sched: Move nr_cpus_allowed out of 'struct sched_rt_entity'
[deliverable/linux.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 /* 0x02000000 was previously the unused CLONE_STOPPED (Start in stopped state)
25 and is now available for re-use. */
26 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
27 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
28 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
29 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
30 #define CLONE_NEWNET 0x40000000 /* New network namespace */
31 #define CLONE_IO 0x80000000 /* Clone io context */
32
33 /*
34 * Scheduling policies
35 */
36 #define SCHED_NORMAL 0
37 #define SCHED_FIFO 1
38 #define SCHED_RR 2
39 #define SCHED_BATCH 3
40 /* SCHED_ISO: reserved but not implemented yet */
41 #define SCHED_IDLE 5
42 /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
43 #define SCHED_RESET_ON_FORK 0x40000000
44
45 #ifdef __KERNEL__
46
47 struct sched_param {
48 int sched_priority;
49 };
50
51 #include <asm/param.h> /* for HZ */
52
53 #include <linux/capability.h>
54 #include <linux/threads.h>
55 #include <linux/kernel.h>
56 #include <linux/types.h>
57 #include <linux/timex.h>
58 #include <linux/jiffies.h>
59 #include <linux/rbtree.h>
60 #include <linux/thread_info.h>
61 #include <linux/cpumask.h>
62 #include <linux/errno.h>
63 #include <linux/nodemask.h>
64 #include <linux/mm_types.h>
65
66 #include <asm/page.h>
67 #include <asm/ptrace.h>
68 #include <asm/cputime.h>
69
70 #include <linux/smp.h>
71 #include <linux/sem.h>
72 #include <linux/signal.h>
73 #include <linux/compiler.h>
74 #include <linux/completion.h>
75 #include <linux/pid.h>
76 #include <linux/percpu.h>
77 #include <linux/topology.h>
78 #include <linux/proportions.h>
79 #include <linux/seccomp.h>
80 #include <linux/rcupdate.h>
81 #include <linux/rculist.h>
82 #include <linux/rtmutex.h>
83
84 #include <linux/time.h>
85 #include <linux/param.h>
86 #include <linux/resource.h>
87 #include <linux/timer.h>
88 #include <linux/hrtimer.h>
89 #include <linux/task_io_accounting.h>
90 #include <linux/latencytop.h>
91 #include <linux/cred.h>
92 #include <linux/llist.h>
93 #include <linux/uidgid.h>
94
95 #include <asm/processor.h>
96
97 struct exec_domain;
98 struct futex_pi_state;
99 struct robust_list_head;
100 struct bio_list;
101 struct fs_struct;
102 struct perf_event_context;
103 struct blk_plug;
104
105 /*
106 * List of flags we want to share for kernel threads,
107 * if only because they are not used by them anyway.
108 */
109 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
110
111 /*
112 * These are the constant used to fake the fixed-point load-average
113 * counting. Some notes:
114 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
115 * a load-average precision of 10 bits integer + 11 bits fractional
116 * - if you want to count load-averages more often, you need more
117 * precision, or rounding will get you. With 2-second counting freq,
118 * the EXP_n values would be 1981, 2034 and 2043 if still using only
119 * 11 bit fractions.
120 */
121 extern unsigned long avenrun[]; /* Load averages */
122 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
123
124 #define FSHIFT 11 /* nr of bits of precision */
125 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
126 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
127 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
128 #define EXP_5 2014 /* 1/exp(5sec/5min) */
129 #define EXP_15 2037 /* 1/exp(5sec/15min) */
130
131 #define CALC_LOAD(load,exp,n) \
132 load *= exp; \
133 load += n*(FIXED_1-exp); \
134 load >>= FSHIFT;
135
136 extern unsigned long total_forks;
137 extern int nr_threads;
138 DECLARE_PER_CPU(unsigned long, process_counts);
139 extern int nr_processes(void);
140 extern unsigned long nr_running(void);
141 extern unsigned long nr_uninterruptible(void);
142 extern unsigned long nr_iowait(void);
143 extern unsigned long nr_iowait_cpu(int cpu);
144 extern unsigned long this_cpu_load(void);
145
146
147 extern void calc_global_load(unsigned long ticks);
148 extern void update_cpu_load_nohz(void);
149
150 extern unsigned long get_parent_ip(unsigned long addr);
151
152 struct seq_file;
153 struct cfs_rq;
154 struct task_group;
155 #ifdef CONFIG_SCHED_DEBUG
156 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
157 extern void proc_sched_set_task(struct task_struct *p);
158 extern void
159 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
160 #else
161 static inline void
162 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
163 {
164 }
165 static inline void proc_sched_set_task(struct task_struct *p)
166 {
167 }
168 static inline void
169 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
170 {
171 }
172 #endif
173
174 /*
175 * Task state bitmask. NOTE! These bits are also
176 * encoded in fs/proc/array.c: get_task_state().
177 *
178 * We have two separate sets of flags: task->state
179 * is about runnability, while task->exit_state are
180 * about the task exiting. Confusing, but this way
181 * modifying one set can't modify the other one by
182 * mistake.
183 */
184 #define TASK_RUNNING 0
185 #define TASK_INTERRUPTIBLE 1
186 #define TASK_UNINTERRUPTIBLE 2
187 #define __TASK_STOPPED 4
188 #define __TASK_TRACED 8
189 /* in tsk->exit_state */
190 #define EXIT_ZOMBIE 16
191 #define EXIT_DEAD 32
192 /* in tsk->state again */
193 #define TASK_DEAD 64
194 #define TASK_WAKEKILL 128
195 #define TASK_WAKING 256
196 #define TASK_STATE_MAX 512
197
198 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW"
199
200 extern char ___assert_task_state[1 - 2*!!(
201 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
202
203 /* Convenience macros for the sake of set_task_state */
204 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
205 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
206 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
207
208 /* Convenience macros for the sake of wake_up */
209 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
210 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
211
212 /* get_task_state() */
213 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
214 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
215 __TASK_TRACED)
216
217 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
218 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
219 #define task_is_dead(task) ((task)->exit_state != 0)
220 #define task_is_stopped_or_traced(task) \
221 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
222 #define task_contributes_to_load(task) \
223 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
224 (task->flags & PF_FROZEN) == 0)
225
226 #define __set_task_state(tsk, state_value) \
227 do { (tsk)->state = (state_value); } while (0)
228 #define set_task_state(tsk, state_value) \
229 set_mb((tsk)->state, (state_value))
230
231 /*
232 * set_current_state() includes a barrier so that the write of current->state
233 * is correctly serialised wrt the caller's subsequent test of whether to
234 * actually sleep:
235 *
236 * set_current_state(TASK_UNINTERRUPTIBLE);
237 * if (do_i_need_to_sleep())
238 * schedule();
239 *
240 * If the caller does not need such serialisation then use __set_current_state()
241 */
242 #define __set_current_state(state_value) \
243 do { current->state = (state_value); } while (0)
244 #define set_current_state(state_value) \
245 set_mb(current->state, (state_value))
246
247 /* Task command name length */
248 #define TASK_COMM_LEN 16
249
250 #include <linux/spinlock.h>
251
252 /*
253 * This serializes "schedule()" and also protects
254 * the run-queue from deletions/modifications (but
255 * _adding_ to the beginning of the run-queue has
256 * a separate lock).
257 */
258 extern rwlock_t tasklist_lock;
259 extern spinlock_t mmlist_lock;
260
261 struct task_struct;
262
263 #ifdef CONFIG_PROVE_RCU
264 extern int lockdep_tasklist_lock_is_held(void);
265 #endif /* #ifdef CONFIG_PROVE_RCU */
266
267 extern void sched_init(void);
268 extern void sched_init_smp(void);
269 extern asmlinkage void schedule_tail(struct task_struct *prev);
270 extern void init_idle(struct task_struct *idle, int cpu);
271 extern void init_idle_bootup_task(struct task_struct *idle);
272
273 extern int runqueue_is_locked(int cpu);
274
275 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
276 extern void select_nohz_load_balancer(int stop_tick);
277 extern void set_cpu_sd_state_idle(void);
278 extern int get_nohz_timer_target(void);
279 #else
280 static inline void select_nohz_load_balancer(int stop_tick) { }
281 static inline void set_cpu_sd_state_idle(void) { }
282 #endif
283
284 /*
285 * Only dump TASK_* tasks. (0 for all tasks)
286 */
287 extern void show_state_filter(unsigned long state_filter);
288
289 static inline void show_state(void)
290 {
291 show_state_filter(0);
292 }
293
294 extern void show_regs(struct pt_regs *);
295
296 /*
297 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
298 * task), SP is the stack pointer of the first frame that should be shown in the back
299 * trace (or NULL if the entire call-chain of the task should be shown).
300 */
301 extern void show_stack(struct task_struct *task, unsigned long *sp);
302
303 void io_schedule(void);
304 long io_schedule_timeout(long timeout);
305
306 extern void cpu_init (void);
307 extern void trap_init(void);
308 extern void update_process_times(int user);
309 extern void scheduler_tick(void);
310
311 extern void sched_show_task(struct task_struct *p);
312
313 #ifdef CONFIG_LOCKUP_DETECTOR
314 extern void touch_softlockup_watchdog(void);
315 extern void touch_softlockup_watchdog_sync(void);
316 extern void touch_all_softlockup_watchdogs(void);
317 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
318 void __user *buffer,
319 size_t *lenp, loff_t *ppos);
320 extern unsigned int softlockup_panic;
321 void lockup_detector_init(void);
322 #else
323 static inline void touch_softlockup_watchdog(void)
324 {
325 }
326 static inline void touch_softlockup_watchdog_sync(void)
327 {
328 }
329 static inline void touch_all_softlockup_watchdogs(void)
330 {
331 }
332 static inline void lockup_detector_init(void)
333 {
334 }
335 #endif
336
337 #ifdef CONFIG_DETECT_HUNG_TASK
338 extern unsigned int sysctl_hung_task_panic;
339 extern unsigned long sysctl_hung_task_check_count;
340 extern unsigned long sysctl_hung_task_timeout_secs;
341 extern unsigned long sysctl_hung_task_warnings;
342 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
343 void __user *buffer,
344 size_t *lenp, loff_t *ppos);
345 #else
346 /* Avoid need for ifdefs elsewhere in the code */
347 enum { sysctl_hung_task_timeout_secs = 0 };
348 #endif
349
350 /* Attach to any functions which should be ignored in wchan output. */
351 #define __sched __attribute__((__section__(".sched.text")))
352
353 /* Linker adds these: start and end of __sched functions */
354 extern char __sched_text_start[], __sched_text_end[];
355
356 /* Is this address in the __sched functions? */
357 extern int in_sched_functions(unsigned long addr);
358
359 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
360 extern signed long schedule_timeout(signed long timeout);
361 extern signed long schedule_timeout_interruptible(signed long timeout);
362 extern signed long schedule_timeout_killable(signed long timeout);
363 extern signed long schedule_timeout_uninterruptible(signed long timeout);
364 asmlinkage void schedule(void);
365 extern void schedule_preempt_disabled(void);
366 extern int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner);
367
368 struct nsproxy;
369 struct user_namespace;
370
371 /*
372 * Default maximum number of active map areas, this limits the number of vmas
373 * per mm struct. Users can overwrite this number by sysctl but there is a
374 * problem.
