Merge branch 'rcu/next' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck...
[deliverable/linux.git] / include / linux / rcupdate.h
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2001
19 *
20 * Author: Dipankar Sarma <dipankar@in.ibm.com>
21 *
22 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
23 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
24 * Papers:
25 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
26 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
27 *
28 * For detailed explanation of Read-Copy Update mechanism see -
29 * http://lse.sourceforge.net/locking/rcupdate.html
30 *
31 */
32
33 #ifndef __LINUX_RCUPDATE_H
34 #define __LINUX_RCUPDATE_H
35
36 #include <linux/types.h>
37 #include <linux/cache.h>
38 #include <linux/spinlock.h>
39 #include <linux/threads.h>
40 #include <linux/cpumask.h>
41 #include <linux/seqlock.h>
42 #include <linux/lockdep.h>
43 #include <linux/completion.h>
44 #include <linux/debugobjects.h>
45 #include <linux/bug.h>
46 #include <linux/compiler.h>
47
48 #ifdef CONFIG_RCU_TORTURE_TEST
49 extern int rcutorture_runnable; /* for sysctl */
50 #endif /* #ifdef CONFIG_RCU_TORTURE_TEST */
51
52 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU)
53 extern void rcutorture_record_test_transition(void);
54 extern void rcutorture_record_progress(unsigned long vernum);
55 extern void do_trace_rcu_torture_read(char *rcutorturename,
56 struct rcu_head *rhp);
57 #else
58 static inline void rcutorture_record_test_transition(void)
59 {
60 }
61 static inline void rcutorture_record_progress(unsigned long vernum)
62 {
63 }
64 #ifdef CONFIG_RCU_TRACE
65 extern void do_trace_rcu_torture_read(char *rcutorturename,
66 struct rcu_head *rhp);
67 #else
68 #define do_trace_rcu_torture_read(rcutorturename, rhp) do { } while (0)
69 #endif
70 #endif
71
72 #define UINT_CMP_GE(a, b) (UINT_MAX / 2 >= (a) - (b))
73 #define UINT_CMP_LT(a, b) (UINT_MAX / 2 < (a) - (b))
74 #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b))
75 #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b))
76
77 /* Exported common interfaces */
78
79 #ifdef CONFIG_PREEMPT_RCU
80
81 /**
82 * call_rcu() - Queue an RCU callback for invocation after a grace period.
83 * @head: structure to be used for queueing the RCU updates.
84 * @func: actual callback function to be invoked after the grace period
85 *
86 * The callback function will be invoked some time after a full grace
87 * period elapses, in other words after all pre-existing RCU read-side
88 * critical sections have completed. However, the callback function
89 * might well execute concurrently with RCU read-side critical sections
90 * that started after call_rcu() was invoked. RCU read-side critical
91 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
92 * and may be nested.
93 */
94 extern void call_rcu(struct rcu_head *head,
95 void (*func)(struct rcu_head *head));
96
97 #else /* #ifdef CONFIG_PREEMPT_RCU */
98
99 /* In classic RCU, call_rcu() is just call_rcu_sched(). */
100 #define call_rcu call_rcu_sched
101
102 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
103
104 /**
105 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
106 * @head: structure to be used for queueing the RCU updates.
107 * @func: actual callback function to be invoked after the grace period
108 *
109 * The callback function will be invoked some time after a full grace
110 * period elapses, in other words after all currently executing RCU
111 * read-side critical sections have completed. call_rcu_bh() assumes
112 * that the read-side critical sections end on completion of a softirq
113 * handler. This means that read-side critical sections in process
114 * context must not be interrupted by softirqs. This interface is to be
115 * used when most of the read-side critical sections are in softirq context.
116 * RCU read-side critical sections are delimited by :
117 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context.
118 * OR
119 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
120 * These may be nested.
121 */
122 extern void call_rcu_bh(struct rcu_head *head,
123 void (*func)(struct rcu_head *head));
124
125 /**
126 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
127 * @head: structure to be used for queueing the RCU updates.
128 * @func: actual callback function to be invoked after the grace period
129 *
130 * The callback function will be invoked some time after a full grace
131 * period elapses, in other words after all currently executing RCU
132 * read-side critical sections have completed. call_rcu_sched() assumes
133 * that the read-side critical sections end on enabling of preemption
134 * or on voluntary preemption.
