rcu: Reverse rcu_dereference_check() conditions
[deliverable/linux.git] / include / linux / rcupdate.h
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
17 *
18 * Copyright IBM Corporation, 2001
19 *
20 * Author: Dipankar Sarma <dipankar@in.ibm.com>
21 *
22 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
23 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
24 * Papers:
25 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
26 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
27 *
28 * For detailed explanation of Read-Copy Update mechanism see -
29 * http://lse.sourceforge.net/locking/rcupdate.html
30 *
31 */
32
33 #ifndef __LINUX_RCUPDATE_H
34 #define __LINUX_RCUPDATE_H
35
36 #include <linux/types.h>
37 #include <linux/cache.h>
38 #include <linux/spinlock.h>
39 #include <linux/threads.h>
40 #include <linux/cpumask.h>
41 #include <linux/seqlock.h>
42 #include <linux/lockdep.h>
43 #include <linux/completion.h>
44 #include <linux/debugobjects.h>
45 #include <linux/bug.h>
46 #include <linux/compiler.h>
47 #include <asm/barrier.h>
48
49 extern int rcu_expedited; /* for sysctl */
50
51 enum rcutorture_type {
52 RCU_FLAVOR,
53 RCU_BH_FLAVOR,
54 RCU_SCHED_FLAVOR,
55 RCU_TASKS_FLAVOR,
56 SRCU_FLAVOR,
57 INVALID_RCU_FLAVOR
58 };
59
60 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
61 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
62 unsigned long *gpnum, unsigned long *completed);
63 void rcutorture_record_test_transition(void);
64 void rcutorture_record_progress(unsigned long vernum);
65 void do_trace_rcu_torture_read(const char *rcutorturename,
66 struct rcu_head *rhp,
67 unsigned long secs,
68 unsigned long c_old,
69 unsigned long c);
70 #else
71 static inline void rcutorture_get_gp_data(enum rcutorture_type test_type,
72 int *flags,
73 unsigned long *gpnum,
74 unsigned long *completed)
75 {
76 *flags = 0;
77 *gpnum = 0;
78 *completed = 0;
79 }
80 static inline void rcutorture_record_test_transition(void)
81 {
82 }
83 static inline void rcutorture_record_progress(unsigned long vernum)
84 {
85 }
86 #ifdef CONFIG_RCU_TRACE
87 void do_trace_rcu_torture_read(const char *rcutorturename,
88 struct rcu_head *rhp,
89 unsigned long secs,
90 unsigned long c_old,
91 unsigned long c);
92 #else
93 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
94 do { } while (0)
95 #endif
96 #endif
97
98 #define UINT_CMP_GE(a, b) (UINT_MAX / 2 >= (a) - (b))
99 #define UINT_CMP_LT(a, b) (UINT_MAX / 2 < (a) - (b))
100 #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b))
101 #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b))
102 #define ulong2long(a) (*(long *)(&(a)))
103
104 /* Exported common interfaces */
105
106 #ifdef CONFIG_PREEMPT_RCU
107
108 /**
109 * call_rcu() - Queue an RCU callback for invocation after a grace period.
110 * @head: structure to be used for queueing the RCU updates.
111 * @func: actual callback function to be invoked after the grace period
112 *
113 * The callback function will be invoked some time after a full grace
114 * period elapses, in other words after all pre-existing RCU read-side
115 * critical sections have completed. However, the callback function
116 * might well execute concurrently with RCU read-side critical sections
117 * that started after call_rcu() was invoked. RCU read-side critical
118 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
119 * and may be nested.
120 *
121 * Note that all CPUs must agree that the grace period extended beyond
122 * all pre-existing RCU read-side critical section. On systems with more
123 * than one CPU, this means that when "func()" is invoked, each CPU is
124 * guaranteed to have executed a full memory barrier since the end of its
125 * last RCU read-side critical section whose beginning preceded the call
126 * to call_rcu(). It also means that each CPU executing an RCU read-side
127 * critical section that continues beyond the start of "func()" must have
128 * executed a memory barrier after the call_rcu() but before the beginning
129 * of that RCU read-side critical section. Note that these guarantees
130 * include CPUs that are offline, idle, or executing in user mode, as
131 * well as CPUs that are executing in the kernel.
132 *
133 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
134 * resulting RCU callback function "func()", then both CPU A and CPU B are
135 * guaranteed to execute a full memory barrier during the time interval
136 * between the call to call_rcu() and the invocation of "func()" -- even
137 * if CPU A and CPU B are the same CPU (but again only if the system has
138 * more than one CPU).
139 */
140 void call_rcu(struct rcu_head *head,
141 void (*func)(struct rcu_head *head));
142
143 #else /* #ifdef CONFIG_PREEMPT_RCU */
144
145 /* In classic RCU, call_rcu() is just call_rcu_sched(). */
146 #define call_rcu call_rcu_sched
147
148 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
149
150 /**
151 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
152 * @head: structure to be used for queueing the RCU updates.
153 * @func: actual callback function to be invoked after the grace period
154 *
155 * The callback function will be invoked some time after a full grace
156 * period elapses, in other words after all currently executing RCU
157 * read-side critical sections have completed. call_rcu_bh() assumes
158 * that the read-side critical sections end on completion of a softirq
159 * handler. This means that read-side critical sections in process
160 * context must not be interrupted by softirqs. This interface is to be
161 * used when most of the read-side critical sections are in softirq context.
