rcu: Make rcu_assign_pointer() unconditionally insert a memory barrier
[deliverable/linux.git] / include / linux / rcupdate.h
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2001
19 *
20 * Author: Dipankar Sarma <dipankar@in.ibm.com>
21 *
22 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
23 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
24 * Papers:
25 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
26 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
27 *
28 * For detailed explanation of Read-Copy Update mechanism see -
29 * http://lse.sourceforge.net/locking/rcupdate.html
30 *
31 */
32
33 #ifndef __LINUX_RCUPDATE_H
34 #define __LINUX_RCUPDATE_H
35
36 #include <linux/types.h>
37 #include <linux/cache.h>
38 #include <linux/spinlock.h>
39 #include <linux/threads.h>
40 #include <linux/cpumask.h>
41 #include <linux/seqlock.h>
42 #include <linux/lockdep.h>
43 #include <linux/completion.h>
44 #include <linux/debugobjects.h>
45 #include <linux/compiler.h>
46
47 #ifdef CONFIG_RCU_TORTURE_TEST
48 extern int rcutorture_runnable; /* for sysctl */
49 #endif /* #ifdef CONFIG_RCU_TORTURE_TEST */
50
51 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU)
52 extern void rcutorture_record_test_transition(void);
53 extern void rcutorture_record_progress(unsigned long vernum);
54 #else
55 static inline void rcutorture_record_test_transition(void)
56 {
57 }
58 static inline void rcutorture_record_progress(unsigned long vernum)
59 {
60 }
61 #endif
62
63 #define UINT_CMP_GE(a, b) (UINT_MAX / 2 >= (a) - (b))
64 #define UINT_CMP_LT(a, b) (UINT_MAX / 2 < (a) - (b))
65 #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b))
66 #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b))
67
68 /* Exported common interfaces */
69
70 #ifdef CONFIG_PREEMPT_RCU
71
72 /**
73 * call_rcu() - Queue an RCU callback for invocation after a grace period.
74 * @head: structure to be used for queueing the RCU updates.
75 * @func: actual callback function to be invoked after the grace period
76 *
77 * The callback function will be invoked some time after a full grace
78 * period elapses, in other words after all pre-existing RCU read-side
79 * critical sections have completed. However, the callback function
80 * might well execute concurrently with RCU read-side critical sections
81 * that started after call_rcu() was invoked. RCU read-side critical
82 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
83 * and may be nested.
84 */
85 extern void call_rcu(struct rcu_head *head,
86 void (*func)(struct rcu_head *head));
87
88 #else /* #ifdef CONFIG_PREEMPT_RCU */
89
90 /* In classic RCU, call_rcu() is just call_rcu_sched(). */
91 #define call_rcu call_rcu_sched
92
93 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
94
95 /**
96 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
97 * @head: structure to be used for queueing the RCU updates.
98 * @func: actual callback function to be invoked after the grace period
99 *
100 * The callback function will be invoked some time after a full grace
101 * period elapses, in other words after all currently executing RCU
102 * read-side critical sections have completed. call_rcu_bh() assumes
103 * that the read-side critical sections end on completion of a softirq
104 * handler. This means that read-side critical sections in process
105 * context must not be interrupted by softirqs. This interface is to be
106 * used when most of the read-side critical sections are in softirq context.
107 * RCU read-side critical sections are delimited by :
108 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context.
109 * OR
110 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
111 * These may be nested.
112 */
113 extern void call_rcu_bh(struct rcu_head *head,
114 void (*func)(struct rcu_head *head));
115
116 /**
117 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
118 * @head: structure to be used for queueing the RCU updates.
119 * @func: actual callback function to be invoked after the grace period
120 *
121 * The callback function will be invoked some time after a full grace
122 * period elapses, in other words after all currently executing RCU
123 * read-side critical sections have completed. call_rcu_sched() assumes
124 * that the read-side critical sections end on enabling of preemption
125 * or on voluntary preemption.