135 * RCU read-side critical sections are delimited by :
136 * - rcu_read_lock_sched() and rcu_read_unlock_sched(),
137 * OR
138 * anything that disables preemption.
139 * These may be nested.
140 */
141 extern void call_rcu_sched(struct rcu_head *head,
142 void (*func)(struct rcu_head *rcu));
143
144 extern void synchronize_sched(void);
145
146 #ifdef CONFIG_PREEMPT_RCU
147
148 extern void __rcu_read_lock(void);
149 extern void __rcu_read_unlock(void);
150 extern void rcu_read_unlock_special(struct task_struct *t);
151 void synchronize_rcu(void);
152
153 /*
154 * Defined as a macro as it is a very low level header included from
155 * areas that don't even know about current. This gives the rcu_read_lock()
156 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
157 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
158 */
159 #define rcu_preempt_depth() (current->rcu_read_lock_nesting)
160
161 #else /* #ifdef CONFIG_PREEMPT_RCU */
162
163 static inline void __rcu_read_lock(void)
164 {
165 preempt_disable();
166 }
167
168 static inline void __rcu_read_unlock(void)
169 {
170 preempt_enable();
171 }
172
173 static inline void synchronize_rcu(void)
174 {
175 synchronize_sched();
176 }
177
178 static inline int rcu_preempt_depth(void)
179 {
180 return 0;
181 }
182
183 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
184
185 /* Internal to kernel */
186 extern void rcu_sched_qs(int cpu);
187 extern void rcu_bh_qs(int cpu);
188 extern void rcu_check_callbacks(int cpu, int user);
189 struct notifier_block;
190 extern void rcu_idle_enter(void);
191 extern void rcu_idle_exit(void);
192 extern void rcu_irq_enter(void);
193 extern void rcu_irq_exit(void);
194 extern void exit_rcu(void);
195
196 /**
197 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
198 * @a: Code that RCU needs to pay attention to.
199 *
200 * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden
201 * in the inner idle loop, that is, between the rcu_idle_enter() and
202 * the rcu_idle_exit() -- RCU will happily ignore any such read-side
203 * critical sections. However, things like powertop need tracepoints
204 * in the inner idle loop.
205 *
206 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU())
207 * will tell RCU that it needs to pay attending, invoke its argument
208 * (in this example, a call to the do_something_with_RCU() function),
209 * and then tell RCU to go back to ignoring this CPU. It is permissible
210 * to nest RCU_NONIDLE() wrappers, but the nesting level is currently
211 * quite limited. If deeper nesting is required, it will be necessary
212 * to adjust DYNTICK_TASK_NESTING_VALUE accordingly.
213 */
214 #define RCU_NONIDLE(a) \
215 do { \
216 rcu_irq_enter(); \
217 do { a; } while (0); \
218 rcu_irq_exit(); \
219 } while (0)
220
221 /*
222 * Infrastructure to implement the synchronize_() primitives in
223 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
224 */
225
226 typedef void call_rcu_func_t(struct rcu_head *head,
227 void (*func)(struct rcu_head *head));
228 void wait_rcu_gp(call_rcu_func_t crf);
229
230 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU)
231 #include <linux/rcutree.h>
232 #elif defined(CONFIG_TINY_RCU) || defined(CONFIG_TINY_PREEMPT_RCU)
233 #include <linux/rcutiny.h>
234 #else
235 #error "Unknown RCU implementation specified to kernel configuration"
236 #endif
237
238 /*
239 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic
240 * initialization and destruction of rcu_head on the stack. rcu_head structures
241 * allocated dynamically in the heap or defined statically don't need any
242 * initialization.