162 * RCU read-side critical sections are delimited by :
163 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context.
164 * OR
165 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
166 * These may be nested.
167 *
168 * See the description of call_rcu() for more detailed information on
169 * memory ordering guarantees.
170 */
171 void call_rcu_bh(struct rcu_head *head,
172 void (*func)(struct rcu_head *head));
173
174 /**
175 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
176 * @head: structure to be used for queueing the RCU updates.
177 * @func: actual callback function to be invoked after the grace period
178 *
179 * The callback function will be invoked some time after a full grace
180 * period elapses, in other words after all currently executing RCU
181 * read-side critical sections have completed. call_rcu_sched() assumes
182 * that the read-side critical sections end on enabling of preemption
183 * or on voluntary preemption.
184 * RCU read-side critical sections are delimited by :
185 * - rcu_read_lock_sched() and rcu_read_unlock_sched(),
186 * OR
187 * anything that disables preemption.
188 * These may be nested.
189 *
190 * See the description of call_rcu() for more detailed information on
191 * memory ordering guarantees.
192 */
193 void call_rcu_sched(struct rcu_head *head,
194 void (*func)(struct rcu_head *rcu));
195
196 void synchronize_sched(void);
197
198 /*
199 * Structure allowing asynchronous waiting on RCU.
200 */
201 struct rcu_synchronize {
202 struct rcu_head head;
203 struct completion completion;
204 };
205 void wakeme_after_rcu(struct rcu_head *head);
206
207 /**
208 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
209 * @head: structure to be used for queueing the RCU updates.
210 * @func: actual callback function to be invoked after the grace period
211 *
212 * The callback function will be invoked some time after a full grace
213 * period elapses, in other words after all currently executing RCU
214 * read-side critical sections have completed. call_rcu_tasks() assumes
215 * that the read-side critical sections end at a voluntary context
216 * switch (not a preemption!), entry into idle, or transition to usermode
217 * execution. As such, there are no read-side primitives analogous to
218 * rcu_read_lock() and rcu_read_unlock() because this primitive is intended
219 * to determine that all tasks have passed through a safe state, not so
220 * much for data-strcuture synchronization.
221 *
222 * See the description of call_rcu() for more detailed information on
223 * memory ordering guarantees.
224 */
225 void call_rcu_tasks(struct rcu_head *head, void (*func)(struct rcu_head *head));
226 void synchronize_rcu_tasks(void);
227 void rcu_barrier_tasks(void);
228
229 #ifdef CONFIG_PREEMPT_RCU
230
231 void __rcu_read_lock(void);
232 void __rcu_read_unlock(void);
233 void rcu_read_unlock_special(struct task_struct *t);
234 void synchronize_rcu(void);
235
236 /*
237 * Defined as a macro as it is a very low level header included from
238 * areas that don't even know about current. This gives the rcu_read_lock()
239 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
240 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
241 */
242 #define rcu_preempt_depth() (current->rcu_read_lock_nesting)
243
244 #else /* #ifdef CONFIG_PREEMPT_RCU */
245
246 static inline void __rcu_read_lock(void)
247 {
248 preempt_disable();
249 }
250
251 static inline void __rcu_read_unlock(void)
252 {
253 preempt_enable();
254 }
255
256 static inline void synchronize_rcu(void)
257 {
258 synchronize_sched();
259 }
260
261 static inline int rcu_preempt_depth(void)
262 {
263 return 0;
264 }
265
266 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
267
268 /* Internal to kernel */
269 void rcu_init(void);
270 void rcu_sched_qs(void);
271 void rcu_bh_qs(void);
272 void rcu_check_callbacks(int user);
273 struct notifier_block;
274 void rcu_idle_enter(void);
275 void rcu_idle_exit(void);
276 void rcu_irq_enter(void);
277 void rcu_irq_exit(void);
278
279 #ifdef CONFIG_RCU_STALL_COMMON
280 void rcu_sysrq_start(void);
281 void rcu_sysrq_end(void);
282 #else /* #ifdef CONFIG_RCU_STALL_COMMON */
283 static inline void rcu_sysrq_start(void)
284 {
285 }
286 static inline void rcu_sysrq_end(void)
287 {
288 }
289 #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
290
291 #ifdef CONFIG_RCU_USER_QS
292 void rcu_user_enter(void);
293 void rcu_user_exit(void);
294 #else
295 static inline void rcu_user_enter(void) { }
296 static inline void rcu_user_exit(void) { }
297 static inline void rcu_user_hooks_switch(struct task_struct *prev,
298 struct task_struct *next) { }
299 #endif /* CONFIG_RCU_USER_QS */
300
301 #ifdef CONFIG_RCU_NOCB_CPU
302 void rcu_init_nohz(void);
303 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
304 static inline void rcu_init_nohz(void)
305 {
306 }
307 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
308
309 /**
310 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
311 * @a: Code that RCU needs to pay attention to.
312 *
313 * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden
314 * in the inner idle loop, that is, between the rcu_idle_enter() and
315 * the rcu_idle_exit() -- RCU will happily ignore any such read-side
316 * critical sections. However, things like powertop need tracepoints
317 * in the inner idle loop.
