uapi: Remove kernel internal declaration
[deliverable/linux.git] / include / linux / rcupdate.h
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
17 *
18 * Copyright IBM Corporation, 2001
19 *
20 * Author: Dipankar Sarma <dipankar@in.ibm.com>
21 *
22 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
23 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
24 * Papers:
25 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
26 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
27 *
28 * For detailed explanation of Read-Copy Update mechanism see -
29 * http://lse.sourceforge.net/locking/rcupdate.html
30 *
31 */
32
33 #ifndef __LINUX_RCUPDATE_H
34 #define __LINUX_RCUPDATE_H
35
36 #include <linux/types.h>
37 #include <linux/cache.h>
38 #include <linux/spinlock.h>
39 #include <linux/threads.h>
40 #include <linux/cpumask.h>
41 #include <linux/seqlock.h>
42 #include <linux/lockdep.h>
43 #include <linux/completion.h>
44 #include <linux/debugobjects.h>
45 #include <linux/bug.h>
46 #include <linux/compiler.h>
47 #include <asm/barrier.h>
48
49 extern int rcu_expedited; /* for sysctl */
50
51 enum rcutorture_type {
52 RCU_FLAVOR,
53 RCU_BH_FLAVOR,
54 RCU_SCHED_FLAVOR,
55 RCU_TASKS_FLAVOR,
56 SRCU_FLAVOR,
57 INVALID_RCU_FLAVOR
58 };
59
60 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
61 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
62 unsigned long *gpnum, unsigned long *completed);
63 void rcutorture_record_test_transition(void);
64 void rcutorture_record_progress(unsigned long vernum);
65 void do_trace_rcu_torture_read(const char *rcutorturename,
66 struct rcu_head *rhp,
67 unsigned long secs,
68 unsigned long c_old,
69 unsigned long c);
70 #else
71 static inline void rcutorture_get_gp_data(enum rcutorture_type test_type,
72 int *flags,
73 unsigned long *gpnum,
74 unsigned long *completed)
75 {
76 *flags = 0;
77 *gpnum = 0;
78 *completed = 0;
79 }
80 static inline void rcutorture_record_test_transition(void)
81 {
82 }
83 static inline void rcutorture_record_progress(unsigned long vernum)
84 {
85 }
86 #ifdef CONFIG_RCU_TRACE
87 void do_trace_rcu_torture_read(const char *rcutorturename,
88 struct rcu_head *rhp,
89 unsigned long secs,
90 unsigned long c_old,
91 unsigned long c);
92 #else
93 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
94 do { } while (0)
95 #endif
96 #endif
97
98 #define UINT_CMP_GE(a, b) (UINT_MAX / 2 >= (a) - (b))
99 #define UINT_CMP_LT(a, b) (UINT_MAX / 2 < (a) - (b))
100 #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b))
101 #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b))
102 #define ulong2long(a) (*(long *)(&(a)))
103
104 /* Exported common interfaces */
105
106 #ifdef CONFIG_PREEMPT_RCU
107
108 /**
109 * call_rcu() - Queue an RCU callback for invocation after a grace period.
110 * @head: structure to be used for queueing the RCU updates.
111 * @func: actual callback function to be invoked after the grace period
112 *
113 * The callback function will be invoked some time after a full grace
114 * period elapses, in other words after all pre-existing RCU read-side
115 * critical sections have completed. However, the callback function
116 * might well execute concurrently with RCU read-side critical sections
117 * that started after call_rcu() was invoked. RCU read-side critical
118 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
119 * and may be nested.
120 *
121 * Note that all CPUs must agree that the grace period extended beyond
122 * all pre-existing RCU read-side critical section. On systems with more
123 * than one CPU, this means that when "func()" is invoked, each CPU is
124 * guaranteed to have executed a full memory barrier since the end of its
125 * last RCU read-side critical section whose beginning preceded the call
126 * to call_rcu(). It also means that each CPU executing an RCU read-side
127 * critical section that continues beyond the start of "func()" must have
128 * executed a memory barrier after the call_rcu() but before the beginning
129 * of that RCU read-side critical section. Note that these guarantees
130 * include CPUs that are offline, idle, or executing in user mode, as
131 * well as CPUs that are executing in the kernel.
132 *
133 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
134 * resulting RCU callback function "func()", then both CPU A and CPU B are
135 * guaranteed to execute a full memory barrier during the time interval
136 * between the call to call_rcu() and the invocation of "func()" -- even
137 * if CPU A and CPU B are the same CPU (but again only if the system has
138 * more than one CPU).
139 */
140 void call_rcu(struct rcu_head *head,
141 void (*func)(struct rcu_head *head));
142
143 #else /* #ifdef CONFIG_PREEMPT_RCU */
144
145 /* In classic RCU, call_rcu() is just call_rcu_sched(). */
146 #define call_rcu call_rcu_sched
147
148 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
149
150 /**
151 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
152 * @head: structure to be used for queueing the RCU updates.
153 * @func: actual callback function to be invoked after the grace period
154 *
155 * The callback function will be invoked some time after a full grace
156 * period elapses, in other words after all currently executing RCU
157 * read-side critical sections have completed. call_rcu_bh() assumes
158 * that the read-side critical sections end on completion of a softirq
159 * handler. This means that read-side critical sections in process
160 * context must not be interrupted by softirqs. This interface is to be
161 * used when most of the read-side critical sections are in softirq context.