243 */
244 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
245 extern void init_rcu_head_on_stack(struct rcu_head *head);
246 extern void destroy_rcu_head_on_stack(struct rcu_head *head);
247 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
248 static inline void init_rcu_head_on_stack(struct rcu_head *head)
249 {
250 }
251
252 static inline void destroy_rcu_head_on_stack(struct rcu_head *head)
253 {
254 }
255 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
256
257 #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_SMP)
258 extern int rcu_is_cpu_idle(void);
259 #endif /* #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_SMP) */
260
261 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
262 bool rcu_lockdep_current_cpu_online(void);
263 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
264 static inline bool rcu_lockdep_current_cpu_online(void)
265 {
266 return 1;
267 }
268 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
269
270 #ifdef CONFIG_DEBUG_LOCK_ALLOC
271
272 static inline void rcu_lock_acquire(struct lockdep_map *map)
273 {
274 lock_acquire(map, 0, 0, 2, 1, NULL, _THIS_IP_);
275 }
276
277 static inline void rcu_lock_release(struct lockdep_map *map)
278 {
279 lock_release(map, 1, _THIS_IP_);
280 }
281
282 extern struct lockdep_map rcu_lock_map;
283 extern struct lockdep_map rcu_bh_lock_map;
284 extern struct lockdep_map rcu_sched_lock_map;
285 extern int debug_lockdep_rcu_enabled(void);
286
287 /**
288 * rcu_read_lock_held() - might we be in RCU read-side critical section?
289 *
290 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
291 * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC,
292 * this assumes we are in an RCU read-side critical section unless it can
293 * prove otherwise. This is useful for debug checks in functions that
294 * require that they be called within an RCU read-side critical section.
295 *
296 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
297 * and while lockdep is disabled.
298 *
299 * Note that rcu_read_lock() and the matching rcu_read_unlock() must
300 * occur in the same context, for example, it is illegal to invoke
301 * rcu_read_unlock() in process context if the matching rcu_read_lock()
302 * was invoked from within an irq handler.
303 *
304 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
305 * offline from an RCU perspective, so check for those as well.
306 */
307 static inline int rcu_read_lock_held(void)
308 {
309 if (!debug_lockdep_rcu_enabled())
310 return 1;
311 if (rcu_is_cpu_idle())
312 return 0;
313 if (!rcu_lockdep_current_cpu_online())
314 return 0;
315 return lock_is_held(&rcu_lock_map);
316 }
317
318 /*
319 * rcu_read_lock_bh_held() is defined out of line to avoid #include-file
320 * hell.
321 */
322 extern int rcu_read_lock_bh_held(void);
323
324 /**
325 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
326 *
327 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
328 * RCU-sched read-side critical section. In absence of
329 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
330 * critical section unless it can prove otherwise. Note that disabling
331 * of preemption (including disabling irqs) counts as an RCU-sched
332 * read-side critical section. This is useful for debug checks in functions
333 * that required that they be called within an RCU-sched read-side
334 * critical section.
335 *
336 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
337 * and while lockdep is disabled.
338 *
339 * Note that if the CPU is in the idle loop from an RCU point of
340 * view (ie: that we are in the section between rcu_idle_enter() and
341 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
342 * did an rcu_read_lock(). The reason for this is that RCU ignores CPUs
343 * that are in such a section, considering these as in extended quiescent
344 * state, so such a CPU is effectively never in an RCU read-side critical
345 * section regardless of what RCU primitives it invokes. This state of
346 * affairs is required --- we need to keep an RCU-free window in idle
347 * where the CPU may possibly enter into low power mode. This way we can
348 * notice an extended quiescent state to other CPUs that started a grace
349 * period. Otherwise we would delay any grace period as long as we run in
350 * the idle task.
351 *
352 * Similarly, we avoid claiming an SRCU read lock held if the current
353 * CPU is offline.