318 *
319 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU())
320 * will tell RCU that it needs to pay attending, invoke its argument
321 * (in this example, a call to the do_something_with_RCU() function),
322 * and then tell RCU to go back to ignoring this CPU. It is permissible
323 * to nest RCU_NONIDLE() wrappers, but the nesting level is currently
324 * quite limited. If deeper nesting is required, it will be necessary
325 * to adjust DYNTICK_TASK_NESTING_VALUE accordingly.
326 */
327 #define RCU_NONIDLE(a) \
328 do { \
329 rcu_irq_enter(); \
330 do { a; } while (0); \
331 rcu_irq_exit(); \
332 } while (0)
333
334 /*
335 * Note a voluntary context switch for RCU-tasks benefit. This is a
336 * macro rather than an inline function to avoid #include hell.
337 */
338 #ifdef CONFIG_TASKS_RCU
339 #define TASKS_RCU(x) x
340 extern struct srcu_struct tasks_rcu_exit_srcu;
341 #define rcu_note_voluntary_context_switch(t) \
342 do { \
343 rcu_all_qs(); \
344 if (ACCESS_ONCE((t)->rcu_tasks_holdout)) \
345 ACCESS_ONCE((t)->rcu_tasks_holdout) = false; \
346 } while (0)
347 #else /* #ifdef CONFIG_TASKS_RCU */
348 #define TASKS_RCU(x) do { } while (0)
349 #define rcu_note_voluntary_context_switch(t) rcu_all_qs()
350 #endif /* #else #ifdef CONFIG_TASKS_RCU */
351
352 /**
353 * cond_resched_rcu_qs - Report potential quiescent states to RCU
354 *
355 * This macro resembles cond_resched(), except that it is defined to
356 * report potential quiescent states to RCU-tasks even if the cond_resched()
357 * machinery were to be shut off, as some advocate for PREEMPT kernels.
358 */
359 #define cond_resched_rcu_qs() \
360 do { \
361 if (!cond_resched()) \
362 rcu_note_voluntary_context_switch(current); \
363 } while (0)
364
365 #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP)
366 bool __rcu_is_watching(void);
367 #endif /* #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP) */
368
369 /*
370 * Infrastructure to implement the synchronize_() primitives in
371 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
372 */
373
374 typedef void call_rcu_func_t(struct rcu_head *head,
375 void (*func)(struct rcu_head *head));
376 void wait_rcu_gp(call_rcu_func_t crf);
377
378 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
379 #include <linux/rcutree.h>
380 #elif defined(CONFIG_TINY_RCU)
381 #include <linux/rcutiny.h>
382 #else
383 #error "Unknown RCU implementation specified to kernel configuration"
384 #endif
385
386 /*
387 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic
388 * initialization and destruction of rcu_head on the stack. rcu_head structures
389 * allocated dynamically in the heap or defined statically don't need any
390 * initialization.
391 */
392 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
393 void init_rcu_head(struct rcu_head *head);
394 void destroy_rcu_head(struct rcu_head *head);
395 void init_rcu_head_on_stack(struct rcu_head *head);
396 void destroy_rcu_head_on_stack(struct rcu_head *head);
397 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
398 static inline void init_rcu_head(struct rcu_head *head)
399 {
400 }
401
402 static inline void destroy_rcu_head(struct rcu_head *head)
403 {
404 }
405
406 static inline void init_rcu_head_on_stack(struct rcu_head *head)
407 {
408 }
409
410 static inline void destroy_rcu_head_on_stack(struct rcu_head *head)
411 {
412 }
413 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
414
415 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
416 bool rcu_lockdep_current_cpu_online(void);
417 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
418 static inline bool rcu_lockdep_current_cpu_online(void)
419 {
420 return true;
421 }
422 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
423
424 #ifdef CONFIG_DEBUG_LOCK_ALLOC
425
426 static inline void rcu_lock_acquire(struct lockdep_map *map)
427 {
428 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
429 }
430
431 static inline void rcu_lock_release(struct lockdep_map *map)
432 {
433 lock_release(map, 1, _THIS_IP_);
434 }
435
436 extern struct lockdep_map rcu_lock_map;
437 extern struct lockdep_map rcu_bh_lock_map;
438 extern struct lockdep_map rcu_sched_lock_map;
439 extern struct lockdep_map rcu_callback_map;
440 int debug_lockdep_rcu_enabled(void);
441
442 int rcu_read_lock_held(void);
443 int rcu_read_lock_bh_held(void);
444
445 /**
446 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
447 *
448 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
449 * RCU-sched read-side critical section. In absence of
450 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
451 * critical section unless it can prove otherwise. Note that disabling
452 * of preemption (including disabling irqs) counts as an RCU-sched
453 * read-side critical section. This is useful for debug checks in functions
454 * that required that they be called within an RCU-sched read-side
455 * critical section.
456 *
457 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
458 * and while lockdep is disabled.
459 *
460 * Note that if the CPU is in the idle loop from an RCU point of
461 * view (ie: that we are in the section between rcu_idle_enter() and
462 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
463 * did an rcu_read_lock(). The reason for this is that RCU ignores CPUs
464 * that are in such a section, considering these as in extended quiescent
465 * state, so such a CPU is effectively never in an RCU read-side critical
466 * section regardless of what RCU primitives it invokes. This state of
467 * affairs is required --- we need to keep an RCU-free window in idle
468 * where the CPU may possibly enter into low power mode. This way we can
469 * notice an extended quiescent state to other CPUs that started a grace
470 * period. Otherwise we would delay any grace period as long as we run in
471 * the idle task.
