Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/konrad...
[deliverable/linux.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
29 #define CLONE_NEWNET 0x40000000 /* New network namespace */
30 #define CLONE_IO 0x80000000 /* Clone io context */
31
32 /*
33 * Scheduling policies
34 */
35 #define SCHED_NORMAL 0
36 #define SCHED_FIFO 1
37 #define SCHED_RR 2
38 #define SCHED_BATCH 3
39 /* SCHED_ISO: reserved but not implemented yet */
40 #define SCHED_IDLE 5
41 /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
42 #define SCHED_RESET_ON_FORK 0x40000000
43
44 #ifdef __KERNEL__
45
46 struct sched_param {
47 int sched_priority;
48 };
49
50 #include <asm/param.h> /* for HZ */
51
52 #include <linux/capability.h>
53 #include <linux/threads.h>
54 #include <linux/kernel.h>
55 #include <linux/types.h>
56 #include <linux/timex.h>
57 #include <linux/jiffies.h>
58 #include <linux/rbtree.h>
59 #include <linux/thread_info.h>
60 #include <linux/cpumask.h>
61 #include <linux/errno.h>
62 #include <linux/nodemask.h>
63 #include <linux/mm_types.h>
64
65 #include <asm/system.h>
66 #include <asm/page.h>
67 #include <asm/ptrace.h>
68 #include <asm/cputime.h>
69
70 #include <linux/smp.h>
71 #include <linux/sem.h>
72 #include <linux/signal.h>
73 #include <linux/path.h>
74 #include <linux/compiler.h>
75 #include <linux/completion.h>
76 #include <linux/pid.h>
77 #include <linux/percpu.h>
78 #include <linux/topology.h>
79 #include <linux/proportions.h>
80 #include <linux/seccomp.h>
81 #include <linux/rcupdate.h>
82 #include <linux/rculist.h>
83 #include <linux/rtmutex.h>
84
85 #include <linux/time.h>
86 #include <linux/param.h>
87 #include <linux/resource.h>
88 #include <linux/timer.h>
89 #include <linux/hrtimer.h>
90 #include <linux/task_io_accounting.h>
91 #include <linux/kobject.h>
92 #include <linux/latencytop.h>
93 #include <linux/cred.h>
94
95 #include <asm/processor.h>
96
97 struct exec_domain;
98 struct futex_pi_state;
99 struct robust_list_head;
100 struct bio_list;
101 struct fs_struct;
102 struct perf_event_context;
103
104 /*
105 * List of flags we want to share for kernel threads,
106 * if only because they are not used by them anyway.
107 */
108 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
109
110 /*
111 * These are the constant used to fake the fixed-point load-average
112 * counting. Some notes:
113 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
114 * a load-average precision of 10 bits integer + 11 bits fractional
115 * - if you want to count load-averages more often, you need more
116 * precision, or rounding will get you. With 2-second counting freq,
117 * the EXP_n values would be 1981, 2034 and 2043 if still using only
118 * 11 bit fractions.
119 */
120 extern unsigned long avenrun[]; /* Load averages */
121 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
122
123 #define FSHIFT 11 /* nr of bits of precision */
124 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
125 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
126 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
127 #define EXP_5 2014 /* 1/exp(5sec/5min) */
128 #define EXP_15 2037 /* 1/exp(5sec/15min) */
129
130 #define CALC_LOAD(load,exp,n) \
131 load *= exp; \
132 load += n*(FIXED_1-exp); \
133 load >>= FSHIFT;
134
135 extern unsigned long total_forks;
136 extern int nr_threads;
137 DECLARE_PER_CPU(unsigned long, process_counts);
138 extern int nr_processes(void);
139 extern unsigned long nr_running(void);
140 extern unsigned long nr_uninterruptible(void);
141 extern unsigned long nr_iowait(void);
142 extern unsigned long nr_iowait_cpu(int cpu);
143 extern unsigned long this_cpu_load(void);
144
145
146 extern void calc_global_load(void);
147
148 extern unsigned long get_parent_ip(unsigned long addr);
149
150 struct seq_file;
151 struct cfs_rq;
152 struct task_group;
153 #ifdef CONFIG_SCHED_DEBUG
154 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
155 extern void proc_sched_set_task(struct task_struct *p);
156 extern void
157 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
158 #else
159 static inline void
160 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
161 {
162 }
163 static inline void proc_sched_set_task(struct task_struct *p)
164 {
165 }
166 static inline void
167 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
168 {
169 }
170 #endif
171
172 /*
173 * Task state bitmask. NOTE! These bits are also
174 * encoded in fs/proc/array.c: get_task_state().
175 *
176 * We have two separate sets of flags: task->state
177 * is about runnability, while task->exit_state are
178 * about the task exiting. Confusing, but this way
179 * modifying one set can't modify the other one by
180 * mistake.
181 */
182 #define TASK_RUNNING 0
183 #define TASK_INTERRUPTIBLE 1
184 #define TASK_UNINTERRUPTIBLE 2
185 #define __TASK_STOPPED 4
186 #define __TASK_TRACED 8
187 /* in tsk->exit_state */
188 #define EXIT_ZOMBIE 16
189 #define EXIT_DEAD 32
190 /* in tsk->state again */
191 #define TASK_DEAD 64
192 #define TASK_WAKEKILL 128
193 #define TASK_WAKING 256
194 #define TASK_STATE_MAX 512
195
196 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW"
197
198 extern char ___assert_task_state[1 - 2*!!(
199 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
200
201 /* Convenience macros for the sake of set_task_state */
202 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
203 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
204 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
205
206 /* Convenience macros for the sake of wake_up */
207 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
208 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
209
210 /* get_task_state() */
211 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
212 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
213 __TASK_TRACED)
214
215 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
216 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
217 #define task_is_dead(task) ((task)->exit_state != 0)
218 #define task_is_stopped_or_traced(task) \
219 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
220 #define task_contributes_to_load(task) \
221 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
222 (task->flags & PF_FREEZING) == 0)
223
224 #define __set_task_state(tsk, state_value) \
225 do { (tsk)->state = (state_value); } while (0)
226 #define set_task_state(tsk, state_value) \
227 set_mb((tsk)->state, (state_value))
228
229 /*
230 * set_current_state() includes a barrier so that the write of current->state
231 * is correctly serialised wrt the caller's subsequent test of whether to
232 * actually sleep:
233 *
234 * set_current_state(TASK_UNINTERRUPTIBLE);
235 * if (do_i_need_to_sleep())
236 * schedule();
237 *
238 * If the caller does not need such serialisation then use __set_current_state()
239 */
240 #define __set_current_state(state_value) \
241 do { current->state = (state_value); } while (0)
242 #define set_current_state(state_value) \
243 set_mb(current->state, (state_value))
244
245 /* Task command name length */
246 #define TASK_COMM_LEN 16
247
248 #include <linux/spinlock.h>
249
250 /*
251 * This serializes "schedule()" and also protects
252 * the run-queue from deletions/modifications (but
253 * _adding_ to the beginning of the run-queue has
254 * a separate lock).
255 */
256 extern rwlock_t tasklist_lock;
257 extern spinlock_t mmlist_lock;
258
259 struct task_struct;
260
261 #ifdef CONFIG_PROVE_RCU
262 extern int lockdep_tasklist_lock_is_held(void);
263 #endif /* #ifdef CONFIG_PROVE_RCU */
264
265 extern void sched_init(void);
266 extern void sched_init_smp(void);
267 extern asmlinkage void schedule_tail(struct task_struct *prev);
268 extern void init_idle(struct task_struct *idle, int cpu);
269 extern void init_idle_bootup_task(struct task_struct *idle);
270
271 extern int runqueue_is_locked(int cpu);
272
273 extern cpumask_var_t nohz_cpu_mask;
274 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
275 extern int select_nohz_load_balancer(int cpu);
276 extern int get_nohz_load_balancer(void);
277 extern int nohz_ratelimit(int cpu);
278 #else
279 static inline int select_nohz_load_balancer(int cpu)
280 {
281 return 0;
282 }
283
284 static inline int nohz_ratelimit(int cpu)
285 {
286 return 0;
287 }
288 #endif
289
290 /*
291 * Only dump TASK_* tasks. (0 for all tasks)
292 */
293 extern void show_state_filter(unsigned long state_filter);
294
295 static inline void show_state(void)
296 {
297 show_state_filter(0);
298 }
299
300 extern void show_regs(struct pt_regs *);
301
302 /*
303 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
304 * task), SP is the stack pointer of the first frame that should be shown in the back
305 * trace (or NULL if the entire call-chain of the task should be shown).