354 */
355 #ifdef CONFIG_PREEMPT_COUNT
356 static inline int rcu_read_lock_sched_held(void)
357 {
358 int lockdep_opinion = 0;
359
360 if (!debug_lockdep_rcu_enabled())
361 return 1;
362 if (rcu_is_cpu_idle())
363 return 0;
364 if (!rcu_lockdep_current_cpu_online())
365 return 0;
366 if (debug_locks)
367 lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
368 return lockdep_opinion || preempt_count() != 0 || irqs_disabled();
369 }
370 #else /* #ifdef CONFIG_PREEMPT_COUNT */
371 static inline int rcu_read_lock_sched_held(void)
372 {
373 return 1;
374 }
375 #endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
376
377 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
378
379 # define rcu_lock_acquire(a) do { } while (0)
380 # define rcu_lock_release(a) do { } while (0)
381
382 static inline int rcu_read_lock_held(void)
383 {
384 return 1;
385 }
386
387 static inline int rcu_read_lock_bh_held(void)
388 {
389 return 1;
390 }
391
392 #ifdef CONFIG_PREEMPT_COUNT
393 static inline int rcu_read_lock_sched_held(void)
394 {
395 return preempt_count() != 0 || irqs_disabled();
396 }
397 #else /* #ifdef CONFIG_PREEMPT_COUNT */
398 static inline int rcu_read_lock_sched_held(void)
399 {
400 return 1;
401 }
402 #endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
403
404 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
405
406 #ifdef CONFIG_PROVE_RCU
407
408 extern int rcu_my_thread_group_empty(void);
409
410 /**
411 * rcu_lockdep_assert - emit lockdep splat if specified condition not met
412 * @c: condition to check
413 * @s: informative message
414 */
415 #define rcu_lockdep_assert(c, s) \
416 do { \
417 static bool __section(.data.unlikely) __warned; \
418 if (debug_lockdep_rcu_enabled() && !__warned && !(c)) { \
419 __warned = true; \
420 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \
421 } \
422 } while (0)
423
424 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
425 static inline void rcu_preempt_sleep_check(void)
426 {
427 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
428 "Illegal context switch in RCU read-side critical section");
429 }
430 #else /* #ifdef CONFIG_PROVE_RCU */
431 static inline void rcu_preempt_sleep_check(void)
432 {
433 }
434 #endif /* #else #ifdef CONFIG_PROVE_RCU */
435
436 #define rcu_sleep_check() \
437 do { \
438 rcu_preempt_sleep_check(); \
439 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map), \
440 "Illegal context switch in RCU-bh" \
441 " read-side critical section"); \
442 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map), \
443 "Illegal context switch in RCU-sched"\
444 " read-side critical section"); \
445 } while (0)
446
447 #else /* #ifdef CONFIG_PROVE_RCU */
448
449 #define rcu_lockdep_assert(c, s) do { } while (0)
450 #define rcu_sleep_check() do { } while (0)
451
452 #endif /* #else #ifdef CONFIG_PROVE_RCU */
453
454 /*
455 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
456 * and rcu_assign_pointer(). Some of these could be folded into their
457 * callers, but they are left separate in order to ease introduction of
458 * multiple flavors of pointers to match the multiple flavors of RCU
459 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
460 * the future.
461 */
462
463 #ifdef __CHECKER__
464 #define rcu_dereference_sparse(p, space) \
465 ((void)(((typeof(*p) space *)p) == p))
466 #else /* #ifdef __CHECKER__ */
467 #define rcu_dereference_sparse(p, space)
468 #endif /* #else #ifdef __CHECKER__ */
469
470 #define __rcu_access_pointer(p, space) \
471 ({ \
472 typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \
473 rcu_dereference_sparse(p, space); \
474 ((typeof(*p) __force __kernel *)(_________p1)); \
475 })
476 #define __rcu_dereference_check(p, c, space) \
477 ({ \
478 typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \
479 rcu_lockdep_assert(c, "suspicious rcu_dereference_check()" \
480 " usage"); \
481 rcu_dereference_sparse(p, space); \
482 smp_read_barrier_depends(); \
483 ((typeof(*p) __force __kernel *)(_________p1)); \
484 })
485 #define __rcu_dereference_protected(p, c, space) \
486 ({ \
487 rcu_lockdep_assert(c, "suspicious rcu_dereference_protected()" \
488 " usage"); \
489 rcu_dereference_sparse(p, space); \
490 ((typeof(*p) __force __kernel *)(p)); \
491 })
492
493 #define __rcu_access_index(p, space) \
494 ({ \
495 typeof(p) _________p1 = ACCESS_ONCE(p); \
496 rcu_dereference_sparse(p, space); \
497 (_________p1); \
498 })
499 #define __rcu_dereference_index_check(p, c) \
500 ({ \
501 typeof(p) _________p1 = ACCESS_ONCE(p); \
502 rcu_lockdep_assert(c, \
503 "suspicious rcu_dereference_index_check()" \
504 " usage"); \
505 smp_read_barrier_depends(); \
506 (_________p1); \
507 })
508 #define __rcu_assign_pointer(p, v, space) \
509 do { \
510 smp_wmb(); \
511 (p) = (typeof(*v) __force space *)(v); \
512 } while (0)
513
514
515 /**
516 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
517 * @p: The pointer to read
518 *
519 * Return the value of the specified RCU-protected pointer, but omit the
520 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful
521 * when the value of this pointer is accessed, but the pointer is not
522 * dereferenced, for example, when testing an RCU-protected pointer against
523 * NULL. Although rcu_access_pointer() may also be used in cases where
524 * update-side locks prevent the value of the pointer from changing, you
525 * should instead use rcu_dereference_protected() for this use case.
