Merge tag 'gpio-v4.8-1' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw/linux...
[deliverable/linux.git] / include / linux / rcupdate.h
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
17 *
18 * Copyright IBM Corporation, 2001
19 *
20 * Author: Dipankar Sarma <dipankar@in.ibm.com>
21 *
22 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
23 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
24 * Papers:
25 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
26 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
27 *
28 * For detailed explanation of Read-Copy Update mechanism see -
29 * http://lse.sourceforge.net/locking/rcupdate.html
30 *
31 */
32
33 #ifndef __LINUX_RCUPDATE_H
34 #define __LINUX_RCUPDATE_H
35
36 #include <linux/types.h>
37 #include <linux/cache.h>
38 #include <linux/spinlock.h>
39 #include <linux/threads.h>
40 #include <linux/cpumask.h>
41 #include <linux/seqlock.h>
42 #include <linux/lockdep.h>
43 #include <linux/completion.h>
44 #include <linux/debugobjects.h>
45 #include <linux/bug.h>
46 #include <linux/compiler.h>
47 #include <linux/ktime.h>
48 #include <linux/irqflags.h>
49
50 #include <asm/barrier.h>
51
52 #ifndef CONFIG_TINY_RCU
53 extern int rcu_expedited; /* for sysctl */
54 extern int rcu_normal; /* also for sysctl */
55 #endif /* #ifndef CONFIG_TINY_RCU */
56
57 #ifdef CONFIG_TINY_RCU
58 /* Tiny RCU doesn't expedite, as its purpose in life is instead to be tiny. */
59 static inline bool rcu_gp_is_normal(void) /* Internal RCU use. */
60 {
61 return true;
62 }
63 static inline bool rcu_gp_is_expedited(void) /* Internal RCU use. */
64 {
65 return false;
66 }
67
68 static inline void rcu_expedite_gp(void)
69 {
70 }
71
72 static inline void rcu_unexpedite_gp(void)
73 {
74 }
75 #else /* #ifdef CONFIG_TINY_RCU */
76 bool rcu_gp_is_normal(void); /* Internal RCU use. */
77 bool rcu_gp_is_expedited(void); /* Internal RCU use. */
78 void rcu_expedite_gp(void);
79 void rcu_unexpedite_gp(void);
80 #endif /* #else #ifdef CONFIG_TINY_RCU */
81
82 enum rcutorture_type {
83 RCU_FLAVOR,
84 RCU_BH_FLAVOR,
85 RCU_SCHED_FLAVOR,
86 RCU_TASKS_FLAVOR,
87 SRCU_FLAVOR,
88 INVALID_RCU_FLAVOR
89 };
90
91 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
92 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
93 unsigned long *gpnum, unsigned long *completed);
94 void rcutorture_record_test_transition(void);
95 void rcutorture_record_progress(unsigned long vernum);
96 void do_trace_rcu_torture_read(const char *rcutorturename,
97 struct rcu_head *rhp,
98 unsigned long secs,
99 unsigned long c_old,
100 unsigned long c);
101 #else
102 static inline void rcutorture_get_gp_data(enum rcutorture_type test_type,
103 int *flags,
104 unsigned long *gpnum,
105 unsigned long *completed)
106 {
107 *flags = 0;
108 *gpnum = 0;
109 *completed = 0;
110 }
111 static inline void rcutorture_record_test_transition(void)
112 {
113 }
114 static inline void rcutorture_record_progress(unsigned long vernum)
115 {
116 }
117 #ifdef CONFIG_RCU_TRACE
118 void do_trace_rcu_torture_read(const char *rcutorturename,
119 struct rcu_head *rhp,
120 unsigned long secs,
121 unsigned long c_old,
122 unsigned long c);
123 #else
124 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
125 do { } while (0)
126 #endif
127 #endif
128
129 #define UINT_CMP_GE(a, b) (UINT_MAX / 2 >= (a) - (b))
130 #define UINT_CMP_LT(a, b) (UINT_MAX / 2 < (a) - (b))
131 #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b))
132 #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b))
133 #define ulong2long(a) (*(long *)(&(a)))
134
135 /* Exported common interfaces */
136
137 #ifdef CONFIG_PREEMPT_RCU
138
139 /**
140 * call_rcu() - Queue an RCU callback for invocation after a grace period.
141 * @head: structure to be used for queueing the RCU updates.
142 * @func: actual callback function to be invoked after the grace period
143 *
144 * The callback function will be invoked some time after a full grace
145 * period elapses, in other words after all pre-existing RCU read-side
146 * critical sections have completed. However, the callback function
147 * might well execute concurrently with RCU read-side critical sections
148 * that started after call_rcu() was invoked. RCU read-side critical
149 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
150 * and may be nested.
151 *
152 * Note that all CPUs must agree that the grace period extended beyond
153 * all pre-existing RCU read-side critical section. On systems with more
154 * than one CPU, this means that when "func()" is invoked, each CPU is
155 * guaranteed to have executed a full memory barrier since the end of its
156 * last RCU read-side critical section whose beginning preceded the call
157 * to call_rcu(). It also means that each CPU executing an RCU read-side
158 * critical section that continues beyond the start of "func()" must have
159 * executed a memory barrier after the call_rcu() but before the beginning
160 * of that RCU read-side critical section. Note that these guarantees
161 * include CPUs that are offline, idle, or executing in user mode, as
162 * well as CPUs that are executing in the kernel.