306 */
307 extern void show_stack(struct task_struct *task, unsigned long *sp);
308
309 void io_schedule(void);
310 long io_schedule_timeout(long timeout);
311
312 extern void cpu_init (void);
313 extern void trap_init(void);
314 extern void update_process_times(int user);
315 extern void scheduler_tick(void);
316
317 extern void sched_show_task(struct task_struct *p);
318
319 #ifdef CONFIG_DETECT_SOFTLOCKUP
320 extern void softlockup_tick(void);
321 extern void touch_softlockup_watchdog(void);
322 extern void touch_softlockup_watchdog_sync(void);
323 extern void touch_all_softlockup_watchdogs(void);
324 extern int proc_dosoftlockup_thresh(struct ctl_table *table, int write,
325 void __user *buffer,
326 size_t *lenp, loff_t *ppos);
327 extern unsigned int softlockup_panic;
328 extern int softlockup_thresh;
329 #else
330 static inline void softlockup_tick(void)
331 {
332 }
333 static inline void touch_softlockup_watchdog(void)
334 {
335 }
336 static inline void touch_softlockup_watchdog_sync(void)
337 {
338 }
339 static inline void touch_all_softlockup_watchdogs(void)
340 {
341 }
342 #endif
343
344 #ifdef CONFIG_DETECT_HUNG_TASK
345 extern unsigned int sysctl_hung_task_panic;
346 extern unsigned long sysctl_hung_task_check_count;
347 extern unsigned long sysctl_hung_task_timeout_secs;
348 extern unsigned long sysctl_hung_task_warnings;
349 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
350 void __user *buffer,
351 size_t *lenp, loff_t *ppos);
352 #endif
353
354 /* Attach to any functions which should be ignored in wchan output. */
355 #define __sched __attribute__((__section__(".sched.text")))
356
357 /* Linker adds these: start and end of __sched functions */
358 extern char __sched_text_start[], __sched_text_end[];
359
360 /* Is this address in the __sched functions? */
361 extern int in_sched_functions(unsigned long addr);
362
363 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
364 extern signed long schedule_timeout(signed long timeout);
365 extern signed long schedule_timeout_interruptible(signed long timeout);
366 extern signed long schedule_timeout_killable(signed long timeout);
367 extern signed long schedule_timeout_uninterruptible(signed long timeout);
368 asmlinkage void schedule(void);
369 extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner);
370
371 struct nsproxy;
372 struct user_namespace;
373
374 /*
375 * Default maximum number of active map areas, this limits the number of vmas
376 * per mm struct. Users can overwrite this number by sysctl but there is a
377 * problem.
378 *
379 * When a program's coredump is generated as ELF format, a section is created
380 * per a vma. In ELF, the number of sections is represented in unsigned short.
381 * This means the number of sections should be smaller than 65535 at coredump.
382 * Because the kernel adds some informative sections to a image of program at
383 * generating coredump, we need some margin. The number of extra sections is
384 * 1-3 now and depends on arch. We use "5" as safe margin, here.
385 */
386 #define MAPCOUNT_ELF_CORE_MARGIN (5)
387 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
388
389 extern int sysctl_max_map_count;
390
391 #include <linux/aio.h>
392
393 #ifdef CONFIG_MMU
394 extern void arch_pick_mmap_layout(struct mm_struct *mm);
395 extern unsigned long
396 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
397 unsigned long, unsigned long);
398 extern unsigned long
399 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
400 unsigned long len, unsigned long pgoff,
401 unsigned long flags);
402 extern void arch_unmap_area(struct mm_struct *, unsigned long);
403 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
404 #else
405 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
406 #endif
407
408
409 extern void set_dumpable(struct mm_struct *mm, int value);
410 extern int get_dumpable(struct mm_struct *mm);
411
412 /* mm flags */
413 /* dumpable bits */
414 #define MMF_DUMPABLE 0 /* core dump is permitted */
415 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
416
417 #define MMF_DUMPABLE_BITS 2
418 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
419
420 /* coredump filter bits */
421 #define MMF_DUMP_ANON_PRIVATE 2
422 #define MMF_DUMP_ANON_SHARED 3
423 #define MMF_DUMP_MAPPED_PRIVATE 4
424 #define MMF_DUMP_MAPPED_SHARED 5
425 #define MMF_DUMP_ELF_HEADERS 6
426 #define MMF_DUMP_HUGETLB_PRIVATE 7
427 #define MMF_DUMP_HUGETLB_SHARED 8
428
429 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
430 #define MMF_DUMP_FILTER_BITS 7
431 #define MMF_DUMP_FILTER_MASK \
432 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
433 #define MMF_DUMP_FILTER_DEFAULT \
434 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
435 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
436
437 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
438 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
439 #else
440 # define MMF_DUMP_MASK_DEFAULT_ELF 0
441 #endif
442 /* leave room for more dump flags */
443 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
444
445 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
446
447 struct sighand_struct {
448 atomic_t count;
449 struct k_sigaction action[_NSIG];
450 spinlock_t siglock;
451 wait_queue_head_t signalfd_wqh;
452 };
453
454 struct pacct_struct {
455 int ac_flag;
456 long ac_exitcode;
457 unsigned long ac_mem;
458 cputime_t ac_utime, ac_stime;
459 unsigned long ac_minflt, ac_majflt;
460 };
461
462 struct cpu_itimer {
463 cputime_t expires;
464 cputime_t incr;
465 u32 error;
466 u32 incr_error;
467 };
468
469 /**
470 * struct task_cputime - collected CPU time counts
471 * @utime: time spent in user mode, in &cputime_t units
472 * @stime: time spent in kernel mode, in &cputime_t units
473 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
474 *
475 * This structure groups together three kinds of CPU time that are
476 * tracked for threads and thread groups. Most things considering
477 * CPU time want to group these counts together and treat all three
478 * of them in parallel.
479 */
480 struct task_cputime {
481 cputime_t utime;
482 cputime_t stime;
483 unsigned long long sum_exec_runtime;
484 };
485 /* Alternate field names when used to cache expirations. */
486 #define prof_exp stime
487 #define virt_exp utime
488 #define sched_exp sum_exec_runtime
489
490 #define INIT_CPUTIME \
491 (struct task_cputime) { \
492 .utime = cputime_zero, \
493 .stime = cputime_zero, \
494 .sum_exec_runtime = 0, \
495 }
496
497 /*
498 * Disable preemption until the scheduler is running.
499 * Reset by start_kernel()->sched_init()->init_idle().
500 *
501 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
502 * before the scheduler is active -- see should_resched().
503 */
504 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
505
506 /**
507 * struct thread_group_cputimer - thread group interval timer counts
508 * @cputime: thread group interval timers.
509 * @running: non-zero when there are timers running and
510 * @cputime receives updates.
511 * @lock: lock for fields in this struct.
512 *
513 * This structure contains the version of task_cputime, above, that is
514 * used for thread group CPU timer calculations.
515 */
516 struct thread_group_cputimer {
517 struct task_cputime cputime;
518 int running;
519 spinlock_t lock;
520 };
521
522 /*
523 * NOTE! "signal_struct" does not have it's own
524 * locking, because a shared signal_struct always
525 * implies a shared sighand_struct, so locking
526 * sighand_struct is always a proper superset of
527 * the locking of signal_struct.
528 */
529 struct signal_struct {
530 atomic_t sigcnt;
531 atomic_t live;
532 int nr_threads;
533
534 wait_queue_head_t wait_chldexit; /* for wait4() */
535
536 /* current thread group signal load-balancing target: */
537 struct task_struct *curr_target;
538
539 /* shared signal handling: */
540 struct sigpending shared_pending;
541
542 /* thread group exit support */
543 int group_exit_code;
544 /* overloaded:
545 * - notify group_exit_task when ->count is equal to notify_count
546 * - everyone except group_exit_task is stopped during signal delivery
547 * of fatal signals, group_exit_task processes the signal.
548 */
549 int notify_count;
550 struct task_struct *group_exit_task;
551
552 /* thread group stop support, overloads group_exit_code too */
553 int group_stop_count;
554 unsigned int flags; /* see SIGNAL_* flags below */
555
556 /* POSIX.1b Interval Timers */
557 struct list_head posix_timers;
558
559 /* ITIMER_REAL timer for the process */
560 struct hrtimer real_timer;
561 struct pid *leader_pid;
562 ktime_t it_real_incr;
563
564 /*
565 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
566 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
567 * values are defined to 0 and 1 respectively
568 */
569 struct cpu_itimer it[2];
570
571 /*
572 * Thread group totals for process CPU timers.
573 * See thread_group_cputimer(), et al, for details.
574 */
575 struct thread_group_cputimer cputimer;
576
577 /* Earliest-expiration cache. */
578 struct task_cputime cputime_expires;
579
580 struct list_head cpu_timers[3];
581
582 struct pid *tty_old_pgrp;
583
584 /* boolean value for session group leader */
585 int leader;
586
587 struct tty_struct *tty; /* NULL if no tty */
588
589 /*
590 * Cumulative resource counters for dead threads in the group,
591 * and for reaped dead child processes forked by this group.
592 * Live threads maintain their own counters and add to these
593 * in __exit_signal, except for the group leader.
594 */
595 cputime_t utime, stime, cutime, cstime;
596 cputime_t gtime;
597 cputime_t cgtime;
598 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
599 cputime_t prev_utime, prev_stime;
600 #endif
601 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
602 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
603 unsigned long inblock, oublock, cinblock, coublock;
604 unsigned long maxrss, cmaxrss;
605 struct task_io_accounting ioac;
606
607 /*
608 * Cumulative ns of schedule CPU time fo dead threads in the
609 * group, not including a zombie group leader, (This only differs
610 * from jiffies_to_ns(utime + stime) if sched_clock uses something
611 * other than jiffies.)
612 */
613 unsigned long long sum_sched_runtime;
614
615 /*
616 * We don't bother to synchronize most readers of this at all,
617 * because there is no reader checking a limit that actually needs
618 * to get both rlim_cur and rlim_max atomically, and either one
619 * alone is a single word that can safely be read normally.
620 * getrlimit/setrlimit use task_lock(current->group_leader) to
621 * protect this instead of the siglock, because they really
622 * have no need to disable irqs.
623 */
624 struct rlimit rlim[RLIM_NLIMITS];
625
626 #ifdef CONFIG_BSD_PROCESS_ACCT
627 struct pacct_struct pacct; /* per-process accounting information */
628 #endif
629 #ifdef CONFIG_TASKSTATS
630 struct taskstats *stats;
631 #endif
632 #ifdef CONFIG_AUDIT
633 unsigned audit_tty;
634 struct tty_audit_buf *tty_audit_buf;
635 #endif
636
637 int oom_adj; /* OOM kill score adjustment (bit shift) */
638 };
639
640 /* Context switch must be unlocked if interrupts are to be enabled */
641 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
642 # define __ARCH_WANT_UNLOCKED_CTXSW
643 #endif
644
645 /*
646 * Bits in flags field of signal_struct.