526 *
527 * It is also permissible to use rcu_access_pointer() when read-side
528 * access to the pointer was removed at least one grace period ago, as
529 * is the case in the context of the RCU callback that is freeing up
530 * the data, or after a synchronize_rcu() returns. This can be useful
531 * when tearing down multi-linked structures after a grace period
532 * has elapsed.
533 */
534 #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
535
536 /**
537 * rcu_dereference_check() - rcu_dereference with debug checking
538 * @p: The pointer to read, prior to dereferencing
539 * @c: The conditions under which the dereference will take place
540 *
541 * Do an rcu_dereference(), but check that the conditions under which the
542 * dereference will take place are correct. Typically the conditions
543 * indicate the various locking conditions that should be held at that
544 * point. The check should return true if the conditions are satisfied.
545 * An implicit check for being in an RCU read-side critical section
546 * (rcu_read_lock()) is included.
547 *
548 * For example:
549 *
550 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
551 *
552 * could be used to indicate to lockdep that foo->bar may only be dereferenced
553 * if either rcu_read_lock() is held, or that the lock required to replace
554 * the bar struct at foo->bar is held.
555 *
556 * Note that the list of conditions may also include indications of when a lock
557 * need not be held, for example during initialisation or destruction of the
558 * target struct:
559 *
560 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
561 * atomic_read(&foo->usage) == 0);
562 *
563 * Inserts memory barriers on architectures that require them
564 * (currently only the Alpha), prevents the compiler from refetching
565 * (and from merging fetches), and, more importantly, documents exactly
566 * which pointers are protected by RCU and checks that the pointer is
567 * annotated as __rcu.
568 */
569 #define rcu_dereference_check(p, c) \
570 __rcu_dereference_check((p), rcu_read_lock_held() || (c), __rcu)
571
572 /**
573 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
574 * @p: The pointer to read, prior to dereferencing
575 * @c: The conditions under which the dereference will take place
576 *
577 * This is the RCU-bh counterpart to rcu_dereference_check().
578 */
579 #define rcu_dereference_bh_check(p, c) \
580 __rcu_dereference_check((p), rcu_read_lock_bh_held() || (c), __rcu)
581
582 /**
583 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
584 * @p: The pointer to read, prior to dereferencing
585 * @c: The conditions under which the dereference will take place
586 *
587 * This is the RCU-sched counterpart to rcu_dereference_check().
588 */
589 #define rcu_dereference_sched_check(p, c) \
590 __rcu_dereference_check((p), rcu_read_lock_sched_held() || (c), \
591 __rcu)
592
593 #define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/
594
595 /**
596 * rcu_access_index() - fetch RCU index with no dereferencing
597 * @p: The index to read
598 *
599 * Return the value of the specified RCU-protected index, but omit the
600 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful
601 * when the value of this index is accessed, but the index is not
602 * dereferenced, for example, when testing an RCU-protected index against
603 * -1. Although rcu_access_index() may also be used in cases where
604 * update-side locks prevent the value of the index from changing, you
605 * should instead use rcu_dereference_index_protected() for this use case.
606 */
607 #define rcu_access_index(p) __rcu_access_index((p), __rcu)
608
609 /**
610 * rcu_dereference_index_check() - rcu_dereference for indices with debug checking
611 * @p: The pointer to read, prior to dereferencing
612 * @c: The conditions under which the dereference will take place
613 *
614 * Similar to rcu_dereference_check(), but omits the sparse checking.
615 * This allows rcu_dereference_index_check() to be used on integers,
616 * which can then be used as array indices. Attempting to use
617 * rcu_dereference_check() on an integer will give compiler warnings
618 * because the sparse address-space mechanism relies on dereferencing
619 * the RCU-protected pointer. Dereferencing integers is not something
620 * that even gcc will put up with.
