fs/ramfs/file-nommu.c: make ramfs_nommu_get_unmapped_area() and ramfs_nommu_mmap...
[deliverable/linux.git] / include / linux / rcupdate.h
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2001
19 *
20 * Author: Dipankar Sarma <dipankar@in.ibm.com>
21 *
22 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
23 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
24 * Papers:
25 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
26 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
27 *
28 * For detailed explanation of Read-Copy Update mechanism see -
29 * http://lse.sourceforge.net/locking/rcupdate.html
30 *
31 */
32
33 #ifndef __LINUX_RCUPDATE_H
34 #define __LINUX_RCUPDATE_H
35
36 #include <linux/types.h>
37 #include <linux/cache.h>
38 #include <linux/spinlock.h>
39 #include <linux/threads.h>
40 #include <linux/cpumask.h>
41 #include <linux/seqlock.h>
42 #include <linux/lockdep.h>
43 #include <linux/completion.h>
44 #include <linux/debugobjects.h>
45 #include <linux/bug.h>
46 #include <linux/compiler.h>
47
48 #ifdef CONFIG_RCU_TORTURE_TEST
49 extern int rcutorture_runnable; /* for sysctl */
50 #endif /* #ifdef CONFIG_RCU_TORTURE_TEST */
51
52 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU)
53 void rcutorture_record_test_transition(void);
54 void rcutorture_record_progress(unsigned long vernum);
55 void do_trace_rcu_torture_read(const char *rcutorturename,
56 struct rcu_head *rhp,
57 unsigned long secs,
58 unsigned long c_old,
59 unsigned long c);
60 #else
61 static inline void rcutorture_record_test_transition(void)
62 {
63 }
64 static inline void rcutorture_record_progress(unsigned long vernum)
65 {
66 }
67 #ifdef CONFIG_RCU_TRACE
68 void do_trace_rcu_torture_read(const char *rcutorturename,
69 struct rcu_head *rhp,
70 unsigned long secs,
71 unsigned long c_old,
72 unsigned long c);
73 #else
74 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
75 do { } while (0)
76 #endif
77 #endif
78
79 #define UINT_CMP_GE(a, b) (UINT_MAX / 2 >= (a) - (b))
80 #define UINT_CMP_LT(a, b) (UINT_MAX / 2 < (a) - (b))
81 #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b))
82 #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b))
83 #define ulong2long(a) (*(long *)(&(a)))
84
85 /* Exported common interfaces */
86
87 #ifdef CONFIG_PREEMPT_RCU
88
89 /**
90 * call_rcu() - Queue an RCU callback for invocation after a grace period.
91 * @head: structure to be used for queueing the RCU updates.
92 * @func: actual callback function to be invoked after the grace period
93 *
94 * The callback function will be invoked some time after a full grace
95 * period elapses, in other words after all pre-existing RCU read-side
96 * critical sections have completed. However, the callback function
97 * might well execute concurrently with RCU read-side critical sections
98 * that started after call_rcu() was invoked. RCU read-side critical
99 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
100 * and may be nested.
101 *
102 * Note that all CPUs must agree that the grace period extended beyond
103 * all pre-existing RCU read-side critical section. On systems with more
104 * than one CPU, this means that when "func()" is invoked, each CPU is
105 * guaranteed to have executed a full memory barrier since the end of its
106 * last RCU read-side critical section whose beginning preceded the call
107 * to call_rcu(). It also means that each CPU executing an RCU read-side
108 * critical section that continues beyond the start of "func()" must have
109 * executed a memory barrier after the call_rcu() but before the beginning
110 * of that RCU read-side critical section. Note that these guarantees
111 * include CPUs that are offline, idle, or executing in user mode, as
112 * well as CPUs that are executing in the kernel.
113 *
114 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
115 * resulting RCU callback function "func()", then both CPU A and CPU B are
116 * guaranteed to execute a full memory barrier during the time interval
117 * between the call to call_rcu() and the invocation of "func()" -- even
118 * if CPU A and CPU B are the same CPU (but again only if the system has
119 * more than one CPU).
120 */
121 void call_rcu(struct rcu_head *head,
122 void (*func)(struct rcu_head *head));
123
124 #else /* #ifdef CONFIG_PREEMPT_RCU */
125
126 /* In classic RCU, call_rcu() is just call_rcu_sched(). */
127 #define call_rcu call_rcu_sched
128
129 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
130
131 /**
132 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
133 * @head: structure to be used for queueing the RCU updates.
