Merge branch 'pci/resource' into next
[deliverable/linux.git] / include / linux / rcupdate.h
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2001
19 *
20 * Author: Dipankar Sarma <dipankar@in.ibm.com>
21 *
22 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
23 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
24 * Papers:
25 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
26 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
27 *
28 * For detailed explanation of Read-Copy Update mechanism see -
29 * http://lse.sourceforge.net/locking/rcupdate.html
30 *
31 */
32
33 #ifndef __LINUX_RCUPDATE_H
34 #define __LINUX_RCUPDATE_H
35
36 #include <linux/types.h>
37 #include <linux/cache.h>
38 #include <linux/spinlock.h>
39 #include <linux/threads.h>
40 #include <linux/cpumask.h>
41 #include <linux/seqlock.h>
42 #include <linux/lockdep.h>
43 #include <linux/completion.h>
44 #include <linux/debugobjects.h>
45 #include <linux/bug.h>
46 #include <linux/compiler.h>
47
48 #ifdef CONFIG_RCU_TORTURE_TEST
49 extern int rcutorture_runnable; /* for sysctl */
50 #endif /* #ifdef CONFIG_RCU_TORTURE_TEST */
51
52 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU)
53 void rcutorture_record_test_transition(void);
54 void rcutorture_record_progress(unsigned long vernum);
55 void do_trace_rcu_torture_read(const char *rcutorturename,
56 struct rcu_head *rhp,
57 unsigned long secs,
58 unsigned long c_old,
59 unsigned long c);
60 #else
61 static inline void rcutorture_record_test_transition(void)
62 {
63 }
64 static inline void rcutorture_record_progress(unsigned long vernum)
65 {
66 }
67 #ifdef CONFIG_RCU_TRACE
68 void do_trace_rcu_torture_read(const char *rcutorturename,
69 struct rcu_head *rhp,
70 unsigned long secs,
71 unsigned long c_old,
72 unsigned long c);
73 #else
74 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
75 do { } while (0)
76 #endif
77 #endif
78
79 #define UINT_CMP_GE(a, b) (UINT_MAX / 2 >= (a) - (b))
80 #define UINT_CMP_LT(a, b) (UINT_MAX / 2 < (a) - (b))
81 #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b))
82 #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b))
83 #define ulong2long(a) (*(long *)(&(a)))
84
85 /* Exported common interfaces */
86
87 #ifdef CONFIG_PREEMPT_RCU
88
89 /**
90 * call_rcu() - Queue an RCU callback for invocation after a grace period.
91 * @head: structure to be used for queueing the RCU updates.
92 * @func: actual callback function to be invoked after the grace period
93 *
94 * The callback function will be invoked some time after a full grace
95 * period elapses, in other words after all pre-existing RCU read-side
96 * critical sections have completed. However, the callback function
97 * might well execute concurrently with RCU read-side critical sections
98 * that started after call_rcu() was invoked. RCU read-side critical
99 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
100 * and may be nested.
101 *
102 * Note that all CPUs must agree that the grace period extended beyond
103 * all pre-existing RCU read-side critical section. On systems with more
104 * than one CPU, this means that when "func()" is invoked, each CPU is
105 * guaranteed to have executed a full memory barrier since the end of its
106 * last RCU read-side critical section whose beginning preceded the call
107 * to call_rcu(). It also means that each CPU executing an RCU read-side
108 * critical section that continues beyond the start of "func()" must have
109 * executed a memory barrier after the call_rcu() but before the beginning
110 * of that RCU read-side critical section. Note that these guarantees
111 * include CPUs that are offline, idle, or executing in user mode, as
112 * well as CPUs that are executing in the kernel.
113 *
114 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
115 * resulting RCU callback function "func()", then both CPU A and CPU B are
116 * guaranteed to execute a full memory barrier during the time interval
117 * between the call to call_rcu() and the invocation of "func()" -- even
118 * if CPU A and CPU B are the same CPU (but again only if the system has
119 * more than one CPU).
120 */
121 void call_rcu(struct rcu_head *head,
122 void (*func)(struct rcu_head *head));
123
124 #else /* #ifdef CONFIG_PREEMPT_RCU */
125
126 /* In classic RCU, call_rcu() is just call_rcu_sched(). */
127 #define call_rcu call_rcu_sched
128
129 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
130
131 /**
132 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
133 * @head: structure to be used for queueing the RCU updates.