472 *
473 * Similarly, we avoid claiming an SRCU read lock held if the current
474 * CPU is offline.
475 */
476 #ifdef CONFIG_PREEMPT_COUNT
477 static inline int rcu_read_lock_sched_held(void)
478 {
479 int lockdep_opinion = 0;
480
481 if (!debug_lockdep_rcu_enabled())
482 return 1;
483 if (!rcu_is_watching())
484 return 0;
485 if (!rcu_lockdep_current_cpu_online())
486 return 0;
487 if (debug_locks)
488 lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
489 return lockdep_opinion || preempt_count() != 0 || irqs_disabled();
490 }
491 #else /* #ifdef CONFIG_PREEMPT_COUNT */
492 static inline int rcu_read_lock_sched_held(void)
493 {
494 return 1;
495 }
496 #endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
497
498 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
499
500 # define rcu_lock_acquire(a) do { } while (0)
501 # define rcu_lock_release(a) do { } while (0)
502
503 static inline int rcu_read_lock_held(void)
504 {
505 return 1;
506 }
507
508 static inline int rcu_read_lock_bh_held(void)
509 {
510 return 1;
511 }
512
513 #ifdef CONFIG_PREEMPT_COUNT
514 static inline int rcu_read_lock_sched_held(void)
515 {
516 return preempt_count() != 0 || irqs_disabled();
517 }
518 #else /* #ifdef CONFIG_PREEMPT_COUNT */
519 static inline int rcu_read_lock_sched_held(void)
520 {
521 return 1;
522 }
523 #endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
524
525 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
526
527 #ifdef CONFIG_PROVE_RCU
528
529 /**
530 * rcu_lockdep_assert - emit lockdep splat if specified condition not met
531 * @c: condition to check
532 * @s: informative message
533 */
534 #define rcu_lockdep_assert(c, s) \
535 do { \
536 static bool __section(.data.unlikely) __warned; \
537 if (debug_lockdep_rcu_enabled() && !__warned && !(c)) { \
538 __warned = true; \
539 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \
540 } \
541 } while (0)
542
543 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
544 static inline void rcu_preempt_sleep_check(void)
545 {
546 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
547 "Illegal context switch in RCU read-side critical section");
548 }
549 #else /* #ifdef CONFIG_PROVE_RCU */
550 static inline void rcu_preempt_sleep_check(void)
551 {
552 }
553 #endif /* #else #ifdef CONFIG_PROVE_RCU */
554
555 #define rcu_sleep_check() \
556 do { \
557 rcu_preempt_sleep_check(); \
558 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map), \
559 "Illegal context switch in RCU-bh read-side critical section"); \
560 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map), \
561 "Illegal context switch in RCU-sched read-side critical section"); \
562 } while (0)
563
564 #else /* #ifdef CONFIG_PROVE_RCU */
565
566 #define rcu_lockdep_assert(c, s) do { } while (0)
567 #define rcu_sleep_check() do { } while (0)
568
569 #endif /* #else #ifdef CONFIG_PROVE_RCU */
570
571 /*
572 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
573 * and rcu_assign_pointer(). Some of these could be folded into their
574 * callers, but they are left separate in order to ease introduction of
575 * multiple flavors of pointers to match the multiple flavors of RCU
576 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
577 * the future.
578 */
579
580 #ifdef __CHECKER__
581 #define rcu_dereference_sparse(p, space) \
582 ((void)(((typeof(*p) space *)p) == p))
583 #else /* #ifdef __CHECKER__ */
584 #define rcu_dereference_sparse(p, space)
585 #endif /* #else #ifdef __CHECKER__ */
586
587 #define __rcu_access_pointer(p, space) \
588 ({ \
589 typeof(*p) *_________p1 = (typeof(*p) *__force)ACCESS_ONCE(p); \
590 rcu_dereference_sparse(p, space); \
591 ((typeof(*p) __force __kernel *)(_________p1)); \
592 })
593 #define __rcu_dereference_check(p, c, space) \
594 ({ \
595 /* Dependency order vs. p above. */ \
596 typeof(*p) *________p1 = (typeof(*p) *__force)lockless_dereference(p); \
597 rcu_lockdep_assert(c, "suspicious rcu_dereference_check() usage"); \
598 rcu_dereference_sparse(p, space); \
599 ((typeof(*p) __force __kernel *)(________p1)); \
600 })
601 #define __rcu_dereference_protected(p, c, space) \
602 ({ \
603 rcu_lockdep_assert(c, "suspicious rcu_dereference_protected() usage"); \
604 rcu_dereference_sparse(p, space); \
605 ((typeof(*p) __force __kernel *)(p)); \
606 })
607
608 #define __rcu_access_index(p, space) \
609 ({ \
610 typeof(p) _________p1 = ACCESS_ONCE(p); \
611 rcu_dereference_sparse(p, space); \
612 (_________p1); \
613 })
614 #define __rcu_dereference_index_check(p, c) \
615 ({ \
616 /* Dependency order vs. p above. */ \
617 typeof(p) _________p1 = lockless_dereference(p); \
618 rcu_lockdep_assert(c, \
619 "suspicious rcu_dereference_index_check() usage"); \
620 (_________p1); \
621 })
622
623 /**
624 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
625 * @v: The value to statically initialize with.