134 * @func: actual callback function to be invoked after the grace period
135 *
136 * The callback function will be invoked some time after a full grace
137 * period elapses, in other words after all currently executing RCU
138 * read-side critical sections have completed. call_rcu_bh() assumes
139 * that the read-side critical sections end on completion of a softirq
140 * handler. This means that read-side critical sections in process
141 * context must not be interrupted by softirqs. This interface is to be
142 * used when most of the read-side critical sections are in softirq context.
143 * RCU read-side critical sections are delimited by :
144 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context.
145 * OR
146 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
147 * These may be nested.
148 *
149 * See the description of call_rcu() for more detailed information on
150 * memory ordering guarantees.
151 */
152 void call_rcu_bh(struct rcu_head *head,
153 void (*func)(struct rcu_head *head));
154
155 /**
156 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
157 * @head: structure to be used for queueing the RCU updates.
158 * @func: actual callback function to be invoked after the grace period
159 *
160 * The callback function will be invoked some time after a full grace
161 * period elapses, in other words after all currently executing RCU
162 * read-side critical sections have completed. call_rcu_sched() assumes
163 * that the read-side critical sections end on enabling of preemption
164 * or on voluntary preemption.
165 * RCU read-side critical sections are delimited by :
166 * - rcu_read_lock_sched() and rcu_read_unlock_sched(),
167 * OR
168 * anything that disables preemption.
169 * These may be nested.
170 *
171 * See the description of call_rcu() for more detailed information on
172 * memory ordering guarantees.
173 */
174 void call_rcu_sched(struct rcu_head *head,
175 void (*func)(struct rcu_head *rcu));
176
177 void synchronize_sched(void);
178
179 #ifdef CONFIG_PREEMPT_RCU
180
181 void __rcu_read_lock(void);
182 void __rcu_read_unlock(void);
183 void rcu_read_unlock_special(struct task_struct *t);
184 void synchronize_rcu(void);
185
186 /*
187 * Defined as a macro as it is a very low level header included from
188 * areas that don't even know about current. This gives the rcu_read_lock()
189 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
190 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
191 */
192 #define rcu_preempt_depth() (current->rcu_read_lock_nesting)
193
194 #else /* #ifdef CONFIG_PREEMPT_RCU */
195
196 static inline void __rcu_read_lock(void)
197 {
198 preempt_disable();
199 }
200
201 static inline void __rcu_read_unlock(void)
202 {
203 preempt_enable();
204 }
205
206 static inline void synchronize_rcu(void)
207 {
208 synchronize_sched();
209 }
210
211 static inline int rcu_preempt_depth(void)
212 {
213 return 0;
214 }
215
216 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
217
218 /* Internal to kernel */
219 void rcu_init(void);
220 void rcu_sched_qs(int cpu);
221 void rcu_bh_qs(int cpu);
222 void rcu_check_callbacks(int cpu, int user);
223 struct notifier_block;
224 void rcu_idle_enter(void);
225 void rcu_idle_exit(void);
226 void rcu_irq_enter(void);
227 void rcu_irq_exit(void);
228
229 #ifdef CONFIG_RCU_USER_QS
230 void rcu_user_enter(void);
231 void rcu_user_exit(void);
232 #else
233 static inline void rcu_user_enter(void) { }
234 static inline void rcu_user_exit(void) { }
235 static inline void rcu_user_hooks_switch(struct task_struct *prev,
236 struct task_struct *next) { }
237 #endif /* CONFIG_RCU_USER_QS */
238
239 /**
240 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
241 * @a: Code that RCU needs to pay attention to.
242 *
243 * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden
244 * in the inner idle loop, that is, between the rcu_idle_enter() and
245 * the rcu_idle_exit() -- RCU will happily ignore any such read-side
246 * critical sections. However, things like powertop need tracepoints
247 * in the inner idle loop.
248 *
249 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU())
250 * will tell RCU that it needs to pay attending, invoke its argument
251 * (in this example, a call to the do_something_with_RCU() function),
252 * and then tell RCU to go back to ignoring this CPU. It is permissible
253 * to nest RCU_NONIDLE() wrappers, but the nesting level is currently
254 * quite limited. If deeper nesting is required, it will be necessary
255 * to adjust DYNTICK_TASK_NESTING_VALUE accordingly.