163 *
164 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
165 * resulting RCU callback function "func()", then both CPU A and CPU B are
166 * guaranteed to execute a full memory barrier during the time interval
167 * between the call to call_rcu() and the invocation of "func()" -- even
168 * if CPU A and CPU B are the same CPU (but again only if the system has
169 * more than one CPU).
170 */
171 void call_rcu(struct rcu_head *head,
172 rcu_callback_t func);
173
174 #else /* #ifdef CONFIG_PREEMPT_RCU */
175
176 /* In classic RCU, call_rcu() is just call_rcu_sched(). */
177 #define call_rcu call_rcu_sched
178
179 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
180
181 /**
182 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
183 * @head: structure to be used for queueing the RCU updates.
184 * @func: actual callback function to be invoked after the grace period
185 *
186 * The callback function will be invoked some time after a full grace
187 * period elapses, in other words after all currently executing RCU
188 * read-side critical sections have completed. call_rcu_bh() assumes
189 * that the read-side critical sections end on completion of a softirq
190 * handler. This means that read-side critical sections in process
191 * context must not be interrupted by softirqs. This interface is to be
192 * used when most of the read-side critical sections are in softirq context.
193 * RCU read-side critical sections are delimited by :
194 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context.
195 * OR
196 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
197 * These may be nested.
198 *
199 * See the description of call_rcu() for more detailed information on
200 * memory ordering guarantees.
201 */
202 void call_rcu_bh(struct rcu_head *head,
203 rcu_callback_t func);
204
205 /**
206 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
207 * @head: structure to be used for queueing the RCU updates.
208 * @func: actual callback function to be invoked after the grace period
209 *
210 * The callback function will be invoked some time after a full grace
211 * period elapses, in other words after all currently executing RCU
212 * read-side critical sections have completed. call_rcu_sched() assumes
213 * that the read-side critical sections end on enabling of preemption
214 * or on voluntary preemption.
215 * RCU read-side critical sections are delimited by :
216 * - rcu_read_lock_sched() and rcu_read_unlock_sched(),
217 * OR
218 * anything that disables preemption.
219 * These may be nested.
220 *
221 * See the description of call_rcu() for more detailed information on
222 * memory ordering guarantees.
223 */
224 void call_rcu_sched(struct rcu_head *head,
225 rcu_callback_t func);
226
227 void synchronize_sched(void);
228
229 /*
230 * Structure allowing asynchronous waiting on RCU.
231 */
232 struct rcu_synchronize {
233 struct rcu_head head;
234 struct completion completion;
235 };
236 void wakeme_after_rcu(struct rcu_head *head);
237
238 void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array,
239 struct rcu_synchronize *rs_array);
240
241 #define _wait_rcu_gp(checktiny, ...) \
242 do { \
243 call_rcu_func_t __crcu_array[] = { __VA_ARGS__ }; \
244 struct rcu_synchronize __rs_array[ARRAY_SIZE(__crcu_array)]; \
245 __wait_rcu_gp(checktiny, ARRAY_SIZE(__crcu_array), \
246 __crcu_array, __rs_array); \
247 } while (0)
248
249 #define wait_rcu_gp(...) _wait_rcu_gp(false, __VA_ARGS__)
250
251 /**
252 * synchronize_rcu_mult - Wait concurrently for multiple grace periods
253 * @...: List of call_rcu() functions for the flavors to wait on.
254 *
255 * This macro waits concurrently for multiple flavors of RCU grace periods.
256 * For example, synchronize_rcu_mult(call_rcu, call_rcu_bh) would wait
257 * on concurrent RCU and RCU-bh grace periods. Waiting on a give SRCU
258 * domain requires you to write a wrapper function for that SRCU domain's
259 * call_srcu() function, supplying the corresponding srcu_struct.
260 *
261 * If Tiny RCU, tell _wait_rcu_gp() not to bother waiting for RCU
262 * or RCU-bh, given that anywhere synchronize_rcu_mult() can be called
263 * is automatically a grace period.
264 */
265 #define synchronize_rcu_mult(...) \
266 _wait_rcu_gp(IS_ENABLED(CONFIG_TINY_RCU), __VA_ARGS__)
267
268 /**
269 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
270 * @head: structure to be used for queueing the RCU updates.
271 * @func: actual callback function to be invoked after the grace period
272 *
273 * The callback function will be invoked some time after a full grace
274 * period elapses, in other words after all currently executing RCU
275 * read-side critical sections have completed. call_rcu_tasks() assumes
276 * that the read-side critical sections end at a voluntary context
277 * switch (not a preemption!), entry into idle, or transition to usermode
278 * execution. As such, there are no read-side primitives analogous to
279 * rcu_read_lock() and rcu_read_unlock() because this primitive is intended
280 * to determine that all tasks have passed through a safe state, not so
281 * much for data-strcuture synchronization.
282 *
283 * See the description of call_rcu() for more detailed information on
284 * memory ordering guarantees.
