flagday: kill pt_regs argument of do_fork()
[deliverable/linux.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <uapi/linux/sched.h>
5
6
7 struct sched_param {
8 int sched_priority;
9 };
10
11 #include <asm/param.h> /* for HZ */
12
13 #include <linux/capability.h>
14 #include <linux/threads.h>
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/timex.h>
18 #include <linux/jiffies.h>
19 #include <linux/rbtree.h>
20 #include <linux/thread_info.h>
21 #include <linux/cpumask.h>
22 #include <linux/errno.h>
23 #include <linux/nodemask.h>
24 #include <linux/mm_types.h>
25
26 #include <asm/page.h>
27 #include <asm/ptrace.h>
28 #include <asm/cputime.h>
29
30 #include <linux/smp.h>
31 #include <linux/sem.h>
32 #include <linux/signal.h>
33 #include <linux/compiler.h>
34 #include <linux/completion.h>
35 #include <linux/pid.h>
36 #include <linux/percpu.h>
37 #include <linux/topology.h>
38 #include <linux/proportions.h>
39 #include <linux/seccomp.h>
40 #include <linux/rcupdate.h>
41 #include <linux/rculist.h>
42 #include <linux/rtmutex.h>
43
44 #include <linux/time.h>
45 #include <linux/param.h>
46 #include <linux/resource.h>
47 #include <linux/timer.h>
48 #include <linux/hrtimer.h>
49 #include <linux/task_io_accounting.h>
50 #include <linux/latencytop.h>
51 #include <linux/cred.h>
52 #include <linux/llist.h>
53 #include <linux/uidgid.h>
54
55 #include <asm/processor.h>
56
57 struct exec_domain;
58 struct futex_pi_state;
59 struct robust_list_head;
60 struct bio_list;
61 struct fs_struct;
62 struct perf_event_context;
63 struct blk_plug;
64
65 /*
66 * List of flags we want to share for kernel threads,
67 * if only because they are not used by them anyway.
68 */
69 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
70
71 /*
72 * These are the constant used to fake the fixed-point load-average
73 * counting. Some notes:
74 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
75 * a load-average precision of 10 bits integer + 11 bits fractional
76 * - if you want to count load-averages more often, you need more
77 * precision, or rounding will get you. With 2-second counting freq,
78 * the EXP_n values would be 1981, 2034 and 2043 if still using only
79 * 11 bit fractions.
80 */
81 extern unsigned long avenrun[]; /* Load averages */
82 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
83
84 #define FSHIFT 11 /* nr of bits of precision */
85 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
86 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
87 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
88 #define EXP_5 2014 /* 1/exp(5sec/5min) */
89 #define EXP_15 2037 /* 1/exp(5sec/15min) */
90
91 #define CALC_LOAD(load,exp,n) \
92 load *= exp; \
93 load += n*(FIXED_1-exp); \
94 load >>= FSHIFT;
95
96 extern unsigned long total_forks;
97 extern int nr_threads;
98 DECLARE_PER_CPU(unsigned long, process_counts);
99 extern int nr_processes(void);
100 extern unsigned long nr_running(void);
101 extern unsigned long nr_uninterruptible(void);
102 extern unsigned long nr_iowait(void);
103 extern unsigned long nr_iowait_cpu(int cpu);
104 extern unsigned long this_cpu_load(void);
105
106
107 extern void calc_global_load(unsigned long ticks);
108 extern void update_cpu_load_nohz(void);
109
110 extern unsigned long get_parent_ip(unsigned long addr);
111
112 struct seq_file;
113 struct cfs_rq;
114 struct task_group;
115 #ifdef CONFIG_SCHED_DEBUG
116 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
117 extern void proc_sched_set_task(struct task_struct *p);
118 extern void
119 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
120 #else
121 static inline void
122 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
123 {
124 }
125 static inline void proc_sched_set_task(struct task_struct *p)
126 {
127 }
128 static inline void
129 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
130 {
131 }
132 #endif
133
134 /*
135 * Task state bitmask. NOTE! These bits are also
136 * encoded in fs/proc/array.c: get_task_state().