256 */
257 #define RCU_NONIDLE(a) \
258 do { \
259 rcu_irq_enter(); \
260 do { a; } while (0); \
261 rcu_irq_exit(); \
262 } while (0)
263
264 #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP)
265 bool __rcu_is_watching(void);
266 #endif /* #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP) */
267
268 /*
269 * Infrastructure to implement the synchronize_() primitives in
270 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
271 */
272
273 typedef void call_rcu_func_t(struct rcu_head *head,
274 void (*func)(struct rcu_head *head));
275 void wait_rcu_gp(call_rcu_func_t crf);
276
277 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU)
278 #include <linux/rcutree.h>
279 #elif defined(CONFIG_TINY_RCU)
280 #include <linux/rcutiny.h>
281 #else
282 #error "Unknown RCU implementation specified to kernel configuration"
283 #endif
284
285 /*
286 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic
287 * initialization and destruction of rcu_head on the stack. rcu_head structures
288 * allocated dynamically in the heap or defined statically don't need any
289 * initialization.
290 */
291 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
292 void init_rcu_head_on_stack(struct rcu_head *head);
293 void destroy_rcu_head_on_stack(struct rcu_head *head);
294 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
295 static inline void init_rcu_head_on_stack(struct rcu_head *head)
296 {
297 }
298
299 static inline void destroy_rcu_head_on_stack(struct rcu_head *head)
300 {
301 }
302 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
303
304 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
305 bool rcu_lockdep_current_cpu_online(void);
306 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
307 static inline bool rcu_lockdep_current_cpu_online(void)
308 {
309 return 1;
310 }
311 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
312
313 #ifdef CONFIG_DEBUG_LOCK_ALLOC
314
315 static inline void rcu_lock_acquire(struct lockdep_map *map)
316 {
317 lock_acquire(map, 0, 0, 2, 1, NULL, _THIS_IP_);
318 }
319
320 static inline void rcu_lock_release(struct lockdep_map *map)
321 {
322 lock_release(map, 1, _THIS_IP_);
323 }
324
325 extern struct lockdep_map rcu_lock_map;
326 extern struct lockdep_map rcu_bh_lock_map;
327 extern struct lockdep_map rcu_sched_lock_map;
328 extern struct lockdep_map rcu_callback_map;
329 extern int debug_lockdep_rcu_enabled(void);
330
331 /**
332 * rcu_read_lock_held() - might we be in RCU read-side critical section?
333 *
334 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
335 * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC,
336 * this assumes we are in an RCU read-side critical section unless it can
337 * prove otherwise. This is useful for debug checks in functions that
338 * require that they be called within an RCU read-side critical section.
339 *
340 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
341 * and while lockdep is disabled.
342 *
343 * Note that rcu_read_lock() and the matching rcu_read_unlock() must
344 * occur in the same context, for example, it is illegal to invoke
345 * rcu_read_unlock() in process context if the matching rcu_read_lock()
346 * was invoked from within an irq handler.
347 *
348 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
349 * offline from an RCU perspective, so check for those as well.
350 */
351 static inline int rcu_read_lock_held(void)
352 {
353 if (!debug_lockdep_rcu_enabled())
354 return 1;
355 if (!rcu_is_watching())
356 return 0;
357 if (!rcu_lockdep_current_cpu_online())
358 return 0;
359 return lock_is_held(&rcu_lock_map);
360 }
361
362 /*
363 * rcu_read_lock_bh_held() is defined out of line to avoid #include-file
364 * hell.
365 */
366 int rcu_read_lock_bh_held(void);
367
368 /**
369 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
370 *
371 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
372 * RCU-sched read-side critical section. In absence of
373 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
374 * critical section unless it can prove otherwise. Note that disabling
375 * of preemption (including disabling irqs) counts as an RCU-sched
376 * read-side critical section. This is useful for debug checks in functions
377 * that required that they be called within an RCU-sched read-side
378 * critical section.
379 *
380 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
381 * and while lockdep is disabled.
382 *
383 * Note that if the CPU is in the idle loop from an RCU point of
384 * view (ie: that we are in the section between rcu_idle_enter() and
385 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
386 * did an rcu_read_lock(). The reason for this is that RCU ignores CPUs
387 * that are in such a section, considering these as in extended quiescent
388 * state, so such a CPU is effectively never in an RCU read-side critical
389 * section regardless of what RCU primitives it invokes. This state of
390 * affairs is required --- we need to keep an RCU-free window in idle
391 * where the CPU may possibly enter into low power mode. This way we can
392 * notice an extended quiescent state to other CPUs that started a grace
393 * period. Otherwise we would delay any grace period as long as we run in
394 * the idle task.
395 *
396 * Similarly, we avoid claiming an SRCU read lock held if the current
397 * CPU is offline.