162 * RCU read-side critical sections are delimited by :
163 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context.
164 * OR
165 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
166 * These may be nested.
167 *
168 * See the description of call_rcu() for more detailed information on
169 * memory ordering guarantees.
170 */
171 void call_rcu_bh(struct rcu_head *head,
172 void (*func)(struct rcu_head *head));
173
174 /**
175 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
176 * @head: structure to be used for queueing the RCU updates.
177 * @func: actual callback function to be invoked after the grace period
178 *
179 * The callback function will be invoked some time after a full grace
180 * period elapses, in other words after all currently executing RCU
181 * read-side critical sections have completed. call_rcu_sched() assumes
182 * that the read-side critical sections end on enabling of preemption
183 * or on voluntary preemption.
184 * RCU read-side critical sections are delimited by :
185 * - rcu_read_lock_sched() and rcu_read_unlock_sched(),
186 * OR
187 * anything that disables preemption.
188 * These may be nested.
189 *
190 * See the description of call_rcu() for more detailed information on
191 * memory ordering guarantees.
192 */
193 void call_rcu_sched(struct rcu_head *head,
194 void (*func)(struct rcu_head *rcu));
195
196 void synchronize_sched(void);
197
198 /**
199 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
200 * @head: structure to be used for queueing the RCU updates.
201 * @func: actual callback function to be invoked after the grace period
202 *
203 * The callback function will be invoked some time after a full grace
204 * period elapses, in other words after all currently executing RCU
205 * read-side critical sections have completed. call_rcu_tasks() assumes
206 * that the read-side critical sections end at a voluntary context
207 * switch (not a preemption!), entry into idle, or transition to usermode
208 * execution. As such, there are no read-side primitives analogous to
209 * rcu_read_lock() and rcu_read_unlock() because this primitive is intended
210 * to determine that all tasks have passed through a safe state, not so
211 * much for data-strcuture synchronization.
212 *
213 * See the description of call_rcu() for more detailed information on
214 * memory ordering guarantees.
215 */
216 void call_rcu_tasks(struct rcu_head *head, void (*func)(struct rcu_head *head));
217 void synchronize_rcu_tasks(void);
218 void rcu_barrier_tasks(void);
219
220 #ifdef CONFIG_PREEMPT_RCU
221
222 void __rcu_read_lock(void);
223 void __rcu_read_unlock(void);
224 void rcu_read_unlock_special(struct task_struct *t);
225 void synchronize_rcu(void);
226
227 /*
228 * Defined as a macro as it is a very low level header included from
229 * areas that don't even know about current. This gives the rcu_read_lock()
230 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
231 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
232 */
233 #define rcu_preempt_depth() (current->rcu_read_lock_nesting)
234
235 #else /* #ifdef CONFIG_PREEMPT_RCU */
236
237 static inline void __rcu_read_lock(void)
238 {
239 preempt_disable();
240 }
241
242 static inline void __rcu_read_unlock(void)
243 {
244 preempt_enable();
245 }
246
247 static inline void synchronize_rcu(void)
248 {
249 synchronize_sched();
250 }
251
252 static inline int rcu_preempt_depth(void)
253 {
254 return 0;
255 }
256
257 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
258
259 /* Internal to kernel */
260 void rcu_init(void);
261 void rcu_sched_qs(void);
262 void rcu_bh_qs(void);
263 void rcu_check_callbacks(int user);
264 struct notifier_block;
265 void rcu_idle_enter(void);
266 void rcu_idle_exit(void);
267 void rcu_irq_enter(void);
268 void rcu_irq_exit(void);
269
270 #ifdef CONFIG_RCU_STALL_COMMON
271 void rcu_sysrq_start(void);
272 void rcu_sysrq_end(void);
273 #else /* #ifdef CONFIG_RCU_STALL_COMMON */
274 static inline void rcu_sysrq_start(void)
275 {
276 }
277 static inline void rcu_sysrq_end(void)
278 {
279 }
280 #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
281
282 #ifdef CONFIG_RCU_USER_QS
283 void rcu_user_enter(void);
284 void rcu_user_exit(void);
285 #else
286 static inline void rcu_user_enter(void) { }
287 static inline void rcu_user_exit(void) { }
288 static inline void rcu_user_hooks_switch(struct task_struct *prev,
289 struct task_struct *next) { }
290 #endif /* CONFIG_RCU_USER_QS */
291
292 #ifdef CONFIG_RCU_NOCB_CPU
293 void rcu_init_nohz(void);
294 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
295 static inline void rcu_init_nohz(void)
296 {
297 }
298 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
299
300 /**
301 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
302 * @a: Code that RCU needs to pay attention to.
303 *
304 * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden
305 * in the inner idle loop, that is, between the rcu_idle_enter() and
306 * the rcu_idle_exit() -- RCU will happily ignore any such read-side
307 * critical sections. However, things like powertop need tracepoints
308 * in the inner idle loop.
309 *
310 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU())
311 * will tell RCU that it needs to pay attending, invoke its argument
312 * (in this example, a call to the do_something_with_RCU() function),
313 * and then tell RCU to go back to ignoring this CPU. It is permissible
314 * to nest RCU_NONIDLE() wrappers, but the nesting level is currently
315 * quite limited. If deeper nesting is required, it will be necessary
316 * to adjust DYNTICK_TASK_NESTING_VALUE accordingly.