285 */
286 void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
287 void synchronize_rcu_tasks(void);
288 void rcu_barrier_tasks(void);
289
290 #ifdef CONFIG_PREEMPT_RCU
291
292 void __rcu_read_lock(void);
293 void __rcu_read_unlock(void);
294 void rcu_read_unlock_special(struct task_struct *t);
295 void synchronize_rcu(void);
296
297 /*
298 * Defined as a macro as it is a very low level header included from
299 * areas that don't even know about current. This gives the rcu_read_lock()
300 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
301 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
302 */
303 #define rcu_preempt_depth() (current->rcu_read_lock_nesting)
304
305 #else /* #ifdef CONFIG_PREEMPT_RCU */
306
307 static inline void __rcu_read_lock(void)
308 {
309 if (IS_ENABLED(CONFIG_PREEMPT_COUNT))
310 preempt_disable();
311 }
312
313 static inline void __rcu_read_unlock(void)
314 {
315 if (IS_ENABLED(CONFIG_PREEMPT_COUNT))
316 preempt_enable();
317 }
318
319 static inline void synchronize_rcu(void)
320 {
321 synchronize_sched();
322 }
323
324 static inline int rcu_preempt_depth(void)
325 {
326 return 0;
327 }
328
329 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
330
331 /* Internal to kernel */
332 void rcu_init(void);
333 void rcu_sched_qs(void);
334 void rcu_bh_qs(void);
335 void rcu_check_callbacks(int user);
336 void rcu_report_dead(unsigned int cpu);
337
338 #ifndef CONFIG_TINY_RCU
339 void rcu_end_inkernel_boot(void);
340 #else /* #ifndef CONFIG_TINY_RCU */
341 static inline void rcu_end_inkernel_boot(void) { }
342 #endif /* #ifndef CONFIG_TINY_RCU */
343
344 #ifdef CONFIG_RCU_STALL_COMMON
345 void rcu_sysrq_start(void);
346 void rcu_sysrq_end(void);
347 #else /* #ifdef CONFIG_RCU_STALL_COMMON */
348 static inline void rcu_sysrq_start(void)
349 {
350 }
351 static inline void rcu_sysrq_end(void)
352 {
353 }
354 #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
355
356 #ifdef CONFIG_NO_HZ_FULL
357 void rcu_user_enter(void);
358 void rcu_user_exit(void);
359 #else
360 static inline void rcu_user_enter(void) { }
361 static inline void rcu_user_exit(void) { }
362 #endif /* CONFIG_NO_HZ_FULL */
363
364 #ifdef CONFIG_RCU_NOCB_CPU
365 void rcu_init_nohz(void);
366 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
367 static inline void rcu_init_nohz(void)
368 {
369 }
370 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
371
372 /**
373 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
374 * @a: Code that RCU needs to pay attention to.
375 *
376 * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden
377 * in the inner idle loop, that is, between the rcu_idle_enter() and
378 * the rcu_idle_exit() -- RCU will happily ignore any such read-side
379 * critical sections. However, things like powertop need tracepoints
380 * in the inner idle loop.
381 *
382 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU())
383 * will tell RCU that it needs to pay attention, invoke its argument
384 * (in this example, calling the do_something_with_RCU() function),
385 * and then tell RCU to go back to ignoring this CPU. It is permissible
386 * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is
387 * on the order of a million or so, even on 32-bit systems). It is
388 * not legal to block within RCU_NONIDLE(), nor is it permissible to
389 * transfer control either into or out of RCU_NONIDLE()'s statement.
390 */
391 #define RCU_NONIDLE(a) \
392 do { \
393 rcu_irq_enter_irqson(); \
394 do { a; } while (0); \
395 rcu_irq_exit_irqson(); \
396 } while (0)
397
398 /*
399 * Note a voluntary context switch for RCU-tasks benefit. This is a
400 * macro rather than an inline function to avoid #include hell.
401 */
402 #ifdef CONFIG_TASKS_RCU
403 #define TASKS_RCU(x) x
404 extern struct srcu_struct tasks_rcu_exit_srcu;
405 #define rcu_note_voluntary_context_switch(t) \
406 do { \
407 rcu_all_qs(); \
408 if (READ_ONCE((t)->rcu_tasks_holdout)) \
409 WRITE_ONCE((t)->rcu_tasks_holdout, false); \
410 } while (0)
411 #else /* #ifdef CONFIG_TASKS_RCU */
412 #define TASKS_RCU(x) do { } while (0)
413 #define rcu_note_voluntary_context_switch(t) rcu_all_qs()
414 #endif /* #else #ifdef CONFIG_TASKS_RCU */
415
416 /**
417 * cond_resched_rcu_qs - Report potential quiescent states to RCU
418 *
419 * This macro resembles cond_resched(), except that it is defined to
420 * report potential quiescent states to RCU-tasks even if the cond_resched()
421 * machinery were to be shut off, as some advocate for PREEMPT kernels.