398 */
399 #ifdef CONFIG_PREEMPT_COUNT
400 static inline int rcu_read_lock_sched_held(void)
401 {
402 int lockdep_opinion = 0;
403
404 if (!debug_lockdep_rcu_enabled())
405 return 1;
406 if (!rcu_is_watching())
407 return 0;
408 if (!rcu_lockdep_current_cpu_online())
409 return 0;
410 if (debug_locks)
411 lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
412 return lockdep_opinion || preempt_count() != 0 || irqs_disabled();
413 }
414 #else /* #ifdef CONFIG_PREEMPT_COUNT */
415 static inline int rcu_read_lock_sched_held(void)
416 {
417 return 1;
418 }
419 #endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
420
421 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
422
423 # define rcu_lock_acquire(a) do { } while (0)
424 # define rcu_lock_release(a) do { } while (0)
425
426 static inline int rcu_read_lock_held(void)
427 {
428 return 1;
429 }
430
431 static inline int rcu_read_lock_bh_held(void)
432 {
433 return 1;
434 }
435
436 #ifdef CONFIG_PREEMPT_COUNT
437 static inline int rcu_read_lock_sched_held(void)
438 {
439 return preempt_count() != 0 || irqs_disabled();
440 }
441 #else /* #ifdef CONFIG_PREEMPT_COUNT */
442 static inline int rcu_read_lock_sched_held(void)
443 {
444 return 1;
445 }
446 #endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
447
448 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
449
450 #ifdef CONFIG_PROVE_RCU
451
452 int rcu_my_thread_group_empty(void);
453
454 /**
455 * rcu_lockdep_assert - emit lockdep splat if specified condition not met
456 * @c: condition to check
457 * @s: informative message
458 */
459 #define rcu_lockdep_assert(c, s) \
460 do { \
461 static bool __section(.data.unlikely) __warned; \
462 if (debug_lockdep_rcu_enabled() && !__warned && !(c)) { \
463 __warned = true; \
464 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \
465 } \
466 } while (0)
467
468 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
469 static inline void rcu_preempt_sleep_check(void)
470 {
471 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
472 "Illegal context switch in RCU read-side critical section");
473 }
474 #else /* #ifdef CONFIG_PROVE_RCU */
475 static inline void rcu_preempt_sleep_check(void)
476 {
477 }
478 #endif /* #else #ifdef CONFIG_PROVE_RCU */
479
480 #define rcu_sleep_check() \
481 do { \
482 rcu_preempt_sleep_check(); \
483 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map), \
484 "Illegal context switch in RCU-bh" \
485 " read-side critical section"); \
486 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map), \
487 "Illegal context switch in RCU-sched"\
488 " read-side critical section"); \
489 } while (0)
490
491 #else /* #ifdef CONFIG_PROVE_RCU */
492
493 #define rcu_lockdep_assert(c, s) do { } while (0)
494 #define rcu_sleep_check() do { } while (0)
495
496 #endif /* #else #ifdef CONFIG_PROVE_RCU */
497
498 /*
499 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
500 * and rcu_assign_pointer(). Some of these could be folded into their
501 * callers, but they are left separate in order to ease introduction of
502 * multiple flavors of pointers to match the multiple flavors of RCU
503 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
504 * the future.
505 */
506
507 #ifdef __CHECKER__
508 #define rcu_dereference_sparse(p, space) \
509 ((void)(((typeof(*p) space *)p) == p))
510 #else /* #ifdef __CHECKER__ */
511 #define rcu_dereference_sparse(p, space)
512 #endif /* #else #ifdef __CHECKER__ */
513
514 #define __rcu_access_pointer(p, space) \
515 ({ \
516 typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \
517 rcu_dereference_sparse(p, space); \
518 ((typeof(*p) __force __kernel *)(_________p1)); \
519 })
520 #define __rcu_dereference_check(p, c, space) \
521 ({ \
522 typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \
523 rcu_lockdep_assert(c, "suspicious rcu_dereference_check()" \
524 " usage"); \
525 rcu_dereference_sparse(p, space); \
526 smp_read_barrier_depends(); \
527 ((typeof(*p) __force __kernel *)(_________p1)); \
528 })
529 #define __rcu_dereference_protected(p, c, space) \
530 ({ \
531 rcu_lockdep_assert(c, "suspicious rcu_dereference_protected()" \
532 " usage"); \
533 rcu_dereference_sparse(p, space); \
534 ((typeof(*p) __force __kernel *)(p)); \
535 })
536
537 #define __rcu_access_index(p, space) \
538 ({ \
539 typeof(p) _________p1 = ACCESS_ONCE(p); \
540 rcu_dereference_sparse(p, space); \
541 (_________p1); \
542 })
543 #define __rcu_dereference_index_check(p, c) \
544 ({ \
545 typeof(p) _________p1 = ACCESS_ONCE(p); \
546 rcu_lockdep_assert(c, \
547 "suspicious rcu_dereference_index_check()" \
548 " usage"); \
549 smp_read_barrier_depends(); \
550 (_________p1); \
551 })
552
553 /**
554 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
555 * @v: The value to statically initialize with.