137 *
138 * We have two separate sets of flags: task->state
139 * is about runnability, while task->exit_state are
140 * about the task exiting. Confusing, but this way
141 * modifying one set can't modify the other one by
142 * mistake.
143 */
144 #define TASK_RUNNING 0
145 #define TASK_INTERRUPTIBLE 1
146 #define TASK_UNINTERRUPTIBLE 2
147 #define __TASK_STOPPED 4
148 #define __TASK_TRACED 8
149 /* in tsk->exit_state */
150 #define EXIT_ZOMBIE 16
151 #define EXIT_DEAD 32
152 /* in tsk->state again */
153 #define TASK_DEAD 64
154 #define TASK_WAKEKILL 128
155 #define TASK_WAKING 256
156 #define TASK_STATE_MAX 512
157
158 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW"
159
160 extern char ___assert_task_state[1 - 2*!!(
161 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
162
163 /* Convenience macros for the sake of set_task_state */
164 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
165 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
166 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
167
168 /* Convenience macros for the sake of wake_up */
169 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
170 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
171
172 /* get_task_state() */
173 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
174 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
175 __TASK_TRACED)
176
177 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
178 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
179 #define task_is_dead(task) ((task)->exit_state != 0)
180 #define task_is_stopped_or_traced(task) \
181 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
182 #define task_contributes_to_load(task) \
183 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
184 (task->flags & PF_FROZEN) == 0)
185
186 #define __set_task_state(tsk, state_value) \
187 do { (tsk)->state = (state_value); } while (0)
188 #define set_task_state(tsk, state_value) \
189 set_mb((tsk)->state, (state_value))
190
191 /*
192 * set_current_state() includes a barrier so that the write of current->state
193 * is correctly serialised wrt the caller's subsequent test of whether to
194 * actually sleep:
195 *
196 * set_current_state(TASK_UNINTERRUPTIBLE);
197 * if (do_i_need_to_sleep())
198 * schedule();
199 *
200 * If the caller does not need such serialisation then use __set_current_state()
201 */
202 #define __set_current_state(state_value) \
203 do { current->state = (state_value); } while (0)
204 #define set_current_state(state_value) \
205 set_mb(current->state, (state_value))
206
207 /* Task command name length */
208 #define TASK_COMM_LEN 16
209
210 #include <linux/spinlock.h>
211
212 /*
213 * This serializes "schedule()" and also protects
214 * the run-queue from deletions/modifications (but
215 * _adding_ to the beginning of the run-queue has
216 * a separate lock).
217 */
218 extern rwlock_t tasklist_lock;
219 extern spinlock_t mmlist_lock;
220
221 struct task_struct;
222
223 #ifdef CONFIG_PROVE_RCU
224 extern int lockdep_tasklist_lock_is_held(void);
225 #endif /* #ifdef CONFIG_PROVE_RCU */
226
227 extern void sched_init(void);
228 extern void sched_init_smp(void);
229 extern asmlinkage void schedule_tail(struct task_struct *prev);
230 extern void init_idle(struct task_struct *idle, int cpu);
231 extern void init_idle_bootup_task(struct task_struct *idle);
232
233 extern int runqueue_is_locked(int cpu);
234
235 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
236 extern void nohz_balance_enter_idle(int cpu);
237 extern void set_cpu_sd_state_idle(void);
238 extern int get_nohz_timer_target(void);
239 #else
240 static inline void nohz_balance_enter_idle(int cpu) { }
241 static inline void set_cpu_sd_state_idle(void) { }
242 #endif
243
244 /*
245 * Only dump TASK_* tasks. (0 for all tasks)
246 */
247 extern void show_state_filter(unsigned long state_filter);
248
249 static inline void show_state(void)
250 {
251 show_state_filter(0);
252 }
253
254 extern void show_regs(struct pt_regs *);
255
256 /*
257 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
258 * task), SP is the stack pointer of the first frame that should be shown in the back
259 * trace (or NULL if the entire call-chain of the task should be shown).