422 */
423 #define cond_resched_rcu_qs() \
424 do { \
425 if (!cond_resched()) \
426 rcu_note_voluntary_context_switch(current); \
427 } while (0)
428
429 #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP)
430 bool __rcu_is_watching(void);
431 #endif /* #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP) */
432
433 /*
434 * Infrastructure to implement the synchronize_() primitives in
435 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
436 */
437
438 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
439 #include <linux/rcutree.h>
440 #elif defined(CONFIG_TINY_RCU)
441 #include <linux/rcutiny.h>
442 #else
443 #error "Unknown RCU implementation specified to kernel configuration"
444 #endif
445
446 /*
447 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic
448 * initialization and destruction of rcu_head on the stack. rcu_head structures
449 * allocated dynamically in the heap or defined statically don't need any
450 * initialization.
451 */
452 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
453 void init_rcu_head(struct rcu_head *head);
454 void destroy_rcu_head(struct rcu_head *head);
455 void init_rcu_head_on_stack(struct rcu_head *head);
456 void destroy_rcu_head_on_stack(struct rcu_head *head);
457 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
458 static inline void init_rcu_head(struct rcu_head *head)
459 {
460 }
461
462 static inline void destroy_rcu_head(struct rcu_head *head)
463 {
464 }
465
466 static inline void init_rcu_head_on_stack(struct rcu_head *head)
467 {
468 }
469
470 static inline void destroy_rcu_head_on_stack(struct rcu_head *head)
471 {
472 }
473 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
474
475 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
476 bool rcu_lockdep_current_cpu_online(void);
477 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
478 static inline bool rcu_lockdep_current_cpu_online(void)
479 {
480 return true;
481 }
482 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
483
484 #ifdef CONFIG_DEBUG_LOCK_ALLOC
485
486 static inline void rcu_lock_acquire(struct lockdep_map *map)
487 {
488 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
489 }
490
491 static inline void rcu_lock_release(struct lockdep_map *map)
492 {
493 lock_release(map, 1, _THIS_IP_);
494 }
495
496 extern struct lockdep_map rcu_lock_map;
497 extern struct lockdep_map rcu_bh_lock_map;
498 extern struct lockdep_map rcu_sched_lock_map;
499 extern struct lockdep_map rcu_callback_map;
500 int debug_lockdep_rcu_enabled(void);
501
502 int rcu_read_lock_held(void);
503 int rcu_read_lock_bh_held(void);
504
505 /**
506 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
507 *
508 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
509 * RCU-sched read-side critical section. In absence of
510 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
511 * critical section unless it can prove otherwise.
512 */
513 int rcu_read_lock_sched_held(void);
514
515 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
516
517 # define rcu_lock_acquire(a) do { } while (0)
518 # define rcu_lock_release(a) do { } while (0)
519
520 static inline int rcu_read_lock_held(void)
521 {
522 return 1;
523 }
524
525 static inline int rcu_read_lock_bh_held(void)
526 {
527 return 1;
528 }
529
530 static inline int rcu_read_lock_sched_held(void)
531 {
532 return !preemptible();
533 }
534 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
535
536 #ifdef CONFIG_PROVE_RCU
537
538 /**
539 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
540 * @c: condition to check
541 * @s: informative message
542 */
543 #define RCU_LOCKDEP_WARN(c, s) \
544 do { \
545 static bool __section(.data.unlikely) __warned; \
546 if (debug_lockdep_rcu_enabled() && !__warned && (c)) { \
547 __warned = true; \
548 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \
549 } \
550 } while (0)
551
552 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
553 static inline void rcu_preempt_sleep_check(void)
554 {
555 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
556 "Illegal context switch in RCU read-side critical section");
557 }
558 #else /* #ifdef CONFIG_PROVE_RCU */
559 static inline void rcu_preempt_sleep_check(void)
560 {
561 }
562 #endif /* #else #ifdef CONFIG_PROVE_RCU */
563
564 #define rcu_sleep_check() \
565 do { \
566 rcu_preempt_sleep_check(); \
567 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \
568 "Illegal context switch in RCU-bh read-side critical section"); \
569 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \
570 "Illegal context switch in RCU-sched read-side critical section"); \
571 } while (0)
572
573 #else /* #ifdef CONFIG_PROVE_RCU */
574
575 #define RCU_LOCKDEP_WARN(c, s) do { } while (0)
576 #define rcu_sleep_check() do { } while (0)
577
578 #endif /* #else #ifdef CONFIG_PROVE_RCU */
579
580 /*
581 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
582 * and rcu_assign_pointer(). Some of these could be folded into their
583 * callers, but they are left separate in order to ease introduction of
584 * multiple flavors of pointers to match the multiple flavors of RCU
585 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
586 * the future.
587 */
588
589 #ifdef __CHECKER__
590 #define rcu_dereference_sparse(p, space) \
591 ((void)(((typeof(*p) space *)p) == p))
592 #else /* #ifdef __CHECKER__ */
593 #define rcu_dereference_sparse(p, space)
594 #endif /* #else #ifdef __CHECKER__ */
595
596 #define __rcu_access_pointer(p, space) \
597 ({ \
598 typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \
599 rcu_dereference_sparse(p, space); \
600 ((typeof(*p) __force __kernel *)(_________p1)); \
601 })
602 #define __rcu_dereference_check(p, c, space) \
603 ({ \
604 /* Dependency order vs. p above. */ \
605 typeof(*p) *________p1 = (typeof(*p) *__force)lockless_dereference(p); \
606 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
607 rcu_dereference_sparse(p, space); \
608 ((typeof(*p) __force __kernel *)(________p1)); \
609 })
610 #define __rcu_dereference_protected(p, c, space) \
611 ({ \
612 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
613 rcu_dereference_sparse(p, space); \
614 ((typeof(*p) __force __kernel *)(p)); \
615 })
616
617 /**
618 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
619 * @v: The value to statically initialize with.