647 */
648 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
649 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
650 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
651 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
652 /*
653 * Pending notifications to parent.
654 */
655 #define SIGNAL_CLD_STOPPED 0x00000010
656 #define SIGNAL_CLD_CONTINUED 0x00000020
657 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
658
659 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
660
661 /* If true, all threads except ->group_exit_task have pending SIGKILL */
662 static inline int signal_group_exit(const struct signal_struct *sig)
663 {
664 return (sig->flags & SIGNAL_GROUP_EXIT) ||
665 (sig->group_exit_task != NULL);
666 }
667
668 /*
669 * Some day this will be a full-fledged user tracking system..
670 */
671 struct user_struct {
672 atomic_t __count; /* reference count */
673 atomic_t processes; /* How many processes does this user have? */
674 atomic_t files; /* How many open files does this user have? */
675 atomic_t sigpending; /* How many pending signals does this user have? */
676 #ifdef CONFIG_INOTIFY_USER
677 atomic_t inotify_watches; /* How many inotify watches does this user have? */
678 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
679 #endif
680 #ifdef CONFIG_EPOLL
681 atomic_t epoll_watches; /* The number of file descriptors currently watched */
682 #endif
683 #ifdef CONFIG_POSIX_MQUEUE
684 /* protected by mq_lock */
685 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
686 #endif
687 unsigned long locked_shm; /* How many pages of mlocked shm ? */
688
689 #ifdef CONFIG_KEYS
690 struct key *uid_keyring; /* UID specific keyring */
691 struct key *session_keyring; /* UID's default session keyring */
692 #endif
693
694 /* Hash table maintenance information */
695 struct hlist_node uidhash_node;
696 uid_t uid;
697 struct user_namespace *user_ns;
698
699 #ifdef CONFIG_PERF_EVENTS
700 atomic_long_t locked_vm;
701 #endif
702 };
703
704 extern int uids_sysfs_init(void);
705
706 extern struct user_struct *find_user(uid_t);
707
708 extern struct user_struct root_user;
709 #define INIT_USER (&root_user)
710
711
712 struct backing_dev_info;
713 struct reclaim_state;
714
715 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
716 struct sched_info {
717 /* cumulative counters */
718 unsigned long pcount; /* # of times run on this cpu */
719 unsigned long long run_delay; /* time spent waiting on a runqueue */
720
721 /* timestamps */
722 unsigned long long last_arrival,/* when we last ran on a cpu */
723 last_queued; /* when we were last queued to run */
724 #ifdef CONFIG_SCHEDSTATS
725 /* BKL stats */
726 unsigned int bkl_count;
727 #endif
728 };
729 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
730
731 #ifdef CONFIG_TASK_DELAY_ACCT
732 struct task_delay_info {
733 spinlock_t lock;
734 unsigned int flags; /* Private per-task flags */
735
736 /* For each stat XXX, add following, aligned appropriately
737 *
738 * struct timespec XXX_start, XXX_end;
739 * u64 XXX_delay;
740 * u32 XXX_count;
741 *
742 * Atomicity of updates to XXX_delay, XXX_count protected by
743 * single lock above (split into XXX_lock if contention is an issue).
744 */
745
746 /*
747 * XXX_count is incremented on every XXX operation, the delay
748 * associated with the operation is added to XXX_delay.
749 * XXX_delay contains the accumulated delay time in nanoseconds.
750 */
751 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
752 u64 blkio_delay; /* wait for sync block io completion */
753 u64 swapin_delay; /* wait for swapin block io completion */
754 u32 blkio_count; /* total count of the number of sync block */
755 /* io operations performed */
756 u32 swapin_count; /* total count of the number of swapin block */
757 /* io operations performed */
758
759 struct timespec freepages_start, freepages_end;
760 u64 freepages_delay; /* wait for memory reclaim */
761 u32 freepages_count; /* total count of memory reclaim */
762 };
763 #endif /* CONFIG_TASK_DELAY_ACCT */
764
765 static inline int sched_info_on(void)
766 {
767 #ifdef CONFIG_SCHEDSTATS
768 return 1;
769 #elif defined(CONFIG_TASK_DELAY_ACCT)
770 extern int delayacct_on;
771 return delayacct_on;
772 #else
773 return 0;
774 #endif
775 }
776
777 enum cpu_idle_type {
778 CPU_IDLE,
779 CPU_NOT_IDLE,
780 CPU_NEWLY_IDLE,
781 CPU_MAX_IDLE_TYPES
782 };
783
784 /*
785 * sched-domains (multiprocessor balancing) declarations:
786 */
787
788 /*
789 * Increase resolution of nice-level calculations:
790 */
791 #define SCHED_LOAD_SHIFT 10
792 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
793
794 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
795
796 #ifdef CONFIG_SMP
797 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
798 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
799 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
800 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
801 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
802 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
803 #define SD_PREFER_LOCAL 0x0040 /* Prefer to keep tasks local to this domain */
804 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
805 #define SD_POWERSAVINGS_BALANCE 0x0100 /* Balance for power savings */
806 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
807 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
808
809 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
810
811 enum powersavings_balance_level {
812 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */
813 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package
814 * first for long running threads
815 */
816 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle
817 * cpu package for power savings
818 */
819 MAX_POWERSAVINGS_BALANCE_LEVELS
820 };
821
822 extern int sched_mc_power_savings, sched_smt_power_savings;
823
824 static inline int sd_balance_for_mc_power(void)
825 {
826 if (sched_smt_power_savings)
827 return SD_POWERSAVINGS_BALANCE;
828
829 if (!sched_mc_power_savings)
830 return SD_PREFER_SIBLING;
831
832 return 0;
833 }
834
835 static inline int sd_balance_for_package_power(void)
836 {
837 if (sched_mc_power_savings | sched_smt_power_savings)
838 return SD_POWERSAVINGS_BALANCE;
839
840 return SD_PREFER_SIBLING;
841 }
842
843 /*
844 * Optimise SD flags for power savings:
845 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings.
846 * Keep default SD flags if sched_{smt,mc}_power_saving=0
847 */
848
849 static inline int sd_power_saving_flags(void)
850 {
851 if (sched_mc_power_savings | sched_smt_power_savings)
852 return SD_BALANCE_NEWIDLE;
853
854 return 0;
855 }
856
857 struct sched_group {
858 struct sched_group *next; /* Must be a circular list */
859
860 /*
861 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
862 * single CPU.
863 */
864 unsigned int cpu_power;
865
866 /*
867 * The CPUs this group covers.
868 *
869 * NOTE: this field is variable length. (Allocated dynamically
870 * by attaching extra space to the end of the structure,
871 * depending on how many CPUs the kernel has booted up with)
872 *
873 * It is also be embedded into static data structures at build
874 * time. (See 'struct static_sched_group' in kernel/sched.c)
875 */
876 unsigned long cpumask[0];
877 };
878
879 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
880 {
881 return to_cpumask(sg->cpumask);
882 }
883
884 enum sched_domain_level {
885 SD_LV_NONE = 0,
886 SD_LV_SIBLING,
887 SD_LV_MC,
888 SD_LV_CPU,
889 SD_LV_NODE,
890 SD_LV_ALLNODES,
891 SD_LV_MAX
892 };
893
894 struct sched_domain_attr {
895 int relax_domain_level;
896 };
897
898 #define SD_ATTR_INIT (struct sched_domain_attr) { \
899 .relax_domain_level = -1, \
900 }
901
902 struct sched_domain {
903 /* These fields must be setup */
904 struct sched_domain *parent; /* top domain must be null terminated */
905 struct sched_domain *child; /* bottom domain must be null terminated */
906 struct sched_group *groups; /* the balancing groups of the domain */
907 unsigned long min_interval; /* Minimum balance interval ms */
908 unsigned long max_interval; /* Maximum balance interval ms */
909 unsigned int busy_factor; /* less balancing by factor if busy */
910 unsigned int imbalance_pct; /* No balance until over watermark */
911 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
912 unsigned int busy_idx;
913 unsigned int idle_idx;
914 unsigned int newidle_idx;
915 unsigned int wake_idx;
916 unsigned int forkexec_idx;
917 unsigned int smt_gain;
918 int flags; /* See SD_* */
919 enum sched_domain_level level;
920
921 /* Runtime fields. */
922 unsigned long last_balance; /* init to jiffies. units in jiffies */
923 unsigned int balance_interval; /* initialise to 1. units in ms. */
924 unsigned int nr_balance_failed; /* initialise to 0 */
925
926 u64 last_update;
927
928 #ifdef CONFIG_SCHEDSTATS
929 /* load_balance() stats */
930 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
931 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
932 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
933 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
934 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
935 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
936 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
937 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
938
939 /* Active load balancing */
940 unsigned int alb_count;
941 unsigned int alb_failed;
942 unsigned int alb_pushed;
943
944 /* SD_BALANCE_EXEC stats */
945 unsigned int sbe_count;
946 unsigned int sbe_balanced;
947 unsigned int sbe_pushed;
948
949 /* SD_BALANCE_FORK stats */
950 unsigned int sbf_count;
951 unsigned int sbf_balanced;
952 unsigned int sbf_pushed;
953
954 /* try_to_wake_up() stats */
955 unsigned int ttwu_wake_remote;
956 unsigned int ttwu_move_affine;
957 unsigned int ttwu_move_balance;
958 #endif
959 #ifdef CONFIG_SCHED_DEBUG
960 char *name;
961 #endif
962
963 unsigned int span_weight;
964 /*
965 * Span of all CPUs in this domain.