126 * RCU read-side critical sections are delimited by :
127 * - rcu_read_lock_sched() and rcu_read_unlock_sched(),
128 * OR
129 * anything that disables preemption.
130 * These may be nested.
131 */
132 extern void call_rcu_sched(struct rcu_head *head,
133 void (*func)(struct rcu_head *rcu));
134
135 extern void synchronize_sched(void);
136
137 static inline void __rcu_read_lock_bh(void)
138 {
139 local_bh_disable();
140 }
141
142 static inline void __rcu_read_unlock_bh(void)
143 {
144 local_bh_enable();
145 }
146
147 #ifdef CONFIG_PREEMPT_RCU
148
149 extern void __rcu_read_lock(void);
150 extern void __rcu_read_unlock(void);
151 void synchronize_rcu(void);
152
153 /*
154 * Defined as a macro as it is a very low level header included from
155 * areas that don't even know about current. This gives the rcu_read_lock()
156 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
157 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
158 */
159 #define rcu_preempt_depth() (current->rcu_read_lock_nesting)
160
161 #else /* #ifdef CONFIG_PREEMPT_RCU */
162
163 static inline void __rcu_read_lock(void)
164 {
165 preempt_disable();
166 }
167
168 static inline void __rcu_read_unlock(void)
169 {
170 preempt_enable();
171 }
172
173 static inline void synchronize_rcu(void)
174 {
175 synchronize_sched();
176 }
177
178 static inline int rcu_preempt_depth(void)
179 {
180 return 0;
181 }
182
183 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
184
185 /* Internal to kernel */
186 extern void rcu_sched_qs(int cpu);
187 extern void rcu_bh_qs(int cpu);
188 extern void rcu_check_callbacks(int cpu, int user);
189 struct notifier_block;
190
191 #ifdef CONFIG_NO_HZ
192
193 extern void rcu_enter_nohz(void);
194 extern void rcu_exit_nohz(void);
195
196 #else /* #ifdef CONFIG_NO_HZ */
197
198 static inline void rcu_enter_nohz(void)
199 {
200 }
201
202 static inline void rcu_exit_nohz(void)
203 {
204 }
205
206 #endif /* #else #ifdef CONFIG_NO_HZ */
207
208 /*
209 * Infrastructure to implement the synchronize_() primitives in
210 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
211 */
212
213 typedef void call_rcu_func_t(struct rcu_head *head,
214 void (*func)(struct rcu_head *head));
215 void wait_rcu_gp(call_rcu_func_t crf);
216
217 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU)
218 #include <linux/rcutree.h>
219 #elif defined(CONFIG_TINY_RCU) || defined(CONFIG_TINY_PREEMPT_RCU)
220 #include <linux/rcutiny.h>
221 #else
222 #error "Unknown RCU implementation specified to kernel configuration"
223 #endif
224
225 /*
226 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic
227 * initialization and destruction of rcu_head on the stack. rcu_head structures
228 * allocated dynamically in the heap or defined statically don't need any
229 * initialization.
230 */
231 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
232 extern void init_rcu_head_on_stack(struct rcu_head *head);
233 extern void destroy_rcu_head_on_stack(struct rcu_head *head);
234 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
235 static inline void init_rcu_head_on_stack(struct rcu_head *head)
236 {
237 }
238
239 static inline void destroy_rcu_head_on_stack(struct rcu_head *head)
240 {
241 }
242 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
243
244 #ifdef CONFIG_DEBUG_LOCK_ALLOC
245
246 extern struct lockdep_map rcu_lock_map;
247 # define rcu_read_acquire() \
248 lock_acquire(&rcu_lock_map, 0, 0, 2, 1, NULL, _THIS_IP_)
249 # define rcu_read_release() lock_release(&rcu_lock_map, 1, _THIS_IP_)
250
251 extern struct lockdep_map rcu_bh_lock_map;
252 # define rcu_read_acquire_bh() \
253 lock_acquire(&rcu_bh_lock_map, 0, 0, 2, 1, NULL, _THIS_IP_)
254 # define rcu_read_release_bh() lock_release(&rcu_bh_lock_map, 1, _THIS_IP_)
255
256 extern struct lockdep_map rcu_sched_lock_map;
257 # define rcu_read_acquire_sched() \
258 lock_acquire(&rcu_sched_lock_map, 0, 0, 2, 1, NULL, _THIS_IP_)
259 # define rcu_read_release_sched() \
260 lock_release(&rcu_sched_lock_map, 1, _THIS_IP_)
261
262 extern int debug_lockdep_rcu_enabled(void);
263
264 /**
265 * rcu_read_lock_held() - might we be in RCU read-side critical section?