260 */
261 extern void show_stack(struct task_struct *task, unsigned long *sp);
262
263 void io_schedule(void);
264 long io_schedule_timeout(long timeout);
265
266 extern void cpu_init (void);
267 extern void trap_init(void);
268 extern void update_process_times(int user);
269 extern void scheduler_tick(void);
270
271 extern void sched_show_task(struct task_struct *p);
272
273 #ifdef CONFIG_LOCKUP_DETECTOR
274 extern void touch_softlockup_watchdog(void);
275 extern void touch_softlockup_watchdog_sync(void);
276 extern void touch_all_softlockup_watchdogs(void);
277 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
278 void __user *buffer,
279 size_t *lenp, loff_t *ppos);
280 extern unsigned int softlockup_panic;
281 void lockup_detector_init(void);
282 #else
283 static inline void touch_softlockup_watchdog(void)
284 {
285 }
286 static inline void touch_softlockup_watchdog_sync(void)
287 {
288 }
289 static inline void touch_all_softlockup_watchdogs(void)
290 {
291 }
292 static inline void lockup_detector_init(void)
293 {
294 }
295 #endif
296
297 #ifdef CONFIG_DETECT_HUNG_TASK
298 extern unsigned int sysctl_hung_task_panic;
299 extern unsigned long sysctl_hung_task_check_count;
300 extern unsigned long sysctl_hung_task_timeout_secs;
301 extern unsigned long sysctl_hung_task_warnings;
302 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
303 void __user *buffer,
304 size_t *lenp, loff_t *ppos);
305 #else
306 /* Avoid need for ifdefs elsewhere in the code */
307 enum { sysctl_hung_task_timeout_secs = 0 };
308 #endif
309
310 /* Attach to any functions which should be ignored in wchan output. */
311 #define __sched __attribute__((__section__(".sched.text")))
312
313 /* Linker adds these: start and end of __sched functions */
314 extern char __sched_text_start[], __sched_text_end[];
315
316 /* Is this address in the __sched functions? */
317 extern int in_sched_functions(unsigned long addr);
318
319 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
320 extern signed long schedule_timeout(signed long timeout);
321 extern signed long schedule_timeout_interruptible(signed long timeout);
322 extern signed long schedule_timeout_killable(signed long timeout);
323 extern signed long schedule_timeout_uninterruptible(signed long timeout);
324 asmlinkage void schedule(void);
325 extern void schedule_preempt_disabled(void);
326 extern int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner);
327
328 struct nsproxy;
329 struct user_namespace;
330
331 /*
332 * Default maximum number of active map areas, this limits the number of vmas
333 * per mm struct. Users can overwrite this number by sysctl but there is a
334 * problem.
335 *
336 * When a program's coredump is generated as ELF format, a section is created
337 * per a vma. In ELF, the number of sections is represented in unsigned short.
338 * This means the number of sections should be smaller than 65535 at coredump.
339 * Because the kernel adds some informative sections to a image of program at
340 * generating coredump, we need some margin. The number of extra sections is
341 * 1-3 now and depends on arch. We use "5" as safe margin, here.