375 *
376 * When a program's coredump is generated as ELF format, a section is created
377 * per a vma. In ELF, the number of sections is represented in unsigned short.
378 * This means the number of sections should be smaller than 65535 at coredump.
379 * Because the kernel adds some informative sections to a image of program at
380 * generating coredump, we need some margin. The number of extra sections is
381 * 1-3 now and depends on arch. We use "5" as safe margin, here.
382 */
383 #define MAPCOUNT_ELF_CORE_MARGIN (5)
384 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
385
386 extern int sysctl_max_map_count;
387
388 #include <linux/aio.h>
389
390 #ifdef CONFIG_MMU
391 extern void arch_pick_mmap_layout(struct mm_struct *mm);
392 extern unsigned long
393 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
394 unsigned long, unsigned long);
395 extern unsigned long
396 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
397 unsigned long len, unsigned long pgoff,
398 unsigned long flags);
399 extern void arch_unmap_area(struct mm_struct *, unsigned long);
400 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
401 #else
402 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
403 #endif
404
405
406 extern void set_dumpable(struct mm_struct *mm, int value);
407 extern int get_dumpable(struct mm_struct *mm);
408
409 /* mm flags */
410 /* dumpable bits */
411 #define MMF_DUMPABLE 0 /* core dump is permitted */
412 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
413
414 #define MMF_DUMPABLE_BITS 2
415 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
416
417 /* coredump filter bits */
418 #define MMF_DUMP_ANON_PRIVATE 2
419 #define MMF_DUMP_ANON_SHARED 3
420 #define MMF_DUMP_MAPPED_PRIVATE 4
421 #define MMF_DUMP_MAPPED_SHARED 5
422 #define MMF_DUMP_ELF_HEADERS 6
423 #define MMF_DUMP_HUGETLB_PRIVATE 7
424 #define MMF_DUMP_HUGETLB_SHARED 8
425
426 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
427 #define MMF_DUMP_FILTER_BITS 7
428 #define MMF_DUMP_FILTER_MASK \
429 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
430 #define MMF_DUMP_FILTER_DEFAULT \
431 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
432 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
433
434 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
435 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
436 #else
437 # define MMF_DUMP_MASK_DEFAULT_ELF 0
438 #endif
439 /* leave room for more dump flags */
440 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
441 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
442
443 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
444
445 struct sighand_struct {
446 atomic_t count;
447 struct k_sigaction action[_NSIG];
448 spinlock_t siglock;
449 wait_queue_head_t signalfd_wqh;
450 };
451
452 struct pacct_struct {
453 int ac_flag;
454 long ac_exitcode;
455 unsigned long ac_mem;
456 cputime_t ac_utime, ac_stime;
457 unsigned long ac_minflt, ac_majflt;
458 };
459
460 struct cpu_itimer {
461 cputime_t expires;
462 cputime_t incr;
463 u32 error;
464 u32 incr_error;
465 };
466
467 /**
468 * struct task_cputime - collected CPU time counts
469 * @utime: time spent in user mode, in &cputime_t units
470 * @stime: time spent in kernel mode, in &cputime_t units
471 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
472 *
473 * This structure groups together three kinds of CPU time that are
474 * tracked for threads and thread groups. Most things considering
475 * CPU time want to group these counts together and treat all three
476 * of them in parallel.
477 */
478 struct task_cputime {
479 cputime_t utime;
480 cputime_t stime;
481 unsigned long long sum_exec_runtime;
482 };
483 /* Alternate field names when used to cache expirations. */
484 #define prof_exp stime
485 #define virt_exp utime
486 #define sched_exp sum_exec_runtime
487
488 #define INIT_CPUTIME \
489 (struct task_cputime) { \
490 .utime = 0, \
491 .stime = 0, \
492 .sum_exec_runtime = 0, \
493 }
494
495 /*
496 * Disable preemption until the scheduler is running.
497 * Reset by start_kernel()->sched_init()->init_idle().
498 *
499 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
500 * before the scheduler is active -- see should_resched().
501 */
502 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
503
504 /**
505 * struct thread_group_cputimer - thread group interval timer counts
506 * @cputime: thread group interval timers.
507 * @running: non-zero when there are timers running and
508 * @cputime receives updates.
509 * @lock: lock for fields in this struct.
510 *
511 * This structure contains the version of task_cputime, above, that is
512 * used for thread group CPU timer calculations.
513 */
514 struct thread_group_cputimer {
515 struct task_cputime cputime;
516 int running;
517 raw_spinlock_t lock;
518 };
519
520 #include <linux/rwsem.h>
521 struct autogroup;
522
523 /*
524 * NOTE! "signal_struct" does not have its own
525 * locking, because a shared signal_struct always
526 * implies a shared sighand_struct, so locking
527 * sighand_struct is always a proper superset of
528 * the locking of signal_struct.
529 */
530 struct signal_struct {
531 atomic_t sigcnt;
532 atomic_t live;
533 int nr_threads;
534
535 wait_queue_head_t wait_chldexit; /* for wait4() */
536
537 /* current thread group signal load-balancing target: */
538 struct task_struct *curr_target;
539
540 /* shared signal handling: */
541 struct sigpending shared_pending;
542
543 /* thread group exit support */
544 int group_exit_code;
545 /* overloaded:
546 * - notify group_exit_task when ->count is equal to notify_count
547 * - everyone except group_exit_task is stopped during signal delivery
548 * of fatal signals, group_exit_task processes the signal.
549 */
550 int notify_count;
551 struct task_struct *group_exit_task;
552
553 /* thread group stop support, overloads group_exit_code too */
554 int group_stop_count;
555 unsigned int flags; /* see SIGNAL_* flags below */
556
557 /*
558 * PR_SET_CHILD_SUBREAPER marks a process, like a service
559 * manager, to re-parent orphan (double-forking) child processes
560 * to this process instead of 'init'. The service manager is
561 * able to receive SIGCHLD signals and is able to investigate
562 * the process until it calls wait(). All children of this
563 * process will inherit a flag if they should look for a
564 * child_subreaper process at exit.
565 */
566 unsigned int is_child_subreaper:1;
567 unsigned int has_child_subreaper:1;
568
569 /* POSIX.1b Interval Timers */
570 struct list_head posix_timers;
571
572 /* ITIMER_REAL timer for the process */
573 struct hrtimer real_timer;
574 struct pid *leader_pid;
575 ktime_t it_real_incr;
576
577 /*
578 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
579 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
580 * values are defined to 0 and 1 respectively
581 */
582 struct cpu_itimer it[2];
583
584 /*
585 * Thread group totals for process CPU timers.
586 * See thread_group_cputimer(), et al, for details.
587 */
588 struct thread_group_cputimer cputimer;
589
590 /* Earliest-expiration cache. */
591 struct task_cputime cputime_expires;
592
593 struct list_head cpu_timers[3];
594
595 struct pid *tty_old_pgrp;
596
597 /* boolean value for session group leader */
598 int leader;
599
600 struct tty_struct *tty; /* NULL if no tty */
601
602 #ifdef CONFIG_SCHED_AUTOGROUP
603 struct autogroup *autogroup;
604 #endif
605 /*
606 * Cumulative resource counters for dead threads in the group,
607 * and for reaped dead child processes forked by this group.
608 * Live threads maintain their own counters and add to these
609 * in __exit_signal, except for the group leader.
610 */
611 cputime_t utime, stime, cutime, cstime;
612 cputime_t gtime;
613 cputime_t cgtime;
614 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
615 cputime_t prev_utime, prev_stime;
616 #endif
617 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
618 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
619 unsigned long inblock, oublock, cinblock, coublock;
620 unsigned long maxrss, cmaxrss;
621 struct task_io_accounting ioac;
622
623 /*
624 * Cumulative ns of schedule CPU time fo dead threads in the
625 * group, not including a zombie group leader, (This only differs
626 * from jiffies_to_ns(utime + stime) if sched_clock uses something
627 * other than jiffies.)
628 */
629 unsigned long long sum_sched_runtime;
630
631 /*
632 * We don't bother to synchronize most readers of this at all,
633 * because there is no reader checking a limit that actually needs
634 * to get both rlim_cur and rlim_max atomically, and either one
635 * alone is a single word that can safely be read normally.
636 * getrlimit/setrlimit use task_lock(current->group_leader) to
637 * protect this instead of the siglock, because they really
638 * have no need to disable irqs.
639 */
640 struct rlimit rlim[RLIM_NLIMITS];
641
642 #ifdef CONFIG_BSD_PROCESS_ACCT
643 struct pacct_struct pacct; /* per-process accounting information */
644 #endif
645 #ifdef CONFIG_TASKSTATS
646 struct taskstats *stats;
647 #endif
648 #ifdef CONFIG_AUDIT
649 unsigned audit_tty;
650 struct tty_audit_buf *tty_audit_buf;
651 #endif
652 #ifdef CONFIG_CGROUPS
653 /*
654 * group_rwsem prevents new tasks from entering the threadgroup and
655 * member tasks from exiting,a more specifically, setting of
656 * PF_EXITING. fork and exit paths are protected with this rwsem
657 * using threadgroup_change_begin/end(). Users which require
658 * threadgroup to remain stable should use threadgroup_[un]lock()
659 * which also takes care of exec path. Currently, cgroup is the
660 * only user.
661 */
662 struct rw_semaphore group_rwsem;
663 #endif
664
665 int oom_adj; /* OOM kill score adjustment (bit shift) */
666 int oom_score_adj; /* OOM kill score adjustment */
667 int oom_score_adj_min; /* OOM kill score adjustment minimum value.
668 * Only settable by CAP_SYS_RESOURCE. */
669
670 struct mutex cred_guard_mutex; /* guard against foreign influences on
671 * credential calculations
672 * (notably. ptrace) */
673 };
674
675 /* Context switch must be unlocked if interrupts are to be enabled */
676 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
677 # define __ARCH_WANT_UNLOCKED_CTXSW
678 #endif
679
680 /*
681 * Bits in flags field of signal_struct.
682 */
683 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
684 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
685 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
686 /*
687 * Pending notifications to parent.