134 * @func: actual callback function to be invoked after the grace period
135 *
136 * The callback function will be invoked some time after a full grace
137 * period elapses, in other words after all currently executing RCU
138 * read-side critical sections have completed. call_rcu_bh() assumes
139 * that the read-side critical sections end on completion of a softirq
140 * handler. This means that read-side critical sections in process
141 * context must not be interrupted by softirqs. This interface is to be
142 * used when most of the read-side critical sections are in softirq context.
143 * RCU read-side critical sections are delimited by :
144 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context.
145 * OR
146 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
147 * These may be nested.
148 *
149 * See the description of call_rcu() for more detailed information on
150 * memory ordering guarantees.
151 */
152 void call_rcu_bh(struct rcu_head *head,
153 void (*func)(struct rcu_head *head));
154
155 /**
156 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
157 * @head: structure to be used for queueing the RCU updates.
158 * @func: actual callback function to be invoked after the grace period
159 *
160 * The callback function will be invoked some time after a full grace
161 * period elapses, in other words after all currently executing RCU
162 * read-side critical sections have completed. call_rcu_sched() assumes
163 * that the read-side critical sections end on enabling of preemption
164 * or on voluntary preemption.
165 * RCU read-side critical sections are delimited by :
166 * - rcu_read_lock_sched() and rcu_read_unlock_sched(),
167 * OR
168 * anything that disables preemption.
169 * These may be nested.
170 *
171 * See the description of call_rcu() for more detailed information on
172 * memory ordering guarantees.
173 */
174 void call_rcu_sched(struct rcu_head *head,
175 void (*func)(struct rcu_head *rcu));
176
177 void synchronize_sched(void);
178
179 #ifdef CONFIG_PREEMPT_RCU
180
181 void __rcu_read_lock(void);
182 void __rcu_read_unlock(void);
183 void rcu_read_unlock_special(struct task_struct *t);
184 void synchronize_rcu(void);
185
186 /*
187 * Defined as a macro as it is a very low level header included from
188 * areas that don't even know about current. This gives the rcu_read_lock()
189 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
190 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
191 */
192 #define rcu_preempt_depth() (current->rcu_read_lock_nesting)
193
194 #else /* #ifdef CONFIG_PREEMPT_RCU */
195
196 static inline void __rcu_read_lock(void)
197 {
198 preempt_disable();
199 }
200
201 static inline void __rcu_read_unlock(void)
202 {
203 preempt_enable();
204 }
205
206 static inline void synchronize_rcu(void)
207 {
208 synchronize_sched();
209 }
210
211 static inline int rcu_preempt_depth(void)
212 {
213 return 0;
214 }
215
216 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
217
218 /* Internal to kernel */
219 void rcu_init(void);
220 void rcu_sched_qs(int cpu);
221 void rcu_bh_qs(int cpu);
222 void rcu_check_callbacks(int cpu, int user);
223 struct notifier_block;
224 void rcu_idle_enter(void);
225 void rcu_idle_exit(void);
226 void rcu_irq_enter(void);
227 void rcu_irq_exit(void);
228
229 #ifdef CONFIG_RCU_USER_QS
230 void rcu_user_enter(void);
231 void rcu_user_exit(void);
232 #else
233 static inline void rcu_user_enter(void) { }
234 static inline void rcu_user_exit(void) { }
235 static inline void rcu_user_hooks_switch(struct task_struct *prev,
236 struct task_struct *next) { }
237 #endif /* CONFIG_RCU_USER_QS */
238
239 /**
240 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
241 * @a: Code that RCU needs to pay attention to.
242 *
243 * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden
244 * in the inner idle loop, that is, between the rcu_idle_enter() and
245 * the rcu_idle_exit() -- RCU will happily ignore any such read-side
246 * critical sections. However, things like powertop need tracepoints
247 * in the inner idle loop.
248 *
249 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU())
250 * will tell RCU that it needs to pay attending, invoke its argument
251 * (in this example, a call to the do_something_with_RCU() function),
252 * and then tell RCU to go back to ignoring this CPU. It is permissible
253 * to nest RCU_NONIDLE() wrappers, but the nesting level is currently
254 * quite limited. If deeper nesting is required, it will be necessary
255 * to adjust DYNTICK_TASK_NESTING_VALUE accordingly.
256 */
257 #define RCU_NONIDLE(a) \
258 do { \
259 rcu_irq_enter(); \
260 do { a; } while (0); \
261 rcu_irq_exit(); \
262 } while (0)
263
264 #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP)
265 bool __rcu_is_watching(void);
266 #endif /* #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP) */
267
268 /*
269 * Infrastructure to implement the synchronize_() primitives in
270 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
271 */
272
273 typedef void call_rcu_func_t(struct rcu_head *head,
274 void (*func)(struct rcu_head *head));
275 void wait_rcu_gp(call_rcu_func_t crf);
276
277 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU)
278 #include <linux/rcutree.h>
279 #elif defined(CONFIG_TINY_RCU)
280 #include <linux/rcutiny.h>
281 #else
282 #error "Unknown RCU implementation specified to kernel configuration"
283 #endif
284
285 /*
286 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic
287 * initialization and destruction of rcu_head on the stack. rcu_head structures
288 * allocated dynamically in the heap or defined statically don't need any
289 * initialization.