556 */
557 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
558
559 /**
560 * rcu_assign_pointer() - assign to RCU-protected pointer
561 * @p: pointer to assign to
562 * @v: value to assign (publish)
563 *
564 * Assigns the specified value to the specified RCU-protected
565 * pointer, ensuring that any concurrent RCU readers will see
566 * any prior initialization.
567 *
568 * Inserts memory barriers on architectures that require them
569 * (which is most of them), and also prevents the compiler from
570 * reordering the code that initializes the structure after the pointer
571 * assignment. More importantly, this call documents which pointers
572 * will be dereferenced by RCU read-side code.
573 *
574 * In some special cases, you may use RCU_INIT_POINTER() instead
575 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due
576 * to the fact that it does not constrain either the CPU or the compiler.
577 * That said, using RCU_INIT_POINTER() when you should have used
578 * rcu_assign_pointer() is a very bad thing that results in
579 * impossible-to-diagnose memory corruption. So please be careful.
580 * See the RCU_INIT_POINTER() comment header for details.
581 *
582 * Note that rcu_assign_pointer() evaluates each of its arguments only
583 * once, appearances notwithstanding. One of the "extra" evaluations
584 * is in typeof() and the other visible only to sparse (__CHECKER__),
585 * neither of which actually execute the argument. As with most cpp
586 * macros, this execute-arguments-only-once property is important, so
587 * please be careful when making changes to rcu_assign_pointer() and the
588 * other macros that it invokes.
589 */
590 #define rcu_assign_pointer(p, v) \
591 do { \
592 smp_wmb(); \
593 ACCESS_ONCE(p) = RCU_INITIALIZER(v); \
594 } while (0)
595
596
597 /**
598 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
599 * @p: The pointer to read
600 *
601 * Return the value of the specified RCU-protected pointer, but omit the
602 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful
603 * when the value of this pointer is accessed, but the pointer is not
604 * dereferenced, for example, when testing an RCU-protected pointer against
605 * NULL. Although rcu_access_pointer() may also be used in cases where
606 * update-side locks prevent the value of the pointer from changing, you
607 * should instead use rcu_dereference_protected() for this use case.
608 *
609 * It is also permissible to use rcu_access_pointer() when read-side
610 * access to the pointer was removed at least one grace period ago, as
611 * is the case in the context of the RCU callback that is freeing up
612 * the data, or after a synchronize_rcu() returns. This can be useful
613 * when tearing down multi-linked structures after a grace period
614 * has elapsed.
615 */
616 #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
617
618 /**
619 * rcu_dereference_check() - rcu_dereference with debug checking
620 * @p: The pointer to read, prior to dereferencing
621 * @c: The conditions under which the dereference will take place
622 *
623 * Do an rcu_dereference(), but check that the conditions under which the
624 * dereference will take place are correct. Typically the conditions
625 * indicate the various locking conditions that should be held at that
626 * point. The check should return true if the conditions are satisfied.
627 * An implicit check for being in an RCU read-side critical section
628 * (rcu_read_lock()) is included.
629 *
630 * For example:
631 *
632 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
633 *
634 * could be used to indicate to lockdep that foo->bar may only be dereferenced
635 * if either rcu_read_lock() is held, or that the lock required to replace
636 * the bar struct at foo->bar is held.
637 *
638 * Note that the list of conditions may also include indications of when a lock
639 * need not be held, for example during initialisation or destruction of the
640 * target struct:
641 *
642 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
643 * atomic_read(&foo->usage) == 0);
644 *
645 * Inserts memory barriers on architectures that require them
646 * (currently only the Alpha), prevents the compiler from refetching
647 * (and from merging fetches), and, more importantly, documents exactly
648 * which pointers are protected by RCU and checks that the pointer is
649 * annotated as __rcu.
650 */
651 #define rcu_dereference_check(p, c) \
652 __rcu_dereference_check((p), rcu_read_lock_held() || (c), __rcu)
653
654 /**
655 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
656 * @p: The pointer to read, prior to dereferencing
657 * @c: The conditions under which the dereference will take place
658 *
659 * This is the RCU-bh counterpart to rcu_dereference_check().
660 */
661 #define rcu_dereference_bh_check(p, c) \
662 __rcu_dereference_check((p), rcu_read_lock_bh_held() || (c), __rcu)
663
664 /**
665 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
666 * @p: The pointer to read, prior to dereferencing
667 * @c: The conditions under which the dereference will take place
668 *
669 * This is the RCU-sched counterpart to rcu_dereference_check().