620 */
621 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
622
623 /**
624 * rcu_assign_pointer() - assign to RCU-protected pointer
625 * @p: pointer to assign to
626 * @v: value to assign (publish)
627 *
628 * Assigns the specified value to the specified RCU-protected
629 * pointer, ensuring that any concurrent RCU readers will see
630 * any prior initialization.
631 *
632 * Inserts memory barriers on architectures that require them
633 * (which is most of them), and also prevents the compiler from
634 * reordering the code that initializes the structure after the pointer
635 * assignment. More importantly, this call documents which pointers
636 * will be dereferenced by RCU read-side code.
637 *
638 * In some special cases, you may use RCU_INIT_POINTER() instead
639 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due
640 * to the fact that it does not constrain either the CPU or the compiler.
641 * That said, using RCU_INIT_POINTER() when you should have used
642 * rcu_assign_pointer() is a very bad thing that results in
643 * impossible-to-diagnose memory corruption. So please be careful.
644 * See the RCU_INIT_POINTER() comment header for details.
645 *
646 * Note that rcu_assign_pointer() evaluates each of its arguments only
647 * once, appearances notwithstanding. One of the "extra" evaluations
648 * is in typeof() and the other visible only to sparse (__CHECKER__),
649 * neither of which actually execute the argument. As with most cpp
650 * macros, this execute-arguments-only-once property is important, so
651 * please be careful when making changes to rcu_assign_pointer() and the
652 * other macros that it invokes.
653 */
654 #define rcu_assign_pointer(p, v) \
655 ({ \
656 uintptr_t _r_a_p__v = (uintptr_t)(v); \
657 \
658 if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL) \
659 WRITE_ONCE((p), (typeof(p))(_r_a_p__v)); \
660 else \
661 smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \
662 _r_a_p__v; \
663 })
664
665 /**
666 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
667 * @p: The pointer to read
668 *
669 * Return the value of the specified RCU-protected pointer, but omit the
670 * smp_read_barrier_depends() and keep the READ_ONCE(). This is useful
671 * when the value of this pointer is accessed, but the pointer is not
672 * dereferenced, for example, when testing an RCU-protected pointer against
673 * NULL. Although rcu_access_pointer() may also be used in cases where
674 * update-side locks prevent the value of the pointer from changing, you
675 * should instead use rcu_dereference_protected() for this use case.
676 *
677 * It is also permissible to use rcu_access_pointer() when read-side
678 * access to the pointer was removed at least one grace period ago, as
679 * is the case in the context of the RCU callback that is freeing up
680 * the data, or after a synchronize_rcu() returns. This can be useful
681 * when tearing down multi-linked structures after a grace period
682 * has elapsed.
683 */
684 #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
685
686 /**
687 * rcu_dereference_check() - rcu_dereference with debug checking
688 * @p: The pointer to read, prior to dereferencing
689 * @c: The conditions under which the dereference will take place
690 *
691 * Do an rcu_dereference(), but check that the conditions under which the
692 * dereference will take place are correct. Typically the conditions
693 * indicate the various locking conditions that should be held at that
694 * point. The check should return true if the conditions are satisfied.
695 * An implicit check for being in an RCU read-side critical section
696 * (rcu_read_lock()) is included.
697 *
698 * For example:
699 *
700 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
701 *
702 * could be used to indicate to lockdep that foo->bar may only be dereferenced
703 * if either rcu_read_lock() is held, or that the lock required to replace
704 * the bar struct at foo->bar is held.
705 *
706 * Note that the list of conditions may also include indications of when a lock
707 * need not be held, for example during initialisation or destruction of the
708 * target struct:
709 *
710 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
711 * atomic_read(&foo->usage) == 0);
712 *
713 * Inserts memory barriers on architectures that require them
714 * (currently only the Alpha), prevents the compiler from refetching
715 * (and from merging fetches), and, more importantly, documents exactly
716 * which pointers are protected by RCU and checks that the pointer is
717 * annotated as __rcu.
718 */
719 #define rcu_dereference_check(p, c) \
720 __rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu)
721
722 /**
723 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
724 * @p: The pointer to read, prior to dereferencing
725 * @c: The conditions under which the dereference will take place
726 *
727 * This is the RCU-bh counterpart to rcu_dereference_check().
728 */
729 #define rcu_dereference_bh_check(p, c) \
730 __rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu)
731
732 /**
733 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
734 * @p: The pointer to read, prior to dereferencing
735 * @c: The conditions under which the dereference will take place
736 *
737 * This is the RCU-sched counterpart to rcu_dereference_check().
738 */
739 #define rcu_dereference_sched_check(p, c) \
740 __rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \
741 __rcu)
742
743 #define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/
744
745 /*
746 * The tracing infrastructure traces RCU (we want that), but unfortunately
747 * some of the RCU checks causes tracing to lock up the system.