626 */
627 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
628
629 /**
630 * lockless_dereference() - safely load a pointer for later dereference
631 * @p: The pointer to load
632 *
633 * Similar to rcu_dereference(), but for situations where the pointed-to
634 * object's lifetime is managed by something other than RCU. That
635 * "something other" might be reference counting or simple immortality.
636 */
637 #define lockless_dereference(p) \
638 ({ \
639 typeof(p) _________p1 = ACCESS_ONCE(p); \
640 smp_read_barrier_depends(); /* Dependency order vs. p above. */ \
641 (_________p1); \
642 })
643
644 /**
645 * rcu_assign_pointer() - assign to RCU-protected pointer
646 * @p: pointer to assign to
647 * @v: value to assign (publish)
648 *
649 * Assigns the specified value to the specified RCU-protected
650 * pointer, ensuring that any concurrent RCU readers will see
651 * any prior initialization.
652 *
653 * Inserts memory barriers on architectures that require them
654 * (which is most of them), and also prevents the compiler from
655 * reordering the code that initializes the structure after the pointer
656 * assignment. More importantly, this call documents which pointers
657 * will be dereferenced by RCU read-side code.
658 *
659 * In some special cases, you may use RCU_INIT_POINTER() instead
660 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due
661 * to the fact that it does not constrain either the CPU or the compiler.
662 * That said, using RCU_INIT_POINTER() when you should have used
663 * rcu_assign_pointer() is a very bad thing that results in
664 * impossible-to-diagnose memory corruption. So please be careful.
665 * See the RCU_INIT_POINTER() comment header for details.
666 *
667 * Note that rcu_assign_pointer() evaluates each of its arguments only
668 * once, appearances notwithstanding. One of the "extra" evaluations
669 * is in typeof() and the other visible only to sparse (__CHECKER__),
670 * neither of which actually execute the argument. As with most cpp
671 * macros, this execute-arguments-only-once property is important, so
672 * please be careful when making changes to rcu_assign_pointer() and the
673 * other macros that it invokes.
674 */
675 #define rcu_assign_pointer(p, v) smp_store_release(&p, RCU_INITIALIZER(v))
676
677 /**
678 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
679 * @p: The pointer to read
680 *
681 * Return the value of the specified RCU-protected pointer, but omit the
682 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful
683 * when the value of this pointer is accessed, but the pointer is not
684 * dereferenced, for example, when testing an RCU-protected pointer against
685 * NULL. Although rcu_access_pointer() may also be used in cases where
686 * update-side locks prevent the value of the pointer from changing, you
687 * should instead use rcu_dereference_protected() for this use case.
688 *
689 * It is also permissible to use rcu_access_pointer() when read-side
690 * access to the pointer was removed at least one grace period ago, as
691 * is the case in the context of the RCU callback that is freeing up
692 * the data, or after a synchronize_rcu() returns. This can be useful
693 * when tearing down multi-linked structures after a grace period
694 * has elapsed.
695 */
696 #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
697
698 /**
699 * rcu_dereference_check() - rcu_dereference with debug checking
700 * @p: The pointer to read, prior to dereferencing
701 * @c: The conditions under which the dereference will take place
702 *
703 * Do an rcu_dereference(), but check that the conditions under which the
704 * dereference will take place are correct. Typically the conditions
705 * indicate the various locking conditions that should be held at that
706 * point. The check should return true if the conditions are satisfied.
707 * An implicit check for being in an RCU read-side critical section
708 * (rcu_read_lock()) is included.
709 *
710 * For example:
711 *
712 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
713 *
714 * could be used to indicate to lockdep that foo->bar may only be dereferenced
715 * if either rcu_read_lock() is held, or that the lock required to replace
716 * the bar struct at foo->bar is held.
717 *
718 * Note that the list of conditions may also include indications of when a lock
719 * need not be held, for example during initialisation or destruction of the
720 * target struct:
721 *
722 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
723 * atomic_read(&foo->usage) == 0);
724 *
725 * Inserts memory barriers on architectures that require them
726 * (currently only the Alpha), prevents the compiler from refetching
727 * (and from merging fetches), and, more importantly, documents exactly
728 * which pointers are protected by RCU and checks that the pointer is
729 * annotated as __rcu.
730 */
731 #define rcu_dereference_check(p, c) \
732 __rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu)
733
734 /**
735 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
736 * @p: The pointer to read, prior to dereferencing
737 * @c: The conditions under which the dereference will take place
738 *
739 * This is the RCU-bh counterpart to rcu_dereference_check().
740 */
741 #define rcu_dereference_bh_check(p, c) \
742 __rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu)
743
744 /**
745 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
746 * @p: The pointer to read, prior to dereferencing
747 * @c: The conditions under which the dereference will take place
748 *
749 * This is the RCU-sched counterpart to rcu_dereference_check().
750 */
751 #define rcu_dereference_sched_check(p, c) \
752 __rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \
753 __rcu)
754
755 #define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/
756
757 /*
758 * The tracing infrastructure traces RCU (we want that), but unfortunately
759 * some of the RCU checks causes tracing to lock up the system.