317 */
318 #define RCU_NONIDLE(a) \
319 do { \
320 rcu_irq_enter(); \
321 do { a; } while (0); \
322 rcu_irq_exit(); \
323 } while (0)
324
325 /*
326 * Note a voluntary context switch for RCU-tasks benefit. This is a
327 * macro rather than an inline function to avoid #include hell.
328 */
329 #ifdef CONFIG_TASKS_RCU
330 #define TASKS_RCU(x) x
331 extern struct srcu_struct tasks_rcu_exit_srcu;
332 #define rcu_note_voluntary_context_switch(t) \
333 do { \
334 rcu_all_qs(); \
335 if (ACCESS_ONCE((t)->rcu_tasks_holdout)) \
336 ACCESS_ONCE((t)->rcu_tasks_holdout) = false; \
337 } while (0)
338 #else /* #ifdef CONFIG_TASKS_RCU */
339 #define TASKS_RCU(x) do { } while (0)
340 #define rcu_note_voluntary_context_switch(t) rcu_all_qs()
341 #endif /* #else #ifdef CONFIG_TASKS_RCU */
342
343 /**
344 * cond_resched_rcu_qs - Report potential quiescent states to RCU
345 *
346 * This macro resembles cond_resched(), except that it is defined to
347 * report potential quiescent states to RCU-tasks even if the cond_resched()
348 * machinery were to be shut off, as some advocate for PREEMPT kernels.
349 */
350 #define cond_resched_rcu_qs() \
351 do { \
352 if (!cond_resched()) \
353 rcu_note_voluntary_context_switch(current); \
354 } while (0)
355
356 #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP)
357 bool __rcu_is_watching(void);
358 #endif /* #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP) */
359
360 /*
361 * Infrastructure to implement the synchronize_() primitives in
362 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
363 */
364
365 typedef void call_rcu_func_t(struct rcu_head *head,
366 void (*func)(struct rcu_head *head));
367 void wait_rcu_gp(call_rcu_func_t crf);
368
369 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
370 #include <linux/rcutree.h>
371 #elif defined(CONFIG_TINY_RCU)
372 #include <linux/rcutiny.h>
373 #else
374 #error "Unknown RCU implementation specified to kernel configuration"
375 #endif
376
377 /*
378 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic
379 * initialization and destruction of rcu_head on the stack. rcu_head structures
380 * allocated dynamically in the heap or defined statically don't need any
381 * initialization.
382 */
383 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
384 void init_rcu_head(struct rcu_head *head);
385 void destroy_rcu_head(struct rcu_head *head);
386 void init_rcu_head_on_stack(struct rcu_head *head);
387 void destroy_rcu_head_on_stack(struct rcu_head *head);
388 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
389 static inline void init_rcu_head(struct rcu_head *head)
390 {
391 }
392
393 static inline void destroy_rcu_head(struct rcu_head *head)
394 {
395 }
396
397 static inline void init_rcu_head_on_stack(struct rcu_head *head)
398 {
399 }
400
401 static inline void destroy_rcu_head_on_stack(struct rcu_head *head)
402 {
403 }
404 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
405
406 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
407 bool rcu_lockdep_current_cpu_online(void);
408 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
409 static inline bool rcu_lockdep_current_cpu_online(void)
410 {
411 return true;
412 }
413 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
414
415 #ifdef CONFIG_DEBUG_LOCK_ALLOC
416
417 static inline void rcu_lock_acquire(struct lockdep_map *map)
418 {
419 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
420 }
421
422 static inline void rcu_lock_release(struct lockdep_map *map)
423 {
424 lock_release(map, 1, _THIS_IP_);
425 }
426
427 extern struct lockdep_map rcu_lock_map;
428 extern struct lockdep_map rcu_bh_lock_map;
429 extern struct lockdep_map rcu_sched_lock_map;
430 extern struct lockdep_map rcu_callback_map;
431 int debug_lockdep_rcu_enabled(void);
432
433 int rcu_read_lock_held(void);
434 int rcu_read_lock_bh_held(void);
435
436 /**
437 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
438 *
439 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
440 * RCU-sched read-side critical section. In absence of
441 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
442 * critical section unless it can prove otherwise. Note that disabling
443 * of preemption (including disabling irqs) counts as an RCU-sched
444 * read-side critical section. This is useful for debug checks in functions
445 * that required that they be called within an RCU-sched read-side
446 * critical section.
447 *
448 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
449 * and while lockdep is disabled.
450 *
451 * Note that if the CPU is in the idle loop from an RCU point of
452 * view (ie: that we are in the section between rcu_idle_enter() and
453 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
454 * did an rcu_read_lock(). The reason for this is that RCU ignores CPUs
455 * that are in such a section, considering these as in extended quiescent
456 * state, so such a CPU is effectively never in an RCU read-side critical
457 * section regardless of what RCU primitives it invokes. This state of
458 * affairs is required --- we need to keep an RCU-free window in idle
459 * where the CPU may possibly enter into low power mode. This way we can
460 * notice an extended quiescent state to other CPUs that started a grace
461 * period. Otherwise we would delay any grace period as long as we run in
462 * the idle task.