342 */
343 #define MAPCOUNT_ELF_CORE_MARGIN (5)
344 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
345
346 extern int sysctl_max_map_count;
347
348 #include <linux/aio.h>
349
350 #ifdef CONFIG_MMU
351 extern void arch_pick_mmap_layout(struct mm_struct *mm);
352 extern unsigned long
353 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
354 unsigned long, unsigned long);
355 extern unsigned long
356 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
357 unsigned long len, unsigned long pgoff,
358 unsigned long flags);
359 extern void arch_unmap_area(struct mm_struct *, unsigned long);
360 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
361 #else
362 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
363 #endif
364
365
366 extern void set_dumpable(struct mm_struct *mm, int value);
367 extern int get_dumpable(struct mm_struct *mm);
368
369 /* get/set_dumpable() values */
370 #define SUID_DUMPABLE_DISABLED 0
371 #define SUID_DUMPABLE_ENABLED 1
372 #define SUID_DUMPABLE_SAFE 2
373
374 /* mm flags */
375 /* dumpable bits */
376 #define MMF_DUMPABLE 0 /* core dump is permitted */
377 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
378
379 #define MMF_DUMPABLE_BITS 2
380 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
381
382 /* coredump filter bits */
383 #define MMF_DUMP_ANON_PRIVATE 2
384 #define MMF_DUMP_ANON_SHARED 3
385 #define MMF_DUMP_MAPPED_PRIVATE 4
386 #define MMF_DUMP_MAPPED_SHARED 5
387 #define MMF_DUMP_ELF_HEADERS 6
388 #define MMF_DUMP_HUGETLB_PRIVATE 7
389 #define MMF_DUMP_HUGETLB_SHARED 8
390
391 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
392 #define MMF_DUMP_FILTER_BITS 7
393 #define MMF_DUMP_FILTER_MASK \
394 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
395 #define MMF_DUMP_FILTER_DEFAULT \
396 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
397 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
398
399 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
400 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
401 #else
402 # define MMF_DUMP_MASK_DEFAULT_ELF 0
403 #endif
404 /* leave room for more dump flags */
405 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
406 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
407 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
408
409 #define MMF_HAS_UPROBES 19 /* has uprobes */
410 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
411
412 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
413
414 struct sighand_struct {
415 atomic_t count;
416 struct k_sigaction action[_NSIG];
417 spinlock_t siglock;
418 wait_queue_head_t signalfd_wqh;
419 };
420
421 struct pacct_struct {
422 int ac_flag;
423 long ac_exitcode;
424 unsigned long ac_mem;
425 cputime_t ac_utime, ac_stime;
426 unsigned long ac_minflt, ac_majflt;
427 };
428
429 struct cpu_itimer {
430 cputime_t expires;
431 cputime_t incr;
432 u32 error;
433 u32 incr_error;
434 };
435
436 /**
437 * struct task_cputime - collected CPU time counts
438 * @utime: time spent in user mode, in &cputime_t units
439 * @stime: time spent in kernel mode, in &cputime_t units
440 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
441 *
442 * This structure groups together three kinds of CPU time that are
443 * tracked for threads and thread groups. Most things considering
444 * CPU time want to group these counts together and treat all three
445 * of them in parallel.
446 */
447 struct task_cputime {
448 cputime_t utime;
449 cputime_t stime;
450 unsigned long long sum_exec_runtime;
451 };
452 /* Alternate field names when used to cache expirations. */
453 #define prof_exp stime
454 #define virt_exp utime
455 #define sched_exp sum_exec_runtime
456
457 #define INIT_CPUTIME \
458 (struct task_cputime) { \
459 .utime = 0, \
460 .stime = 0, \
461 .sum_exec_runtime = 0, \
462 }
463
464 /*
465 * Disable preemption until the scheduler is running.
466 * Reset by start_kernel()->sched_init()->init_idle().
467 *
468 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
469 * before the scheduler is active -- see should_resched().
470 */
471 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
472
473 /**
474 * struct thread_group_cputimer - thread group interval timer counts
475 * @cputime: thread group interval timers.
476 * @running: non-zero when there are timers running and
477 * @cputime receives updates.
478 * @lock: lock for fields in this struct.
479 *
480 * This structure contains the version of task_cputime, above, that is
481 * used for thread group CPU timer calculations.