290 */
291 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
292 void init_rcu_head_on_stack(struct rcu_head *head);
293 void destroy_rcu_head_on_stack(struct rcu_head *head);
294 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
295 static inline void init_rcu_head_on_stack(struct rcu_head *head)
296 {
297 }
298
299 static inline void destroy_rcu_head_on_stack(struct rcu_head *head)
300 {
301 }
302 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
303
304 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
305 bool rcu_lockdep_current_cpu_online(void);
306 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
307 static inline bool rcu_lockdep_current_cpu_online(void)
308 {
309 return 1;
310 }
311 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
312
313 #ifdef CONFIG_DEBUG_LOCK_ALLOC
314
315 static inline void rcu_lock_acquire(struct lockdep_map *map)
316 {
317 lock_acquire(map, 0, 0, 2, 1, NULL, _THIS_IP_);
318 }
319
320 static inline void rcu_lock_release(struct lockdep_map *map)
321 {
322 lock_release(map, 1, _THIS_IP_);
323 }
324
325 extern struct lockdep_map rcu_lock_map;
326 extern struct lockdep_map rcu_bh_lock_map;
327 extern struct lockdep_map rcu_sched_lock_map;
328 extern struct lockdep_map rcu_callback_map;
329 extern int debug_lockdep_rcu_enabled(void);
330
331 /**
332 * rcu_read_lock_held() - might we be in RCU read-side critical section?
333 *
334 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
335 * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC,
336 * this assumes we are in an RCU read-side critical section unless it can
337 * prove otherwise. This is useful for debug checks in functions that
338 * require that they be called within an RCU read-side critical section.
339 *
340 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
341 * and while lockdep is disabled.
342 *
343 * Note that rcu_read_lock() and the matching rcu_read_unlock() must
344 * occur in the same context, for example, it is illegal to invoke
345 * rcu_read_unlock() in process context if the matching rcu_read_lock()
346 * was invoked from within an irq handler.
347 *
348 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
349 * offline from an RCU perspective, so check for those as well.
350 */
351 static inline int rcu_read_lock_held(void)
352 {
353 if (!debug_lockdep_rcu_enabled())
354 return 1;
355 if (!rcu_is_watching())
356 return 0;
357 if (!rcu_lockdep_current_cpu_online())
358 return 0;
359 return lock_is_held(&rcu_lock_map);
360 }
361
362 /*
363 * rcu_read_lock_bh_held() is defined out of line to avoid #include-file
364 * hell.
365 */
366 int rcu_read_lock_bh_held(void);
367
368 /**
369 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
370 *
371 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
372 * RCU-sched read-side critical section. In absence of
373 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
374 * critical section unless it can prove otherwise. Note that disabling
375 * of preemption (including disabling irqs) counts as an RCU-sched
376 * read-side critical section. This is useful for debug checks in functions
377 * that required that they be called within an RCU-sched read-side
378 * critical section.
379 *
380 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
381 * and while lockdep is disabled.
382 *
383 * Note that if the CPU is in the idle loop from an RCU point of
384 * view (ie: that we are in the section between rcu_idle_enter() and
385 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
386 * did an rcu_read_lock(). The reason for this is that RCU ignores CPUs
387 * that are in such a section, considering these as in extended quiescent
388 * state, so such a CPU is effectively never in an RCU read-side critical
389 * section regardless of what RCU primitives it invokes. This state of
390 * affairs is required --- we need to keep an RCU-free window in idle
391 * where the CPU may possibly enter into low power mode. This way we can
392 * notice an extended quiescent state to other CPUs that started a grace
393 * period. Otherwise we would delay any grace period as long as we run in
394 * the idle task.
395 *
396 * Similarly, we avoid claiming an SRCU read lock held if the current
397 * CPU is offline.