463 *
464 * Similarly, we avoid claiming an SRCU read lock held if the current
465 * CPU is offline.
466 */
467 #ifdef CONFIG_PREEMPT_COUNT
468 static inline int rcu_read_lock_sched_held(void)
469 {
470 int lockdep_opinion = 0;
471
472 if (!debug_lockdep_rcu_enabled())
473 return 1;
474 if (!rcu_is_watching())
475 return 0;
476 if (!rcu_lockdep_current_cpu_online())
477 return 0;
478 if (debug_locks)
479 lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
480 return lockdep_opinion || preempt_count() != 0 || irqs_disabled();
481 }
482 #else /* #ifdef CONFIG_PREEMPT_COUNT */
483 static inline int rcu_read_lock_sched_held(void)
484 {
485 return 1;
486 }
487 #endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
488
489 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
490
491 # define rcu_lock_acquire(a) do { } while (0)
492 # define rcu_lock_release(a) do { } while (0)
493
494 static inline int rcu_read_lock_held(void)
495 {
496 return 1;
497 }
498
499 static inline int rcu_read_lock_bh_held(void)
500 {
501 return 1;
502 }
503
504 #ifdef CONFIG_PREEMPT_COUNT
505 static inline int rcu_read_lock_sched_held(void)
506 {
507 return preempt_count() != 0 || irqs_disabled();
508 }
509 #else /* #ifdef CONFIG_PREEMPT_COUNT */
510 static inline int rcu_read_lock_sched_held(void)
511 {
512 return 1;
513 }
514 #endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
515
516 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
517
518 #ifdef CONFIG_PROVE_RCU
519
520 /**
521 * rcu_lockdep_assert - emit lockdep splat if specified condition not met
522 * @c: condition to check
523 * @s: informative message
524 */
525 #define rcu_lockdep_assert(c, s) \
526 do { \
527 static bool __section(.data.unlikely) __warned; \
528 if (debug_lockdep_rcu_enabled() && !__warned && !(c)) { \
529 __warned = true; \
530 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \
531 } \
532 } while (0)
533
534 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
535 static inline void rcu_preempt_sleep_check(void)
536 {
537 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
538 "Illegal context switch in RCU read-side critical section");
539 }
540 #else /* #ifdef CONFIG_PROVE_RCU */
541 static inline void rcu_preempt_sleep_check(void)
542 {
543 }
544 #endif /* #else #ifdef CONFIG_PROVE_RCU */
545
546 #define rcu_sleep_check() \
547 do { \
548 rcu_preempt_sleep_check(); \
549 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map), \
550 "Illegal context switch in RCU-bh read-side critical section"); \
551 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map), \
552 "Illegal context switch in RCU-sched read-side critical section"); \
553 } while (0)
554
555 #else /* #ifdef CONFIG_PROVE_RCU */
556
557 #define rcu_lockdep_assert(c, s) do { } while (0)
558 #define rcu_sleep_check() do { } while (0)
559
560 #endif /* #else #ifdef CONFIG_PROVE_RCU */
561
562 /*
563 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
564 * and rcu_assign_pointer(). Some of these could be folded into their
565 * callers, but they are left separate in order to ease introduction of
566 * multiple flavors of pointers to match the multiple flavors of RCU
567 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
568 * the future.
569 */
570
571 #ifdef __CHECKER__
572 #define rcu_dereference_sparse(p, space) \
573 ((void)(((typeof(*p) space *)p) == p))
574 #else /* #ifdef __CHECKER__ */
575 #define rcu_dereference_sparse(p, space)
576 #endif /* #else #ifdef __CHECKER__ */
577
578 #define __rcu_access_pointer(p, space) \
579 ({ \
580 typeof(*p) *_________p1 = (typeof(*p) *__force)ACCESS_ONCE(p); \
581 rcu_dereference_sparse(p, space); \
582 ((typeof(*p) __force __kernel *)(_________p1)); \
583 })
584 #define __rcu_dereference_check(p, c, space) \
585 ({ \
586 /* Dependency order vs. p above. */ \
587 typeof(*p) *________p1 = (typeof(*p) *__force)lockless_dereference(p); \
588 rcu_lockdep_assert(c, "suspicious rcu_dereference_check() usage"); \
589 rcu_dereference_sparse(p, space); \
590 ((typeof(*p) __force __kernel *)(________p1)); \
591 })
592 #define __rcu_dereference_protected(p, c, space) \
593 ({ \
594 rcu_lockdep_assert(c, "suspicious rcu_dereference_protected() usage"); \
595 rcu_dereference_sparse(p, space); \
596 ((typeof(*p) __force __kernel *)(p)); \
597 })
598
599 #define __rcu_access_index(p, space) \
600 ({ \
601 typeof(p) _________p1 = ACCESS_ONCE(p); \
602 rcu_dereference_sparse(p, space); \
603 (_________p1); \
604 })
605 #define __rcu_dereference_index_check(p, c) \
606 ({ \
607 /* Dependency order vs. p above. */ \
608 typeof(p) _________p1 = lockless_dereference(p); \
609 rcu_lockdep_assert(c, \
610 "suspicious rcu_dereference_index_check() usage"); \
611 (_________p1); \
612 })
613
614 /**
615 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
616 * @v: The value to statically initialize with.