760 *
761 * The tracing version of rcu_dereference_raw() must not call
762 * rcu_read_lock_held().
763 */
764 #define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu)
765
766 /**
767 * rcu_access_index() - fetch RCU index with no dereferencing
768 * @p: The index to read
769 *
770 * Return the value of the specified RCU-protected index, but omit the
771 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful
772 * when the value of this index is accessed, but the index is not
773 * dereferenced, for example, when testing an RCU-protected index against
774 * -1. Although rcu_access_index() may also be used in cases where
775 * update-side locks prevent the value of the index from changing, you
776 * should instead use rcu_dereference_index_protected() for this use case.
777 */
778 #define rcu_access_index(p) __rcu_access_index((p), __rcu)
779
780 /**
781 * rcu_dereference_index_check() - rcu_dereference for indices with debug checking
782 * @p: The pointer to read, prior to dereferencing
783 * @c: The conditions under which the dereference will take place
784 *
785 * Similar to rcu_dereference_check(), but omits the sparse checking.
786 * This allows rcu_dereference_index_check() to be used on integers,
787 * which can then be used as array indices. Attempting to use
788 * rcu_dereference_check() on an integer will give compiler warnings
789 * because the sparse address-space mechanism relies on dereferencing
790 * the RCU-protected pointer. Dereferencing integers is not something
791 * that even gcc will put up with.
792 *
793 * Note that this function does not implicitly check for RCU read-side
794 * critical sections. If this function gains lots of uses, it might
795 * make sense to provide versions for each flavor of RCU, but it does
796 * not make sense as of early 2010.
797 */
798 #define rcu_dereference_index_check(p, c) \
799 __rcu_dereference_index_check((p), (c))
800
801 /**
802 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
803 * @p: The pointer to read, prior to dereferencing
804 * @c: The conditions under which the dereference will take place
805 *
806 * Return the value of the specified RCU-protected pointer, but omit
807 * both the smp_read_barrier_depends() and the ACCESS_ONCE(). This
808 * is useful in cases where update-side locks prevent the value of the
809 * pointer from changing. Please note that this primitive does -not-
810 * prevent the compiler from repeating this reference or combining it
811 * with other references, so it should not be used without protection
812 * of appropriate locks.
813 *
814 * This function is only for update-side use. Using this function
815 * when protected only by rcu_read_lock() will result in infrequent
816 * but very ugly failures.
817 */
818 #define rcu_dereference_protected(p, c) \
819 __rcu_dereference_protected((p), (c), __rcu)
820
821
822 /**
823 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
824 * @p: The pointer to read, prior to dereferencing
825 *
826 * This is a simple wrapper around rcu_dereference_check().
827 */
828 #define rcu_dereference(p) rcu_dereference_check(p, 0)
829
830 /**
831 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
832 * @p: The pointer to read, prior to dereferencing
833 *
834 * Makes rcu_dereference_check() do the dirty work.
835 */
836 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
837
838 /**
839 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
840 * @p: The pointer to read, prior to dereferencing
841 *
842 * Makes rcu_dereference_check() do the dirty work.
843 */
844 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
845
846 /**
847 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
848 *
849 * When synchronize_rcu() is invoked on one CPU while other CPUs
850 * are within RCU read-side critical sections, then the
851 * synchronize_rcu() is guaranteed to block until after all the other
852 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked
853 * on one CPU while other CPUs are within RCU read-side critical
854 * sections, invocation of the corresponding RCU callback is deferred
855 * until after the all the other CPUs exit their critical sections.
856 *
857 * Note, however, that RCU callbacks are permitted to run concurrently
858 * with new RCU read-side critical sections. One way that this can happen
859 * is via the following sequence of events: (1) CPU 0 enters an RCU
860 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
861 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
862 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
863 * callback is invoked. This is legal, because the RCU read-side critical
864 * section that was running concurrently with the call_rcu() (and which
865 * therefore might be referencing something that the corresponding RCU
866 * callback would free up) has completed before the corresponding
867 * RCU callback is invoked.
868 *
869 * RCU read-side critical sections may be nested. Any deferred actions
870 * will be deferred until the outermost RCU read-side critical section
871 * completes.
872 *
873 * You can avoid reading and understanding the next paragraph by
874 * following this rule: don't put anything in an rcu_read_lock() RCU
875 * read-side critical section that would block in a !PREEMPT kernel.
876 * But if you want the full story, read on!
877 *
878 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU),
879 * it is illegal to block while in an RCU read-side critical section.
880 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPT
881 * kernel builds, RCU read-side critical sections may be preempted,
882 * but explicit blocking is illegal. Finally, in preemptible RCU
883 * implementations in real-time (with -rt patchset) kernel builds, RCU
884 * read-side critical sections may be preempted and they may also block, but
885 * only when acquiring spinlocks that are subject to priority inheritance.
886 */
887 static inline void rcu_read_lock(void)
888 {
889 __rcu_read_lock();
890 __acquire(RCU);
891 rcu_lock_acquire(&rcu_lock_map);
892 rcu_lockdep_assert(rcu_is_watching(),
893 "rcu_read_lock() used illegally while idle");
894 }
895
896 /*
897 * So where is rcu_write_lock()? It does not exist, as there is no
898 * way for writers to lock out RCU readers. This is a feature, not
899 * a bug -- this property is what provides RCU's performance benefits.