688 */
689 #define SIGNAL_CLD_STOPPED 0x00000010
690 #define SIGNAL_CLD_CONTINUED 0x00000020
691 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
692
693 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
694
695 /* If true, all threads except ->group_exit_task have pending SIGKILL */
696 static inline int signal_group_exit(const struct signal_struct *sig)
697 {
698 return (sig->flags & SIGNAL_GROUP_EXIT) ||
699 (sig->group_exit_task != NULL);
700 }
701
702 /*
703 * Some day this will be a full-fledged user tracking system..
704 */
705 struct user_struct {
706 atomic_t __count; /* reference count */
707 atomic_t processes; /* How many processes does this user have? */
708 atomic_t files; /* How many open files does this user have? */
709 atomic_t sigpending; /* How many pending signals does this user have? */
710 #ifdef CONFIG_INOTIFY_USER
711 atomic_t inotify_watches; /* How many inotify watches does this user have? */
712 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
713 #endif
714 #ifdef CONFIG_FANOTIFY
715 atomic_t fanotify_listeners;
716 #endif
717 #ifdef CONFIG_EPOLL
718 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
719 #endif
720 #ifdef CONFIG_POSIX_MQUEUE
721 /* protected by mq_lock */
722 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
723 #endif
724 unsigned long locked_shm; /* How many pages of mlocked shm ? */
725
726 #ifdef CONFIG_KEYS
727 struct key *uid_keyring; /* UID specific keyring */
728 struct key *session_keyring; /* UID's default session keyring */
729 #endif
730
731 /* Hash table maintenance information */
732 struct hlist_node uidhash_node;
733 kuid_t uid;
734
735 #ifdef CONFIG_PERF_EVENTS
736 atomic_long_t locked_vm;
737 #endif
738 };
739
740 extern int uids_sysfs_init(void);
741
742 extern struct user_struct *find_user(kuid_t);
743
744 extern struct user_struct root_user;
745 #define INIT_USER (&root_user)
746
747
748 struct backing_dev_info;
749 struct reclaim_state;
750
751 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
752 struct sched_info {
753 /* cumulative counters */
754 unsigned long pcount; /* # of times run on this cpu */
755 unsigned long long run_delay; /* time spent waiting on a runqueue */
756
757 /* timestamps */
758 unsigned long long last_arrival,/* when we last ran on a cpu */
759 last_queued; /* when we were last queued to run */
760 };
761 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
762
763 #ifdef CONFIG_TASK_DELAY_ACCT
764 struct task_delay_info {
765 spinlock_t lock;
766 unsigned int flags; /* Private per-task flags */
767
768 /* For each stat XXX, add following, aligned appropriately
769 *
770 * struct timespec XXX_start, XXX_end;
771 * u64 XXX_delay;
772 * u32 XXX_count;
773 *
774 * Atomicity of updates to XXX_delay, XXX_count protected by
775 * single lock above (split into XXX_lock if contention is an issue).
776 */
777
778 /*
779 * XXX_count is incremented on every XXX operation, the delay
780 * associated with the operation is added to XXX_delay.
781 * XXX_delay contains the accumulated delay time in nanoseconds.
782 */
783 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
784 u64 blkio_delay; /* wait for sync block io completion */
785 u64 swapin_delay; /* wait for swapin block io completion */
786 u32 blkio_count; /* total count of the number of sync block */
787 /* io operations performed */
788 u32 swapin_count; /* total count of the number of swapin block */
789 /* io operations performed */
790
791 struct timespec freepages_start, freepages_end;
792 u64 freepages_delay; /* wait for memory reclaim */
793 u32 freepages_count; /* total count of memory reclaim */
794 };
795 #endif /* CONFIG_TASK_DELAY_ACCT */
796
797 static inline int sched_info_on(void)
798 {
799 #ifdef CONFIG_SCHEDSTATS
800 return 1;
801 #elif defined(CONFIG_TASK_DELAY_ACCT)
802 extern int delayacct_on;
803 return delayacct_on;
804 #else
805 return 0;
806 #endif
807 }
808
809 enum cpu_idle_type {
810 CPU_IDLE,
811 CPU_NOT_IDLE,
812 CPU_NEWLY_IDLE,
813 CPU_MAX_IDLE_TYPES
814 };
815
816 /*
817 * Increase resolution of nice-level calculations for 64-bit architectures.
818 * The extra resolution improves shares distribution and load balancing of
819 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
820 * hierarchies, especially on larger systems. This is not a user-visible change
821 * and does not change the user-interface for setting shares/weights.
822 *
823 * We increase resolution only if we have enough bits to allow this increased
824 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
825 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
826 * increased costs.
827 */
828 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
829 # define SCHED_LOAD_RESOLUTION 10
830 # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
831 # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
832 #else
833 # define SCHED_LOAD_RESOLUTION 0
834 # define scale_load(w) (w)
835 # define scale_load_down(w) (w)
836 #endif
837
838 #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
839 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
840
841 /*
842 * Increase resolution of cpu_power calculations
843 */
844 #define SCHED_POWER_SHIFT 10
845 #define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT)
846
847 /*
848 * sched-domains (multiprocessor balancing) declarations:
849 */
850 #ifdef CONFIG_SMP
851 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
852 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
853 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
854 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
855 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
856 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
857 #define SD_PREFER_LOCAL 0x0040 /* Prefer to keep tasks local to this domain */
858 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
859 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
860 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
861 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
862 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
863 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
864
865 extern int __weak arch_sd_sibiling_asym_packing(void);
866
867 struct sched_group_power {
868 atomic_t ref;
869 /*
870 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
871 * single CPU.
872 */
873 unsigned int power, power_orig;
874 unsigned long next_update;
875 /*
876 * Number of busy cpus in this group.
877 */
878 atomic_t nr_busy_cpus;
879 };
880
881 struct sched_group {
882 struct sched_group *next; /* Must be a circular list */
883 atomic_t ref;
884
885 unsigned int group_weight;
886 struct sched_group_power *sgp;
887
888 /*
889 * The CPUs this group covers.
890 *
891 * NOTE: this field is variable length. (Allocated dynamically
892 * by attaching extra space to the end of the structure,
893 * depending on how many CPUs the kernel has booted up with)
894 */
895 unsigned long cpumask[0];
896 };
897
898 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
899 {
900 return to_cpumask(sg->cpumask);
901 }
902
903 /**
904 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
905 * @group: The group whose first cpu is to be returned.
906 */
907 static inline unsigned int group_first_cpu(struct sched_group *group)
908 {
909 return cpumask_first(sched_group_cpus(group));
910 }
911
912 struct sched_domain_attr {
913 int relax_domain_level;
914 };
915
916 #define SD_ATTR_INIT (struct sched_domain_attr) { \
917 .relax_domain_level = -1, \
918 }
919
920 extern int sched_domain_level_max;
921
922 struct sched_domain {
923 /* These fields must be setup */
924 struct sched_domain *parent; /* top domain must be null terminated */
925 struct sched_domain *child; /* bottom domain must be null terminated */
926 struct sched_group *groups; /* the balancing groups of the domain */
927 unsigned long min_interval; /* Minimum balance interval ms */
928 unsigned long max_interval; /* Maximum balance interval ms */
929 unsigned int busy_factor; /* less balancing by factor if busy */
930 unsigned int imbalance_pct; /* No balance until over watermark */
931 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
932 unsigned int busy_idx;
933 unsigned int idle_idx;
934 unsigned int newidle_idx;
935 unsigned int wake_idx;
936 unsigned int forkexec_idx;
937 unsigned int smt_gain;
938 int flags; /* See SD_* */
939 int level;
940
941 /* Runtime fields. */
942 unsigned long last_balance; /* init to jiffies. units in jiffies */
943 unsigned int balance_interval; /* initialise to 1. units in ms. */
944 unsigned int nr_balance_failed; /* initialise to 0 */
945
946 u64 last_update;
947
948 #ifdef CONFIG_SCHEDSTATS
949 /* load_balance() stats */
950 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
951 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
952 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
953 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
954 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
955 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
956 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
957 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
958
959 /* Active load balancing */
960 unsigned int alb_count;
961 unsigned int alb_failed;
962 unsigned int alb_pushed;
963
964 /* SD_BALANCE_EXEC stats */
965 unsigned int sbe_count;
966 unsigned int sbe_balanced;
967 unsigned int sbe_pushed;
968
969 /* SD_BALANCE_FORK stats */
970 unsigned int sbf_count;
971 unsigned int sbf_balanced;
972 unsigned int sbf_pushed;
973
974 /* try_to_wake_up() stats */
975 unsigned int ttwu_wake_remote;
976 unsigned int ttwu_move_affine;
977 unsigned int ttwu_move_balance;
978 #endif
979 #ifdef CONFIG_SCHED_DEBUG
980 char *name;
981 #endif
982 union {
983 void *private; /* used during construction */
984 struct rcu_head rcu; /* used during destruction */
985 };
986
987 unsigned int span_weight;
988 /*
989 * Span of all CPUs in this domain.