748 *
749 * The no-tracing version of rcu_dereference_raw() must not call
750 * rcu_read_lock_held().
751 */
752 #define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu)
753
754 /**
755 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
756 * @p: The pointer to read, prior to dereferencing
757 * @c: The conditions under which the dereference will take place
758 *
759 * Return the value of the specified RCU-protected pointer, but omit
760 * both the smp_read_barrier_depends() and the READ_ONCE(). This
761 * is useful in cases where update-side locks prevent the value of the
762 * pointer from changing. Please note that this primitive does -not-
763 * prevent the compiler from repeating this reference or combining it
764 * with other references, so it should not be used without protection
765 * of appropriate locks.
766 *
767 * This function is only for update-side use. Using this function
768 * when protected only by rcu_read_lock() will result in infrequent
769 * but very ugly failures.
770 */
771 #define rcu_dereference_protected(p, c) \
772 __rcu_dereference_protected((p), (c), __rcu)
773
774
775 /**
776 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
777 * @p: The pointer to read, prior to dereferencing
778 *
779 * This is a simple wrapper around rcu_dereference_check().
780 */
781 #define rcu_dereference(p) rcu_dereference_check(p, 0)
782
783 /**
784 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
785 * @p: The pointer to read, prior to dereferencing
786 *
787 * Makes rcu_dereference_check() do the dirty work.
788 */
789 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
790
791 /**
792 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
793 * @p: The pointer to read, prior to dereferencing
794 *
795 * Makes rcu_dereference_check() do the dirty work.
796 */
797 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
798
799 /**
800 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
801 * @p: The pointer to hand off
802 *
803 * This is simply an identity function, but it documents where a pointer
804 * is handed off from RCU to some other synchronization mechanism, for
805 * example, reference counting or locking. In C11, it would map to
806 * kill_dependency(). It could be used as follows:
807 *
808 * rcu_read_lock();
809 * p = rcu_dereference(gp);
810 * long_lived = is_long_lived(p);
811 * if (long_lived) {
812 * if (!atomic_inc_not_zero(p->refcnt))
813 * long_lived = false;
814 * else
815 * p = rcu_pointer_handoff(p);
816 * }
817 * rcu_read_unlock();
818 */
819 #define rcu_pointer_handoff(p) (p)
820
821 /**
822 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
823 *
824 * When synchronize_rcu() is invoked on one CPU while other CPUs
825 * are within RCU read-side critical sections, then the
826 * synchronize_rcu() is guaranteed to block until after all the other
827 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked
828 * on one CPU while other CPUs are within RCU read-side critical
829 * sections, invocation of the corresponding RCU callback is deferred
830 * until after the all the other CPUs exit their critical sections.
831 *
832 * Note, however, that RCU callbacks are permitted to run concurrently
833 * with new RCU read-side critical sections. One way that this can happen
834 * is via the following sequence of events: (1) CPU 0 enters an RCU
835 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
836 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
837 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
838 * callback is invoked. This is legal, because the RCU read-side critical
839 * section that was running concurrently with the call_rcu() (and which
840 * therefore might be referencing something that the corresponding RCU
841 * callback would free up) has completed before the corresponding
842 * RCU callback is invoked.
843 *
844 * RCU read-side critical sections may be nested. Any deferred actions
845 * will be deferred until the outermost RCU read-side critical section
846 * completes.
847 *
848 * You can avoid reading and understanding the next paragraph by
849 * following this rule: don't put anything in an rcu_read_lock() RCU
850 * read-side critical section that would block in a !PREEMPT kernel.
851 * But if you want the full story, read on!
852 *
853 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU),
854 * it is illegal to block while in an RCU read-side critical section.
855 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPT
856 * kernel builds, RCU read-side critical sections may be preempted,
857 * but explicit blocking is illegal. Finally, in preemptible RCU
858 * implementations in real-time (with -rt patchset) kernel builds, RCU
859 * read-side critical sections may be preempted and they may also block, but
860 * only when acquiring spinlocks that are subject to priority inheritance.
861 */
862 static inline void rcu_read_lock(void)
863 {
864 __rcu_read_lock();
865 __acquire(RCU);
866 rcu_lock_acquire(&rcu_lock_map);
867 RCU_LOCKDEP_WARN(!rcu_is_watching(),
868 "rcu_read_lock() used illegally while idle");
869 }
870
871 /*
872 * So where is rcu_write_lock()? It does not exist, as there is no
873 * way for writers to lock out RCU readers. This is a feature, not
874 * a bug -- this property is what provides RCU's performance benefits.
875 * Of course, writers must coordinate with each other. The normal
876 * spinlock primitives work well for this, but any other technique may be
877 * used as well. RCU does not care how the writers keep out of each
878 * others' way, as long as they do so.
879 */
880
881 /**
882 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
883 *
884 * In most situations, rcu_read_unlock() is immune from deadlock.
885 * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock()
886 * is responsible for deboosting, which it does via rt_mutex_unlock().