482 */
483 struct thread_group_cputimer {
484 struct task_cputime cputime;
485 int running;
486 raw_spinlock_t lock;
487 };
488
489 #include <linux/rwsem.h>
490 struct autogroup;
491
492 /*
493 * NOTE! "signal_struct" does not have its own
494 * locking, because a shared signal_struct always
495 * implies a shared sighand_struct, so locking
496 * sighand_struct is always a proper superset of
497 * the locking of signal_struct.
498 */
499 struct signal_struct {
500 atomic_t sigcnt;
501 atomic_t live;
502 int nr_threads;
503
504 wait_queue_head_t wait_chldexit; /* for wait4() */
505
506 /* current thread group signal load-balancing target: */
507 struct task_struct *curr_target;
508
509 /* shared signal handling: */
510 struct sigpending shared_pending;
511
512 /* thread group exit support */
513 int group_exit_code;
514 /* overloaded:
515 * - notify group_exit_task when ->count is equal to notify_count
516 * - everyone except group_exit_task is stopped during signal delivery
517 * of fatal signals, group_exit_task processes the signal.
518 */
519 int notify_count;
520 struct task_struct *group_exit_task;
521
522 /* thread group stop support, overloads group_exit_code too */
523 int group_stop_count;
524 unsigned int flags; /* see SIGNAL_* flags below */
525
526 /*
527 * PR_SET_CHILD_SUBREAPER marks a process, like a service
528 * manager, to re-parent orphan (double-forking) child processes
529 * to this process instead of 'init'. The service manager is
530 * able to receive SIGCHLD signals and is able to investigate
531 * the process until it calls wait(). All children of this
532 * process will inherit a flag if they should look for a
533 * child_subreaper process at exit.
534 */
535 unsigned int is_child_subreaper:1;
536 unsigned int has_child_subreaper:1;
537
538 /* POSIX.1b Interval Timers */
539 struct list_head posix_timers;
540
541 /* ITIMER_REAL timer for the process */
542 struct hrtimer real_timer;
543 struct pid *leader_pid;
544 ktime_t it_real_incr;
545
546 /*
547 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
548 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
549 * values are defined to 0 and 1 respectively
550 */
551 struct cpu_itimer it[2];
552
553 /*
554 * Thread group totals for process CPU timers.
555 * See thread_group_cputimer(), et al, for details.
556 */
557 struct thread_group_cputimer cputimer;
558
559 /* Earliest-expiration cache. */
560 struct task_cputime cputime_expires;
561
562 struct list_head cpu_timers[3];
563
564 struct pid *tty_old_pgrp;
565
566 /* boolean value for session group leader */
567 int leader;
568
569 struct tty_struct *tty; /* NULL if no tty */
570
571 #ifdef CONFIG_SCHED_AUTOGROUP
572 struct autogroup *autogroup;
573 #endif
574 /*
575 * Cumulative resource counters for dead threads in the group,
576 * and for reaped dead child processes forked by this group.
577 * Live threads maintain their own counters and add to these
578 * in __exit_signal, except for the group leader.
579 */
580 cputime_t utime, stime, cutime, cstime;
581 cputime_t gtime;
582 cputime_t cgtime;
583 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
584 cputime_t prev_utime, prev_stime;
585 #endif
586 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
587 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
588 unsigned long inblock, oublock, cinblock, coublock;
589 unsigned long maxrss, cmaxrss;
590 struct task_io_accounting ioac;
591
592 /*
593 * Cumulative ns of schedule CPU time fo dead threads in the
594 * group, not including a zombie group leader, (This only differs
595 * from jiffies_to_ns(utime + stime) if sched_clock uses something
596 * other than jiffies.)
597 */
598 unsigned long long sum_sched_runtime;
599
600 /*
601 * We don't bother to synchronize most readers of this at all,
602 * because there is no reader checking a limit that actually needs
603 * to get both rlim_cur and rlim_max atomically, and either one
604 * alone is a single word that can safely be read normally.