266 *
267 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
268 * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC,
269 * this assumes we are in an RCU read-side critical section unless it can
270 * prove otherwise. This is useful for debug checks in functions that
271 * require that they be called within an RCU read-side critical section.
272 *
273 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
274 * and while lockdep is disabled.
275 */
276 static inline int rcu_read_lock_held(void)
277 {
278 if (!debug_lockdep_rcu_enabled())
279 return 1;
280 return lock_is_held(&rcu_lock_map);
281 }
282
283 /*
284 * rcu_read_lock_bh_held() is defined out of line to avoid #include-file
285 * hell.
286 */
287 extern int rcu_read_lock_bh_held(void);
288
289 /**
290 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
291 *
292 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
293 * RCU-sched read-side critical section. In absence of
294 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
295 * critical section unless it can prove otherwise. Note that disabling
296 * of preemption (including disabling irqs) counts as an RCU-sched
297 * read-side critical section. This is useful for debug checks in functions
298 * that required that they be called within an RCU-sched read-side
299 * critical section.
300 *
301 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
302 * and while lockdep is disabled.
303 */
304 #ifdef CONFIG_PREEMPT_COUNT
305 static inline int rcu_read_lock_sched_held(void)
306 {
307 int lockdep_opinion = 0;
308
309 if (!debug_lockdep_rcu_enabled())
310 return 1;
311 if (debug_locks)
312 lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
313 return lockdep_opinion || preempt_count() != 0 || irqs_disabled();
314 }
315 #else /* #ifdef CONFIG_PREEMPT_COUNT */
316 static inline int rcu_read_lock_sched_held(void)
317 {
318 return 1;
319 }
320 #endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
321
322 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
323
324 # define rcu_read_acquire() do { } while (0)
325 # define rcu_read_release() do { } while (0)
326 # define rcu_read_acquire_bh() do { } while (0)
327 # define rcu_read_release_bh() do { } while (0)
328 # define rcu_read_acquire_sched() do { } while (0)
329 # define rcu_read_release_sched() do { } while (0)
330
331 static inline int rcu_read_lock_held(void)
332 {
333 return 1;
334 }
335
336 static inline int rcu_read_lock_bh_held(void)
337 {
338 return 1;
339 }
340
341 #ifdef CONFIG_PREEMPT_COUNT
342 static inline int rcu_read_lock_sched_held(void)
343 {
344 return preempt_count() != 0 || irqs_disabled();
345 }
346 #else /* #ifdef CONFIG_PREEMPT_COUNT */
347 static inline int rcu_read_lock_sched_held(void)
348 {
349 return 1;
350 }
351 #endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
352
353 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
354
355 #ifdef CONFIG_PROVE_RCU
356
357 extern int rcu_my_thread_group_empty(void);
358
359 /**
360 * rcu_lockdep_assert - emit lockdep splat if specified condition not met
361 * @c: condition to check
362 * @s: informative message
363 */
364 #define rcu_lockdep_assert(c, s) \
365 do { \
366 static bool __warned; \
367 if (debug_lockdep_rcu_enabled() && !__warned && !(c)) { \
368 __warned = true; \
369 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \
370 } \
371 } while (0)
372
373 #define rcu_sleep_check() \
374 do { \
375 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map), \
376 "Illegal context switch in RCU-bh" \
377 " read-side critical section"); \
378 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map), \
379 "Illegal context switch in RCU-sched"\
380 " read-side critical section"); \
381 } while (0)
382
383 #else /* #ifdef CONFIG_PROVE_RCU */
384
385 #define rcu_lockdep_assert(c, s) do { } while (0)
386 #define rcu_sleep_check() do { } while (0)
387
388 #endif /* #else #ifdef CONFIG_PROVE_RCU */
389
390 /*
391 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
392 * and rcu_assign_pointer(). Some of these could be folded into their
393 * callers, but they are left separate in order to ease introduction of
394 * multiple flavors of pointers to match the multiple flavors of RCU
395 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
396 * the future.