887 * Unfortunately, this function acquires the scheduler's runqueue and
888 * priority-inheritance spinlocks. This means that deadlock could result
889 * if the caller of rcu_read_unlock() already holds one of these locks or
890 * any lock that is ever acquired while holding them; or any lock which
891 * can be taken from interrupt context because rcu_boost()->rt_mutex_lock()
892 * does not disable irqs while taking ->wait_lock.
893 *
894 * That said, RCU readers are never priority boosted unless they were
895 * preempted. Therefore, one way to avoid deadlock is to make sure
896 * that preemption never happens within any RCU read-side critical
897 * section whose outermost rcu_read_unlock() is called with one of
898 * rt_mutex_unlock()'s locks held. Such preemption can be avoided in
899 * a number of ways, for example, by invoking preempt_disable() before
900 * critical section's outermost rcu_read_lock().
901 *
902 * Given that the set of locks acquired by rt_mutex_unlock() might change
903 * at any time, a somewhat more future-proofed approach is to make sure
904 * that that preemption never happens within any RCU read-side critical
905 * section whose outermost rcu_read_unlock() is called with irqs disabled.
906 * This approach relies on the fact that rt_mutex_unlock() currently only
907 * acquires irq-disabled locks.
908 *
909 * The second of these two approaches is best in most situations,
910 * however, the first approach can also be useful, at least to those
911 * developers willing to keep abreast of the set of locks acquired by
912 * rt_mutex_unlock().
913 *
914 * See rcu_read_lock() for more information.
915 */
916 static inline void rcu_read_unlock(void)
917 {
918 RCU_LOCKDEP_WARN(!rcu_is_watching(),
919 "rcu_read_unlock() used illegally while idle");
920 __release(RCU);
921 __rcu_read_unlock();
922 rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
923 }
924
925 /**
926 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
927 *
928 * This is equivalent of rcu_read_lock(), but to be used when updates
929 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
930 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
931 * softirq handler to be a quiescent state, a process in RCU read-side
932 * critical section must be protected by disabling softirqs. Read-side
933 * critical sections in interrupt context can use just rcu_read_lock(),
934 * though this should at least be commented to avoid confusing people
935 * reading the code.
936 *
937 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
938 * must occur in the same context, for example, it is illegal to invoke
939 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
940 * was invoked from some other task.
941 */
942 static inline void rcu_read_lock_bh(void)
943 {
944 local_bh_disable();
945 __acquire(RCU_BH);
946 rcu_lock_acquire(&rcu_bh_lock_map);
947 RCU_LOCKDEP_WARN(!rcu_is_watching(),
948 "rcu_read_lock_bh() used illegally while idle");
949 }
950
951 /*
952 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
953 *
954 * See rcu_read_lock_bh() for more information.
955 */
956 static inline void rcu_read_unlock_bh(void)
957 {
958 RCU_LOCKDEP_WARN(!rcu_is_watching(),
959 "rcu_read_unlock_bh() used illegally while idle");
960 rcu_lock_release(&rcu_bh_lock_map);
961 __release(RCU_BH);
962 local_bh_enable();
963 }
964
965 /**
966 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
967 *
968 * This is equivalent of rcu_read_lock(), but to be used when updates
969 * are being done using call_rcu_sched() or synchronize_rcu_sched().
970 * Read-side critical sections can also be introduced by anything that
971 * disables preemption, including local_irq_disable() and friends.
972 *
973 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
974 * must occur in the same context, for example, it is illegal to invoke
975 * rcu_read_unlock_sched() from process context if the matching
976 * rcu_read_lock_sched() was invoked from an NMI handler.
977 */
978 static inline void rcu_read_lock_sched(void)
979 {
980 preempt_disable();
981 __acquire(RCU_SCHED);
982 rcu_lock_acquire(&rcu_sched_lock_map);
983 RCU_LOCKDEP_WARN(!rcu_is_watching(),
984 "rcu_read_lock_sched() used illegally while idle");
985 }
986
987 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
988 static inline notrace void rcu_read_lock_sched_notrace(void)
989 {
990 preempt_disable_notrace();
991 __acquire(RCU_SCHED);
992 }
993
994 /*
995 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
996 *
997 * See rcu_read_lock_sched for more information.
998 */
999 static inline void rcu_read_unlock_sched(void)
1000 {
1001 RCU_LOCKDEP_WARN(!rcu_is_watching(),
1002 "rcu_read_unlock_sched() used illegally while idle");
1003 rcu_lock_release(&rcu_sched_lock_map);
1004 __release(RCU_SCHED);
1005 preempt_enable();
1006 }
1007
1008 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
1009 static inline notrace void rcu_read_unlock_sched_notrace(void)
1010 {
1011 __release(RCU_SCHED);
1012 preempt_enable_notrace();
1013 }
1014
1015 /**
1016 * RCU_INIT_POINTER() - initialize an RCU protected pointer
1017 *
1018 * Initialize an RCU-protected pointer in special cases where readers
1019 * do not need ordering constraints on the CPU or the compiler. These
1020 * special cases are:
1021 *
1022 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer -or-
1023 * 2. The caller has taken whatever steps are required to prevent
1024 * RCU readers from concurrently accessing this pointer -or-
1025 * 3. The referenced data structure has already been exposed to
1026 * readers either at compile time or via rcu_assign_pointer() -and-
1027 * a. You have not made -any- reader-visible changes to
1028 * this structure since then -or-
1029 * b. It is OK for readers accessing this structure from its
1030 * new location to see the old state of the structure. (For
1031 * example, the changes were to statistical counters or to
1032 * other state where exact synchronization is not required.)