621 *
622 * Note that this function does not implicitly check for RCU read-side
623 * critical sections. If this function gains lots of uses, it might
624 * make sense to provide versions for each flavor of RCU, but it does
625 * not make sense as of early 2010.
626 */
627 #define rcu_dereference_index_check(p, c) \
628 __rcu_dereference_index_check((p), (c))
629
630 /**
631 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
632 * @p: The pointer to read, prior to dereferencing
633 * @c: The conditions under which the dereference will take place
634 *
635 * Return the value of the specified RCU-protected pointer, but omit
636 * both the smp_read_barrier_depends() and the ACCESS_ONCE(). This
637 * is useful in cases where update-side locks prevent the value of the
638 * pointer from changing. Please note that this primitive does -not-
639 * prevent the compiler from repeating this reference or combining it
640 * with other references, so it should not be used without protection
641 * of appropriate locks.
642 *
643 * This function is only for update-side use. Using this function
644 * when protected only by rcu_read_lock() will result in infrequent
645 * but very ugly failures.
646 */
647 #define rcu_dereference_protected(p, c) \
648 __rcu_dereference_protected((p), (c), __rcu)
649
650
651 /**
652 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
653 * @p: The pointer to read, prior to dereferencing
654 *
655 * This is a simple wrapper around rcu_dereference_check().
656 */
657 #define rcu_dereference(p) rcu_dereference_check(p, 0)
658
659 /**
660 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
661 * @p: The pointer to read, prior to dereferencing
662 *
663 * Makes rcu_dereference_check() do the dirty work.
664 */
665 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
666
667 /**
668 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
669 * @p: The pointer to read, prior to dereferencing
670 *
671 * Makes rcu_dereference_check() do the dirty work.
672 */
673 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
674
675 /**
676 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
677 *
678 * When synchronize_rcu() is invoked on one CPU while other CPUs
679 * are within RCU read-side critical sections, then the
680 * synchronize_rcu() is guaranteed to block until after all the other
681 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked
682 * on one CPU while other CPUs are within RCU read-side critical
683 * sections, invocation of the corresponding RCU callback is deferred
684 * until after the all the other CPUs exit their critical sections.
685 *
686 * Note, however, that RCU callbacks are permitted to run concurrently
687 * with new RCU read-side critical sections. One way that this can happen
688 * is via the following sequence of events: (1) CPU 0 enters an RCU
689 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
690 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
691 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
692 * callback is invoked. This is legal, because the RCU read-side critical
693 * section that was running concurrently with the call_rcu() (and which
694 * therefore might be referencing something that the corresponding RCU
695 * callback would free up) has completed before the corresponding
696 * RCU callback is invoked.
697 *
698 * RCU read-side critical sections may be nested. Any deferred actions
699 * will be deferred until the outermost RCU read-side critical section
700 * completes.
701 *
702 * You can avoid reading and understanding the next paragraph by
703 * following this rule: don't put anything in an rcu_read_lock() RCU
704 * read-side critical section that would block in a !PREEMPT kernel.
705 * But if you want the full story, read on!
706 *
707 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU), it
708 * is illegal to block while in an RCU read-side critical section. In
709 * preemptible RCU implementations (TREE_PREEMPT_RCU and TINY_PREEMPT_RCU)
710 * in CONFIG_PREEMPT kernel builds, RCU read-side critical sections may
711 * be preempted, but explicit blocking is illegal. Finally, in preemptible
712 * RCU implementations in real-time (CONFIG_PREEMPT_RT) kernel builds,
713 * RCU read-side critical sections may be preempted and they may also
714 * block, but only when acquiring spinlocks that are subject to priority
715 * inheritance.
716 */
717 static inline void rcu_read_lock(void)
718 {
719 __rcu_read_lock();
720 __acquire(RCU);
721 rcu_lock_acquire(&rcu_lock_map);
722 rcu_lockdep_assert(!rcu_is_cpu_idle(),
723 "rcu_read_lock() used illegally while idle");
724 }
725
726 /*
727 * So where is rcu_write_lock()? It does not exist, as there is no
728 * way for writers to lock out RCU readers. This is a feature, not
729 * a bug -- this property is what provides RCU's performance benefits.