990 *
991 * NOTE: this field is variable length. (Allocated dynamically
992 * by attaching extra space to the end of the structure,
993 * depending on how many CPUs the kernel has booted up with)
994 */
995 unsigned long span[0];
996 };
997
998 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
999 {
1000 return to_cpumask(sd->span);
1001 }
1002
1003 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1004 struct sched_domain_attr *dattr_new);
1005
1006 /* Allocate an array of sched domains, for partition_sched_domains(). */
1007 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1008 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1009
1010 /* Test a flag in parent sched domain */
1011 static inline int test_sd_parent(struct sched_domain *sd, int flag)
1012 {
1013 if (sd->parent && (sd->parent->flags & flag))
1014 return 1;
1015
1016 return 0;
1017 }
1018
1019 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
1020 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
1021
1022 bool cpus_share_cache(int this_cpu, int that_cpu);
1023
1024 #else /* CONFIG_SMP */
1025
1026 struct sched_domain_attr;
1027
1028 static inline void
1029 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1030 struct sched_domain_attr *dattr_new)
1031 {
1032 }
1033
1034 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1035 {
1036 return true;
1037 }
1038
1039 #endif /* !CONFIG_SMP */
1040
1041
1042 struct io_context; /* See blkdev.h */
1043
1044
1045 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1046 extern void prefetch_stack(struct task_struct *t);
1047 #else
1048 static inline void prefetch_stack(struct task_struct *t) { }
1049 #endif
1050
1051 struct audit_context; /* See audit.c */
1052 struct mempolicy;
1053 struct pipe_inode_info;
1054 struct uts_namespace;
1055
1056 struct rq;
1057 struct sched_domain;
1058
1059 /*
1060 * wake flags
1061 */
1062 #define WF_SYNC 0x01 /* waker goes to sleep after wakup */
1063 #define WF_FORK 0x02 /* child wakeup after fork */
1064 #define WF_MIGRATED 0x04 /* internal use, task got migrated */
1065
1066 #define ENQUEUE_WAKEUP 1
1067 #define ENQUEUE_HEAD 2
1068 #ifdef CONFIG_SMP
1069 #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
1070 #else
1071 #define ENQUEUE_WAKING 0
1072 #endif
1073
1074 #define DEQUEUE_SLEEP 1
1075
1076 struct sched_class {
1077 const struct sched_class *next;
1078
1079 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1080 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1081 void (*yield_task) (struct rq *rq);
1082 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1083
1084 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1085
1086 struct task_struct * (*pick_next_task) (struct rq *rq);
1087 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1088
1089 #ifdef CONFIG_SMP
1090 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
1091
1092 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1093 void (*post_schedule) (struct rq *this_rq);
1094 void (*task_waking) (struct task_struct *task);
1095 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1096
1097 void (*set_cpus_allowed)(struct task_struct *p,
1098 const struct cpumask *newmask);
1099
1100 void (*rq_online)(struct rq *rq);
1101 void (*rq_offline)(struct rq *rq);
1102 #endif
1103
1104 void (*set_curr_task) (struct rq *rq);
1105 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1106 void (*task_fork) (struct task_struct *p);
1107
1108 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1109 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1110 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1111 int oldprio);
1112
1113 unsigned int (*get_rr_interval) (struct rq *rq,
1114 struct task_struct *task);
1115
1116 #ifdef CONFIG_FAIR_GROUP_SCHED
1117 void (*task_move_group) (struct task_struct *p, int on_rq);
1118 #endif
1119 };
1120
1121 struct load_weight {
1122 unsigned long weight, inv_weight;
1123 };
1124
1125 #ifdef CONFIG_SCHEDSTATS
1126 struct sched_statistics {
1127 u64 wait_start;
1128 u64 wait_max;
1129 u64 wait_count;
1130 u64 wait_sum;
1131 u64 iowait_count;
1132 u64 iowait_sum;
1133
1134 u64 sleep_start;
1135 u64 sleep_max;
1136 s64 sum_sleep_runtime;
1137
1138 u64 block_start;
1139 u64 block_max;
1140 u64 exec_max;
1141 u64 slice_max;
1142
1143 u64 nr_migrations_cold;
1144 u64 nr_failed_migrations_affine;
1145 u64 nr_failed_migrations_running;
1146 u64 nr_failed_migrations_hot;
1147 u64 nr_forced_migrations;
1148
1149 u64 nr_wakeups;
1150 u64 nr_wakeups_sync;
1151 u64 nr_wakeups_migrate;
1152 u64 nr_wakeups_local;
1153 u64 nr_wakeups_remote;
1154 u64 nr_wakeups_affine;
1155 u64 nr_wakeups_affine_attempts;
1156 u64 nr_wakeups_passive;
1157 u64 nr_wakeups_idle;
1158 };
1159 #endif
1160
1161 struct sched_entity {
1162 struct load_weight load; /* for load-balancing */
1163 struct rb_node run_node;
1164 struct list_head group_node;
1165 unsigned int on_rq;
1166
1167 u64 exec_start;
1168 u64 sum_exec_runtime;
1169 u64 vruntime;
1170 u64 prev_sum_exec_runtime;
1171
1172 u64 nr_migrations;
1173
1174 #ifdef CONFIG_SCHEDSTATS
1175 struct sched_statistics statistics;
1176 #endif
1177
1178 #ifdef CONFIG_FAIR_GROUP_SCHED
1179 struct sched_entity *parent;
1180 /* rq on which this entity is (to be) queued: */
1181 struct cfs_rq *cfs_rq;
1182 /* rq "owned" by this entity/group: */
1183 struct cfs_rq *my_q;
1184 #endif
1185 };
1186
1187 struct sched_rt_entity {
1188 struct list_head run_list;
1189 unsigned long timeout;
1190 unsigned int time_slice;
1191
1192 struct sched_rt_entity *back;
1193 #ifdef CONFIG_RT_GROUP_SCHED
1194 struct sched_rt_entity *parent;
1195 /* rq on which this entity is (to be) queued: */
1196 struct rt_rq *rt_rq;
1197 /* rq "owned" by this entity/group: */
1198 struct rt_rq *my_q;
1199 #endif
1200 };
1201
1202 /*
1203 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1204 * Timeslices get refilled after they expire.
1205 */
1206 #define RR_TIMESLICE (100 * HZ / 1000)
1207
1208 struct rcu_node;
1209
1210 enum perf_event_task_context {
1211 perf_invalid_context = -1,
1212 perf_hw_context = 0,
1213 perf_sw_context,
1214 perf_nr_task_contexts,
1215 };
1216
1217 struct task_struct {
1218 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1219 void *stack;
1220 atomic_t usage;
1221 unsigned int flags; /* per process flags, defined below */
1222 unsigned int ptrace;
1223
1224 #ifdef CONFIG_SMP
1225 struct llist_node wake_entry;
1226 int on_cpu;
1227 #endif
1228 int on_rq;
1229
1230 int prio, static_prio, normal_prio;
1231 unsigned int rt_priority;
1232 const struct sched_class *sched_class;
1233 struct sched_entity se;
1234 struct sched_rt_entity rt;
1235
1236 #ifdef CONFIG_PREEMPT_NOTIFIERS
1237 /* list of struct preempt_notifier: */
1238 struct hlist_head preempt_notifiers;
1239 #endif
1240
1241 /*
1242 * fpu_counter contains the number of consecutive context switches
1243 * that the FPU is used. If this is over a threshold, the lazy fpu
1244 * saving becomes unlazy to save the trap. This is an unsigned char
1245 * so that after 256 times the counter wraps and the behavior turns
1246 * lazy again; this to deal with bursty apps that only use FPU for
1247 * a short time
1248 */
1249 unsigned char fpu_counter;
1250 #ifdef CONFIG_BLK_DEV_IO_TRACE
1251 unsigned int btrace_seq;
1252 #endif
1253
1254 unsigned int policy;
1255 int nr_cpus_allowed;
1256 cpumask_t cpus_allowed;
1257
1258 #ifdef CONFIG_PREEMPT_RCU
1259 int rcu_read_lock_nesting;
1260 char rcu_read_unlock_special;
1261 struct list_head rcu_node_entry;
1262 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1263 #ifdef CONFIG_TREE_PREEMPT_RCU
1264 struct rcu_node *rcu_blocked_node;
1265 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1266 #ifdef CONFIG_RCU_BOOST
1267 struct rt_mutex *rcu_boost_mutex;
1268 #endif /* #ifdef CONFIG_RCU_BOOST */
1269
1270 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1271 struct sched_info sched_info;
1272 #endif
1273
1274 struct list_head tasks;
1275 #ifdef CONFIG_SMP
1276 struct plist_node pushable_tasks;
1277 #endif
1278
1279 struct mm_struct *mm, *active_mm;
1280 #ifdef CONFIG_COMPAT_BRK
1281 unsigned brk_randomized:1;
1282 #endif
1283 #if defined(SPLIT_RSS_COUNTING)
1284 struct task_rss_stat rss_stat;
1285 #endif
1286 /* task state */
1287 int exit_state;
1288 int exit_code, exit_signal;
1289 int pdeath_signal; /* The signal sent when the parent dies */
1290 unsigned int jobctl; /* JOBCTL_*, siglock protected */
1291 /* ??? */
1292 unsigned int personality;
1293 unsigned did_exec:1;
1294 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1295 * execve */
1296 unsigned in_iowait:1;
1297
1298 /* task may not gain privileges */
1299 unsigned no_new_privs:1;
1300
1301 /* Revert to default priority/policy when forking */
1302 unsigned sched_reset_on_fork:1;
1303 unsigned sched_contributes_to_load:1;
1304
1305 #ifdef CONFIG_GENERIC_HARDIRQS
1306 /* IRQ handler threads */
1307 unsigned irq_thread:1;
1308 #endif
1309
1310 pid_t pid;
1311 pid_t tgid;
1312
1313 #ifdef CONFIG_CC_STACKPROTECTOR
1314 /* Canary value for the -fstack-protector gcc feature */
1315 unsigned long stack_canary;
1316 #endif
1317
1318 /*
1319 * pointers to (original) parent process, youngest child, younger sibling,
1320 * older sibling, respectively. (p->father can be replaced with
1321 * p->real_parent->pid)
1322 */
1323 struct task_struct __rcu *real_parent; /* real parent process */
1324 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1325 /*
1326 * children/sibling forms the list of my natural children
1327 */
1328 struct list_head children; /* list of my children */
1329 struct list_head sibling; /* linkage in my parent's children list */
1330 struct task_struct *group_leader; /* threadgroup leader */
1331
1332 /*
1333 * ptraced is the list of tasks this task is using ptrace on.
1334 * This includes both natural children and PTRACE_ATTACH targets.