966 *
967 * NOTE: this field is variable length. (Allocated dynamically
968 * by attaching extra space to the end of the structure,
969 * depending on how many CPUs the kernel has booted up with)
970 *
971 * It is also be embedded into static data structures at build
972 * time. (See 'struct static_sched_domain' in kernel/sched.c)
973 */
974 unsigned long span[0];
975 };
976
977 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
978 {
979 return to_cpumask(sd->span);
980 }
981
982 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
983 struct sched_domain_attr *dattr_new);
984
985 /* Allocate an array of sched domains, for partition_sched_domains(). */
986 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
987 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
988
989 /* Test a flag in parent sched domain */
990 static inline int test_sd_parent(struct sched_domain *sd, int flag)
991 {
992 if (sd->parent && (sd->parent->flags & flag))
993 return 1;
994
995 return 0;
996 }
997
998 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
999 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
1000
1001 #else /* CONFIG_SMP */
1002
1003 struct sched_domain_attr;
1004
1005 static inline void
1006 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1007 struct sched_domain_attr *dattr_new)
1008 {
1009 }
1010 #endif /* !CONFIG_SMP */
1011
1012
1013 struct io_context; /* See blkdev.h */
1014
1015
1016 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1017 extern void prefetch_stack(struct task_struct *t);
1018 #else
1019 static inline void prefetch_stack(struct task_struct *t) { }
1020 #endif
1021
1022 struct audit_context; /* See audit.c */
1023 struct mempolicy;
1024 struct pipe_inode_info;
1025 struct uts_namespace;
1026
1027 struct rq;
1028 struct sched_domain;
1029
1030 /*
1031 * wake flags
1032 */
1033 #define WF_SYNC 0x01 /* waker goes to sleep after wakup */
1034 #define WF_FORK 0x02 /* child wakeup after fork */
1035
1036 #define ENQUEUE_WAKEUP 1
1037 #define ENQUEUE_WAKING 2
1038 #define ENQUEUE_HEAD 4
1039
1040 #define DEQUEUE_SLEEP 1
1041
1042 struct sched_class {
1043 const struct sched_class *next;
1044
1045 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1046 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1047 void (*yield_task) (struct rq *rq);
1048
1049 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1050
1051 struct task_struct * (*pick_next_task) (struct rq *rq);
1052 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1053
1054 #ifdef CONFIG_SMP
1055 int (*select_task_rq)(struct rq *rq, struct task_struct *p,
1056 int sd_flag, int flags);
1057
1058 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1059 void (*post_schedule) (struct rq *this_rq);
1060 void (*task_waking) (struct rq *this_rq, struct task_struct *task);
1061 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1062
1063 void (*set_cpus_allowed)(struct task_struct *p,
1064 const struct cpumask *newmask);
1065
1066 void (*rq_online)(struct rq *rq);
1067 void (*rq_offline)(struct rq *rq);
1068 #endif
1069
1070 void (*set_curr_task) (struct rq *rq);
1071 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1072 void (*task_fork) (struct task_struct *p);
1073
1074 void (*switched_from) (struct rq *this_rq, struct task_struct *task,
1075 int running);
1076 void (*switched_to) (struct rq *this_rq, struct task_struct *task,
1077 int running);
1078 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1079 int oldprio, int running);
1080
1081 unsigned int (*get_rr_interval) (struct rq *rq,
1082 struct task_struct *task);
1083
1084 #ifdef CONFIG_FAIR_GROUP_SCHED
1085 void (*moved_group) (struct task_struct *p, int on_rq);
1086 #endif
1087 };
1088
1089 struct load_weight {
1090 unsigned long weight, inv_weight;
1091 };
1092
1093 #ifdef CONFIG_SCHEDSTATS
1094 struct sched_statistics {
1095 u64 wait_start;
1096 u64 wait_max;
1097 u64 wait_count;
1098 u64 wait_sum;
1099 u64 iowait_count;
1100 u64 iowait_sum;
1101
1102 u64 sleep_start;
1103 u64 sleep_max;
1104 s64 sum_sleep_runtime;
1105
1106 u64 block_start;
1107 u64 block_max;
1108 u64 exec_max;
1109 u64 slice_max;
1110
1111 u64 nr_migrations_cold;
1112 u64 nr_failed_migrations_affine;
1113 u64 nr_failed_migrations_running;
1114 u64 nr_failed_migrations_hot;
1115 u64 nr_forced_migrations;
1116
1117 u64 nr_wakeups;
1118 u64 nr_wakeups_sync;
1119 u64 nr_wakeups_migrate;
1120 u64 nr_wakeups_local;
1121 u64 nr_wakeups_remote;
1122 u64 nr_wakeups_affine;
1123 u64 nr_wakeups_affine_attempts;
1124 u64 nr_wakeups_passive;
1125 u64 nr_wakeups_idle;
1126 };
1127 #endif
1128
1129 struct sched_entity {
1130 struct load_weight load; /* for load-balancing */
1131 struct rb_node run_node;
1132 struct list_head group_node;
1133 unsigned int on_rq;
1134
1135 u64 exec_start;
1136 u64 sum_exec_runtime;
1137 u64 vruntime;
1138 u64 prev_sum_exec_runtime;
1139
1140 u64 nr_migrations;
1141
1142 #ifdef CONFIG_SCHEDSTATS
1143 struct sched_statistics statistics;
1144 #endif
1145
1146 #ifdef CONFIG_FAIR_GROUP_SCHED
1147 struct sched_entity *parent;
1148 /* rq on which this entity is (to be) queued: */
1149 struct cfs_rq *cfs_rq;
1150 /* rq "owned" by this entity/group: */
1151 struct cfs_rq *my_q;
1152 #endif
1153 };
1154
1155 struct sched_rt_entity {
1156 struct list_head run_list;
1157 unsigned long timeout;
1158 unsigned int time_slice;
1159 int nr_cpus_allowed;
1160
1161 struct sched_rt_entity *back;
1162 #ifdef CONFIG_RT_GROUP_SCHED
1163 struct sched_rt_entity *parent;
1164 /* rq on which this entity is (to be) queued: */
1165 struct rt_rq *rt_rq;
1166 /* rq "owned" by this entity/group: */
1167 struct rt_rq *my_q;
1168 #endif
1169 };
1170
1171 struct rcu_node;
1172
1173 struct task_struct {
1174 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1175 void *stack;
1176 atomic_t usage;
1177 unsigned int flags; /* per process flags, defined below */
1178 unsigned int ptrace;
1179
1180 int lock_depth; /* BKL lock depth */
1181
1182 #ifdef CONFIG_SMP
1183 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1184 int oncpu;
1185 #endif
1186 #endif
1187
1188 int prio, static_prio, normal_prio;
1189 unsigned int rt_priority;
1190 const struct sched_class *sched_class;
1191 struct sched_entity se;
1192 struct sched_rt_entity rt;
1193
1194 #ifdef CONFIG_PREEMPT_NOTIFIERS
1195 /* list of struct preempt_notifier: */
1196 struct hlist_head preempt_notifiers;
1197 #endif
1198
1199 /*
1200 * fpu_counter contains the number of consecutive context switches
1201 * that the FPU is used. If this is over a threshold, the lazy fpu
1202 * saving becomes unlazy to save the trap. This is an unsigned char
1203 * so that after 256 times the counter wraps and the behavior turns
1204 * lazy again; this to deal with bursty apps that only use FPU for
1205 * a short time
1206 */
1207 unsigned char fpu_counter;
1208 #ifdef CONFIG_BLK_DEV_IO_TRACE
1209 unsigned int btrace_seq;
1210 #endif
1211
1212 unsigned int policy;
1213 cpumask_t cpus_allowed;
1214
1215 #ifdef CONFIG_TREE_PREEMPT_RCU
1216 int rcu_read_lock_nesting;
1217 char rcu_read_unlock_special;
1218 struct rcu_node *rcu_blocked_node;
1219 struct list_head rcu_node_entry;
1220 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1221
1222 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1223 struct sched_info sched_info;
1224 #endif
1225
1226 struct list_head tasks;
1227 struct plist_node pushable_tasks;
1228
1229 struct mm_struct *mm, *active_mm;
1230 #if defined(SPLIT_RSS_COUNTING)
1231 struct task_rss_stat rss_stat;
1232 #endif
1233 /* task state */
1234 int exit_state;
1235 int exit_code, exit_signal;
1236 int pdeath_signal; /* The signal sent when the parent dies */
1237 /* ??? */
1238 unsigned int personality;
1239 unsigned did_exec:1;
1240 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1241 * execve */
1242 unsigned in_iowait:1;
1243
1244
1245 /* Revert to default priority/policy when forking */
1246 unsigned sched_reset_on_fork:1;
1247
1248 pid_t pid;
1249 pid_t tgid;
1250
1251 #ifdef CONFIG_CC_STACKPROTECTOR
1252 /* Canary value for the -fstack-protector gcc feature */
1253 unsigned long stack_canary;
1254 #endif
1255
1256 /*
1257 * pointers to (original) parent process, youngest child, younger sibling,
1258 * older sibling, respectively. (p->father can be replaced with
1259 * p->real_parent->pid)
1260 */
1261 struct task_struct *real_parent; /* real parent process */
1262 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1263 /*
1264 * children/sibling forms the list of my natural children
1265 */
1266 struct list_head children; /* list of my children */
1267 struct list_head sibling; /* linkage in my parent's children list */
1268 struct task_struct *group_leader; /* threadgroup leader */
1269
1270 /*
1271 * ptraced is the list of tasks this task is using ptrace on.
1272 * This includes both natural children and PTRACE_ATTACH targets.