397 */
398
399 #ifdef __CHECKER__
400 #define rcu_dereference_sparse(p, space) \
401 ((void)(((typeof(*p) space *)p) == p))
402 #else /* #ifdef __CHECKER__ */
403 #define rcu_dereference_sparse(p, space)
404 #endif /* #else #ifdef __CHECKER__ */
405
406 #define __rcu_access_pointer(p, space) \
407 ({ \
408 typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \
409 rcu_dereference_sparse(p, space); \
410 ((typeof(*p) __force __kernel *)(_________p1)); \
411 })
412 #define __rcu_dereference_check(p, c, space) \
413 ({ \
414 typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \
415 rcu_lockdep_assert(c, "suspicious rcu_dereference_check()" \
416 " usage"); \
417 rcu_dereference_sparse(p, space); \
418 smp_read_barrier_depends(); \
419 ((typeof(*p) __force __kernel *)(_________p1)); \
420 })
421 #define __rcu_dereference_protected(p, c, space) \
422 ({ \
423 rcu_lockdep_assert(c, "suspicious rcu_dereference_protected()" \
424 " usage"); \
425 rcu_dereference_sparse(p, space); \
426 ((typeof(*p) __force __kernel *)(p)); \
427 })
428
429 #define __rcu_access_index(p, space) \
430 ({ \
431 typeof(p) _________p1 = ACCESS_ONCE(p); \
432 rcu_dereference_sparse(p, space); \
433 (_________p1); \
434 })
435 #define __rcu_dereference_index_check(p, c) \
436 ({ \
437 typeof(p) _________p1 = ACCESS_ONCE(p); \
438 rcu_lockdep_assert(c, \
439 "suspicious rcu_dereference_index_check()" \
440 " usage"); \
441 smp_read_barrier_depends(); \
442 (_________p1); \
443 })
444 #define __rcu_assign_pointer(p, v, space) \
445 ({ \
446 smp_wmb(); \
447 (p) = (typeof(*v) __force space *)(v); \
448 })
449
450
451 /**
452 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
453 * @p: The pointer to read
454 *
455 * Return the value of the specified RCU-protected pointer, but omit the
456 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful
457 * when the value of this pointer is accessed, but the pointer is not
458 * dereferenced, for example, when testing an RCU-protected pointer against
459 * NULL. Although rcu_access_pointer() may also be used in cases where
460 * update-side locks prevent the value of the pointer from changing, you
461 * should instead use rcu_dereference_protected() for this use case.
462 */
463 #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
464
465 /**
466 * rcu_dereference_check() - rcu_dereference with debug checking
467 * @p: The pointer to read, prior to dereferencing
468 * @c: The conditions under which the dereference will take place
469 *
470 * Do an rcu_dereference(), but check that the conditions under which the
471 * dereference will take place are correct. Typically the conditions
472 * indicate the various locking conditions that should be held at that
473 * point. The check should return true if the conditions are satisfied.
474 * An implicit check for being in an RCU read-side critical section
475 * (rcu_read_lock()) is included.
476 *
477 * For example:
478 *
479 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
480 *
481 * could be used to indicate to lockdep that foo->bar may only be dereferenced
482 * if either rcu_read_lock() is held, or that the lock required to replace
483 * the bar struct at foo->bar is held.