1335 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1336 */
1337 struct list_head ptraced;
1338 struct list_head ptrace_entry;
1339
1340 /* PID/PID hash table linkage. */
1341 struct pid_link pids[PIDTYPE_MAX];
1342 struct list_head thread_group;
1343
1344 struct completion *vfork_done; /* for vfork() */
1345 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1346 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1347
1348 cputime_t utime, stime, utimescaled, stimescaled;
1349 cputime_t gtime;
1350 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1351 cputime_t prev_utime, prev_stime;
1352 #endif
1353 unsigned long nvcsw, nivcsw; /* context switch counts */
1354 struct timespec start_time; /* monotonic time */
1355 struct timespec real_start_time; /* boot based time */
1356 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1357 unsigned long min_flt, maj_flt;
1358
1359 struct task_cputime cputime_expires;
1360 struct list_head cpu_timers[3];
1361
1362 /* process credentials */
1363 const struct cred __rcu *real_cred; /* objective and real subjective task
1364 * credentials (COW) */
1365 const struct cred __rcu *cred; /* effective (overridable) subjective task
1366 * credentials (COW) */
1367 struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */
1368
1369 char comm[TASK_COMM_LEN]; /* executable name excluding path
1370 - access with [gs]et_task_comm (which lock
1371 it with task_lock())
1372 - initialized normally by setup_new_exec */
1373 /* file system info */
1374 int link_count, total_link_count;
1375 #ifdef CONFIG_SYSVIPC
1376 /* ipc stuff */
1377 struct sysv_sem sysvsem;
1378 #endif
1379 #ifdef CONFIG_DETECT_HUNG_TASK
1380 /* hung task detection */
1381 unsigned long last_switch_count;
1382 #endif
1383 /* CPU-specific state of this task */
1384 struct thread_struct thread;
1385 /* filesystem information */
1386 struct fs_struct *fs;
1387 /* open file information */
1388 struct files_struct *files;
1389 /* namespaces */
1390 struct nsproxy *nsproxy;
1391 /* signal handlers */
1392 struct signal_struct *signal;
1393 struct sighand_struct *sighand;
1394
1395 sigset_t blocked, real_blocked;
1396 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1397 struct sigpending pending;
1398
1399 unsigned long sas_ss_sp;
1400 size_t sas_ss_size;
1401 int (*notifier)(void *priv);
1402 void *notifier_data;
1403 sigset_t *notifier_mask;
1404 struct audit_context *audit_context;
1405 #ifdef CONFIG_AUDITSYSCALL
1406 uid_t loginuid;
1407 unsigned int sessionid;
1408 #endif
1409 struct seccomp seccomp;
1410
1411 /* Thread group tracking */
1412 u32 parent_exec_id;
1413 u32 self_exec_id;
1414 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1415 * mempolicy */
1416 spinlock_t alloc_lock;
1417
1418 /* Protection of the PI data structures: */
1419 raw_spinlock_t pi_lock;
1420
1421 #ifdef CONFIG_RT_MUTEXES
1422 /* PI waiters blocked on a rt_mutex held by this task */
1423 struct plist_head pi_waiters;
1424 /* Deadlock detection and priority inheritance handling */
1425 struct rt_mutex_waiter *pi_blocked_on;
1426 #endif
1427
1428 #ifdef CONFIG_DEBUG_MUTEXES
1429 /* mutex deadlock detection */
1430 struct mutex_waiter *blocked_on;
1431 #endif
1432 #ifdef CONFIG_TRACE_IRQFLAGS
1433 unsigned int irq_events;
1434 unsigned long hardirq_enable_ip;
1435 unsigned long hardirq_disable_ip;
1436 unsigned int hardirq_enable_event;
1437 unsigned int hardirq_disable_event;
1438 int hardirqs_enabled;
1439 int hardirq_context;
1440 unsigned long softirq_disable_ip;
1441 unsigned long softirq_enable_ip;
1442 unsigned int softirq_disable_event;
1443 unsigned int softirq_enable_event;
1444 int softirqs_enabled;
1445 int softirq_context;
1446 #endif
1447 #ifdef CONFIG_LOCKDEP
1448 # define MAX_LOCK_DEPTH 48UL
1449 u64 curr_chain_key;
1450 int lockdep_depth;
1451 unsigned int lockdep_recursion;
1452 struct held_lock held_locks[MAX_LOCK_DEPTH];
1453 gfp_t lockdep_reclaim_gfp;
1454 #endif
1455
1456 /* journalling filesystem info */
1457 void *journal_info;
1458
1459 /* stacked block device info */
1460 struct bio_list *bio_list;
1461
1462 #ifdef CONFIG_BLOCK
1463 /* stack plugging */
1464 struct blk_plug *plug;
1465 #endif
1466
1467 /* VM state */
1468 struct reclaim_state *reclaim_state;
1469
1470 struct backing_dev_info *backing_dev_info;
1471
1472 struct io_context *io_context;
1473
1474 unsigned long ptrace_message;
1475 siginfo_t *last_siginfo; /* For ptrace use. */
1476 struct task_io_accounting ioac;
1477 #if defined(CONFIG_TASK_XACCT)
1478 u64 acct_rss_mem1; /* accumulated rss usage */
1479 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1480 cputime_t acct_timexpd; /* stime + utime since last update */
1481 #endif
1482 #ifdef CONFIG_CPUSETS
1483 nodemask_t mems_allowed; /* Protected by alloc_lock */
1484 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
1485 int cpuset_mem_spread_rotor;
1486 int cpuset_slab_spread_rotor;
1487 #endif
1488 #ifdef CONFIG_CGROUPS
1489 /* Control Group info protected by css_set_lock */
1490 struct css_set __rcu *cgroups;
1491 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1492 struct list_head cg_list;
1493 #endif
1494 #ifdef CONFIG_FUTEX
1495 struct robust_list_head __user *robust_list;
1496 #ifdef CONFIG_COMPAT
1497 struct compat_robust_list_head __user *compat_robust_list;
1498 #endif
1499 struct list_head pi_state_list;
1500 struct futex_pi_state *pi_state_cache;
1501 #endif
1502 #ifdef CONFIG_PERF_EVENTS
1503 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1504 struct mutex perf_event_mutex;
1505 struct list_head perf_event_list;
1506 #endif
1507 #ifdef CONFIG_NUMA
1508 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1509 short il_next;
1510 short pref_node_fork;
1511 #endif
1512 struct rcu_head rcu;
1513
1514 /*
1515 * cache last used pipe for splice
1516 */
1517 struct pipe_inode_info *splice_pipe;
1518 #ifdef CONFIG_TASK_DELAY_ACCT
1519 struct task_delay_info *delays;
1520 #endif
1521 #ifdef CONFIG_FAULT_INJECTION
1522 int make_it_fail;
1523 #endif
1524 /*
1525 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1526 * balance_dirty_pages() for some dirty throttling pause
1527 */
1528 int nr_dirtied;
1529 int nr_dirtied_pause;
1530 unsigned long dirty_paused_when; /* start of a write-and-pause period */
1531
1532 #ifdef CONFIG_LATENCYTOP
1533 int latency_record_count;
1534 struct latency_record latency_record[LT_SAVECOUNT];
1535 #endif
1536 /*
1537 * time slack values; these are used to round up poll() and
1538 * select() etc timeout values. These are in nanoseconds.
1539 */
1540 unsigned long timer_slack_ns;
1541 unsigned long default_timer_slack_ns;
1542
1543 struct list_head *scm_work_list;
1544 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1545 /* Index of current stored address in ret_stack */
1546 int curr_ret_stack;
1547 /* Stack of return addresses for return function tracing */
1548 struct ftrace_ret_stack *ret_stack;
1549 /* time stamp for last schedule */
1550 unsigned long long ftrace_timestamp;
1551 /*
1552 * Number of functions that haven't been traced
1553 * because of depth overrun.
1554 */
1555 atomic_t trace_overrun;
1556 /* Pause for the tracing */
1557 atomic_t tracing_graph_pause;
1558 #endif
1559 #ifdef CONFIG_TRACING
1560 /* state flags for use by tracers */
1561 unsigned long trace;
1562 /* bitmask and counter of trace recursion */
1563 unsigned long trace_recursion;
1564 #endif /* CONFIG_TRACING */
1565 #ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */
1566 struct memcg_batch_info {
1567 int do_batch; /* incremented when batch uncharge started */
1568 struct mem_cgroup *memcg; /* target memcg of uncharge */
1569 unsigned long nr_pages; /* uncharged usage */
1570 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1571 } memcg_batch;
1572 #endif
1573 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1574 atomic_t ptrace_bp_refcnt;
1575 #endif
1576 #ifdef CONFIG_UPROBES
1577 struct uprobe_task *utask;
1578 int uprobe_srcu_id;
1579 #endif
1580 };
1581
1582 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1583 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1584
1585 /*
1586 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1587 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1588 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1589 * values are inverted: lower p->prio value means higher priority.
1590 *
1591 * The MAX_USER_RT_PRIO value allows the actual maximum
1592 * RT priority to be separate from the value exported to
1593 * user-space. This allows kernel threads to set their
1594 * priority to a value higher than any user task. Note:
1595 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1596 */
1597
1598 #define MAX_USER_RT_PRIO 100
1599 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1600
1601 #define MAX_PRIO (MAX_RT_PRIO + 40)
1602 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1603
1604 static inline int rt_prio(int prio)
1605 {
1606 if (unlikely(prio < MAX_RT_PRIO))
1607 return 1;
1608 return 0;
1609 }
1610
1611 static inline int rt_task(struct task_struct *p)
1612 {
1613 return rt_prio(p->prio);
1614 }
1615
1616 static inline struct pid *task_pid(struct task_struct *task)
1617 {
1618 return task->pids[PIDTYPE_PID].pid;
1619 }
1620
1621 static inline struct pid *task_tgid(struct task_struct *task)
1622 {
1623 return task->group_leader->pids[PIDTYPE_PID].pid;
1624 }
1625
1626 /*
1627 * Without tasklist or rcu lock it is not safe to dereference
1628 * the result of task_pgrp/task_session even if task == current,
1629 * we can race with another thread doing sys_setsid/sys_setpgid.
1630 */
1631 static inline struct pid *task_pgrp(struct task_struct *task)
1632 {
1633 return task->group_leader->pids[PIDTYPE_PGID].pid;
1634 }
1635
1636 static inline struct pid *task_session(struct task_struct *task)
1637 {
1638 return task->group_leader->pids[PIDTYPE_SID].pid;
1639 }
1640
1641 struct pid_namespace;
1642
1643 /*
1644 * the helpers to get the task's different pids as they are seen
1645 * from various namespaces
1646 *
1647 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1648 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1649 * current.
1650 * task_xid_nr_ns() : id seen from the ns specified;
1651 *
1652 * set_task_vxid() : assigns a virtual id to a task;
1653 *
1654 * see also pid_nr() etc in include/linux/pid.h
1655 */
1656 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1657 struct pid_namespace *ns);
1658
1659 static inline pid_t task_pid_nr(struct task_struct *tsk)
1660 {
1661 return tsk->pid;
1662 }
1663
1664 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1665 struct pid_namespace *ns)
1666 {
1667 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1668 }
1669
1670 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1671 {
1672 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1673 }
1674
1675
1676 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1677 {
1678 return tsk->tgid;
1679 }
1680
1681 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1682
1683 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1684 {
1685 return pid_vnr(task_tgid(tsk));
1686 }
1687
1688
1689 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1690 struct pid_namespace *ns)
1691 {
1692 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1693 }
1694
1695 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1696 {
1697 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1698 }
1699
1700
1701 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1702 struct pid_namespace *ns)
1703 {
1704 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1705 }
1706
1707 static inline pid_t task_session_vnr(struct task_struct *tsk)
1708 {
1709 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1710 }
1711
1712 /* obsolete, do not use */
1713 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1714 {
1715 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1716 }
1717
1718 /**
1719 * pid_alive - check that a task structure is not stale
1720 * @p: Task structure to be checked.
1721 *
1722 * Test if a process is not yet dead (at most zombie state)
1723 * If pid_alive fails, then pointers within the task structure
1724 * can be stale and must not be dereferenced.
1725 */
1726 static inline int pid_alive(struct task_struct *p)
1727 {
1728 return p->pids[PIDTYPE_PID].pid != NULL;
1729 }
1730
1731 /**
1732 * is_global_init - check if a task structure is init
1733 * @tsk: Task structure to be checked.