670 */
671 #define rcu_dereference_sched_check(p, c) \
672 __rcu_dereference_check((p), rcu_read_lock_sched_held() || (c), \
673 __rcu)
674
675 #define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/
676
677 /*
678 * The tracing infrastructure traces RCU (we want that), but unfortunately
679 * some of the RCU checks causes tracing to lock up the system.
680 *
681 * The tracing version of rcu_dereference_raw() must not call
682 * rcu_read_lock_held().
683 */
684 #define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu)
685
686 /**
687 * rcu_access_index() - fetch RCU index with no dereferencing
688 * @p: The index to read
689 *
690 * Return the value of the specified RCU-protected index, but omit the
691 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful
692 * when the value of this index is accessed, but the index is not
693 * dereferenced, for example, when testing an RCU-protected index against
694 * -1. Although rcu_access_index() may also be used in cases where
695 * update-side locks prevent the value of the index from changing, you
696 * should instead use rcu_dereference_index_protected() for this use case.
697 */
698 #define rcu_access_index(p) __rcu_access_index((p), __rcu)
699
700 /**
701 * rcu_dereference_index_check() - rcu_dereference for indices with debug checking
702 * @p: The pointer to read, prior to dereferencing
703 * @c: The conditions under which the dereference will take place
704 *
705 * Similar to rcu_dereference_check(), but omits the sparse checking.
706 * This allows rcu_dereference_index_check() to be used on integers,
707 * which can then be used as array indices. Attempting to use
708 * rcu_dereference_check() on an integer will give compiler warnings
709 * because the sparse address-space mechanism relies on dereferencing
710 * the RCU-protected pointer. Dereferencing integers is not something
711 * that even gcc will put up with.
712 *
713 * Note that this function does not implicitly check for RCU read-side
714 * critical sections. If this function gains lots of uses, it might
715 * make sense to provide versions for each flavor of RCU, but it does
716 * not make sense as of early 2010.
717 */
718 #define rcu_dereference_index_check(p, c) \
719 __rcu_dereference_index_check((p), (c))
720
721 /**
722 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
723 * @p: The pointer to read, prior to dereferencing
724 * @c: The conditions under which the dereference will take place
725 *
726 * Return the value of the specified RCU-protected pointer, but omit
727 * both the smp_read_barrier_depends() and the ACCESS_ONCE(). This
728 * is useful in cases where update-side locks prevent the value of the
729 * pointer from changing. Please note that this primitive does -not-
730 * prevent the compiler from repeating this reference or combining it
731 * with other references, so it should not be used without protection
732 * of appropriate locks.
733 *
734 * This function is only for update-side use. Using this function
735 * when protected only by rcu_read_lock() will result in infrequent
736 * but very ugly failures.
737 */
738 #define rcu_dereference_protected(p, c) \
739 __rcu_dereference_protected((p), (c), __rcu)
740
741
742 /**
743 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
744 * @p: The pointer to read, prior to dereferencing
745 *
746 * This is a simple wrapper around rcu_dereference_check().
747 */
748 #define rcu_dereference(p) rcu_dereference_check(p, 0)
749
750 /**
751 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
752 * @p: The pointer to read, prior to dereferencing
753 *
754 * Makes rcu_dereference_check() do the dirty work.
755 */
756 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
757
758 /**
759 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
760 * @p: The pointer to read, prior to dereferencing
761 *
762 * Makes rcu_dereference_check() do the dirty work.
763 */
764 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
765
766 /**
767 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
768 *
769 * When synchronize_rcu() is invoked on one CPU while other CPUs
770 * are within RCU read-side critical sections, then the
771 * synchronize_rcu() is guaranteed to block until after all the other
772 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked
773 * on one CPU while other CPUs are within RCU read-side critical
774 * sections, invocation of the corresponding RCU callback is deferred
775 * until after the all the other CPUs exit their critical sections.
776 *
777 * Note, however, that RCU callbacks are permitted to run concurrently
778 * with new RCU read-side critical sections. One way that this can happen
779 * is via the following sequence of events: (1) CPU 0 enters an RCU
780 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
781 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
782 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
783 * callback is invoked. This is legal, because the RCU read-side critical
784 * section that was running concurrently with the call_rcu() (and which
785 * therefore might be referencing something that the corresponding RCU
786 * callback would free up) has completed before the corresponding
787 * RCU callback is invoked.
788 *
789 * RCU read-side critical sections may be nested. Any deferred actions
790 * will be deferred until the outermost RCU read-side critical section
791 * completes.