617 */
618 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
619
620 /**
621 * lockless_dereference() - safely load a pointer for later dereference
622 * @p: The pointer to load
623 *
624 * Similar to rcu_dereference(), but for situations where the pointed-to
625 * object's lifetime is managed by something other than RCU. That
626 * "something other" might be reference counting or simple immortality.
627 */
628 #define lockless_dereference(p) \
629 ({ \
630 typeof(p) _________p1 = ACCESS_ONCE(p); \
631 smp_read_barrier_depends(); /* Dependency order vs. p above. */ \
632 (_________p1); \
633 })
634
635 /**
636 * rcu_assign_pointer() - assign to RCU-protected pointer
637 * @p: pointer to assign to
638 * @v: value to assign (publish)
639 *
640 * Assigns the specified value to the specified RCU-protected
641 * pointer, ensuring that any concurrent RCU readers will see
642 * any prior initialization.
643 *
644 * Inserts memory barriers on architectures that require them
645 * (which is most of them), and also prevents the compiler from
646 * reordering the code that initializes the structure after the pointer
647 * assignment. More importantly, this call documents which pointers
648 * will be dereferenced by RCU read-side code.
649 *
650 * In some special cases, you may use RCU_INIT_POINTER() instead
651 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due
652 * to the fact that it does not constrain either the CPU or the compiler.
653 * That said, using RCU_INIT_POINTER() when you should have used
654 * rcu_assign_pointer() is a very bad thing that results in
655 * impossible-to-diagnose memory corruption. So please be careful.
656 * See the RCU_INIT_POINTER() comment header for details.
657 *
658 * Note that rcu_assign_pointer() evaluates each of its arguments only
659 * once, appearances notwithstanding. One of the "extra" evaluations
660 * is in typeof() and the other visible only to sparse (__CHECKER__),
661 * neither of which actually execute the argument. As with most cpp
662 * macros, this execute-arguments-only-once property is important, so
663 * please be careful when making changes to rcu_assign_pointer() and the
664 * other macros that it invokes.
665 */
666 #define rcu_assign_pointer(p, v) smp_store_release(&p, RCU_INITIALIZER(v))
667
668 /**
669 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
670 * @p: The pointer to read
671 *
672 * Return the value of the specified RCU-protected pointer, but omit the
673 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful
674 * when the value of this pointer is accessed, but the pointer is not
675 * dereferenced, for example, when testing an RCU-protected pointer against
676 * NULL. Although rcu_access_pointer() may also be used in cases where
677 * update-side locks prevent the value of the pointer from changing, you
678 * should instead use rcu_dereference_protected() for this use case.
679 *
680 * It is also permissible to use rcu_access_pointer() when read-side
681 * access to the pointer was removed at least one grace period ago, as
682 * is the case in the context of the RCU callback that is freeing up
683 * the data, or after a synchronize_rcu() returns. This can be useful
684 * when tearing down multi-linked structures after a grace period
685 * has elapsed.
686 */
687 #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
688
689 /**
690 * rcu_dereference_check() - rcu_dereference with debug checking
691 * @p: The pointer to read, prior to dereferencing
692 * @c: The conditions under which the dereference will take place
693 *
694 * Do an rcu_dereference(), but check that the conditions under which the
695 * dereference will take place are correct. Typically the conditions
696 * indicate the various locking conditions that should be held at that
697 * point. The check should return true if the conditions are satisfied.
698 * An implicit check for being in an RCU read-side critical section
699 * (rcu_read_lock()) is included.
700 *
701 * For example:
702 *
703 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
704 *
705 * could be used to indicate to lockdep that foo->bar may only be dereferenced
706 * if either rcu_read_lock() is held, or that the lock required to replace
707 * the bar struct at foo->bar is held.
708 *
709 * Note that the list of conditions may also include indications of when a lock
710 * need not be held, for example during initialisation or destruction of the
711 * target struct:
712 *
713 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
714 * atomic_read(&foo->usage) == 0);
715 *
716 * Inserts memory barriers on architectures that require them
717 * (currently only the Alpha), prevents the compiler from refetching
718 * (and from merging fetches), and, more importantly, documents exactly
719 * which pointers are protected by RCU and checks that the pointer is
720 * annotated as __rcu.
721 */
722 #define rcu_dereference_check(p, c) \
723 __rcu_dereference_check((p), rcu_read_lock_held() || (c), __rcu)
724
725 /**
726 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
727 * @p: The pointer to read, prior to dereferencing
728 * @c: The conditions under which the dereference will take place
729 *
730 * This is the RCU-bh counterpart to rcu_dereference_check().
731 */
732 #define rcu_dereference_bh_check(p, c) \
733 __rcu_dereference_check((p), rcu_read_lock_bh_held() || (c), __rcu)
734
735 /**
736 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
737 * @p: The pointer to read, prior to dereferencing
738 * @c: The conditions under which the dereference will take place
739 *
740 * This is the RCU-sched counterpart to rcu_dereference_check().
741 */
742 #define rcu_dereference_sched_check(p, c) \
743 __rcu_dereference_check((p), rcu_read_lock_sched_held() || (c), \
744 __rcu)
745
746 #define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/
747
748 /*
749 * The tracing infrastructure traces RCU (we want that), but unfortunately
750 * some of the RCU checks causes tracing to lock up the system.