398 */
399 #ifdef CONFIG_PREEMPT_COUNT
400 static inline int rcu_read_lock_sched_held(void)
401 {
402 int lockdep_opinion = 0;
403
404 if (!debug_lockdep_rcu_enabled())
405 return 1;
406 if (!rcu_is_watching())
407 return 0;
408 if (!rcu_lockdep_current_cpu_online())
409 return 0;
410 if (debug_locks)
411 lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
412 return lockdep_opinion || preempt_count() != 0 || irqs_disabled();
413 }
414 #else /* #ifdef CONFIG_PREEMPT_COUNT */
415 static inline int rcu_read_lock_sched_held(void)
416 {
417 return 1;
418 }
419 #endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
420
421 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
422
423 # define rcu_lock_acquire(a) do { } while (0)
424 # define rcu_lock_release(a) do { } while (0)
425
426 static inline int rcu_read_lock_held(void)
427 {
428 return 1;
429 }
430
431 static inline int rcu_read_lock_bh_held(void)
432 {
433 return 1;
434 }
435
436 #ifdef CONFIG_PREEMPT_COUNT
437 static inline int rcu_read_lock_sched_held(void)
438 {
439 return preempt_count() != 0 || irqs_disabled();
440 }
441 #else /* #ifdef CONFIG_PREEMPT_COUNT */
442 static inline int rcu_read_lock_sched_held(void)
443 {
444 return 1;
445 }
446 #endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
447
448 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
449
450 #ifdef CONFIG_PROVE_RCU
451
452 /**
453 * rcu_lockdep_assert - emit lockdep splat if specified condition not met
454 * @c: condition to check
455 * @s: informative message
456 */
457 #define rcu_lockdep_assert(c, s) \
458 do { \
459 static bool __section(.data.unlikely) __warned; \
460 if (debug_lockdep_rcu_enabled() && !__warned && !(c)) { \
461 __warned = true; \
462 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \
463 } \
464 } while (0)
465
466 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
467 static inline void rcu_preempt_sleep_check(void)
468 {
469 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
470 "Illegal context switch in RCU read-side critical section");
471 }
472 #else /* #ifdef CONFIG_PROVE_RCU */
473 static inline void rcu_preempt_sleep_check(void)
474 {
475 }
476 #endif /* #else #ifdef CONFIG_PROVE_RCU */
477
478 #define rcu_sleep_check() \
479 do { \
480 rcu_preempt_sleep_check(); \
481 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map), \
482 "Illegal context switch in RCU-bh" \
483 " read-side critical section"); \
484 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map), \
485 "Illegal context switch in RCU-sched"\
486 " read-side critical section"); \
487 } while (0)
488
489 #else /* #ifdef CONFIG_PROVE_RCU */
490
491 #define rcu_lockdep_assert(c, s) do { } while (0)
492 #define rcu_sleep_check() do { } while (0)
493
494 #endif /* #else #ifdef CONFIG_PROVE_RCU */
495
496 /*
497 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
498 * and rcu_assign_pointer(). Some of these could be folded into their
499 * callers, but they are left separate in order to ease introduction of
500 * multiple flavors of pointers to match the multiple flavors of RCU
501 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
502 * the future.
503 */
504
505 #ifdef __CHECKER__
506 #define rcu_dereference_sparse(p, space) \
507 ((void)(((typeof(*p) space *)p) == p))
508 #else /* #ifdef __CHECKER__ */
509 #define rcu_dereference_sparse(p, space)
510 #endif /* #else #ifdef __CHECKER__ */
511
512 #define __rcu_access_pointer(p, space) \
513 ({ \
514 typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \
515 rcu_dereference_sparse(p, space); \
516 ((typeof(*p) __force __kernel *)(_________p1)); \
517 })
518 #define __rcu_dereference_check(p, c, space) \
519 ({ \
520 typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \
521 rcu_lockdep_assert(c, "suspicious rcu_dereference_check()" \
522 " usage"); \
523 rcu_dereference_sparse(p, space); \
524 smp_read_barrier_depends(); \
525 ((typeof(*p) __force __kernel *)(_________p1)); \
526 })
527 #define __rcu_dereference_protected(p, c, space) \
528 ({ \
529 rcu_lockdep_assert(c, "suspicious rcu_dereference_protected()" \
530 " usage"); \
531 rcu_dereference_sparse(p, space); \
532 ((typeof(*p) __force __kernel *)(p)); \
533 })
534
535 #define __rcu_access_index(p, space) \
536 ({ \
537 typeof(p) _________p1 = ACCESS_ONCE(p); \
538 rcu_dereference_sparse(p, space); \
539 (_________p1); \
540 })
541 #define __rcu_dereference_index_check(p, c) \
542 ({ \
543 typeof(p) _________p1 = ACCESS_ONCE(p); \
544 rcu_lockdep_assert(c, \
545 "suspicious rcu_dereference_index_check()" \
546 " usage"); \
547 smp_read_barrier_depends(); \
548 (_________p1); \
549 })
550
551 /**
552 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
553 * @v: The value to statically initialize with.