900 * Of course, writers must coordinate with each other. The normal
901 * spinlock primitives work well for this, but any other technique may be
902 * used as well. RCU does not care how the writers keep out of each
903 * others' way, as long as they do so.
904 */
905
906 /**
907 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
908 *
909 * In most situations, rcu_read_unlock() is immune from deadlock.
910 * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock()
911 * is responsible for deboosting, which it does via rt_mutex_unlock().
912 * Unfortunately, this function acquires the scheduler's runqueue and
913 * priority-inheritance spinlocks. This means that deadlock could result
914 * if the caller of rcu_read_unlock() already holds one of these locks or
915 * any lock that is ever acquired while holding them; or any lock which
916 * can be taken from interrupt context because rcu_boost()->rt_mutex_lock()
917 * does not disable irqs while taking ->wait_lock.
918 *
919 * That said, RCU readers are never priority boosted unless they were
920 * preempted. Therefore, one way to avoid deadlock is to make sure
921 * that preemption never happens within any RCU read-side critical
922 * section whose outermost rcu_read_unlock() is called with one of
923 * rt_mutex_unlock()'s locks held. Such preemption can be avoided in
924 * a number of ways, for example, by invoking preempt_disable() before
925 * critical section's outermost rcu_read_lock().
926 *
927 * Given that the set of locks acquired by rt_mutex_unlock() might change
928 * at any time, a somewhat more future-proofed approach is to make sure
929 * that that preemption never happens within any RCU read-side critical
930 * section whose outermost rcu_read_unlock() is called with irqs disabled.
931 * This approach relies on the fact that rt_mutex_unlock() currently only
932 * acquires irq-disabled locks.
933 *
934 * The second of these two approaches is best in most situations,
935 * however, the first approach can also be useful, at least to those
936 * developers willing to keep abreast of the set of locks acquired by
937 * rt_mutex_unlock().
938 *
939 * See rcu_read_lock() for more information.
940 */
941 static inline void rcu_read_unlock(void)
942 {
943 rcu_lockdep_assert(rcu_is_watching(),
944 "rcu_read_unlock() used illegally while idle");
945 __release(RCU);
946 __rcu_read_unlock();
947 rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
948 }
949
950 /**
951 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
952 *
953 * This is equivalent of rcu_read_lock(), but to be used when updates
954 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
955 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
956 * softirq handler to be a quiescent state, a process in RCU read-side
957 * critical section must be protected by disabling softirqs. Read-side
958 * critical sections in interrupt context can use just rcu_read_lock(),
959 * though this should at least be commented to avoid confusing people
960 * reading the code.
961 *
962 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
963 * must occur in the same context, for example, it is illegal to invoke
964 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
965 * was invoked from some other task.
966 */
967 static inline void rcu_read_lock_bh(void)
968 {
969 local_bh_disable();
970 __acquire(RCU_BH);
971 rcu_lock_acquire(&rcu_bh_lock_map);
972 rcu_lockdep_assert(rcu_is_watching(),
973 "rcu_read_lock_bh() used illegally while idle");
974 }
975
976 /*
977 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
978 *
979 * See rcu_read_lock_bh() for more information.
980 */
981 static inline void rcu_read_unlock_bh(void)
982 {
983 rcu_lockdep_assert(rcu_is_watching(),
984 "rcu_read_unlock_bh() used illegally while idle");
985 rcu_lock_release(&rcu_bh_lock_map);
986 __release(RCU_BH);
987 local_bh_enable();
988 }
989
990 /**
991 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
992 *
993 * This is equivalent of rcu_read_lock(), but to be used when updates
994 * are being done using call_rcu_sched() or synchronize_rcu_sched().
995 * Read-side critical sections can also be introduced by anything that
996 * disables preemption, including local_irq_disable() and friends.
997 *
998 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
999 * must occur in the same context, for example, it is illegal to invoke
1000 * rcu_read_unlock_sched() from process context if the matching
1001 * rcu_read_lock_sched() was invoked from an NMI handler.
1002 */
1003 static inline void rcu_read_lock_sched(void)
1004 {
1005 preempt_disable();
1006 __acquire(RCU_SCHED);
1007 rcu_lock_acquire(&rcu_sched_lock_map);
1008 rcu_lockdep_assert(rcu_is_watching(),
1009 "rcu_read_lock_sched() used illegally while idle");
1010 }
1011
1012 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
1013 static inline notrace void rcu_read_lock_sched_notrace(void)
1014 {
1015 preempt_disable_notrace();
1016 __acquire(RCU_SCHED);
1017 }
1018
1019 /*
1020 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
1021 *
1022 * See rcu_read_lock_sched for more information.