730 * Of course, writers must coordinate with each other. The normal
731 * spinlock primitives work well for this, but any other technique may be
732 * used as well. RCU does not care how the writers keep out of each
733 * others' way, as long as they do so.
734 */
735
736 /**
737 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
738 *
739 * See rcu_read_lock() for more information.
740 */
741 static inline void rcu_read_unlock(void)
742 {
743 rcu_lockdep_assert(!rcu_is_cpu_idle(),
744 "rcu_read_unlock() used illegally while idle");
745 rcu_lock_release(&rcu_lock_map);
746 __release(RCU);
747 __rcu_read_unlock();
748 }
749
750 /**
751 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
752 *
753 * This is equivalent of rcu_read_lock(), but to be used when updates
754 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
755 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
756 * softirq handler to be a quiescent state, a process in RCU read-side
757 * critical section must be protected by disabling softirqs. Read-side
758 * critical sections in interrupt context can use just rcu_read_lock(),
759 * though this should at least be commented to avoid confusing people
760 * reading the code.
761 *
762 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
763 * must occur in the same context, for example, it is illegal to invoke
764 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
765 * was invoked from some other task.
766 */
767 static inline void rcu_read_lock_bh(void)
768 {
769 local_bh_disable();
770 __acquire(RCU_BH);
771 rcu_lock_acquire(&rcu_bh_lock_map);
772 rcu_lockdep_assert(!rcu_is_cpu_idle(),
773 "rcu_read_lock_bh() used illegally while idle");
774 }
775
776 /*
777 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
778 *
779 * See rcu_read_lock_bh() for more information.
780 */
781 static inline void rcu_read_unlock_bh(void)
782 {
783 rcu_lockdep_assert(!rcu_is_cpu_idle(),
784 "rcu_read_unlock_bh() used illegally while idle");
785 rcu_lock_release(&rcu_bh_lock_map);
786 __release(RCU_BH);
787 local_bh_enable();
788 }
789
790 /**
791 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
792 *
793 * This is equivalent of rcu_read_lock(), but to be used when updates
794 * are being done using call_rcu_sched() or synchronize_rcu_sched().
795 * Read-side critical sections can also be introduced by anything that
796 * disables preemption, including local_irq_disable() and friends.
797 *
798 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
799 * must occur in the same context, for example, it is illegal to invoke
800 * rcu_read_unlock_sched() from process context if the matching
801 * rcu_read_lock_sched() was invoked from an NMI handler.
802 */
803 static inline void rcu_read_lock_sched(void)
804 {
805 preempt_disable();
806 __acquire(RCU_SCHED);
807 rcu_lock_acquire(&rcu_sched_lock_map);
808 rcu_lockdep_assert(!rcu_is_cpu_idle(),
809 "rcu_read_lock_sched() used illegally while idle");
810 }
811
812 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
813 static inline notrace void rcu_read_lock_sched_notrace(void)
814 {
815 preempt_disable_notrace();
816 __acquire(RCU_SCHED);
817 }
818
819 /*
820 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
821 *
822 * See rcu_read_lock_sched for more information.
823 */
824 static inline void rcu_read_unlock_sched(void)
825 {
826 rcu_lockdep_assert(!rcu_is_cpu_idle(),
827 "rcu_read_unlock_sched() used illegally while idle");
828 rcu_lock_release(&rcu_sched_lock_map);
829 __release(RCU_SCHED);
830 preempt_enable();
831 }
832
833 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
834 static inline notrace void rcu_read_unlock_sched_notrace(void)
835 {
836 __release(RCU_SCHED);
837 preempt_enable_notrace();
838 }
839
840 /**
841 * rcu_assign_pointer() - assign to RCU-protected pointer
842 * @p: pointer to assign to
843 * @v: value to assign (publish)
844 *
845 * Assigns the specified value to the specified RCU-protected
846 * pointer, ensuring that any concurrent RCU readers will see
847 * any prior initialization.
848 *
849 * Inserts memory barriers on architectures that require them
850 * (which is most of them), and also prevents the compiler from
851 * reordering the code that initializes the structure after the pointer
852 * assignment. More importantly, this call documents which pointers
853 * will be dereferenced by RCU read-side code.