792 *
793 * You can avoid reading and understanding the next paragraph by
794 * following this rule: don't put anything in an rcu_read_lock() RCU
795 * read-side critical section that would block in a !PREEMPT kernel.
796 * But if you want the full story, read on!
797 *
798 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU), it
799 * is illegal to block while in an RCU read-side critical section. In
800 * preemptible RCU implementations (TREE_PREEMPT_RCU and TINY_PREEMPT_RCU)
801 * in CONFIG_PREEMPT kernel builds, RCU read-side critical sections may
802 * be preempted, but explicit blocking is illegal. Finally, in preemptible
803 * RCU implementations in real-time (with -rt patchset) kernel builds,
804 * RCU read-side critical sections may be preempted and they may also
805 * block, but only when acquiring spinlocks that are subject to priority
806 * inheritance.
807 */
808 static inline void rcu_read_lock(void)
809 {
810 __rcu_read_lock();
811 __acquire(RCU);
812 rcu_lock_acquire(&rcu_lock_map);
813 rcu_lockdep_assert(rcu_is_watching(),
814 "rcu_read_lock() used illegally while idle");
815 }
816
817 /*
818 * So where is rcu_write_lock()? It does not exist, as there is no
819 * way for writers to lock out RCU readers. This is a feature, not
820 * a bug -- this property is what provides RCU's performance benefits.
821 * Of course, writers must coordinate with each other. The normal
822 * spinlock primitives work well for this, but any other technique may be
823 * used as well. RCU does not care how the writers keep out of each
824 * others' way, as long as they do so.
825 */
826
827 /**
828 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
829 *
830 * See rcu_read_lock() for more information.
831 */
832 static inline void rcu_read_unlock(void)
833 {
834 rcu_lockdep_assert(rcu_is_watching(),
835 "rcu_read_unlock() used illegally while idle");
836 rcu_lock_release(&rcu_lock_map);
837 __release(RCU);
838 __rcu_read_unlock();
839 }
840
841 /**
842 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
843 *
844 * This is equivalent of rcu_read_lock(), but to be used when updates
845 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
846 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
847 * softirq handler to be a quiescent state, a process in RCU read-side
848 * critical section must be protected by disabling softirqs. Read-side
849 * critical sections in interrupt context can use just rcu_read_lock(),
850 * though this should at least be commented to avoid confusing people
851 * reading the code.
852 *
853 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
854 * must occur in the same context, for example, it is illegal to invoke
855 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
856 * was invoked from some other task.
857 */
858 static inline void rcu_read_lock_bh(void)
859 {
860 local_bh_disable();
861 __acquire(RCU_BH);
862 rcu_lock_acquire(&rcu_bh_lock_map);
863 rcu_lockdep_assert(rcu_is_watching(),
864 "rcu_read_lock_bh() used illegally while idle");
865 }
866
867 /*
868 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
869 *
870 * See rcu_read_lock_bh() for more information.
871 */
872 static inline void rcu_read_unlock_bh(void)
873 {
874 rcu_lockdep_assert(rcu_is_watching(),
875 "rcu_read_unlock_bh() used illegally while idle");
876 rcu_lock_release(&rcu_bh_lock_map);
877 __release(RCU_BH);
878 local_bh_enable();
879 }
880
881 /**
882 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
883 *
884 * This is equivalent of rcu_read_lock(), but to be used when updates
885 * are being done using call_rcu_sched() or synchronize_rcu_sched().
886 * Read-side critical sections can also be introduced by anything that
887 * disables preemption, including local_irq_disable() and friends.
888 *
889 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
890 * must occur in the same context, for example, it is illegal to invoke
891 * rcu_read_unlock_sched() from process context if the matching
892 * rcu_read_lock_sched() was invoked from an NMI handler.
893 */
894 static inline void rcu_read_lock_sched(void)
895 {
896 preempt_disable();
897 __acquire(RCU_SCHED);
898 rcu_lock_acquire(&rcu_sched_lock_map);
899 rcu_lockdep_assert(rcu_is_watching(),
900 "rcu_read_lock_sched() used illegally while idle");
901 }
902
903 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
904 static inline notrace void rcu_read_lock_sched_notrace(void)
905 {
906 preempt_disable_notrace();
907 __acquire(RCU_SCHED);
908 }
909
910 /*
911 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
912 *
913 * See rcu_read_lock_sched for more information.