1273 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1274 */
1275 struct list_head ptraced;
1276 struct list_head ptrace_entry;
1277
1278 /* PID/PID hash table linkage. */
1279 struct pid_link pids[PIDTYPE_MAX];
1280 struct list_head thread_group;
1281
1282 struct completion *vfork_done; /* for vfork() */
1283 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1284 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1285
1286 cputime_t utime, stime, utimescaled, stimescaled;
1287 cputime_t gtime;
1288 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1289 cputime_t prev_utime, prev_stime;
1290 #endif
1291 unsigned long nvcsw, nivcsw; /* context switch counts */
1292 struct timespec start_time; /* monotonic time */
1293 struct timespec real_start_time; /* boot based time */
1294 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1295 unsigned long min_flt, maj_flt;
1296
1297 struct task_cputime cputime_expires;
1298 struct list_head cpu_timers[3];
1299
1300 /* process credentials */
1301 const struct cred *real_cred; /* objective and real subjective task
1302 * credentials (COW) */
1303 const struct cred *cred; /* effective (overridable) subjective task
1304 * credentials (COW) */
1305 struct mutex cred_guard_mutex; /* guard against foreign influences on
1306 * credential calculations
1307 * (notably. ptrace) */
1308 struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */
1309
1310 char comm[TASK_COMM_LEN]; /* executable name excluding path
1311 - access with [gs]et_task_comm (which lock
1312 it with task_lock())
1313 - initialized normally by setup_new_exec */
1314 /* file system info */
1315 int link_count, total_link_count;
1316 #ifdef CONFIG_SYSVIPC
1317 /* ipc stuff */
1318 struct sysv_sem sysvsem;
1319 #endif
1320 #ifdef CONFIG_DETECT_HUNG_TASK
1321 /* hung task detection */
1322 unsigned long last_switch_count;
1323 #endif
1324 /* CPU-specific state of this task */
1325 struct thread_struct thread;
1326 /* filesystem information */
1327 struct fs_struct *fs;
1328 /* open file information */
1329 struct files_struct *files;
1330 /* namespaces */
1331 struct nsproxy *nsproxy;
1332 /* signal handlers */
1333 struct signal_struct *signal;
1334 struct sighand_struct *sighand;
1335
1336 sigset_t blocked, real_blocked;
1337 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1338 struct sigpending pending;
1339
1340 unsigned long sas_ss_sp;
1341 size_t sas_ss_size;
1342 int (*notifier)(void *priv);
1343 void *notifier_data;
1344 sigset_t *notifier_mask;
1345 struct audit_context *audit_context;
1346 #ifdef CONFIG_AUDITSYSCALL
1347 uid_t loginuid;
1348 unsigned int sessionid;
1349 #endif
1350 seccomp_t seccomp;
1351
1352 /* Thread group tracking */
1353 u32 parent_exec_id;
1354 u32 self_exec_id;
1355 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1356 * mempolicy */
1357 spinlock_t alloc_lock;
1358
1359 #ifdef CONFIG_GENERIC_HARDIRQS
1360 /* IRQ handler threads */
1361 struct irqaction *irqaction;
1362 #endif
1363
1364 /* Protection of the PI data structures: */
1365 raw_spinlock_t pi_lock;
1366
1367 #ifdef CONFIG_RT_MUTEXES
1368 /* PI waiters blocked on a rt_mutex held by this task */
1369 struct plist_head pi_waiters;
1370 /* Deadlock detection and priority inheritance handling */
1371 struct rt_mutex_waiter *pi_blocked_on;
1372 #endif
1373
1374 #ifdef CONFIG_DEBUG_MUTEXES
1375 /* mutex deadlock detection */
1376 struct mutex_waiter *blocked_on;
1377 #endif
1378 #ifdef CONFIG_TRACE_IRQFLAGS
1379 unsigned int irq_events;
1380 unsigned long hardirq_enable_ip;
1381 unsigned long hardirq_disable_ip;
1382 unsigned int hardirq_enable_event;
1383 unsigned int hardirq_disable_event;
1384 int hardirqs_enabled;
1385 int hardirq_context;
1386 unsigned long softirq_disable_ip;
1387 unsigned long softirq_enable_ip;
1388 unsigned int softirq_disable_event;
1389 unsigned int softirq_enable_event;
1390 int softirqs_enabled;
1391 int softirq_context;
1392 #endif
1393 #ifdef CONFIG_LOCKDEP
1394 # define MAX_LOCK_DEPTH 48UL
1395 u64 curr_chain_key;
1396 int lockdep_depth;
1397 unsigned int lockdep_recursion;
1398 struct held_lock held_locks[MAX_LOCK_DEPTH];
1399 gfp_t lockdep_reclaim_gfp;
1400 #endif
1401
1402 /* journalling filesystem info */
1403 void *journal_info;
1404
1405 /* stacked block device info */
1406 struct bio_list *bio_list;
1407
1408 /* VM state */
1409 struct reclaim_state *reclaim_state;
1410
1411 struct backing_dev_info *backing_dev_info;
1412
1413 struct io_context *io_context;
1414
1415 unsigned long ptrace_message;
1416 siginfo_t *last_siginfo; /* For ptrace use. */
1417 struct task_io_accounting ioac;
1418 #if defined(CONFIG_TASK_XACCT)
1419 u64 acct_rss_mem1; /* accumulated rss usage */
1420 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1421 cputime_t acct_timexpd; /* stime + utime since last update */
1422 #endif
1423 #ifdef CONFIG_CPUSETS
1424 nodemask_t mems_allowed; /* Protected by alloc_lock */
1425 int mems_allowed_change_disable;
1426 int cpuset_mem_spread_rotor;
1427 int cpuset_slab_spread_rotor;
1428 #endif
1429 #ifdef CONFIG_CGROUPS
1430 /* Control Group info protected by css_set_lock */
1431 struct css_set *cgroups;
1432 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1433 struct list_head cg_list;
1434 #endif
1435 #ifdef CONFIG_FUTEX
1436 struct robust_list_head __user *robust_list;
1437 #ifdef CONFIG_COMPAT
1438 struct compat_robust_list_head __user *compat_robust_list;
1439 #endif
1440 struct list_head pi_state_list;
1441 struct futex_pi_state *pi_state_cache;
1442 #endif
1443 #ifdef CONFIG_PERF_EVENTS
1444 struct perf_event_context *perf_event_ctxp;
1445 struct mutex perf_event_mutex;
1446 struct list_head perf_event_list;
1447 #endif
1448 #ifdef CONFIG_NUMA
1449 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1450 short il_next;
1451 #endif
1452 atomic_t fs_excl; /* holding fs exclusive resources */
1453 struct rcu_head rcu;
1454
1455 /*
1456 * cache last used pipe for splice
1457 */
1458 struct pipe_inode_info *splice_pipe;
1459 #ifdef CONFIG_TASK_DELAY_ACCT
1460 struct task_delay_info *delays;
1461 #endif
1462 #ifdef CONFIG_FAULT_INJECTION
1463 int make_it_fail;
1464 #endif
1465 struct prop_local_single dirties;
1466 #ifdef CONFIG_LATENCYTOP
1467 int latency_record_count;
1468 struct latency_record latency_record[LT_SAVECOUNT];
1469 #endif
1470 /*
1471 * time slack values; these are used to round up poll() and
1472 * select() etc timeout values. These are in nanoseconds.
1473 */
1474 unsigned long timer_slack_ns;
1475 unsigned long default_timer_slack_ns;
1476
1477 struct list_head *scm_work_list;
1478 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1479 /* Index of current stored address in ret_stack */
1480 int curr_ret_stack;
1481 /* Stack of return addresses for return function tracing */
1482 struct ftrace_ret_stack *ret_stack;
1483 /* time stamp for last schedule */
1484 unsigned long long ftrace_timestamp;
1485 /*
1486 * Number of functions that haven't been traced
1487 * because of depth overrun.
1488 */
1489 atomic_t trace_overrun;
1490 /* Pause for the tracing */
1491 atomic_t tracing_graph_pause;
1492 #endif
1493 #ifdef CONFIG_TRACING
1494 /* state flags for use by tracers */
1495 unsigned long trace;
1496 /* bitmask of trace recursion */
1497 unsigned long trace_recursion;
1498 #endif /* CONFIG_TRACING */
1499 #ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */
1500 struct memcg_batch_info {
1501 int do_batch; /* incremented when batch uncharge started */
1502 struct mem_cgroup *memcg; /* target memcg of uncharge */
1503 unsigned long bytes; /* uncharged usage */
1504 unsigned long memsw_bytes; /* uncharged mem+swap usage */
1505 } memcg_batch;
1506 #endif
1507 };
1508
1509 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1510 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1511
1512 /*
1513 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1514 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1515 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1516 * values are inverted: lower p->prio value means higher priority.
1517 *
1518 * The MAX_USER_RT_PRIO value allows the actual maximum
1519 * RT priority to be separate from the value exported to
1520 * user-space. This allows kernel threads to set their
1521 * priority to a value higher than any user task. Note:
1522 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1523 */
1524
1525 #define MAX_USER_RT_PRIO 100
1526 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1527
1528 #define MAX_PRIO (MAX_RT_PRIO + 40)
1529 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1530
1531 static inline int rt_prio(int prio)
1532 {
1533 if (unlikely(prio < MAX_RT_PRIO))
1534 return 1;
1535 return 0;
1536 }
1537
1538 static inline int rt_task(struct task_struct *p)
1539 {
1540 return rt_prio(p->prio);
1541 }
1542
1543 static inline struct pid *task_pid(struct task_struct *task)
1544 {
1545 return task->pids[PIDTYPE_PID].pid;
1546 }
1547
1548 static inline struct pid *task_tgid(struct task_struct *task)
1549 {
1550 return task->group_leader->pids[PIDTYPE_PID].pid;
1551 }
1552
1553 /*
1554 * Without tasklist or rcu lock it is not safe to dereference
1555 * the result of task_pgrp/task_session even if task == current,
1556 * we can race with another thread doing sys_setsid/sys_setpgid.