1734 *
1735 * Check if a task structure is the first user space task the kernel created.
1736 */
1737 static inline int is_global_init(struct task_struct *tsk)
1738 {
1739 return tsk->pid == 1;
1740 }
1741
1742 /*
1743 * is_container_init:
1744 * check whether in the task is init in its own pid namespace.
1745 */
1746 extern int is_container_init(struct task_struct *tsk);
1747
1748 extern struct pid *cad_pid;
1749
1750 extern void free_task(struct task_struct *tsk);
1751 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1752
1753 extern void __put_task_struct(struct task_struct *t);
1754
1755 static inline void put_task_struct(struct task_struct *t)
1756 {
1757 if (atomic_dec_and_test(&t->usage))
1758 __put_task_struct(t);
1759 }
1760
1761 extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1762 extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1763
1764 /*
1765 * Per process flags
1766 */
1767 #define PF_EXITING 0x00000004 /* getting shut down */
1768 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1769 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1770 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1771 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1772 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1773 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1774 #define PF_DUMPCORE 0x00000200 /* dumped core */
1775 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1776 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1777 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1778 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1779 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1780 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1781 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1782 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1783 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1784 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1785 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1786 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1787 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1788 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1789 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1790 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1791 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1792 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1793 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1794
1795 /*
1796 * Only the _current_ task can read/write to tsk->flags, but other
1797 * tasks can access tsk->flags in readonly mode for example
1798 * with tsk_used_math (like during threaded core dumping).
1799 * There is however an exception to this rule during ptrace
1800 * or during fork: the ptracer task is allowed to write to the
1801 * child->flags of its traced child (same goes for fork, the parent
1802 * can write to the child->flags), because we're guaranteed the
1803 * child is not running and in turn not changing child->flags
1804 * at the same time the parent does it.
1805 */
1806 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1807 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1808 #define clear_used_math() clear_stopped_child_used_math(current)
1809 #define set_used_math() set_stopped_child_used_math(current)
1810 #define conditional_stopped_child_used_math(condition, child) \
1811 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1812 #define conditional_used_math(condition) \
1813 conditional_stopped_child_used_math(condition, current)
1814 #define copy_to_stopped_child_used_math(child) \
1815 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1816 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1817 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1818 #define used_math() tsk_used_math(current)
1819
1820 /*
1821 * task->jobctl flags
1822 */
1823 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
1824
1825 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
1826 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
1827 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
1828 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
1829 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
1830 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
1831 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
1832
1833 #define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT)
1834 #define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT)
1835 #define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT)
1836 #define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT)
1837 #define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT)
1838 #define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT)
1839 #define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT)
1840
1841 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1842 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1843
1844 extern bool task_set_jobctl_pending(struct task_struct *task,
1845 unsigned int mask);
1846 extern void task_clear_jobctl_trapping(struct task_struct *task);
1847 extern void task_clear_jobctl_pending(struct task_struct *task,
1848 unsigned int mask);
1849
1850 #ifdef CONFIG_PREEMPT_RCU
1851
1852 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1853 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1854
1855 static inline void rcu_copy_process(struct task_struct *p)
1856 {
1857 p->rcu_read_lock_nesting = 0;
1858 p->rcu_read_unlock_special = 0;
1859 #ifdef CONFIG_TREE_PREEMPT_RCU
1860 p->rcu_blocked_node = NULL;
1861 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1862 #ifdef CONFIG_RCU_BOOST
1863 p->rcu_boost_mutex = NULL;
1864 #endif /* #ifdef CONFIG_RCU_BOOST */
1865 INIT_LIST_HEAD(&p->rcu_node_entry);
1866 }
1867
1868 static inline void rcu_switch_from(struct task_struct *prev)
1869 {
1870 if (prev->rcu_read_lock_nesting != 0)
1871 rcu_preempt_note_context_switch();
1872 }
1873
1874 #else
1875
1876 static inline void rcu_copy_process(struct task_struct *p)
1877 {
1878 }
1879
1880 static inline void rcu_switch_from(struct task_struct *prev)
1881 {
1882 }
1883
1884 #endif
1885
1886 #ifdef CONFIG_SMP
1887 extern void do_set_cpus_allowed(struct task_struct *p,
1888 const struct cpumask *new_mask);
1889
1890 extern int set_cpus_allowed_ptr(struct task_struct *p,
1891 const struct cpumask *new_mask);
1892 #else
1893 static inline void do_set_cpus_allowed(struct task_struct *p,
1894 const struct cpumask *new_mask)
1895 {
1896 }
1897 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1898 const struct cpumask *new_mask)
1899 {
1900 if (!cpumask_test_cpu(0, new_mask))
1901 return -EINVAL;
1902 return 0;
1903 }
1904 #endif
1905
1906 #ifndef CONFIG_CPUMASK_OFFSTACK
1907 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1908 {
1909 return set_cpus_allowed_ptr(p, &new_mask);
1910 }
1911 #endif
1912
1913 /*
1914 * Do not use outside of architecture code which knows its limitations.
1915 *
1916 * sched_clock() has no promise of monotonicity or bounded drift between
1917 * CPUs, use (which you should not) requires disabling IRQs.
1918 *
1919 * Please use one of the three interfaces below.
1920 */
1921 extern unsigned long long notrace sched_clock(void);
1922 /*
1923 * See the comment in kernel/sched/clock.c
1924 */
1925 extern u64 cpu_clock(int cpu);
1926 extern u64 local_clock(void);
1927 extern u64 sched_clock_cpu(int cpu);
1928
1929
1930 extern void sched_clock_init(void);
1931
1932 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1933 static inline void sched_clock_tick(void)
1934 {
1935 }
1936
1937 static inline void sched_clock_idle_sleep_event(void)
1938 {
1939 }
1940
1941 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1942 {
1943 }
1944 #else
1945 /*
1946 * Architectures can set this to 1 if they have specified
1947 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1948 * but then during bootup it turns out that sched_clock()
1949 * is reliable after all:
1950 */
1951 extern int sched_clock_stable;
1952
1953 extern void sched_clock_tick(void);
1954 extern void sched_clock_idle_sleep_event(void);
1955 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1956 #endif
1957
1958 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1959 /*
1960 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1961 * The reason for this explicit opt-in is not to have perf penalty with
1962 * slow sched_clocks.
1963 */
1964 extern void enable_sched_clock_irqtime(void);
1965 extern void disable_sched_clock_irqtime(void);
1966 #else
1967 static inline void enable_sched_clock_irqtime(void) {}
1968 static inline void disable_sched_clock_irqtime(void) {}
1969 #endif
1970
1971 extern unsigned long long
1972 task_sched_runtime(struct task_struct *task);
1973
1974 /* sched_exec is called by processes performing an exec */
1975 #ifdef CONFIG_SMP
1976 extern void sched_exec(void);
1977 #else
1978 #define sched_exec() {}
1979 #endif
1980
1981 extern void sched_clock_idle_sleep_event(void);
1982 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1983
1984 #ifdef CONFIG_HOTPLUG_CPU
1985 extern void idle_task_exit(void);
1986 #else
1987 static inline void idle_task_exit(void) {}
1988 #endif
1989
1990 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1991 extern void wake_up_idle_cpu(int cpu);
1992 #else
1993 static inline void wake_up_idle_cpu(int cpu) { }
1994 #endif
1995
1996 extern unsigned int sysctl_sched_latency;
1997 extern unsigned int sysctl_sched_min_granularity;
1998 extern unsigned int sysctl_sched_wakeup_granularity;
1999 extern unsigned int sysctl_sched_child_runs_first;
2000
2001 enum sched_tunable_scaling {
2002 SCHED_TUNABLESCALING_NONE,
2003 SCHED_TUNABLESCALING_LOG,
2004 SCHED_TUNABLESCALING_LINEAR,
2005 SCHED_TUNABLESCALING_END,
2006 };
2007 extern enum sched_tunable_scaling sysctl_sched_tunable_scaling;
2008
2009 #ifdef CONFIG_SCHED_DEBUG
2010 extern unsigned int sysctl_sched_migration_cost;
2011 extern unsigned int sysctl_sched_nr_migrate;
2012 extern unsigned int sysctl_sched_time_avg;
2013 extern unsigned int sysctl_timer_migration;
2014 extern unsigned int sysctl_sched_shares_window;
2015
2016 int sched_proc_update_handler(struct ctl_table *table, int write,
2017 void __user *buffer, size_t *length,
2018 loff_t *ppos);
2019 #endif
2020 #ifdef CONFIG_SCHED_DEBUG
2021 static inline unsigned int get_sysctl_timer_migration(void)
2022 {
2023 return sysctl_timer_migration;
2024 }
2025 #else
2026 static inline unsigned int get_sysctl_timer_migration(void)
2027 {
2028 return 1;
2029 }
2030 #endif
2031 extern unsigned int sysctl_sched_rt_period;
2032 extern int sysctl_sched_rt_runtime;
2033
2034 int sched_rt_handler(struct ctl_table *table, int write,
2035 void __user *buffer, size_t *lenp,
2036 loff_t *ppos);
2037
2038 #ifdef CONFIG_SCHED_AUTOGROUP
2039 extern unsigned int sysctl_sched_autogroup_enabled;
2040
2041 extern void sched_autogroup_create_attach(struct task_struct *p);
2042 extern void sched_autogroup_detach(struct task_struct *p);
2043 extern void sched_autogroup_fork(struct signal_struct *sig);
2044 extern void sched_autogroup_exit(struct signal_struct *sig);
2045 #ifdef CONFIG_PROC_FS
2046 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2047 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2048 #endif
2049 #else
2050 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2051 static inline void sched_autogroup_detach(struct task_struct *p) { }
2052 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2053 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2054 #endif
2055
2056 #ifdef CONFIG_CFS_BANDWIDTH
2057 extern unsigned int sysctl_sched_cfs_bandwidth_slice;
2058 #endif
2059
2060 #ifdef CONFIG_RT_MUTEXES
2061 extern int rt_mutex_getprio(struct task_struct *p);
2062 extern void rt_mutex_setprio(struct task_struct *p, int prio);
2063 extern void rt_mutex_adjust_pi(struct task_struct *p);
2064 static inline bool tsk_is_pi_blocked(struct task_struct *tsk)
2065 {
2066 return tsk->pi_blocked_on != NULL;
2067 }
2068 #else
2069 static inline int rt_mutex_getprio(struct task_struct *p)
2070 {
2071 return p->normal_prio;
2072 }
2073 # define rt_mutex_adjust_pi(p) do { } while (0)
2074 static inline bool tsk_is_pi_blocked(struct task_struct *tsk)
2075 {
2076 return false;
2077 }
2078 #endif
2079
2080 extern bool yield_to(struct task_struct *p, bool preempt);
2081 extern void set_user_nice(struct task_struct *p, long nice);
2082 extern int task_prio(const struct task_struct *p);
2083 extern int task_nice(const struct task_struct *p);
2084 extern int can_nice(const struct task_struct *p, const int nice);
2085 extern int task_curr(const struct task_struct *p);
2086 extern int idle_cpu(int cpu);
2087 extern int sched_setscheduler(struct task_struct *, int,
2088 const struct sched_param *);
2089 extern int sched_setscheduler_nocheck(struct task_struct *, int,
2090 const struct sched_param *);
2091 extern struct task_struct *idle_task(int cpu);
2092 /**
2093 * is_idle_task - is the specified task an idle task?