484 *
485 * Note that the list of conditions may also include indications of when a lock
486 * need not be held, for example during initialisation or destruction of the
487 * target struct:
488 *
489 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
490 * atomic_read(&foo->usage) == 0);
491 *
492 * Inserts memory barriers on architectures that require them
493 * (currently only the Alpha), prevents the compiler from refetching
494 * (and from merging fetches), and, more importantly, documents exactly
495 * which pointers are protected by RCU and checks that the pointer is
496 * annotated as __rcu.
497 */
498 #define rcu_dereference_check(p, c) \
499 __rcu_dereference_check((p), rcu_read_lock_held() || (c), __rcu)
500
501 /**
502 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
503 * @p: The pointer to read, prior to dereferencing
504 * @c: The conditions under which the dereference will take place
505 *
506 * This is the RCU-bh counterpart to rcu_dereference_check().
507 */
508 #define rcu_dereference_bh_check(p, c) \
509 __rcu_dereference_check((p), rcu_read_lock_bh_held() || (c), __rcu)
510
511 /**
512 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
513 * @p: The pointer to read, prior to dereferencing
514 * @c: The conditions under which the dereference will take place
515 *
516 * This is the RCU-sched counterpart to rcu_dereference_check().
517 */
518 #define rcu_dereference_sched_check(p, c) \
519 __rcu_dereference_check((p), rcu_read_lock_sched_held() || (c), \
520 __rcu)
521
522 #define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/
523
524 /**
525 * rcu_access_index() - fetch RCU index with no dereferencing
526 * @p: The index to read
527 *
528 * Return the value of the specified RCU-protected index, but omit the
529 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful
530 * when the value of this index is accessed, but the index is not
531 * dereferenced, for example, when testing an RCU-protected index against
532 * -1. Although rcu_access_index() may also be used in cases where
533 * update-side locks prevent the value of the index from changing, you
534 * should instead use rcu_dereference_index_protected() for this use case.
535 */
536 #define rcu_access_index(p) __rcu_access_index((p), __rcu)
537
538 /**
539 * rcu_dereference_index_check() - rcu_dereference for indices with debug checking
540 * @p: The pointer to read, prior to dereferencing
541 * @c: The conditions under which the dereference will take place
542 *
543 * Similar to rcu_dereference_check(), but omits the sparse checking.
544 * This allows rcu_dereference_index_check() to be used on integers,
545 * which can then be used as array indices. Attempting to use
546 * rcu_dereference_check() on an integer will give compiler warnings
547 * because the sparse address-space mechanism relies on dereferencing
548 * the RCU-protected pointer. Dereferencing integers is not something
549 * that even gcc will put up with.
550 *
551 * Note that this function does not implicitly check for RCU read-side
552 * critical sections. If this function gains lots of uses, it might
553 * make sense to provide versions for each flavor of RCU, but it does
554 * not make sense as of early 2010.
555 */
556 #define rcu_dereference_index_check(p, c) \
557 __rcu_dereference_index_check((p), (c))
558
559 /**
560 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
561 * @p: The pointer to read, prior to dereferencing
562 * @c: The conditions under which the dereference will take place
563 *
564 * Return the value of the specified RCU-protected pointer, but omit
565 * both the smp_read_barrier_depends() and the ACCESS_ONCE(). This
566 * is useful in cases where update-side locks prevent the value of the
567 * pointer from changing. Please note that this primitive does -not-
568 * prevent the compiler from repeating this reference or combining it
569 * with other references, so it should not be used without protection
570 * of appropriate locks.
571 *
572 * This function is only for update-side use. Using this function
573 * when protected only by rcu_read_lock() will result in infrequent
574 * but very ugly failures.
575 */
576 #define rcu_dereference_protected(p, c) \
577 __rcu_dereference_protected((p), (c), __rcu)
578
579
580 /**
581 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
582 * @p: The pointer to read, prior to dereferencing
583 *
584 * This is a simple wrapper around rcu_dereference_check().
585 */
586 #define rcu_dereference(p) rcu_dereference_check(p, 0)
587
588 /**
589 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
590 * @p: The pointer to read, prior to dereferencing
591 *
592 * Makes rcu_dereference_check() do the dirty work.