1033 *
1034 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
1035 * result in impossible-to-diagnose memory corruption. As in the structures
1036 * will look OK in crash dumps, but any concurrent RCU readers might
1037 * see pre-initialized values of the referenced data structure. So
1038 * please be very careful how you use RCU_INIT_POINTER()!!!
1039 *
1040 * If you are creating an RCU-protected linked structure that is accessed
1041 * by a single external-to-structure RCU-protected pointer, then you may
1042 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
1043 * pointers, but you must use rcu_assign_pointer() to initialize the
1044 * external-to-structure pointer -after- you have completely initialized
1045 * the reader-accessible portions of the linked structure.
1046 *
1047 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
1048 * ordering guarantees for either the CPU or the compiler.
1049 */
1050 #define RCU_INIT_POINTER(p, v) \
1051 do { \
1052 rcu_dereference_sparse(p, __rcu); \
1053 WRITE_ONCE(p, RCU_INITIALIZER(v)); \
1054 } while (0)
1055
1056 /**
1057 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
1058 *
1059 * GCC-style initialization for an RCU-protected pointer in a structure field.
1060 */
1061 #define RCU_POINTER_INITIALIZER(p, v) \
1062 .p = RCU_INITIALIZER(v)
1063
1064 /*
1065 * Does the specified offset indicate that the corresponding rcu_head
1066 * structure can be handled by kfree_rcu()?
1067 */
1068 #define __is_kfree_rcu_offset(offset) ((offset) < 4096)
1069
1070 /*
1071 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
1072 */
1073 #define __kfree_rcu(head, offset) \
1074 do { \
1075 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
1076 kfree_call_rcu(head, (rcu_callback_t)(unsigned long)(offset)); \
1077 } while (0)
1078
1079 /**
1080 * kfree_rcu() - kfree an object after a grace period.
1081 * @ptr: pointer to kfree
1082 * @rcu_head: the name of the struct rcu_head within the type of @ptr.
1083 *
1084 * Many rcu callbacks functions just call kfree() on the base structure.
1085 * These functions are trivial, but their size adds up, and furthermore
1086 * when they are used in a kernel module, that module must invoke the
1087 * high-latency rcu_barrier() function at module-unload time.
1088 *
1089 * The kfree_rcu() function handles this issue. Rather than encoding a
1090 * function address in the embedded rcu_head structure, kfree_rcu() instead
1091 * encodes the offset of the rcu_head structure within the base structure.
1092 * Because the functions are not allowed in the low-order 4096 bytes of
1093 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
1094 * If the offset is larger than 4095 bytes, a compile-time error will
1095 * be generated in __kfree_rcu(). If this error is triggered, you can
1096 * either fall back to use of call_rcu() or rearrange the structure to
1097 * position the rcu_head structure into the first 4096 bytes.
1098 *
1099 * Note that the allowable offset might decrease in the future, for example,
1100 * to allow something like kmem_cache_free_rcu().
1101 *
1102 * The BUILD_BUG_ON check must not involve any function calls, hence the
1103 * checks are done in macros here.
1104 */
1105 #define kfree_rcu(ptr, rcu_head) \
1106 __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))
1107
1108 #ifdef CONFIG_TINY_RCU
1109 static inline int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1110 {
1111 *nextevt = KTIME_MAX;
1112 return 0;
1113 }
1114 #endif /* #ifdef CONFIG_TINY_RCU */
1115
1116 #if defined(CONFIG_RCU_NOCB_CPU_ALL)
1117 static inline bool rcu_is_nocb_cpu(int cpu) { return true; }
1118 #elif defined(CONFIG_RCU_NOCB_CPU)
1119 bool rcu_is_nocb_cpu(int cpu);
1120 #else
1121 static inline bool rcu_is_nocb_cpu(int cpu) { return false; }
1122 #endif
1123
1124
1125 /* Only for use by adaptive-ticks code. */
1126 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
1127 bool rcu_sys_is_idle(void);
1128 void rcu_sysidle_force_exit(void);
1129 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
1130
1131 static inline bool rcu_sys_is_idle(void)
1132 {
1133 return false;
1134 }
1135
1136 static inline void rcu_sysidle_force_exit(void)
1137 {
1138 }
1139
1140 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
1141
1142
1143 /*
1144 * Dump the ftrace buffer, but only one time per callsite per boot.
1145 */
1146 #define rcu_ftrace_dump(oops_dump_mode) \
1147 do { \
1148 static atomic_t ___rfd_beenhere = ATOMIC_INIT(0); \
1149 \
1150 if (!atomic_read(&___rfd_beenhere) && \
1151 !atomic_xchg(&___rfd_beenhere, 1)) \
1152 ftrace_dump(oops_dump_mode); \
1153 } while (0)
1154
1155
1156 #endif /* __LINUX_RCUPDATE_H */
This page took 0.138439 seconds and 5 git commands to generate.