1557 */
1558 static inline struct pid *task_pgrp(struct task_struct *task)
1559 {
1560 return task->group_leader->pids[PIDTYPE_PGID].pid;
1561 }
1562
1563 static inline struct pid *task_session(struct task_struct *task)
1564 {
1565 return task->group_leader->pids[PIDTYPE_SID].pid;
1566 }
1567
1568 struct pid_namespace;
1569
1570 /*
1571 * the helpers to get the task's different pids as they are seen
1572 * from various namespaces
1573 *
1574 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1575 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1576 * current.
1577 * task_xid_nr_ns() : id seen from the ns specified;
1578 *
1579 * set_task_vxid() : assigns a virtual id to a task;
1580 *
1581 * see also pid_nr() etc in include/linux/pid.h
1582 */
1583 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1584 struct pid_namespace *ns);
1585
1586 static inline pid_t task_pid_nr(struct task_struct *tsk)
1587 {
1588 return tsk->pid;
1589 }
1590
1591 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1592 struct pid_namespace *ns)
1593 {
1594 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1595 }
1596
1597 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1598 {
1599 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1600 }
1601
1602
1603 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1604 {
1605 return tsk->tgid;
1606 }
1607
1608 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1609
1610 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1611 {
1612 return pid_vnr(task_tgid(tsk));
1613 }
1614
1615
1616 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1617 struct pid_namespace *ns)
1618 {
1619 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1620 }
1621
1622 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1623 {
1624 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1625 }
1626
1627
1628 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1629 struct pid_namespace *ns)
1630 {
1631 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1632 }
1633
1634 static inline pid_t task_session_vnr(struct task_struct *tsk)
1635 {
1636 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1637 }
1638
1639 /* obsolete, do not use */
1640 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1641 {
1642 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1643 }
1644
1645 /**
1646 * pid_alive - check that a task structure is not stale
1647 * @p: Task structure to be checked.
1648 *
1649 * Test if a process is not yet dead (at most zombie state)
1650 * If pid_alive fails, then pointers within the task structure
1651 * can be stale and must not be dereferenced.
1652 */
1653 static inline int pid_alive(struct task_struct *p)
1654 {
1655 return p->pids[PIDTYPE_PID].pid != NULL;
1656 }
1657
1658 /**
1659 * is_global_init - check if a task structure is init
1660 * @tsk: Task structure to be checked.
1661 *
1662 * Check if a task structure is the first user space task the kernel created.
1663 */
1664 static inline int is_global_init(struct task_struct *tsk)
1665 {
1666 return tsk->pid == 1;
1667 }
1668
1669 /*
1670 * is_container_init:
1671 * check whether in the task is init in its own pid namespace.
1672 */
1673 extern int is_container_init(struct task_struct *tsk);
1674
1675 extern struct pid *cad_pid;
1676
1677 extern void free_task(struct task_struct *tsk);
1678 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1679
1680 extern void __put_task_struct(struct task_struct *t);
1681
1682 static inline void put_task_struct(struct task_struct *t)
1683 {
1684 if (atomic_dec_and_test(&t->usage))
1685 __put_task_struct(t);
1686 }
1687
1688 extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1689 extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1690
1691 /*
1692 * Per process flags
1693 */
1694 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1695 /* Not implemented yet, only for 486*/
1696 #define PF_STARTING 0x00000002 /* being created */
1697 #define PF_EXITING 0x00000004 /* getting shut down */
1698 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1699 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1700 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1701 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1702 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1703 #define PF_DUMPCORE 0x00000200 /* dumped core */
1704 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1705 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1706 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1707 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1708 #define PF_FREEZING 0x00004000 /* freeze in progress. do not account to load */
1709 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1710 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1711 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1712 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1713 #define PF_OOM_ORIGIN 0x00080000 /* Allocating much memory to others */
1714 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1715 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1716 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1717 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1718 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1719 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1720 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1721 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1722 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1723 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1724 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1725 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */
1726
1727 /*
1728 * Only the _current_ task can read/write to tsk->flags, but other
1729 * tasks can access tsk->flags in readonly mode for example
1730 * with tsk_used_math (like during threaded core dumping).
1731 * There is however an exception to this rule during ptrace
1732 * or during fork: the ptracer task is allowed to write to the
1733 * child->flags of its traced child (same goes for fork, the parent
1734 * can write to the child->flags), because we're guaranteed the
1735 * child is not running and in turn not changing child->flags
1736 * at the same time the parent does it.
1737 */
1738 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1739 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1740 #define clear_used_math() clear_stopped_child_used_math(current)
1741 #define set_used_math() set_stopped_child_used_math(current)
1742 #define conditional_stopped_child_used_math(condition, child) \
1743 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1744 #define conditional_used_math(condition) \
1745 conditional_stopped_child_used_math(condition, current)
1746 #define copy_to_stopped_child_used_math(child) \
1747 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1748 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1749 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1750 #define used_math() tsk_used_math(current)
1751
1752 #ifdef CONFIG_TREE_PREEMPT_RCU
1753
1754 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1755 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1756
1757 static inline void rcu_copy_process(struct task_struct *p)
1758 {
1759 p->rcu_read_lock_nesting = 0;
1760 p->rcu_read_unlock_special = 0;
1761 p->rcu_blocked_node = NULL;
1762 INIT_LIST_HEAD(&p->rcu_node_entry);
1763 }
1764
1765 #else
1766
1767 static inline void rcu_copy_process(struct task_struct *p)
1768 {
1769 }
1770
1771 #endif
1772
1773 #ifdef CONFIG_SMP
1774 extern int set_cpus_allowed_ptr(struct task_struct *p,
1775 const struct cpumask *new_mask);
1776 #else
1777 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1778 const struct cpumask *new_mask)
1779 {
1780 if (!cpumask_test_cpu(0, new_mask))
1781 return -EINVAL;
1782 return 0;
1783 }
1784 #endif
1785
1786 #ifndef CONFIG_CPUMASK_OFFSTACK
1787 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1788 {
1789 return set_cpus_allowed_ptr(p, &new_mask);
1790 }
1791 #endif
1792
1793 /*
1794 * Architectures can set this to 1 if they have specified
1795 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1796 * but then during bootup it turns out that sched_clock()
1797 * is reliable after all:
1798 */
1799 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1800 extern int sched_clock_stable;
1801 #endif
1802
1803 /* ftrace calls sched_clock() directly */
1804 extern unsigned long long notrace sched_clock(void);
1805
1806 extern void sched_clock_init(void);
1807 extern u64 sched_clock_cpu(int cpu);
1808
1809 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1810 static inline void sched_clock_tick(void)
1811 {
1812 }
1813
1814 static inline void sched_clock_idle_sleep_event(void)
1815 {
1816 }
1817
1818 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1819 {
1820 }
1821 #else
1822 extern void sched_clock_tick(void);
1823 extern void sched_clock_idle_sleep_event(void);
1824 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1825 #endif
1826
1827 /*
1828 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1829 * clock constructed from sched_clock():
1830 */
1831 extern unsigned long long cpu_clock(int cpu);
1832
1833 extern unsigned long long
1834 task_sched_runtime(struct task_struct *task);
1835 extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1836
1837 /* sched_exec is called by processes performing an exec */
1838 #ifdef CONFIG_SMP
1839 extern void sched_exec(void);
1840 #else
1841 #define sched_exec() {}
1842 #endif
1843
1844 extern void sched_clock_idle_sleep_event(void);
1845 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1846
1847 #ifdef CONFIG_HOTPLUG_CPU
1848 extern void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p);
1849 extern void idle_task_exit(void);
1850 #else
1851 static inline void idle_task_exit(void) {}
1852 #endif
1853
1854 extern void sched_idle_next(void);
1855
1856 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1857 extern void wake_up_idle_cpu(int cpu);
1858 #else
1859 static inline void wake_up_idle_cpu(int cpu) { }
1860 #endif
1861
1862 extern unsigned int sysctl_sched_latency;
1863 extern unsigned int sysctl_sched_min_granularity;
1864 extern unsigned int sysctl_sched_wakeup_granularity;
1865 extern unsigned int sysctl_sched_shares_ratelimit;
1866 extern unsigned int sysctl_sched_shares_thresh;
1867 extern unsigned int sysctl_sched_child_runs_first;
1868
1869 enum sched_tunable_scaling {
1870 SCHED_TUNABLESCALING_NONE,
1871 SCHED_TUNABLESCALING_LOG,
1872 SCHED_TUNABLESCALING_LINEAR,
1873 SCHED_TUNABLESCALING_END,
1874 };
1875 extern enum sched_tunable_scaling sysctl_sched_tunable_scaling;
1876
1877 #ifdef CONFIG_SCHED_DEBUG
1878 extern unsigned int sysctl_sched_migration_cost;
1879 extern unsigned int sysctl_sched_nr_migrate;
1880 extern unsigned int sysctl_sched_time_avg;
1881 extern unsigned int sysctl_timer_migration;
1882
1883 int sched_proc_update_handler(struct ctl_table *table, int write,
1884 void __user *buffer, size_t *length,
1885 loff_t *ppos);
1886 #endif
1887 #ifdef CONFIG_SCHED_DEBUG
1888 static inline unsigned int get_sysctl_timer_migration(void)
1889 {
1890 return sysctl_timer_migration;
1891 }
1892 #else
1893 static inline unsigned int get_sysctl_timer_migration(void)
1894 {
1895 return 1;
1896 }
1897 #endif
1898 extern unsigned int sysctl_sched_rt_period;
1899 extern int sysctl_sched_rt_runtime;
1900
1901 int sched_rt_handler(struct ctl_table *table, int write,
1902 void __user *buffer, size_t *lenp,
1903 loff_t *ppos);
1904
1905 extern unsigned int sysctl_sched_compat_yield;
1906
1907 #ifdef CONFIG_RT_MUTEXES
1908 extern int rt_mutex_getprio(struct task_struct *p);
1909 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1910 extern void rt_mutex_adjust_pi(struct task_struct *p);
1911 #else
1912 static inline int rt_mutex_getprio(struct task_struct *p)
1913 {
1914 return p->normal_prio;
1915 }
1916 # define rt_mutex_adjust_pi(p) do { } while (0)
1917 #endif
1918
1919 extern void set_user_nice(struct task_struct *p, long nice);
1920 extern int task_prio(const struct task_struct *p);
1921 extern int task_nice(const struct task_struct *p);
1922 extern int can_nice(const struct task_struct *p, const int nice);
1923 extern int task_curr(const struct task_struct *p);
1924 extern int idle_cpu(int cpu);
1925 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1926 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1927 struct sched_param *);
1928 extern struct task_struct *idle_task(int cpu);
1929 extern struct task_struct *curr_task(int cpu);
1930 extern void set_curr_task(int cpu, struct task_struct *p);
1931
1932 void yield(void);
1933
1934 /*
1935 * The default (Linux) execution domain.
