop, the
380 * thread state might indicate that nothing needs to be done.
381 */
382 #define arch_ptrace_stop_needed(code, info) (0)
383 #endif
384
385 #ifndef arch_ptrace_stop
386 /**
387 * arch_ptrace_stop - Do machine-specific work before stopping for ptrace
388 * @code: current->exit_code value ptrace will stop with
389 * @info: siginfo_t pointer (or %NULL) for signal ptrace will stop with
390 *
391 * This is called with no locks held when arch_ptrace_stop_needed() has
392 * just returned nonzero. It is allowed to block, e.g. for user memory
393 * access. The arch can have machine-specific work to be done before
394 * ptrace stops. On ia64, register backing store gets written back to user
395 * memory here. Since this can be costly (requires dropping the siglock),
396 * we only do it when the arch requires it for this particular stop, as
397 * indicated by arch_ptrace_stop_needed().
398 */
399 #define arch_ptrace_stop(code, info) do { } while (0)
400 #endif
401
402 extern int task_current_syscall(struct task_struct *target, long *callno,
403 unsigned long args[6], unsigned int maxargs,
404 unsigned long *sp, unsigned long *pc);
405
406 #ifdef CONFIG_HAVE_HW_BREAKPOINT
407 extern int ptrace_get_breakpoints(struct task_struct *tsk);
408 extern void ptrace_put_breakpoints(struct task_struct *tsk);
409 #else
410 static inline void ptrace_put_breakpoints(struct task_struct *tsk) { }
411 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
412
413 #endif /* __KERNEL */
414
415 #endif
This page took 0.05667 seconds and 5 git commands to generate.