554 */
555 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
556
557 /**
558 * rcu_assign_pointer() - assign to RCU-protected pointer
559 * @p: pointer to assign to
560 * @v: value to assign (publish)
561 *
562 * Assigns the specified value to the specified RCU-protected
563 * pointer, ensuring that any concurrent RCU readers will see
564 * any prior initialization.
565 *
566 * Inserts memory barriers on architectures that require them
567 * (which is most of them), and also prevents the compiler from
568 * reordering the code that initializes the structure after the pointer
569 * assignment. More importantly, this call documents which pointers
570 * will be dereferenced by RCU read-side code.
571 *
572 * In some special cases, you may use RCU_INIT_POINTER() instead
573 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due
574 * to the fact that it does not constrain either the CPU or the compiler.
575 * That said, using RCU_INIT_POINTER() when you should have used
576 * rcu_assign_pointer() is a very bad thing that results in
577 * impossible-to-diagnose memory corruption. So please be careful.
578 * See the RCU_INIT_POINTER() comment header for details.
579 *
580 * Note that rcu_assign_pointer() evaluates each of its arguments only
581 * once, appearances notwithstanding. One of the "extra" evaluations
582 * is in typeof() and the other visible only to sparse (__CHECKER__),
583 * neither of which actually execute the argument. As with most cpp
584 * macros, this execute-arguments-only-once property is important, so
585 * please be careful when making changes to rcu_assign_pointer() and the
586 * other macros that it invokes.
587 */
588 #define rcu_assign_pointer(p, v) \
589 do { \
590 smp_wmb(); \
591 ACCESS_ONCE(p) = RCU_INITIALIZER(v); \
592 } while (0)
593
594
595 /**
596 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
597 * @p: The pointer to read
598 *
599 * Return the value of the specified RCU-protected pointer, but omit the
600 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful
601 * when the value of this pointer is accessed, but the pointer is not
602 * dereferenced, for example, when testing an RCU-protected pointer against
603 * NULL. Although rcu_access_pointer() may also be used in cases where
604 * update-side locks prevent the value of the pointer from changing, you
605 * should instead use rcu_dereference_protected() for this use case.
606 *
607 * It is also permissible to use rcu_access_pointer() when read-side
608 * access to the pointer was removed at least one grace period ago, as
609 * is the case in the context of the RCU callback that is freeing up
610 * the data, or after a synchronize_rcu() returns. This can be useful
611 * when tearing down multi-linked structures after a grace period
612 * has elapsed.
613 */
614 #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
615
616 /**
617 * rcu_dereference_check() - rcu_dereference with debug checking
618 * @p: The pointer to read, prior to dereferencing
619 * @c: The conditions under which the dereference will take place
620 *
621 * Do an rcu_dereference(), but check that the conditions under which the
622 * dereference will take place are correct. Typically the conditions
623 * indicate the various locking conditions that should be held at that
624 * point. The check should return true if the conditions are satisfied.
625 * An implicit check for being in an RCU read-side critical section
626 * (rcu_read_lock()) is included.
627 *
628 * For example:
629 *
630 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
631 *
632 * could be used to indicate to lockdep that foo->bar may only be dereferenced
633 * if either rcu_read_lock() is held, or that the lock required to replace
634 * the bar struct at foo->bar is held.
635 *
636 * Note that the list of conditions may also include indications of when a lock
637 * need not be held, for example during initialisation or destruction of the
638 * target struct:
639 *
640 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
641 * atomic_read(&foo->usage) == 0);
642 *
643 * Inserts memory barriers on architectures that require them
644 * (currently only the Alpha), prevents the compiler from refetching
645 * (and from merging fetches), and, more importantly, documents exactly
646 * which pointers are protected by RCU and checks that the pointer is
647 * annotated as __rcu.
648 */
649 #define rcu_dereference_check(p, c) \
650 __rcu_dereference_check((p), rcu_read_lock_held() || (c), __rcu)
651
652 /**
653 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
654 * @p: The pointer to read, prior to dereferencing
655 * @c: The conditions under which the dereference will take place
656 *
657 * This is the RCU-bh counterpart to rcu_dereference_check().
658 */
659 #define rcu_dereference_bh_check(p, c) \
660 __rcu_dereference_check((p), rcu_read_lock_bh_held() || (c), __rcu)
661
662 /**
663 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
664 * @p: The pointer to read, prior to dereferencing
665 * @c: The conditions under which the dereference will take place
666 *
667 * This is the RCU-sched counterpart to rcu_dereference_check().