751 *
752 * The tracing version of rcu_dereference_raw() must not call
753 * rcu_read_lock_held().
754 */
755 #define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu)
756
757 /**
758 * rcu_access_index() - fetch RCU index with no dereferencing
759 * @p: The index to read
760 *
761 * Return the value of the specified RCU-protected index, but omit the
762 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful
763 * when the value of this index is accessed, but the index is not
764 * dereferenced, for example, when testing an RCU-protected index against
765 * -1. Although rcu_access_index() may also be used in cases where
766 * update-side locks prevent the value of the index from changing, you
767 * should instead use rcu_dereference_index_protected() for this use case.
768 */
769 #define rcu_access_index(p) __rcu_access_index((p), __rcu)
770
771 /**
772 * rcu_dereference_index_check() - rcu_dereference for indices with debug checking
773 * @p: The pointer to read, prior to dereferencing
774 * @c: The conditions under which the dereference will take place
775 *
776 * Similar to rcu_dereference_check(), but omits the sparse checking.
777 * This allows rcu_dereference_index_check() to be used on integers,
778 * which can then be used as array indices. Attempting to use
779 * rcu_dereference_check() on an integer will give compiler warnings
780 * because the sparse address-space mechanism relies on dereferencing
781 * the RCU-protected pointer. Dereferencing integers is not something
782 * that even gcc will put up with.
783 *
784 * Note that this function does not implicitly check for RCU read-side
785 * critical sections. If this function gains lots of uses, it might
786 * make sense to provide versions for each flavor of RCU, but it does
787 * not make sense as of early 2010.
788 */
789 #define rcu_dereference_index_check(p, c) \
790 __rcu_dereference_index_check((p), (c))
791
792 /**
793 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
794 * @p: The pointer to read, prior to dereferencing
795 * @c: The conditions under which the dereference will take place
796 *
797 * Return the value of the specified RCU-protected pointer, but omit
798 * both the smp_read_barrier_depends() and the ACCESS_ONCE(). This
799 * is useful in cases where update-side locks prevent the value of the
800 * pointer from changing. Please note that this primitive does -not-
801 * prevent the compiler from repeating this reference or combining it
802 * with other references, so it should not be used without protection
803 * of appropriate locks.
804 *
805 * This function is only for update-side use. Using this function
806 * when protected only by rcu_read_lock() will result in infrequent
807 * but very ugly failures.
808 */
809 #define rcu_dereference_protected(p, c) \
810 __rcu_dereference_protected((p), (c), __rcu)
811
812
813 /**
814 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
815 * @p: The pointer to read, prior to dereferencing
816 *
817 * This is a simple wrapper around rcu_dereference_check().
818 */
819 #define rcu_dereference(p) rcu_dereference_check(p, 0)
820
821 /**
822 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
823 * @p: The pointer to read, prior to dereferencing
824 *
825 * Makes rcu_dereference_check() do the dirty work.
826 */
827 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
828
829 /**
830 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
831 * @p: The pointer to read, prior to dereferencing
832 *
833 * Makes rcu_dereference_check() do the dirty work.
834 */
835 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
836
837 /**
838 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
839 *
840 * When synchronize_rcu() is invoked on one CPU while other CPUs
841 * are within RCU read-side critical sections, then the
842 * synchronize_rcu() is guaranteed to block until after all the other
843 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked
844 * on one CPU while other CPUs are within RCU read-side critical
845 * sections, invocation of the corresponding RCU callback is deferred
846 * until after the all the other CPUs exit their critical sections.
847 *
848 * Note, however, that RCU callbacks are permitted to run concurrently
849 * with new RCU read-side critical sections. One way that this can happen
850 * is via the following sequence of events: (1) CPU 0 enters an RCU
851 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
852 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
853 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
854 * callback is invoked. This is legal, because the RCU read-side critical
855 * section that was running concurrently with the call_rcu() (and which
856 * therefore might be referencing something that the corresponding RCU
857 * callback would free up) has completed before the corresponding
858 * RCU callback is invoked.
859 *
860 * RCU read-side critical sections may be nested. Any deferred actions
861 * will be deferred until the outermost RCU read-side critical section
862 * completes.
863 *
864 * You can avoid reading and understanding the next paragraph by
865 * following this rule: don't put anything in an rcu_read_lock() RCU
866 * read-side critical section that would block in a !PREEMPT kernel.
867 * But if you want the full story, read on!
868 *
869 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU),
870 * it is illegal to block while in an RCU read-side critical section.
871 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPT
872 * kernel builds, RCU read-side critical sections may be preempted,
873 * but explicit blocking is illegal. Finally, in preemptible RCU
874 * implementations in real-time (with -rt patchset) kernel builds, RCU
875 * read-side critical sections may be preempted and they may also block, but
876 * only when acquiring spinlocks that are subject to priority inheritance.
877 */
878 static inline void rcu_read_lock(void)
879 {
880 __rcu_read_lock();
881 __acquire(RCU);
882 rcu_lock_acquire(&rcu_lock_map);
883 rcu_lockdep_assert(rcu_is_watching(),
884 "rcu_read_lock() used illegally while idle");
885 }
886
887 /*
888 * So where is rcu_write_lock()? It does not exist, as there is no
889 * way for writers to lock out RCU readers. This is a feature, not
890 * a bug -- this property is what provides RCU's performance benefits.