854 *
855 * In some special cases, you may use RCU_INIT_POINTER() instead
856 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due
857 * to the fact that it does not constrain either the CPU or the compiler.
858 * That said, using RCU_INIT_POINTER() when you should have used
859 * rcu_assign_pointer() is a very bad thing that results in
860 * impossible-to-diagnose memory corruption. So please be careful.
861 * See the RCU_INIT_POINTER() comment header for details.
862 */
863 #define rcu_assign_pointer(p, v) \
864 __rcu_assign_pointer((p), (v), __rcu)
865
866 /**
867 * RCU_INIT_POINTER() - initialize an RCU protected pointer
868 *
869 * Initialize an RCU-protected pointer in special cases where readers
870 * do not need ordering constraints on the CPU or the compiler. These
871 * special cases are:
872 *
873 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer -or-
874 * 2. The caller has taken whatever steps are required to prevent
875 * RCU readers from concurrently accessing this pointer -or-
876 * 3. The referenced data structure has already been exposed to
877 * readers either at compile time or via rcu_assign_pointer() -and-
878 * a. You have not made -any- reader-visible changes to
879 * this structure since then -or-
880 * b. It is OK for readers accessing this structure from its
881 * new location to see the old state of the structure. (For
882 * example, the changes were to statistical counters or to
883 * other state where exact synchronization is not required.)
884 *
885 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
886 * result in impossible-to-diagnose memory corruption. As in the structures
887 * will look OK in crash dumps, but any concurrent RCU readers might
888 * see pre-initialized values of the referenced data structure. So
889 * please be very careful how you use RCU_INIT_POINTER()!!!
890 *
891 * If you are creating an RCU-protected linked structure that is accessed
892 * by a single external-to-structure RCU-protected pointer, then you may
893 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
894 * pointers, but you must use rcu_assign_pointer() to initialize the
895 * external-to-structure pointer -after- you have completely initialized
896 * the reader-accessible portions of the linked structure.
897 */
898 #define RCU_INIT_POINTER(p, v) \
899 do { \
900 p = (typeof(*v) __force __rcu *)(v); \
901 } while (0)
902
903 /**
904 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
905 *
906 * GCC-style initialization for an RCU-protected pointer in a structure field.
907 */
908 #define RCU_POINTER_INITIALIZER(p, v) \
909 .p = (typeof(*v) __force __rcu *)(v)
910
911 /*
912 * Does the specified offset indicate that the corresponding rcu_head
913 * structure can be handled by kfree_rcu()?
914 */
915 #define __is_kfree_rcu_offset(offset) ((offset) < 4096)
916
917 /*
918 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
919 */
920 #define __kfree_rcu(head, offset) \
921 do { \
922 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
923 kfree_call_rcu(head, (void (*)(struct rcu_head *))(unsigned long)(offset)); \
924 } while (0)
925
926 /**
927 * kfree_rcu() - kfree an object after a grace period.
928 * @ptr: pointer to kfree
929 * @rcu_head: the name of the struct rcu_head within the type of @ptr.
930 *
931 * Many rcu callbacks functions just call kfree() on the base structure.
932 * These functions are trivial, but their size adds up, and furthermore
933 * when they are used in a kernel module, that module must invoke the
934 * high-latency rcu_barrier() function at module-unload time.
935 *
936 * The kfree_rcu() function handles this issue. Rather than encoding a
937 * function address in the embedded rcu_head structure, kfree_rcu() instead
938 * encodes the offset of the rcu_head structure within the base structure.
939 * Because the functions are not allowed in the low-order 4096 bytes of
940 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
941 * If the offset is larger than 4095 bytes, a compile-time error will
942 * be generated in __kfree_rcu(). If this error is triggered, you can
943 * either fall back to use of call_rcu() or rearrange the structure to
944 * position the rcu_head structure into the first 4096 bytes.
945 *
946 * Note that the allowable offset might decrease in the future, for example,
947 * to allow something like kmem_cache_free_rcu().
948 *
949 * The BUILD_BUG_ON check must not involve any function calls, hence the
950 * checks are done in macros here.
951 */
952 #define kfree_rcu(ptr, rcu_head) \
953 __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))
954
955 #endif /* __LINUX_RCUPDATE_H */
This page took 0.068492 seconds and 6 git commands to generate.