2094 * @p: the task in question.
2095 */
2096 static inline bool is_idle_task(const struct task_struct *p)
2097 {
2098 return p->pid == 0;
2099 }
2100 extern struct task_struct *curr_task(int cpu);
2101 extern void set_curr_task(int cpu, struct task_struct *p);
2102
2103 void yield(void);
2104
2105 /*
2106 * The default (Linux) execution domain.
2107 */
2108 extern struct exec_domain default_exec_domain;
2109
2110 union thread_union {
2111 struct thread_info thread_info;
2112 unsigned long stack[THREAD_SIZE/sizeof(long)];
2113 };
2114
2115 #ifndef __HAVE_ARCH_KSTACK_END
2116 static inline int kstack_end(void *addr)
2117 {
2118 /* Reliable end of stack detection:
2119 * Some APM bios versions misalign the stack
2120 */
2121 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2122 }
2123 #endif
2124
2125 extern union thread_union init_thread_union;
2126 extern struct task_struct init_task;
2127
2128 extern struct mm_struct init_mm;
2129
2130 extern struct pid_namespace init_pid_ns;
2131
2132 /*
2133 * find a task by one of its numerical ids
2134 *
2135 * find_task_by_pid_ns():
2136 * finds a task by its pid in the specified namespace
2137 * find_task_by_vpid():
2138 * finds a task by its virtual pid
2139 *
2140 * see also find_vpid() etc in include/linux/pid.h
2141 */
2142
2143 extern struct task_struct *find_task_by_vpid(pid_t nr);
2144 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2145 struct pid_namespace *ns);
2146
2147 extern void __set_special_pids(struct pid *pid);
2148
2149 /* per-UID process charging. */
2150 extern struct user_struct * alloc_uid(kuid_t);
2151 static inline struct user_struct *get_uid(struct user_struct *u)
2152 {
2153 atomic_inc(&u->__count);
2154 return u;
2155 }
2156 extern void free_uid(struct user_struct *);
2157
2158 #include <asm/current.h>
2159
2160 extern void xtime_update(unsigned long ticks);
2161
2162 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2163 extern int wake_up_process(struct task_struct *tsk);
2164 extern void wake_up_new_task(struct task_struct *tsk);
2165 #ifdef CONFIG_SMP
2166 extern void kick_process(struct task_struct *tsk);
2167 #else
2168 static inline void kick_process(struct task_struct *tsk) { }
2169 #endif
2170 extern void sched_fork(struct task_struct *p);
2171 extern void sched_dead(struct task_struct *p);
2172
2173 extern void proc_caches_init(void);
2174 extern void flush_signals(struct task_struct *);
2175 extern void __flush_signals(struct task_struct *);
2176 extern void ignore_signals(struct task_struct *);
2177 extern void flush_signal_handlers(struct task_struct *, int force_default);
2178 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2179
2180 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2181 {
2182 unsigned long flags;
2183 int ret;
2184
2185 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2186 ret = dequeue_signal(tsk, mask, info);
2187 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2188
2189 return ret;
2190 }
2191
2192 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2193 sigset_t *mask);
2194 extern void unblock_all_signals(void);
2195 extern void release_task(struct task_struct * p);
2196 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2197 extern int force_sigsegv(int, struct task_struct *);
2198 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2199 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2200 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2201 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2202 const struct cred *, u32);
2203 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2204 extern int kill_pid(struct pid *pid, int sig, int priv);
2205 extern int kill_proc_info(int, struct siginfo *, pid_t);
2206 extern __must_check bool do_notify_parent(struct task_struct *, int);
2207 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2208 extern void force_sig(int, struct task_struct *);
2209 extern int send_sig(int, struct task_struct *, int);
2210 extern int zap_other_threads(struct task_struct *p);
2211 extern struct sigqueue *sigqueue_alloc(void);
2212 extern void sigqueue_free(struct sigqueue *);
2213 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2214 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2215 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2216
2217 static inline int kill_cad_pid(int sig, int priv)
2218 {
2219 return kill_pid(cad_pid, sig, priv);
2220 }
2221
2222 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2223 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2224 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2225 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2226
2227 /*
2228 * True if we are on the alternate signal stack.
2229 */
2230 static inline int on_sig_stack(unsigned long sp)
2231 {
2232 #ifdef CONFIG_STACK_GROWSUP
2233 return sp >= current->sas_ss_sp &&
2234 sp - current->sas_ss_sp < current->sas_ss_size;
2235 #else
2236 return sp > current->sas_ss_sp &&
2237 sp - current->sas_ss_sp <= current->sas_ss_size;
2238 #endif
2239 }
2240
2241 static inline int sas_ss_flags(unsigned long sp)
2242 {
2243 return (current->sas_ss_size == 0 ? SS_DISABLE
2244 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2245 }
2246
2247 /*
2248 * Routines for handling mm_structs
2249 */
2250 extern struct mm_struct * mm_alloc(void);
2251
2252 /* mmdrop drops the mm and the page tables */
2253 extern void __mmdrop(struct mm_struct *);
2254 static inline void mmdrop(struct mm_struct * mm)
2255 {
2256 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2257 __mmdrop(mm);
2258 }
2259
2260 /* mmput gets rid of the mappings and all user-space */
2261 extern void mmput(struct mm_struct *);
2262 /* Grab a reference to a task's mm, if it is not already going away */
2263 extern struct mm_struct *get_task_mm(struct task_struct *task);
2264 /*
2265 * Grab a reference to a task's mm, if it is not already going away
2266 * and ptrace_may_access with the mode parameter passed to it
2267 * succeeds.
2268 */
2269 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2270 /* Remove the current tasks stale references to the old mm_struct */
2271 extern void mm_release(struct task_struct *, struct mm_struct *);
2272 /* Allocate a new mm structure and copy contents from tsk->mm */
2273 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2274
2275 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2276 struct task_struct *, struct pt_regs *);
2277 extern void flush_thread(void);
2278 extern void exit_thread(void);
2279
2280 extern void exit_files(struct task_struct *);
2281 extern void __cleanup_sighand(struct sighand_struct *);
2282
2283 extern void exit_itimers(struct signal_struct *);
2284 extern void flush_itimer_signals(void);
2285
2286 extern void do_group_exit(int);
2287
2288 extern void daemonize(const char *, ...);
2289 extern int allow_signal(int);
2290 extern int disallow_signal(int);
2291
2292 extern int do_execve(const char *,
2293 const char __user * const __user *,
2294 const char __user * const __user *, struct pt_regs *);
2295 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2296 struct task_struct *fork_idle(int);
2297
2298 extern void set_task_comm(struct task_struct *tsk, char *from);
2299 extern char *get_task_comm(char *to, struct task_struct *tsk);
2300
2301 #ifdef CONFIG_SMP
2302 void scheduler_ipi(void);
2303 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2304 #else
2305 static inline void scheduler_ipi(void) { }
2306 static inline unsigned long wait_task_inactive(struct task_struct *p,
2307 long match_state)
2308 {
2309 return 1;
2310 }
2311 #endif
2312
2313 #define next_task(p) \
2314 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2315
2316 #define for_each_process(p) \
2317 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2318
2319 extern bool current_is_single_threaded(void);
2320
2321 /*
2322 * Careful: do_each_thread/while_each_thread is a double loop so
2323 * 'break' will not work as expected - use goto instead.
2324 */
2325 #define do_each_thread(g, t) \
2326 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2327
2328 #define while_each_thread(g, t) \
2329 while ((t = next_thread(t)) != g)
2330
2331 static inline int get_nr_threads(struct task_struct *tsk)
2332 {
2333 return tsk->signal->nr_threads;
2334 }
2335
2336 static inline bool thread_group_leader(struct task_struct *p)
2337 {
2338 return p->exit_signal >= 0;
2339 }
2340
2341 /* Do to the insanities of de_thread it is possible for a process
2342 * to have the pid of the thread group leader without actually being
2343 * the thread group leader. For iteration through the pids in proc
2344 * all we care about is that we have a task with the appropriate
2345 * pid, we don't actually care if we have the right task.
2346 */
2347 static inline int has_group_leader_pid(struct task_struct *p)
2348 {
2349 return p->pid == p->tgid;
2350 }
2351
2352 static inline
2353 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2354 {
2355 return p1->tgid == p2->tgid;
2356 }
2357
2358 static inline struct task_struct *next_thread(const struct task_struct *p)
2359 {
2360 return list_entry_rcu(p->thread_group.next,
2361 struct task_struct, thread_group);
2362 }
2363
2364 static inline int thread_group_empty(struct task_struct *p)
2365 {
2366 return list_empty(&p->thread_group);
2367 }
2368
2369 #define delay_group_leader(p) \
2370 (thread_group_leader(p) && !thread_group_empty(p))
2371
2372 /*
2373 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2374 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2375 * pins the final release of task.io_context. Also protects ->cpuset and
2376 * ->cgroup.subsys[]. And ->vfork_done.
2377 *
2378 * Nests both inside and outside of read_lock(&tasklist_lock).
2379 * It must not be nested with write_lock_irq(&tasklist_lock),
2380 * neither inside nor outside.
2381 */
2382 static inline void task_lock(struct task_struct *p)
2383 {
2384 spin_lock(&p->alloc_lock);
2385 }
2386
2387 static inline void task_unlock(struct task_struct *p)
2388 {
2389 spin_unlock(&p->alloc_lock);
2390 }
2391
2392 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2393 unsigned long *flags);
2394
2395 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2396 unsigned long *flags)
2397 {
2398 struct sighand_struct *ret;
2399
2400 ret = __lock_task_sighand(tsk, flags);
2401 (void)__cond_lock(&tsk->sighand->siglock, ret);
2402 return ret;
2403 }
2404
2405 static inline void unlock_task_sighand(struct task_struct *tsk,
2406 unsigned long *flags)
2407 {
2408 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2409 }
2410
2411 #ifdef CONFIG_CGROUPS
2412 static inline void threadgroup_change_begin(struct task_struct *tsk)
2413 {
2414 down_read(&tsk->signal->group_rwsem);
2415 }
2416 static inline void threadgroup_change_end(struct task_struct *tsk)
2417 {
2418 up_read(&tsk->signal->group_rwsem);
2419 }
2420
2421 /**
2422 * threadgroup_lock - lock threadgroup
2423 * @tsk: member task of the threadgroup to lock
2424 *
2425 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter
2426 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2427 * perform exec. This is useful for cases where the threadgroup needs to
2428 * stay stable across blockable operations.