891 * Of course, writers must coordinate with each other. The normal
892 * spinlock primitives work well for this, but any other technique may be
893 * used as well. RCU does not care how the writers keep out of each
894 * others' way, as long as they do so.
895 */
896
897 /**
898 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
899 *
900 * In most situations, rcu_read_unlock() is immune from deadlock.
901 * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock()
902 * is responsible for deboosting, which it does via rt_mutex_unlock().
903 * Unfortunately, this function acquires the scheduler's runqueue and
904 * priority-inheritance spinlocks. This means that deadlock could result
905 * if the caller of rcu_read_unlock() already holds one of these locks or
906 * any lock that is ever acquired while holding them; or any lock which
907 * can be taken from interrupt context because rcu_boost()->rt_mutex_lock()
908 * does not disable irqs while taking ->wait_lock.
909 *
910 * That said, RCU readers are never priority boosted unless they were
911 * preempted. Therefore, one way to avoid deadlock is to make sure
912 * that preemption never happens within any RCU read-side critical
913 * section whose outermost rcu_read_unlock() is called with one of
914 * rt_mutex_unlock()'s locks held. Such preemption can be avoided in
915 * a number of ways, for example, by invoking preempt_disable() before
916 * critical section's outermost rcu_read_lock().
917 *
918 * Given that the set of locks acquired by rt_mutex_unlock() might change
919 * at any time, a somewhat more future-proofed approach is to make sure
920 * that that preemption never happens within any RCU read-side critical
921 * section whose outermost rcu_read_unlock() is called with irqs disabled.
922 * This approach relies on the fact that rt_mutex_unlock() currently only
923 * acquires irq-disabled locks.
924 *
925 * The second of these two approaches is best in most situations,
926 * however, the first approach can also be useful, at least to those
927 * developers willing to keep abreast of the set of locks acquired by
928 * rt_mutex_unlock().
929 *
930 * See rcu_read_lock() for more information.
931 */
932 static inline void rcu_read_unlock(void)
933 {
934 rcu_lockdep_assert(rcu_is_watching(),
935 "rcu_read_unlock() used illegally while idle");
936 rcu_lock_release(&rcu_lock_map);
937 __release(RCU);
938 __rcu_read_unlock();
939 }
940
941 /**
942 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
943 *
944 * This is equivalent of rcu_read_lock(), but to be used when updates
945 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
946 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
947 * softirq handler to be a quiescent state, a process in RCU read-side
948 * critical section must be protected by disabling softirqs. Read-side
949 * critical sections in interrupt context can use just rcu_read_lock(),
950 * though this should at least be commented to avoid confusing people
951 * reading the code.
952 *
953 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
954 * must occur in the same context, for example, it is illegal to invoke
955 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
956 * was invoked from some other task.
957 */
958 static inline void rcu_read_lock_bh(void)
959 {
960 local_bh_disable();
961 __acquire(RCU_BH);
962 rcu_lock_acquire(&rcu_bh_lock_map);
963 rcu_lockdep_assert(rcu_is_watching(),
964 "rcu_read_lock_bh() used illegally while idle");
965 }
966
967 /*
968 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
969 *
970 * See rcu_read_lock_bh() for more information.
971 */
972 static inline void rcu_read_unlock_bh(void)
973 {
974 rcu_lockdep_assert(rcu_is_watching(),
975 "rcu_read_unlock_bh() used illegally while idle");
976 rcu_lock_release(&rcu_bh_lock_map);
977 __release(RCU_BH);
978 local_bh_enable();
979 }
980
981 /**
982 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
983 *
984 * This is equivalent of rcu_read_lock(), but to be used when updates
985 * are being done using call_rcu_sched() or synchronize_rcu_sched().
986 * Read-side critical sections can also be introduced by anything that
987 * disables preemption, including local_irq_disable() and friends.
988 *
989 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
990 * must occur in the same context, for example, it is illegal to invoke
991 * rcu_read_unlock_sched() from process context if the matching
992 * rcu_read_lock_sched() was invoked from an NMI handler.
993 */
994 static inline void rcu_read_lock_sched(void)
995 {
996 preempt_disable();
997 __acquire(RCU_SCHED);
998 rcu_lock_acquire(&rcu_sched_lock_map);
999 rcu_lockdep_assert(rcu_is_watching(),
1000 "rcu_read_lock_sched() used illegally while idle");
1001 }
1002
1003 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
1004 static inline notrace void rcu_read_lock_sched_notrace(void)
1005 {
1006 preempt_disable_notrace();
1007 __acquire(RCU_SCHED);
1008 }
1009
1010 /*
1011 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
1012 *
1013 * See rcu_read_lock_sched for more information.