1023 */
1024 static inline void rcu_read_unlock_sched(void)
1025 {
1026 rcu_lockdep_assert(rcu_is_watching(),
1027 "rcu_read_unlock_sched() used illegally while idle");
1028 rcu_lock_release(&rcu_sched_lock_map);
1029 __release(RCU_SCHED);
1030 preempt_enable();
1031 }
1032
1033 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
1034 static inline notrace void rcu_read_unlock_sched_notrace(void)
1035 {
1036 __release(RCU_SCHED);
1037 preempt_enable_notrace();
1038 }
1039
1040 /**
1041 * RCU_INIT_POINTER() - initialize an RCU protected pointer
1042 *
1043 * Initialize an RCU-protected pointer in special cases where readers
1044 * do not need ordering constraints on the CPU or the compiler. These
1045 * special cases are:
1046 *
1047 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer -or-
1048 * 2. The caller has taken whatever steps are required to prevent
1049 * RCU readers from concurrently accessing this pointer -or-
1050 * 3. The referenced data structure has already been exposed to
1051 * readers either at compile time or via rcu_assign_pointer() -and-
1052 * a. You have not made -any- reader-visible changes to
1053 * this structure since then -or-
1054 * b. It is OK for readers accessing this structure from its
1055 * new location to see the old state of the structure. (For
1056 * example, the changes were to statistical counters or to
1057 * other state where exact synchronization is not required.)
1058 *
1059 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
1060 * result in impossible-to-diagnose memory corruption. As in the structures
1061 * will look OK in crash dumps, but any concurrent RCU readers might
1062 * see pre-initialized values of the referenced data structure. So
1063 * please be very careful how you use RCU_INIT_POINTER()!!!
1064 *
1065 * If you are creating an RCU-protected linked structure that is accessed
1066 * by a single external-to-structure RCU-protected pointer, then you may
1067 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
1068 * pointers, but you must use rcu_assign_pointer() to initialize the
1069 * external-to-structure pointer -after- you have completely initialized
1070 * the reader-accessible portions of the linked structure.
1071 *
1072 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
1073 * ordering guarantees for either the CPU or the compiler.
1074 */
1075 #define RCU_INIT_POINTER(p, v) \
1076 do { \
1077 rcu_dereference_sparse(p, __rcu); \
1078 p = RCU_INITIALIZER(v); \
1079 } while (0)
1080
1081 /**
1082 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
1083 *
1084 * GCC-style initialization for an RCU-protected pointer in a structure field.
1085 */
1086 #define RCU_POINTER_INITIALIZER(p, v) \
1087 .p = RCU_INITIALIZER(v)
1088
1089 /*
1090 * Does the specified offset indicate that the corresponding rcu_head
1091 * structure can be handled by kfree_rcu()?
1092 */
1093 #define __is_kfree_rcu_offset(offset) ((offset) < 4096)
1094
1095 /*
1096 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
1097 */
1098 #define __kfree_rcu(head, offset) \
1099 do { \
1100 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
1101 kfree_call_rcu(head, (void (*)(struct rcu_head *))(unsigned long)(offset)); \
1102 } while (0)
1103
1104 /**
1105 * kfree_rcu() - kfree an object after a grace period.
1106 * @ptr: pointer to kfree
1107 * @rcu_head: the name of the struct rcu_head within the type of @ptr.
1108 *
1109 * Many rcu callbacks functions just call kfree() on the base structure.
1110 * These functions are trivial, but their size adds up, and furthermore
1111 * when they are used in a kernel module, that module must invoke the
1112 * high-latency rcu_barrier() function at module-unload time.
1113 *
1114 * The kfree_rcu() function handles this issue. Rather than encoding a
1115 * function address in the embedded rcu_head structure, kfree_rcu() instead
1116 * encodes the offset of the rcu_head structure within the base structure.
1117 * Because the functions are not allowed in the low-order 4096 bytes of
1118 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
1119 * If the offset is larger than 4095 bytes, a compile-time error will
1120 * be generated in __kfree_rcu(). If this error is triggered, you can
1121 * either fall back to use of call_rcu() or rearrange the structure to
1122 * position the rcu_head structure into the first 4096 bytes.
1123 *
1124 * Note that the allowable offset might decrease in the future, for example,
1125 * to allow something like kmem_cache_free_rcu().
1126 *
1127 * The BUILD_BUG_ON check must not involve any function calls, hence the
1128 * checks are done in macros here.
1129 */
1130 #define kfree_rcu(ptr, rcu_head) \
1131 __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))
1132
1133 #if defined(CONFIG_TINY_RCU) || defined(CONFIG_RCU_NOCB_CPU_ALL)
1134 static inline int rcu_needs_cpu(unsigned long *delta_jiffies)
1135 {
1136 *delta_jiffies = ULONG_MAX;
1137 return 0;
1138 }
1139 #endif /* #if defined(CONFIG_TINY_RCU) || defined(CONFIG_RCU_NOCB_CPU_ALL) */
1140
1141 #if defined(CONFIG_RCU_NOCB_CPU_ALL)
1142 static inline bool rcu_is_nocb_cpu(int cpu) { return true; }
1143 #elif defined(CONFIG_RCU_NOCB_CPU)
1144 bool rcu_is_nocb_cpu(int cpu);
1145 #else
1146 static inline bool rcu_is_nocb_cpu(int cpu) { return false; }
1147 #endif
1148
1149
1150 /* Only for use by adaptive-ticks code. */
1151 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
1152 bool rcu_sys_is_idle(void);
1153 void rcu_sysidle_force_exit(void);
1154 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
1155
1156 static inline bool rcu_sys_is_idle(void)
1157 {
1158 return false;
1159 }
1160
1161 static inline void rcu_sysidle_force_exit(void)
1162 {
1163 }
1164
1165 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
1166
1167
1168 #endif /* __LINUX_RCUPDATE_H */
This page took 0.061374 seconds and 5 git commands to generate.