605 * getrlimit/setrlimit use task_lock(current->group_leader) to
606 * protect this instead of the siglock, because they really
607 * have no need to disable irqs.
608 */
609 struct rlimit rlim[RLIM_NLIMITS];
610
611 #ifdef CONFIG_BSD_PROCESS_ACCT
612 struct pacct_struct pacct; /* per-process accounting information */
613 #endif
614 #ifdef CONFIG_TASKSTATS
615 struct taskstats *stats;
616 #endif
617 #ifdef CONFIG_AUDIT
618 unsigned audit_tty;
619 struct tty_audit_buf *tty_audit_buf;
620 #endif
621 #ifdef CONFIG_CGROUPS
622 /*
623 * group_rwsem prevents new tasks from entering the threadgroup and
624 * member tasks from exiting,a more specifically, setting of
625 * PF_EXITING. fork and exit paths are protected with this rwsem
626 * using threadgroup_change_begin/end(). Users which require
627 * threadgroup to remain stable should use threadgroup_[un]lock()
628 * which also takes care of exec path. Currently, cgroup is the
629 * only user.
630 */
631 struct rw_semaphore group_rwsem;
632 #endif
633
634 int oom_score_adj; /* OOM kill score adjustment */
635 int oom_score_adj_min; /* OOM kill score adjustment minimum value.
636 * Only settable by CAP_SYS_RESOURCE. */
637
638 struct mutex cred_guard_mutex; /* guard against foreign influences on
639 * credential calculations
640 * (notably. ptrace) */
641 };
642
643 /*
644 * Bits in flags field of signal_struct.
645 */
646 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
647 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
648 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
649 /*
650 * Pending notifications to parent.
651 */
652 #define SIGNAL_CLD_STOPPED 0x00000010
653 #define SIGNAL_CLD_CONTINUED 0x00000020
654 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
655
656 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
657
658 /* If true, all threads except ->group_exit_task have pending SIGKILL */
659 static inline int signal_group_exit(const struct signal_struct *sig)
660 {
661 return (sig->flags & SIGNAL_GROUP_EXIT) ||
662 (sig->group_exit_task != NULL);
663 }
664
665 /*
666 * Some day this will be a full-fledged user tracking system..
667 */
668 struct user_struct {
669 atomic_t __count; /* reference count */
670 atomic_t processes; /* How many processes does this user have? */
671 atomic_t files; /* How many open files does this user have? */
672 atomic_t sigpending; /* How many pending signals does this user have? */
673 #ifdef CONFIG_INOTIFY_USER
674 atomic_t inotify_watches; /* How many inotify watches does this user have? */
675 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
676 #endif
677 #ifdef CONFIG_FANOTIFY
678 atomic_t fanotify_listeners;
679 #endif
680 #ifdef CONFIG_EPOLL
681 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
682 #endif
683 #ifdef CONFIG_POSIX_MQUEUE
684 /* protected by mq_lock */
685 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
686 #endif
687 unsigned long locked_shm; /* How many pages of mlocked shm ? */
688
689 #ifdef CONFIG_KEYS
690 struct key *uid_keyring; /* UID specific keyring */
691 struct key *session_keyring; /* UID's default session keyring */
692 #endif
693
694 /* Hash table maintenance information */
695 struct hlist_node uidhash_node;
696 kuid_t uid;
697
698 #ifdef CONFIG_PERF_EVENTS
699 atomic_long_t locked_vm;
700 #endif
701 };
702
703 extern int uids_sysfs_init(void);
704
705 extern struct user_struct *find_user(kuid_t);
706
707 extern struct user_struct root_user;
708 #define INIT_USER (&root_user)
709
710
711 struct backing_dev_info;
712 struct reclaim_state;
713
714 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
715 struct sched_info {
716 /* cumulative counters */
717 unsigned long pcount; /* # of times run on this cpu */
718 unsigned long long run_delay; /* time spent waiting on a runqueue */
719
720 /* timestamps */
721 unsigned long long last_arrival,/* when we last ran on a cpu */
722 last_queued; /* when we were last queued to run */
723 };
724 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
725
726 #ifdef CONFIG_TASK_DELAY_ACCT
727 struct task_delay_info {
728 spinlock_t lock;
729 unsigned int flags; /* Private per-task flags */
730
731 /* For each stat XXX, add following, aligned appropriately
732 *
733 * struct timespec XXX_start, XXX_end;
734 * u64 XXX_delay;
735 * u32 XXX_count;
736 *
737 * Atomicity of updates to XXX_delay, XXX_count protected by
738 * single lock above (split into XXX_lock if contention is an issue).