1936 */
1937 extern struct exec_domain default_exec_domain;
1938
1939 union thread_union {
1940 struct thread_info thread_info;
1941 unsigned long stack[THREAD_SIZE/sizeof(long)];
1942 };
1943
1944 #ifndef __HAVE_ARCH_KSTACK_END
1945 static inline int kstack_end(void *addr)
1946 {
1947 /* Reliable end of stack detection:
1948 * Some APM bios versions misalign the stack
1949 */
1950 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1951 }
1952 #endif
1953
1954 extern union thread_union init_thread_union;
1955 extern struct task_struct init_task;
1956
1957 extern struct mm_struct init_mm;
1958
1959 extern struct pid_namespace init_pid_ns;
1960
1961 /*
1962 * find a task by one of its numerical ids
1963 *
1964 * find_task_by_pid_ns():
1965 * finds a task by its pid in the specified namespace
1966 * find_task_by_vpid():
1967 * finds a task by its virtual pid
1968 *
1969 * see also find_vpid() etc in include/linux/pid.h
1970 */
1971
1972 extern struct task_struct *find_task_by_vpid(pid_t nr);
1973 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1974 struct pid_namespace *ns);
1975
1976 extern void __set_special_pids(struct pid *pid);
1977
1978 /* per-UID process charging. */
1979 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1980 static inline struct user_struct *get_uid(struct user_struct *u)
1981 {
1982 atomic_inc(&u->__count);
1983 return u;
1984 }
1985 extern void free_uid(struct user_struct *);
1986 extern void release_uids(struct user_namespace *ns);
1987
1988 #include <asm/current.h>
1989
1990 extern void do_timer(unsigned long ticks);
1991
1992 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1993 extern int wake_up_process(struct task_struct *tsk);
1994 extern void wake_up_new_task(struct task_struct *tsk,
1995 unsigned long clone_flags);
1996 #ifdef CONFIG_SMP
1997 extern void kick_process(struct task_struct *tsk);
1998 #else
1999 static inline void kick_process(struct task_struct *tsk) { }
2000 #endif
2001 extern void sched_fork(struct task_struct *p, int clone_flags);
2002 extern void sched_dead(struct task_struct *p);
2003
2004 extern void proc_caches_init(void);
2005 extern void flush_signals(struct task_struct *);
2006 extern void __flush_signals(struct task_struct *);
2007 extern void ignore_signals(struct task_struct *);
2008 extern void flush_signal_handlers(struct task_struct *, int force_default);
2009 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2010
2011 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2012 {
2013 unsigned long flags;
2014 int ret;
2015
2016 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2017 ret = dequeue_signal(tsk, mask, info);
2018 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2019
2020 return ret;
2021 }
2022
2023 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2024 sigset_t *mask);
2025 extern void unblock_all_signals(void);
2026 extern void release_task(struct task_struct * p);
2027 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2028 extern int force_sigsegv(int, struct task_struct *);
2029 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2030 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2031 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2032 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
2033 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2034 extern int kill_pid(struct pid *pid, int sig, int priv);
2035 extern int kill_proc_info(int, struct siginfo *, pid_t);
2036 extern int do_notify_parent(struct task_struct *, int);
2037 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2038 extern void force_sig(int, struct task_struct *);
2039 extern int send_sig(int, struct task_struct *, int);
2040 extern int zap_other_threads(struct task_struct *p);
2041 extern struct sigqueue *sigqueue_alloc(void);
2042 extern void sigqueue_free(struct sigqueue *);
2043 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2044 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2045 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2046
2047 static inline int kill_cad_pid(int sig, int priv)
2048 {
2049 return kill_pid(cad_pid, sig, priv);
2050 }
2051
2052 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2053 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2054 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2055 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2056
2057 /*
2058 * True if we are on the alternate signal stack.
2059 */
2060 static inline int on_sig_stack(unsigned long sp)
2061 {
2062 #ifdef CONFIG_STACK_GROWSUP
2063 return sp >= current->sas_ss_sp &&
2064 sp - current->sas_ss_sp < current->sas_ss_size;
2065 #else
2066 return sp > current->sas_ss_sp &&
2067 sp - current->sas_ss_sp <= current->sas_ss_size;
2068 #endif
2069 }
2070
2071 static inline int sas_ss_flags(unsigned long sp)
2072 {
2073 return (current->sas_ss_size == 0 ? SS_DISABLE
2074 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2075 }
2076
2077 /*
2078 * Routines for handling mm_structs
2079 */
2080 extern struct mm_struct * mm_alloc(void);
2081
2082 /* mmdrop drops the mm and the page tables */
2083 extern void __mmdrop(struct mm_struct *);
2084 static inline void mmdrop(struct mm_struct * mm)
2085 {
2086 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2087 __mmdrop(mm);
2088 }
2089
2090 /* mmput gets rid of the mappings and all user-space */
2091 extern void mmput(struct mm_struct *);
2092 /* Grab a reference to a task's mm, if it is not already going away */
2093 extern struct mm_struct *get_task_mm(struct task_struct *task);
2094 /* Remove the current tasks stale references to the old mm_struct */
2095 extern void mm_release(struct task_struct *, struct mm_struct *);
2096 /* Allocate a new mm structure and copy contents from tsk->mm */
2097 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2098
2099 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2100 struct task_struct *, struct pt_regs *);
2101 extern void flush_thread(void);
2102 extern void exit_thread(void);
2103
2104 extern void exit_files(struct task_struct *);
2105 extern void __cleanup_sighand(struct sighand_struct *);
2106
2107 extern void exit_itimers(struct signal_struct *);
2108 extern void flush_itimer_signals(void);
2109
2110 extern NORET_TYPE void do_group_exit(int);
2111
2112 extern void daemonize(const char *, ...);
2113 extern int allow_signal(int);
2114 extern int disallow_signal(int);
2115
2116 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
2117 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2118 struct task_struct *fork_idle(int);
2119
2120 extern void set_task_comm(struct task_struct *tsk, char *from);
2121 extern char *get_task_comm(char *to, struct task_struct *tsk);
2122
2123 #ifdef CONFIG_SMP
2124 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2125 #else
2126 static inline unsigned long wait_task_inactive(struct task_struct *p,
2127 long match_state)
2128 {
2129 return 1;
2130 }
2131 #endif
2132
2133 #define next_task(p) \
2134 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2135
2136 #define for_each_process(p) \
2137 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2138
2139 extern bool current_is_single_threaded(void);
2140
2141 /*
2142 * Careful: do_each_thread/while_each_thread is a double loop so
2143 * 'break' will not work as expected - use goto instead.
2144 */
2145 #define do_each_thread(g, t) \
2146 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2147
2148 #define while_each_thread(g, t) \
2149 while ((t = next_thread(t)) != g)
2150
2151 static inline int get_nr_threads(struct task_struct *tsk)
2152 {
2153 return tsk->signal->nr_threads;
2154 }
2155
2156 /* de_thread depends on thread_group_leader not being a pid based check */
2157 #define thread_group_leader(p) (p == p->group_leader)
2158
2159 /* Do to the insanities of de_thread it is possible for a process
2160 * to have the pid of the thread group leader without actually being
2161 * the thread group leader. For iteration through the pids in proc
2162 * all we care about is that we have a task with the appropriate
2163 * pid, we don't actually care if we have the right task.
2164 */
2165 static inline int has_group_leader_pid(struct task_struct *p)
2166 {
2167 return p->pid == p->tgid;
2168 }
2169
2170 static inline
2171 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2172 {
2173 return p1->tgid == p2->tgid;
2174 }
2175
2176 static inline struct task_struct *next_thread(const struct task_struct *p)
2177 {
2178 return list_entry_rcu(p->thread_group.next,
2179 struct task_struct, thread_group);
2180 }
2181
2182 static inline int thread_group_empty(struct task_struct *p)
2183 {
2184 return list_empty(&p->thread_group);
2185 }
2186
2187 #define delay_group_leader(p) \
2188 (thread_group_leader(p) && !thread_group_empty(p))
2189
2190 static inline int task_detached(struct task_struct *p)
2191 {
2192 return p->exit_signal == -1;
2193 }
2194
2195 /*
2196 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2197 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2198 * pins the final release of task.io_context. Also protects ->cpuset and
2199 * ->cgroup.subsys[].
2200 *
2201 * Nests both inside and outside of read_lock(&tasklist_lock).