668 */
669 #define rcu_dereference_sched_check(p, c) \
670 __rcu_dereference_check((p), rcu_read_lock_sched_held() || (c), \
671 __rcu)
672
673 #define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/
674
675 /*
676 * The tracing infrastructure traces RCU (we want that), but unfortunately
677 * some of the RCU checks causes tracing to lock up the system.
678 *
679 * The tracing version of rcu_dereference_raw() must not call
680 * rcu_read_lock_held().
681 */
682 #define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu)
683
684 /**
685 * rcu_access_index() - fetch RCU index with no dereferencing
686 * @p: The index to read
687 *
688 * Return the value of the specified RCU-protected index, but omit the
689 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful
690 * when the value of this index is accessed, but the index is not
691 * dereferenced, for example, when testing an RCU-protected index against
692 * -1. Although rcu_access_index() may also be used in cases where
693 * update-side locks prevent the value of the index from changing, you
694 * should instead use rcu_dereference_index_protected() for this use case.
695 */
696 #define rcu_access_index(p) __rcu_access_index((p), __rcu)
697
698 /**
699 * rcu_dereference_index_check() - rcu_dereference for indices with debug checking
700 * @p: The pointer to read, prior to dereferencing
701 * @c: The conditions under which the dereference will take place
702 *
703 * Similar to rcu_dereference_check(), but omits the sparse checking.
704 * This allows rcu_dereference_index_check() to be used on integers,
705 * which can then be used as array indices. Attempting to use
706 * rcu_dereference_check() on an integer will give compiler warnings
707 * because the sparse address-space mechanism relies on dereferencing
708 * the RCU-protected pointer. Dereferencing integers is not something
709 * that even gcc will put up with.
710 *
711 * Note that this function does not implicitly check for RCU read-side
712 * critical sections. If this function gains lots of uses, it might
713 * make sense to provide versions for each flavor of RCU, but it does
714 * not make sense as of early 2010.
715 */
716 #define rcu_dereference_index_check(p, c) \
717 __rcu_dereference_index_check((p), (c))
718
719 /**
720 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
721 * @p: The pointer to read, prior to dereferencing
722 * @c: The conditions under which the dereference will take place
723 *
724 * Return the value of the specified RCU-protected pointer, but omit
725 * both the smp_read_barrier_depends() and the ACCESS_ONCE(). This
726 * is useful in cases where update-side locks prevent the value of the
727 * pointer from changing. Please note that this primitive does -not-
728 * prevent the compiler from repeating this reference or combining it
729 * with other references, so it should not be used without protection
730 * of appropriate locks.
731 *
732 * This function is only for update-side use. Using this function
733 * when protected only by rcu_read_lock() will result in infrequent
734 * but very ugly failures.
735 */
736 #define rcu_dereference_protected(p, c) \
737 __rcu_dereference_protected((p), (c), __rcu)
738
739
740 /**
741 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
742 * @p: The pointer to read, prior to dereferencing
743 *
744 * This is a simple wrapper around rcu_dereference_check().
745 */
746 #define rcu_dereference(p) rcu_dereference_check(p, 0)
747
748 /**
749 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
750 * @p: The pointer to read, prior to dereferencing
751 *
752 * Makes rcu_dereference_check() do the dirty work.
753 */
754 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
755
756 /**
757 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
758 * @p: The pointer to read, prior to dereferencing
759 *
760 * Makes rcu_dereference_check() do the dirty work.
761 */
762 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
763
764 /**
765 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
766 *
767 * When synchronize_rcu() is invoked on one CPU while other CPUs
768 * are within RCU read-side critical sections, then the
769 * synchronize_rcu() is guaranteed to block until after all the other
770 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked
771 * on one CPU while other CPUs are within RCU read-side critical
772 * sections, invocation of the corresponding RCU callback is deferred
773 * until after the all the other CPUs exit their critical sections.
774 *
775 * Note, however, that RCU callbacks are permitted to run concurrently
776 * with new RCU read-side critical sections. One way that this can happen
777 * is via the following sequence of events: (1) CPU 0 enters an RCU
778 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
779 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
780 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
781 * callback is invoked. This is legal, because the RCU read-side critical
782 * section that was running concurrently with the call_rcu() (and which
783 * therefore might be referencing something that the corresponding RCU
784 * callback would free up) has completed before the corresponding
785 * RCU callback is invoked.
786 *
787 * RCU read-side critical sections may be nested. Any deferred actions
788 * will be deferred until the outermost RCU read-side critical section
789 * completes.
790 *
791 * You can avoid reading and understanding the next paragraph by
792 * following this rule: don't put anything in an rcu_read_lock() RCU
793 * read-side critical section that would block in a !PREEMPT kernel.