739 */
740
741 /*
742 * XXX_count is incremented on every XXX operation, the delay
743 * associated with the operation is added to XXX_delay.
744 * XXX_delay contains the accumulated delay time in nanoseconds.
745 */
746 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
747 u64 blkio_delay; /* wait for sync block io completion */
748 u64 swapin_delay; /* wait for swapin block io completion */
749 u32 blkio_count; /* total count of the number of sync block */
750 /* io operations performed */
751 u32 swapin_count; /* total count of the number of swapin block */
752 /* io operations performed */
753
754 struct timespec freepages_start, freepages_end;
755 u64 freepages_delay; /* wait for memory reclaim */
756 u32 freepages_count; /* total count of memory reclaim */
757 };
758 #endif /* CONFIG_TASK_DELAY_ACCT */
759
760 static inline int sched_info_on(void)
761 {
762 #ifdef CONFIG_SCHEDSTATS
763 return 1;
764 #elif defined(CONFIG_TASK_DELAY_ACCT)
765 extern int delayacct_on;
766 return delayacct_on;
767 #else
768 return 0;
769 #endif
770 }
771
772 enum cpu_idle_type {
773 CPU_IDLE,
774 CPU_NOT_IDLE,
775 CPU_NEWLY_IDLE,
776 CPU_MAX_IDLE_TYPES
777 };
778
779 /*
780 * Increase resolution of nice-level calculations for 64-bit architectures.
781 * The extra resolution improves shares distribution and load balancing of
782 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
783 * hierarchies, especially on larger systems. This is not a user-visible change
784 * and does not change the user-interface for setting shares/weights.
785 *
786 * We increase resolution only if we have enough bits to allow this increased
787 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
788 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
789 * increased costs.
790 */
791 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
792 # define SCHED_LOAD_RESOLUTION 10
793 # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
794 # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
795 #else
796 # define SCHED_LOAD_RESOLUTION 0
797 # define scale_load(w) (w)
798 # define scale_load_down(w) (w)
799 #endif
800
801 #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
802 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
803
804 /*
805 * Increase resolution of cpu_power calculations
806 */
807 #define SCHED_POWER_SHIFT 10
808 #define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT)
809
810 /*
811 * sched-domains (multiprocessor balancing) declarations:
812 */
813 #ifdef CONFIG_SMP
814 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
815 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
816 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
817 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
818 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
819 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
820 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
821 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
822 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
823 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
824 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
825 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
826
827 extern int __weak arch_sd_sibiling_asym_packing(void);
828
829 struct sched_group_power {
830 atomic_t ref;
831 /*
832 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
833 * single CPU.
834 */
835 unsigned int power, power_orig;
836 unsigned long next_update;
837 /*
838 * Number of busy cpus in this group.
839 */
840 atomic_t nr_busy_cpus;
841
842 unsigned long cpumask[0]; /* iteration mask */
843 };
844
845 struct sched_group {
846 struct sched_group *next; /* Must be a circular list */
847 atomic_t ref;
848
849 unsigned int group_weight;
850 struct sched_group_power *sgp;
851
852 /*
853 * The CPUs this group covers.