914 */
915 static inline void rcu_read_unlock_sched(void)
916 {
917 rcu_lockdep_assert(rcu_is_watching(),
918 "rcu_read_unlock_sched() used illegally while idle");
919 rcu_lock_release(&rcu_sched_lock_map);
920 __release(RCU_SCHED);
921 preempt_enable();
922 }
923
924 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
925 static inline notrace void rcu_read_unlock_sched_notrace(void)
926 {
927 __release(RCU_SCHED);
928 preempt_enable_notrace();
929 }
930
931 /**
932 * RCU_INIT_POINTER() - initialize an RCU protected pointer
933 *
934 * Initialize an RCU-protected pointer in special cases where readers
935 * do not need ordering constraints on the CPU or the compiler. These
936 * special cases are:
937 *
938 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer -or-
939 * 2. The caller has taken whatever steps are required to prevent
940 * RCU readers from concurrently accessing this pointer -or-
941 * 3. The referenced data structure has already been exposed to
942 * readers either at compile time or via rcu_assign_pointer() -and-
943 * a. You have not made -any- reader-visible changes to
944 * this structure since then -or-
945 * b. It is OK for readers accessing this structure from its
946 * new location to see the old state of the structure. (For
947 * example, the changes were to statistical counters or to
948 * other state where exact synchronization is not required.)
949 *
950 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
951 * result in impossible-to-diagnose memory corruption. As in the structures
952 * will look OK in crash dumps, but any concurrent RCU readers might
953 * see pre-initialized values of the referenced data structure. So
954 * please be very careful how you use RCU_INIT_POINTER()!!!
955 *
956 * If you are creating an RCU-protected linked structure that is accessed
957 * by a single external-to-structure RCU-protected pointer, then you may
958 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
959 * pointers, but you must use rcu_assign_pointer() to initialize the
960 * external-to-structure pointer -after- you have completely initialized
961 * the reader-accessible portions of the linked structure.
962 */
963 #define RCU_INIT_POINTER(p, v) \
964 do { \
965 p = RCU_INITIALIZER(v); \
966 } while (0)
967
968 /**
969 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
970 *
971 * GCC-style initialization for an RCU-protected pointer in a structure field.
972 */
973 #define RCU_POINTER_INITIALIZER(p, v) \
974 .p = RCU_INITIALIZER(v)
975
976 /*
977 * Does the specified offset indicate that the corresponding rcu_head
978 * structure can be handled by kfree_rcu()?
979 */
980 #define __is_kfree_rcu_offset(offset) ((offset) < 4096)
981
982 /*
983 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
984 */
985 #define __kfree_rcu(head, offset) \
986 do { \
987 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
988 kfree_call_rcu(head, (void (*)(struct rcu_head *))(unsigned long)(offset)); \
989 } while (0)
990
991 /**
992 * kfree_rcu() - kfree an object after a grace period.
993 * @ptr: pointer to kfree
994 * @rcu_head: the name of the struct rcu_head within the type of @ptr.
995 *
996 * Many rcu callbacks functions just call kfree() on the base structure.
997 * These functions are trivial, but their size adds up, and furthermore
998 * when they are used in a kernel module, that module must invoke the
999 * high-latency rcu_barrier() function at module-unload time.
1000 *
1001 * The kfree_rcu() function handles this issue. Rather than encoding a
1002 * function address in the embedded rcu_head structure, kfree_rcu() instead
1003 * encodes the offset of the rcu_head structure within the base structure.
1004 * Because the functions are not allowed in the low-order 4096 bytes of
1005 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
1006 * If the offset is larger than 4095 bytes, a compile-time error will
1007 * be generated in __kfree_rcu(). If this error is triggered, you can
1008 * either fall back to use of call_rcu() or rearrange the structure to
1009 * position the rcu_head structure into the first 4096 bytes.
1010 *
1011 * Note that the allowable offset might decrease in the future, for example,
1012 * to allow something like kmem_cache_free_rcu().
1013 *
1014 * The BUILD_BUG_ON check must not involve any function calls, hence the
1015 * checks are done in macros here.
1016 */
1017 #define kfree_rcu(ptr, rcu_head) \
1018 __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))
1019
1020 #ifdef CONFIG_RCU_NOCB_CPU
1021 bool rcu_is_nocb_cpu(int cpu);
1022 #else
1023 static inline bool rcu_is_nocb_cpu(int cpu) { return false; }
1024 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
1025
1026
1027 /* Only for use by adaptive-ticks code. */
1028 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
1029 bool rcu_sys_is_idle(void);
1030 void rcu_sysidle_force_exit(void);
1031 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
1032
1033 static inline bool rcu_sys_is_idle(void)
1034 {
1035 return false;
1036 }
1037
1038 static inline void rcu_sysidle_force_exit(void)
1039 {
1040 }
1041
1042 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
1043
1044
1045 #endif /* __LINUX_RCUPDATE_H */
This page took 0.073113 seconds and 5 git commands to generate.