593 */
594 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
595
596 /**
597 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
598 * @p: The pointer to read, prior to dereferencing
599 *
600 * Makes rcu_dereference_check() do the dirty work.
601 */
602 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
603
604 /**
605 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
606 *
607 * When synchronize_rcu() is invoked on one CPU while other CPUs
608 * are within RCU read-side critical sections, then the
609 * synchronize_rcu() is guaranteed to block until after all the other
610 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked
611 * on one CPU while other CPUs are within RCU read-side critical
612 * sections, invocation of the corresponding RCU callback is deferred
613 * until after the all the other CPUs exit their critical sections.
614 *
615 * Note, however, that RCU callbacks are permitted to run concurrently
616 * with new RCU read-side critical sections. One way that this can happen
617 * is via the following sequence of events: (1) CPU 0 enters an RCU
618 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
619 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
620 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
621 * callback is invoked. This is legal, because the RCU read-side critical
622 * section that was running concurrently with the call_rcu() (and which
623 * therefore might be referencing something that the corresponding RCU
624 * callback would free up) has completed before the corresponding
625 * RCU callback is invoked.
626 *
627 * RCU read-side critical sections may be nested. Any deferred actions
628 * will be deferred until the outermost RCU read-side critical section
629 * completes.
630 *
631 * You can avoid reading and understanding the next paragraph by
632 * following this rule: don't put anything in an rcu_read_lock() RCU
633 * read-side critical section that would block in a !PREEMPT kernel.
634 * But if you want the full story, read on!
635 *
636 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU), it
637 * is illegal to block while in an RCU read-side critical section. In
638 * preemptible RCU implementations (TREE_PREEMPT_RCU and TINY_PREEMPT_RCU)
639 * in CONFIG_PREEMPT kernel builds, RCU read-side critical sections may
640 * be preempted, but explicit blocking is illegal. Finally, in preemptible
641 * RCU implementations in real-time (CONFIG_PREEMPT_RT) kernel builds,
642 * RCU read-side critical sections may be preempted and they may also
643 * block, but only when acquiring spinlocks that are subject to priority
644 * inheritance.
645 */
646 static inline void rcu_read_lock(void)
647 {
648 __rcu_read_lock();
649 __acquire(RCU);
650 rcu_read_acquire();
651 }
652
653 /*
654 * So where is rcu_write_lock()? It does not exist, as there is no
655 * way for writers to lock out RCU readers. This is a feature, not
656 * a bug -- this property is what provides RCU's performance benefits.
657 * Of course, writers must coordinate with each other. The normal
658 * spinlock primitives work well for this, but any other technique may be
659 * used as well. RCU does not care how the writers keep out of each
660 * others' way, as long as they do so.
661 */
662
663 /**
664 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
665 *
666 * See rcu_read_lock() for more information.
667 */
668 static inline void rcu_read_unlock(void)
669 {
670 rcu_read_release();
671 __release(RCU);
672 __rcu_read_unlock();
673 }
674
675 /**
676 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
677 *
678 * This is equivalent of rcu_read_lock(), but to be used when updates
679 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
680 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
681 * softirq handler to be a quiescent state, a process in RCU read-side
682 * critical section must be protected by disabling softirqs. Read-side
683 * critical sections in interrupt context can use just rcu_read_lock(),
684 * though this should at least be commented to avoid confusing people
685 * reading the code.
686 */
687 static inline void rcu_read_lock_bh(void)
688 {
689 __rcu_read_lock_bh();
690 __acquire(RCU_BH);
691 rcu_read_acquire_bh();
692 }
693
694 /*
695 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
696 *
697 * See rcu_read_lock_bh() for more information.
698 */
699 static inline void rcu_read_unlock_bh(void)
700 {
701 rcu_read_release_bh();
702 __release(RCU_BH);
703 __rcu_read_unlock_bh();
704 }
705
706 /**
707 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
708 *
709 * This is equivalent of rcu_read_lock(), but to be used when updates
710 * are being done using call_rcu_sched() or synchronize_rcu_sched().