1014 */
1015 static inline void rcu_read_unlock_sched(void)
1016 {
1017 rcu_lockdep_assert(rcu_is_watching(),
1018 "rcu_read_unlock_sched() used illegally while idle");
1019 rcu_lock_release(&rcu_sched_lock_map);
1020 __release(RCU_SCHED);
1021 preempt_enable();
1022 }
1023
1024 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
1025 static inline notrace void rcu_read_unlock_sched_notrace(void)
1026 {
1027 __release(RCU_SCHED);
1028 preempt_enable_notrace();
1029 }
1030
1031 /**
1032 * RCU_INIT_POINTER() - initialize an RCU protected pointer
1033 *
1034 * Initialize an RCU-protected pointer in special cases where readers
1035 * do not need ordering constraints on the CPU or the compiler. These
1036 * special cases are:
1037 *
1038 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer -or-
1039 * 2. The caller has taken whatever steps are required to prevent
1040 * RCU readers from concurrently accessing this pointer -or-
1041 * 3. The referenced data structure has already been exposed to
1042 * readers either at compile time or via rcu_assign_pointer() -and-
1043 * a. You have not made -any- reader-visible changes to
1044 * this structure since then -or-
1045 * b. It is OK for readers accessing this structure from its
1046 * new location to see the old state of the structure. (For
1047 * example, the changes were to statistical counters or to
1048 * other state where exact synchronization is not required.)
1049 *
1050 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
1051 * result in impossible-to-diagnose memory corruption. As in the structures
1052 * will look OK in crash dumps, but any concurrent RCU readers might
1053 * see pre-initialized values of the referenced data structure. So
1054 * please be very careful how you use RCU_INIT_POINTER()!!!
1055 *
1056 * If you are creating an RCU-protected linked structure that is accessed
1057 * by a single external-to-structure RCU-protected pointer, then you may
1058 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
1059 * pointers, but you must use rcu_assign_pointer() to initialize the
1060 * external-to-structure pointer -after- you have completely initialized
1061 * the reader-accessible portions of the linked structure.
1062 *
1063 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
1064 * ordering guarantees for either the CPU or the compiler.
1065 */
1066 #define RCU_INIT_POINTER(p, v) \
1067 do { \
1068 rcu_dereference_sparse(p, __rcu); \
1069 p = RCU_INITIALIZER(v); \
1070 } while (0)
1071
1072 /**
1073 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
1074 *
1075 * GCC-style initialization for an RCU-protected pointer in a structure field.
1076 */
1077 #define RCU_POINTER_INITIALIZER(p, v) \
1078 .p = RCU_INITIALIZER(v)
1079
1080 /*
1081 * Does the specified offset indicate that the corresponding rcu_head
1082 * structure can be handled by kfree_rcu()?
1083 */
1084 #define __is_kfree_rcu_offset(offset) ((offset) < 4096)
1085
1086 /*
1087 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
1088 */
1089 #define __kfree_rcu(head, offset) \
1090 do { \
1091 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
1092 kfree_call_rcu(head, (void (*)(struct rcu_head *))(unsigned long)(offset)); \
1093 } while (0)
1094
1095 /**
1096 * kfree_rcu() - kfree an object after a grace period.
1097 * @ptr: pointer to kfree
1098 * @rcu_head: the name of the struct rcu_head within the type of @ptr.
1099 *
1100 * Many rcu callbacks functions just call kfree() on the base structure.
1101 * These functions are trivial, but their size adds up, and furthermore
1102 * when they are used in a kernel module, that module must invoke the
1103 * high-latency rcu_barrier() function at module-unload time.
1104 *
1105 * The kfree_rcu() function handles this issue. Rather than encoding a
1106 * function address in the embedded rcu_head structure, kfree_rcu() instead
1107 * encodes the offset of the rcu_head structure within the base structure.
1108 * Because the functions are not allowed in the low-order 4096 bytes of
1109 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
1110 * If the offset is larger than 4095 bytes, a compile-time error will
1111 * be generated in __kfree_rcu(). If this error is triggered, you can
1112 * either fall back to use of call_rcu() or rearrange the structure to
1113 * position the rcu_head structure into the first 4096 bytes.
1114 *
1115 * Note that the allowable offset might decrease in the future, for example,
1116 * to allow something like kmem_cache_free_rcu().
1117 *
1118 * The BUILD_BUG_ON check must not involve any function calls, hence the
1119 * checks are done in macros here.
1120 */
1121 #define kfree_rcu(ptr, rcu_head) \
1122 __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))
1123
1124 #if defined(CONFIG_TINY_RCU) || defined(CONFIG_RCU_NOCB_CPU_ALL)
1125 static inline int rcu_needs_cpu(unsigned long *delta_jiffies)
1126 {
1127 *delta_jiffies = ULONG_MAX;
1128 return 0;
1129 }
1130 #endif /* #if defined(CONFIG_TINY_RCU) || defined(CONFIG_RCU_NOCB_CPU_ALL) */
1131
1132 #if defined(CONFIG_RCU_NOCB_CPU_ALL)
1133 static inline bool rcu_is_nocb_cpu(int cpu) { return true; }
1134 #elif defined(CONFIG_RCU_NOCB_CPU)
1135 bool rcu_is_nocb_cpu(int cpu);
1136 #else
1137 static inline bool rcu_is_nocb_cpu(int cpu) { return false; }
1138 #endif
1139
1140
1141 /* Only for use by adaptive-ticks code. */
1142 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
1143 bool rcu_sys_is_idle(void);
1144 void rcu_sysidle_force_exit(void);
1145 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
1146
1147 static inline bool rcu_sys_is_idle(void)
1148 {
1149 return false;
1150 }
1151
1152 static inline void rcu_sysidle_force_exit(void)
1153 {
1154 }
1155
1156 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
1157
1158
1159 #endif /* __LINUX_RCUPDATE_H */
This page took 0.076975 seconds and 5 git commands to generate.