794 * But if you want the full story, read on!
795 *
796 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU), it
797 * is illegal to block while in an RCU read-side critical section. In
798 * preemptible RCU implementations (TREE_PREEMPT_RCU and TINY_PREEMPT_RCU)
799 * in CONFIG_PREEMPT kernel builds, RCU read-side critical sections may
800 * be preempted, but explicit blocking is illegal. Finally, in preemptible
801 * RCU implementations in real-time (with -rt patchset) kernel builds,
802 * RCU read-side critical sections may be preempted and they may also
803 * block, but only when acquiring spinlocks that are subject to priority
804 * inheritance.
805 */
806 static inline void rcu_read_lock(void)
807 {
808 __rcu_read_lock();
809 __acquire(RCU);
810 rcu_lock_acquire(&rcu_lock_map);
811 rcu_lockdep_assert(rcu_is_watching(),
812 "rcu_read_lock() used illegally while idle");
813 }
814
815 /*
816 * So where is rcu_write_lock()? It does not exist, as there is no
817 * way for writers to lock out RCU readers. This is a feature, not
818 * a bug -- this property is what provides RCU's performance benefits.
819 * Of course, writers must coordinate with each other. The normal
820 * spinlock primitives work well for this, but any other technique may be
821 * used as well. RCU does not care how the writers keep out of each
822 * others' way, as long as they do so.
823 */
824
825 /**
826 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
827 *
828 * See rcu_read_lock() for more information.
829 */
830 static inline void rcu_read_unlock(void)
831 {
832 rcu_lockdep_assert(rcu_is_watching(),
833 "rcu_read_unlock() used illegally while idle");
834 rcu_lock_release(&rcu_lock_map);
835 __release(RCU);
836 __rcu_read_unlock();
837 }
838
839 /**
840 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
841 *
842 * This is equivalent of rcu_read_lock(), but to be used when updates
843 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
844 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
845 * softirq handler to be a quiescent state, a process in RCU read-side
846 * critical section must be protected by disabling softirqs. Read-side
847 * critical sections in interrupt context can use just rcu_read_lock(),
848 * though this should at least be commented to avoid confusing people
849 * reading the code.
850 *
851 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
852 * must occur in the same context, for example, it is illegal to invoke
853 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
854 * was invoked from some other task.
855 */
856 static inline void rcu_read_lock_bh(void)
857 {
858 local_bh_disable();
859 __acquire(RCU_BH);
860 rcu_lock_acquire(&rcu_bh_lock_map);
861 rcu_lockdep_assert(rcu_is_watching(),
862 "rcu_read_lock_bh() used illegally while idle");
863 }
864
865 /*
866 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
867 *
868 * See rcu_read_lock_bh() for more information.
869 */
870 static inline void rcu_read_unlock_bh(void)
871 {
872 rcu_lockdep_assert(rcu_is_watching(),
873 "rcu_read_unlock_bh() used illegally while idle");
874 rcu_lock_release(&rcu_bh_lock_map);
875 __release(RCU_BH);
876 local_bh_enable();
877 }
878
879 /**
880 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
881 *
882 * This is equivalent of rcu_read_lock(), but to be used when updates
883 * are being done using call_rcu_sched() or synchronize_rcu_sched().
884 * Read-side critical sections can also be introduced by anything that
885 * disables preemption, including local_irq_disable() and friends.
886 *
887 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
888 * must occur in the same context, for example, it is illegal to invoke
889 * rcu_read_unlock_sched() from process context if the matching
890 * rcu_read_lock_sched() was invoked from an NMI handler.
891 */
892 static inline void rcu_read_lock_sched(void)
893 {
894 preempt_disable();
895 __acquire(RCU_SCHED);
896 rcu_lock_acquire(&rcu_sched_lock_map);
897 rcu_lockdep_assert(rcu_is_watching(),
898 "rcu_read_lock_sched() used illegally while idle");
899 }
900
901 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
902 static inline notrace void rcu_read_lock_sched_notrace(void)
903 {
904 preempt_disable_notrace();
905 __acquire(RCU_SCHED);
906 }
907
908 /*
909 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
910 *
911 * See rcu_read_lock_sched for more information.