2202 * It must not be nested with write_lock_irq(&tasklist_lock),
2203 * neither inside nor outside.
2204 */
2205 static inline void task_lock(struct task_struct *p)
2206 {
2207 spin_lock(&p->alloc_lock);
2208 }
2209
2210 static inline void task_unlock(struct task_struct *p)
2211 {
2212 spin_unlock(&p->alloc_lock);
2213 }
2214
2215 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2216 unsigned long *flags);
2217
2218 static inline void unlock_task_sighand(struct task_struct *tsk,
2219 unsigned long *flags)
2220 {
2221 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2222 }
2223
2224 #ifndef __HAVE_THREAD_FUNCTIONS
2225
2226 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2227 #define task_stack_page(task) ((task)->stack)
2228
2229 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2230 {
2231 *task_thread_info(p) = *task_thread_info(org);
2232 task_thread_info(p)->task = p;
2233 }
2234
2235 static inline unsigned long *end_of_stack(struct task_struct *p)
2236 {
2237 return (unsigned long *)(task_thread_info(p) + 1);
2238 }
2239
2240 #endif
2241
2242 static inline int object_is_on_stack(void *obj)
2243 {
2244 void *stack = task_stack_page(current);
2245
2246 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2247 }
2248
2249 extern void thread_info_cache_init(void);
2250
2251 #ifdef CONFIG_DEBUG_STACK_USAGE
2252 static inline unsigned long stack_not_used(struct task_struct *p)
2253 {
2254 unsigned long *n = end_of_stack(p);
2255
2256 do { /* Skip over canary */
2257 n++;
2258 } while (!*n);
2259
2260 return (unsigned long)n - (unsigned long)end_of_stack(p);
2261 }
2262 #endif
2263
2264 /* set thread flags in other task's structures
2265 * - see asm/thread_info.h for TIF_xxxx flags available
2266 */
2267 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2268 {
2269 set_ti_thread_flag(task_thread_info(tsk), flag);
2270 }
2271
2272 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2273 {
2274 clear_ti_thread_flag(task_thread_info(tsk), flag);
2275 }
2276
2277 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2278 {
2279 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2280 }
2281
2282 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2283 {
2284 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2285 }
2286
2287 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2288 {
2289 return test_ti_thread_flag(task_thread_info(tsk), flag);
2290 }
2291
2292 static inline void set_tsk_need_resched(struct task_struct *tsk)
2293 {
2294 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2295 }
2296
2297 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2298 {
2299 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2300 }
2301
2302 static inline int test_tsk_need_resched(struct task_struct *tsk)
2303 {
2304 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2305 }
2306
2307 static inline int restart_syscall(void)
2308 {
2309 set_tsk_thread_flag(current, TIF_SIGPENDING);
2310 return -ERESTARTNOINTR;
2311 }
2312
2313 static inline int signal_pending(struct task_struct *p)
2314 {
2315 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2316 }
2317
2318 static inline int __fatal_signal_pending(struct task_struct *p)
2319 {
2320 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2321 }
2322
2323 static inline int fatal_signal_pending(struct task_struct *p)
2324 {
2325 return signal_pending(p) && __fatal_signal_pending(p);
2326 }
2327
2328 static inline int signal_pending_state(long state, struct task_struct *p)
2329 {
2330 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2331 return 0;
2332 if (!signal_pending(p))
2333 return 0;
2334
2335 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2336 }
2337
2338 static inline int need_resched(void)
2339 {
2340 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2341 }
2342
2343 /*
2344 * cond_resched() and cond_resched_lock(): latency reduction via
2345 * explicit rescheduling in places that are safe. The return
2346 * value indicates whether a reschedule was done in fact.
2347 * cond_resched_lock() will drop the spinlock before scheduling,
2348 * cond_resched_softirq() will enable bhs before scheduling.
2349 */
2350 extern int _cond_resched(void);
2351
2352 #define cond_resched() ({ \
2353 __might_sleep(__FILE__, __LINE__, 0); \
2354 _cond_resched(); \
2355 })
2356
2357 extern int __cond_resched_lock(spinlock_t *lock);
2358
2359 #ifdef CONFIG_PREEMPT
2360 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2361 #else
2362 #define PREEMPT_LOCK_OFFSET 0
2363 #endif
2364
2365 #define cond_resched_lock(lock) ({ \
2366 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2367 __cond_resched_lock(lock); \
2368 })
2369
2370 extern int __cond_resched_softirq(void);
2371
2372 #define cond_resched_softirq() ({ \
2373 __might_sleep(__FILE__, __LINE__, SOFTIRQ_OFFSET); \
2374 __cond_resched_softirq(); \
2375 })
2376
2377 /*
2378 * Does a critical section need to be broken due to another
2379 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2380 * but a general need for low latency)
2381 */
2382 static inline int spin_needbreak(spinlock_t *lock)
2383 {
2384 #ifdef CONFIG_PREEMPT
2385 return spin_is_contended(lock);
2386 #else
2387 return 0;
2388 #endif
2389 }
2390
2391 /*
2392 * Thread group CPU time accounting.
2393 */
2394 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2395 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2396
2397 static inline void thread_group_cputime_init(struct signal_struct *sig)
2398 {
2399 spin_lock_init(&sig->cputimer.lock);
2400 }
2401
2402 /*
2403 * Reevaluate whether the task has signals pending delivery.
2404 * Wake the task if so.
2405 * This is required every time the blocked sigset_t changes.
2406 * callers must hold sighand->siglock.
2407 */
2408 extern void recalc_sigpending_and_wake(struct task_struct *t);
2409 extern void recalc_sigpending(void);
2410
2411 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2412
2413 /*
2414 * Wrappers for p->thread_info->cpu access. No-op on UP.
2415 */
2416 #ifdef CONFIG_SMP
2417
2418 static inline unsigned int task_cpu(const struct task_struct *p)
2419 {
2420 return task_thread_info(p)->cpu;
2421 }
2422
2423 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2424
2425 #else
2426
2427 static inline unsigned int task_cpu(const struct task_struct *p)
2428 {
2429 return 0;
2430 }
2431
2432 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2433 {
2434 }
2435
2436 #endif /* CONFIG_SMP */
2437
2438 #ifdef CONFIG_TRACING
2439 extern void
2440 __trace_special(void *__tr, void *__data,
2441 unsigned long arg1, unsigned long arg2, unsigned long arg3);
2442 #else
2443 static inline void
2444 __trace_special(void *__tr, void *__data,
2445 unsigned long arg1, unsigned long arg2, unsigned long arg3)
2446 {
2447 }
2448 #endif
2449
2450 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2451 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2452
2453 extern void normalize_rt_tasks(void);
2454
2455 #ifdef CONFIG_CGROUP_SCHED
2456
2457 extern struct task_group init_task_group;
2458
2459 extern struct task_group *sched_create_group(struct task_group *parent);
2460 extern void sched_destroy_group(struct task_group *tg);
2461 extern void sched_move_task(struct task_struct *tsk);
2462 #ifdef CONFIG_FAIR_GROUP_SCHED
2463 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2464 extern unsigned long sched_group_shares(struct task_group *tg);
2465 #endif
2466 #ifdef CONFIG_RT_GROUP_SCHED
2467 extern int sched_group_set_rt_runtime(struct task_group *tg,
2468 long rt_runtime_us);
2469 extern long sched_group_rt_runtime(struct task_group *tg);
2470 extern int sched_group_set_rt_period(struct task_group *tg,
2471 long rt_period_us);
2472 extern long sched_group_rt_period(struct task_group *tg);
2473 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2474 #endif
2475 #endif
2476
2477 extern int task_can_switch_user(struct user_struct *up,
2478 struct task_struct *tsk);
2479
2480 #ifdef CONFIG_TASK_XACCT
2481 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2482 {
2483 tsk->ioac.rchar += amt;
2484 }
2485
2486 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2487 {
2488 tsk->ioac.wchar += amt;
2489 }
2490
2491 static inline void inc_syscr(struct task_struct *tsk)
2492 {
2493 tsk->ioac.syscr++;
2494 }
2495
2496 static inline void inc_syscw(struct task_struct *tsk)
2497 {
2498 tsk->ioac.syscw++;
2499 }
2500 #else
2501 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2502 {
2503 }
2504
2505 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2506 {
2507 }
2508
2509 static inline void inc_syscr(struct task_struct *tsk)
2510 {
2511 }
2512
2513 static inline void inc_syscw(struct task_struct *tsk)
2514 {
2515 }
2516 #endif
2517
2518 #ifndef TASK_SIZE_OF
2519 #define TASK_SIZE_OF(tsk) TASK_SIZE
2520 #endif
2521
2522 /*
2523 * Call the function if the target task is executing on a CPU right now:
2524 */
2525 extern void task_oncpu_function_call(struct task_struct *p,
2526 void (*func) (void *info), void *info);
2527
2528
2529 #ifdef CONFIG_MM_OWNER
2530 extern void mm_update_next_owner(struct mm_struct *mm);
2531 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2532 #else
2533 static inline void mm_update_next_owner(struct mm_struct *mm)
2534 {
2535 }
2536
2537 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2538 {
2539 }
2540 #endif /* CONFIG_MM_OWNER */
2541
2542 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2543 unsigned int limit)
2544 {
2545 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2546 }
2547
2548 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2549 unsigned int limit)
2550 {
2551 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2552 }
2553
2554 static inline unsigned long rlimit(unsigned int limit)
2555 {
2556 return task_rlimit(current, limit);
2557 }
2558
2559 static inline unsigned long rlimit_max(unsigned int limit)
2560 {
2561 return task_rlimit_max(current, limit);
2562 }
2563
2564 #endif /* __KERNEL__ */
2565
2566 #endif
This page took 0.086339 seconds and 5 git commands to generate.