711 * Read-side critical sections can also be introduced by anything that
712 * disables preemption, including local_irq_disable() and friends.
713 */
714 static inline void rcu_read_lock_sched(void)
715 {
716 preempt_disable();
717 __acquire(RCU_SCHED);
718 rcu_read_acquire_sched();
719 }
720
721 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
722 static inline notrace void rcu_read_lock_sched_notrace(void)
723 {
724 preempt_disable_notrace();
725 __acquire(RCU_SCHED);
726 }
727
728 /*
729 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
730 *
731 * See rcu_read_lock_sched for more information.
732 */
733 static inline void rcu_read_unlock_sched(void)
734 {
735 rcu_read_release_sched();
736 __release(RCU_SCHED);
737 preempt_enable();
738 }
739
740 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
741 static inline notrace void rcu_read_unlock_sched_notrace(void)
742 {
743 __release(RCU_SCHED);
744 preempt_enable_notrace();
745 }
746
747 /**
748 * rcu_assign_pointer() - assign to RCU-protected pointer
749 * @p: pointer to assign to
750 * @v: value to assign (publish)
751 *
752 * Assigns the specified value to the specified RCU-protected
753 * pointer, ensuring that any concurrent RCU readers will see
754 * any prior initialization. Returns the value assigned.
755 *
756 * Inserts memory barriers on architectures that require them
757 * (pretty much all of them other than x86), and also prevents
758 * the compiler from reordering the code that initializes the
759 * structure after the pointer assignment. More importantly, this
760 * call documents which pointers will be dereferenced by RCU read-side
761 * code.
762 */
763 #define rcu_assign_pointer(p, v) \
764 __rcu_assign_pointer((p), (v), __rcu)
765
766 /**
767 * RCU_INIT_POINTER() - initialize an RCU protected pointer
768 *
769 * Initialize an RCU-protected pointer in such a way to avoid RCU-lockdep
770 * splats.
771 */
772 #define RCU_INIT_POINTER(p, v) \
773 p = (typeof(*v) __force __rcu *)(v)
774
775 static __always_inline bool __is_kfree_rcu_offset(unsigned long offset)
776 {
777 return offset < 4096;
778 }
779
780 static __always_inline
781 void __kfree_rcu(struct rcu_head *head, unsigned long offset)
782 {
783 typedef void (*rcu_callback)(struct rcu_head *);
784
785 BUILD_BUG_ON(!__builtin_constant_p(offset));
786
787 /* See the kfree_rcu() header comment. */
788 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset));
789
790 call_rcu(head, (rcu_callback)offset);
791 }
792
793 /**
794 * kfree_rcu() - kfree an object after a grace period.
795 * @ptr: pointer to kfree
796 * @rcu_head: the name of the struct rcu_head within the type of @ptr.
797 *
798 * Many rcu callbacks functions just call kfree() on the base structure.
799 * These functions are trivial, but their size adds up, and furthermore
800 * when they are used in a kernel module, that module must invoke the
801 * high-latency rcu_barrier() function at module-unload time.
802 *
803 * The kfree_rcu() function handles this issue. Rather than encoding a
804 * function address in the embedded rcu_head structure, kfree_rcu() instead
805 * encodes the offset of the rcu_head structure within the base structure.
806 * Because the functions are not allowed in the low-order 4096 bytes of
807 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
808 * If the offset is larger than 4095 bytes, a compile-time error will
809 * be generated in __kfree_rcu(). If this error is triggered, you can
810 * either fall back to use of call_rcu() or rearrange the structure to
811 * position the rcu_head structure into the first 4096 bytes.
812 *
813 * Note that the allowable offset might decrease in the future, for example,
814 * to allow something like kmem_cache_free_rcu().
815 */
816 #define kfree_rcu(ptr, rcu_head) \
817 __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))
818
819 #endif /* __LINUX_RCUPDATE_H */
This page took 0.052105 seconds and 5 git commands to generate.