912 */
913 static inline void rcu_read_unlock_sched(void)
914 {
915 rcu_lockdep_assert(rcu_is_watching(),
916 "rcu_read_unlock_sched() used illegally while idle");
917 rcu_lock_release(&rcu_sched_lock_map);
918 __release(RCU_SCHED);
919 preempt_enable();
920 }
921
922 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
923 static inline notrace void rcu_read_unlock_sched_notrace(void)
924 {
925 __release(RCU_SCHED);
926 preempt_enable_notrace();
927 }
928
929 /**
930 * RCU_INIT_POINTER() - initialize an RCU protected pointer
931 *
932 * Initialize an RCU-protected pointer in special cases where readers
933 * do not need ordering constraints on the CPU or the compiler. These
934 * special cases are:
935 *
936 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer -or-
937 * 2. The caller has taken whatever steps are required to prevent
938 * RCU readers from concurrently accessing this pointer -or-
939 * 3. The referenced data structure has already been exposed to
940 * readers either at compile time or via rcu_assign_pointer() -and-
941 * a. You have not made -any- reader-visible changes to
942 * this structure since then -or-
943 * b. It is OK for readers accessing this structure from its
944 * new location to see the old state of the structure. (For
945 * example, the changes were to statistical counters or to
946 * other state where exact synchronization is not required.)
947 *
948 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
949 * result in impossible-to-diagnose memory corruption. As in the structures
950 * will look OK in crash dumps, but any concurrent RCU readers might
951 * see pre-initialized values of the referenced data structure. So
952 * please be very careful how you use RCU_INIT_POINTER()!!!
953 *
954 * If you are creating an RCU-protected linked structure that is accessed
955 * by a single external-to-structure RCU-protected pointer, then you may
956 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
957 * pointers, but you must use rcu_assign_pointer() to initialize the
958 * external-to-structure pointer -after- you have completely initialized
959 * the reader-accessible portions of the linked structure.
960 */
961 #define RCU_INIT_POINTER(p, v) \
962 do { \
963 p = RCU_INITIALIZER(v); \
964 } while (0)
965
966 /**
967 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
968 *
969 * GCC-style initialization for an RCU-protected pointer in a structure field.
970 */
971 #define RCU_POINTER_INITIALIZER(p, v) \
972 .p = RCU_INITIALIZER(v)
973
974 /*
975 * Does the specified offset indicate that the corresponding rcu_head
976 * structure can be handled by kfree_rcu()?
977 */
978 #define __is_kfree_rcu_offset(offset) ((offset) < 4096)
979
980 /*
981 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
982 */
983 #define __kfree_rcu(head, offset) \
984 do { \
985 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
986 kfree_call_rcu(head, (void (*)(struct rcu_head *))(unsigned long)(offset)); \
987 } while (0)
988
989 /**
990 * kfree_rcu() - kfree an object after a grace period.
991 * @ptr: pointer to kfree
992 * @rcu_head: the name of the struct rcu_head within the type of @ptr.
993 *
994 * Many rcu callbacks functions just call kfree() on the base structure.
995 * These functions are trivial, but their size adds up, and furthermore
996 * when they are used in a kernel module, that module must invoke the
997 * high-latency rcu_barrier() function at module-unload time.
998 *
999 * The kfree_rcu() function handles this issue. Rather than encoding a
1000 * function address in the embedded rcu_head structure, kfree_rcu() instead
1001 * encodes the offset of the rcu_head structure within the base structure.
1002 * Because the functions are not allowed in the low-order 4096 bytes of
1003 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
1004 * If the offset is larger than 4095 bytes, a compile-time error will
1005 * be generated in __kfree_rcu(). If this error is triggered, you can
1006 * either fall back to use of call_rcu() or rearrange the structure to
1007 * position the rcu_head structure into the first 4096 bytes.
1008 *
1009 * Note that the allowable offset might decrease in the future, for example,
1010 * to allow something like kmem_cache_free_rcu().
1011 *
1012 * The BUILD_BUG_ON check must not involve any function calls, hence the
1013 * checks are done in macros here.
1014 */
1015 #define kfree_rcu(ptr, rcu_head) \
1016 __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))
1017
1018 #ifdef CONFIG_RCU_NOCB_CPU
1019 bool rcu_is_nocb_cpu(int cpu);
1020 #else
1021 static inline bool rcu_is_nocb_cpu(int cpu) { return false; }
1022 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
1023
1024
1025 /* Only for use by adaptive-ticks code. */
1026 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
1027 bool rcu_sys_is_idle(void);
1028 void rcu_sysidle_force_exit(void);
1029 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
1030
1031 static inline bool rcu_sys_is_idle(void)
1032 {
1033 return false;
1034 }
1035
1036 static inline void rcu_sysidle_force_exit(void)
1037 {
1038 }
1039
1040 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
1041
1042
1043 #endif /* __LINUX_RCUPDATE_H */
This page took 0.121094 seconds and 5 git commands to generate.