2429 *
2430 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2431 * synchronization. While held, no new task will be added to threadgroup
2432 * and no existing live task will have its PF_EXITING set.
2433 *
2434 * During exec, a task goes and puts its thread group through unusual
2435 * changes. After de-threading, exclusive access is assumed to resources
2436 * which are usually shared by tasks in the same group - e.g. sighand may
2437 * be replaced with a new one. Also, the exec'ing task takes over group
2438 * leader role including its pid. Exclude these changes while locked by
2439 * grabbing cred_guard_mutex which is used to synchronize exec path.
2440 */
2441 static inline void threadgroup_lock(struct task_struct *tsk)
2442 {
2443 /*
2444 * exec uses exit for de-threading nesting group_rwsem inside
2445 * cred_guard_mutex. Grab cred_guard_mutex first.
2446 */
2447 mutex_lock(&tsk->signal->cred_guard_mutex);
2448 down_write(&tsk->signal->group_rwsem);
2449 }
2450
2451 /**
2452 * threadgroup_unlock - unlock threadgroup
2453 * @tsk: member task of the threadgroup to unlock
2454 *
2455 * Reverse threadgroup_lock().
2456 */
2457 static inline void threadgroup_unlock(struct task_struct *tsk)
2458 {
2459 up_write(&tsk->signal->group_rwsem);
2460 mutex_unlock(&tsk->signal->cred_guard_mutex);
2461 }
2462 #else
2463 static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2464 static inline void threadgroup_change_end(struct task_struct *tsk) {}
2465 static inline void threadgroup_lock(struct task_struct *tsk) {}
2466 static inline void threadgroup_unlock(struct task_struct *tsk) {}
2467 #endif
2468
2469 #ifndef __HAVE_THREAD_FUNCTIONS
2470
2471 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2472 #define task_stack_page(task) ((task)->stack)
2473
2474 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2475 {
2476 *task_thread_info(p) = *task_thread_info(org);
2477 task_thread_info(p)->task = p;
2478 }
2479
2480 static inline unsigned long *end_of_stack(struct task_struct *p)
2481 {
2482 return (unsigned long *)(task_thread_info(p) + 1);
2483 }
2484
2485 #endif
2486
2487 static inline int object_is_on_stack(void *obj)
2488 {
2489 void *stack = task_stack_page(current);
2490
2491 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2492 }
2493
2494 extern void thread_info_cache_init(void);
2495
2496 #ifdef CONFIG_DEBUG_STACK_USAGE
2497 static inline unsigned long stack_not_used(struct task_struct *p)
2498 {
2499 unsigned long *n = end_of_stack(p);
2500
2501 do { /* Skip over canary */
2502 n++;
2503 } while (!*n);
2504
2505 return (unsigned long)n - (unsigned long)end_of_stack(p);
2506 }
2507 #endif
2508
2509 /* set thread flags in other task's structures
2510 * - see asm/thread_info.h for TIF_xxxx flags available
2511 */
2512 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2513 {
2514 set_ti_thread_flag(task_thread_info(tsk), flag);
2515 }
2516
2517 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2518 {
2519 clear_ti_thread_flag(task_thread_info(tsk), flag);
2520 }
2521
2522 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2523 {
2524 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2525 }
2526
2527 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2528 {
2529 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2530 }
2531
2532 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2533 {
2534 return test_ti_thread_flag(task_thread_info(tsk), flag);
2535 }
2536
2537 static inline void set_tsk_need_resched(struct task_struct *tsk)
2538 {
2539 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2540 }
2541
2542 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2543 {
2544 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2545 }
2546
2547 static inline int test_tsk_need_resched(struct task_struct *tsk)
2548 {
2549 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2550 }
2551
2552 static inline int restart_syscall(void)
2553 {
2554 set_tsk_thread_flag(current, TIF_SIGPENDING);
2555 return -ERESTARTNOINTR;
2556 }
2557
2558 static inline int signal_pending(struct task_struct *p)
2559 {
2560 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2561 }
2562
2563 static inline int __fatal_signal_pending(struct task_struct *p)
2564 {
2565 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2566 }
2567
2568 static inline int fatal_signal_pending(struct task_struct *p)
2569 {
2570 return signal_pending(p) && __fatal_signal_pending(p);
2571 }
2572
2573 static inline int signal_pending_state(long state, struct task_struct *p)
2574 {
2575 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2576 return 0;
2577 if (!signal_pending(p))
2578 return 0;
2579
2580 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2581 }
2582
2583 static inline int need_resched(void)
2584 {
2585 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2586 }
2587
2588 /*
2589 * cond_resched() and cond_resched_lock(): latency reduction via
2590 * explicit rescheduling in places that are safe. The return
2591 * value indicates whether a reschedule was done in fact.
2592 * cond_resched_lock() will drop the spinlock before scheduling,
2593 * cond_resched_softirq() will enable bhs before scheduling.
2594 */
2595 extern int _cond_resched(void);
2596
2597 #define cond_resched() ({ \
2598 __might_sleep(__FILE__, __LINE__, 0); \
2599 _cond_resched(); \
2600 })
2601
2602 extern int __cond_resched_lock(spinlock_t *lock);
2603
2604 #ifdef CONFIG_PREEMPT_COUNT
2605 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2606 #else
2607 #define PREEMPT_LOCK_OFFSET 0
2608 #endif
2609
2610 #define cond_resched_lock(lock) ({ \
2611 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2612 __cond_resched_lock(lock); \
2613 })
2614
2615 extern int __cond_resched_softirq(void);
2616
2617 #define cond_resched_softirq() ({ \
2618 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2619 __cond_resched_softirq(); \
2620 })
2621
2622 /*
2623 * Does a critical section need to be broken due to another
2624 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2625 * but a general need for low latency)
2626 */
2627 static inline int spin_needbreak(spinlock_t *lock)
2628 {
2629 #ifdef CONFIG_PREEMPT
2630 return spin_is_contended(lock);
2631 #else
2632 return 0;
2633 #endif
2634 }
2635
2636 /*
2637 * Thread group CPU time accounting.
2638 */
2639 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2640 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2641
2642 static inline void thread_group_cputime_init(struct signal_struct *sig)
2643 {
2644 raw_spin_lock_init(&sig->cputimer.lock);
2645 }
2646
2647 /*
2648 * Reevaluate whether the task has signals pending delivery.
2649 * Wake the task if so.
2650 * This is required every time the blocked sigset_t changes.
2651 * callers must hold sighand->siglock.
2652 */
2653 extern void recalc_sigpending_and_wake(struct task_struct *t);
2654 extern void recalc_sigpending(void);
2655
2656 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2657
2658 /*
2659 * Wrappers for p->thread_info->cpu access. No-op on UP.
2660 */
2661 #ifdef CONFIG_SMP
2662
2663 static inline unsigned int task_cpu(const struct task_struct *p)
2664 {
2665 return task_thread_info(p)->cpu;
2666 }
2667
2668 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2669
2670 #else
2671
2672 static inline unsigned int task_cpu(const struct task_struct *p)
2673 {
2674 return 0;
2675 }
2676
2677 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2678 {
2679 }
2680
2681 #endif /* CONFIG_SMP */
2682
2683 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2684 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2685
2686 extern void normalize_rt_tasks(void);
2687
2688 #ifdef CONFIG_CGROUP_SCHED
2689
2690 extern struct task_group root_task_group;
2691
2692 extern struct task_group *sched_create_group(struct task_group *parent);
2693 extern void sched_destroy_group(struct task_group *tg);
2694 extern void sched_move_task(struct task_struct *tsk);
2695 #ifdef CONFIG_FAIR_GROUP_SCHED
2696 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2697 extern unsigned long sched_group_shares(struct task_group *tg);
2698 #endif
2699 #ifdef CONFIG_RT_GROUP_SCHED
2700 extern int sched_group_set_rt_runtime(struct task_group *tg,
2701 long rt_runtime_us);
2702 extern long sched_group_rt_runtime(struct task_group *tg);
2703 extern int sched_group_set_rt_period(struct task_group *tg,
2704 long rt_period_us);
2705 extern long sched_group_rt_period(struct task_group *tg);
2706 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2707 #endif
2708 #endif
2709
2710 extern int task_can_switch_user(struct user_struct *up,
2711 struct task_struct *tsk);
2712
2713 #ifdef CONFIG_TASK_XACCT
2714 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2715 {
2716 tsk->ioac.rchar += amt;
2717 }
2718
2719 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2720 {
2721 tsk->ioac.wchar += amt;
2722 }
2723
2724 static inline void inc_syscr(struct task_struct *tsk)
2725 {
2726 tsk->ioac.syscr++;
2727 }
2728
2729 static inline void inc_syscw(struct task_struct *tsk)
2730 {
2731 tsk->ioac.syscw++;
2732 }
2733 #else
2734 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2735 {
2736 }
2737
2738 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2739 {
2740 }
2741
2742 static inline void inc_syscr(struct task_struct *tsk)
2743 {
2744 }
2745
2746 static inline void inc_syscw(struct task_struct *tsk)
2747 {
2748 }
2749 #endif
2750
2751 #ifndef TASK_SIZE_OF
2752 #define TASK_SIZE_OF(tsk) TASK_SIZE
2753 #endif
2754
2755 #ifdef CONFIG_MM_OWNER
2756 extern void mm_update_next_owner(struct mm_struct *mm);
2757 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2758 #else
2759 static inline void mm_update_next_owner(struct mm_struct *mm)
2760 {
2761 }
2762
2763 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2764 {
2765 }
2766 #endif /* CONFIG_MM_OWNER */
2767
2768 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2769 unsigned int limit)
2770 {
2771 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2772 }
2773
2774 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2775 unsigned int limit)
2776 {
2777 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2778 }
2779
2780 static inline unsigned long rlimit(unsigned int limit)
2781 {
2782 return task_rlimit(current, limit);
2783 }
2784
2785 static inline unsigned long rlimit_max(unsigned int limit)
2786 {
2787 return task_rlimit_max(current, limit);
2788 }
2789
2790 #endif /* __KERNEL__ */
2791
2792 #endif
This page took 0.087955 seconds and 5 git commands to generate.