854 *
855 * NOTE: this field is variable length. (Allocated dynamically
856 * by attaching extra space to the end of the structure,
857 * depending on how many CPUs the kernel has booted up with)
858 */
859 unsigned long cpumask[0];
860 };
861
862 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
863 {
864 return to_cpumask(sg->cpumask);
865 }
866
867 /*
868 * cpumask masking which cpus in the group are allowed to iterate up the domain
869 * tree.
870 */
871 static inline struct cpumask *sched_group_mask(struct sched_group *sg)
872 {
873 return to_cpumask(sg->sgp->cpumask);
874 }
875
876 /**
877 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
878 * @group: The group whose first cpu is to be returned.
879 */
880 static inline unsigned int group_first_cpu(struct sched_group *group)
881 {
882 return cpumask_first(sched_group_cpus(group));
883 }
884
885 struct sched_domain_attr {
886 int relax_domain_level;
887 };
888
889 #define SD_ATTR_INIT (struct sched_domain_attr) { \
890 .relax_domain_level = -1, \
891 }
892
893 extern int sched_domain_level_max;
894
895 struct sched_domain {
896 /* These fields must be setup */
897 struct sched_domain *parent; /* top domain must be null terminated */
898 struct sched_domain *child; /* bottom domain must be null terminated */
899 struct sched_group *groups; /* the balancing groups of the domain */
900 unsigned long min_interval; /* Minimum balance interval ms */
901 unsigned long max_interval; /* Maximum balance interval ms */
902 unsigned int busy_factor; /* less balancing by factor if busy */
903 unsigned int imbalance_pct; /* No balance until over watermark */
904 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
905 unsigned int busy_idx;
906 unsigned int idle_idx;
907 unsigned int newidle_idx;
908 unsigned int wake_idx;
909 unsigned int forkexec_idx;
910 unsigned int smt_gain;
911 int flags; /* See SD_* */
912 int level;
913
914 /* Runtime fields. */
915 unsigned long last_balance; /* init to jiffies. units in jiffies */
916 unsigned int balance_interval; /* initialise to 1. units in ms. */
917 unsigned int nr_balance_failed; /* initialise to 0 */
918
919 u64 last_update;
920
921 #ifdef CONFIG_SCHEDSTATS
922 /* load_balance() stats */
923 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
924 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
925 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
926 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
927 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
928 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
929 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
930 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
931
932 /* Active load balancing */
933 unsigned int alb_count;
934 unsigned int alb_failed;
935 unsigned int alb_pushed;
936
937 /* SD_BALANCE_EXEC stats */
938 unsigned int sbe_count;
939 unsigned int sbe_balanced;
940 unsigned int sbe_pushed;
941
942 /* SD_BALANCE_FORK stats */
943 unsigned int sbf_count;
944 unsigned int sbf_balanced;
945 unsigned int sbf_pushed;
946
947 /* try_to_wake_up() stats */
948 unsigned int ttwu_wake_remote;
949 unsigned int ttwu_move_affine;
950 unsigned int ttwu_move_balance;
951 #endif
952 #ifdef CONFIG_SCHED_DEBUG
953 char *name;
954 #endif
955 union {
956 void *private; /* used during construction */
957 struct rcu_head rcu; /* used during destruction */
958 };
959
960 unsigned int span_weight;
961 /*
962 * Span of all CPUs in this domain.
963 *
964 * NOTE: this field is variable length. (Allocated dynamically
965 * by attaching extra space to the end of the structure,
966 * depending on how many CPUs the kernel has booted up with)
967 */
968 unsigned long span[0];
969 };
970
971 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
972 {
973 return to_cpumask(sd->span);
974 }
975
976 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
977 struct sched_domain_attr *dattr_new);
978
979 /* Allocate an array of sched domains, for partition_sched_domains(). */
980 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
981 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
982
983 /* Test a flag in parent sched domain */
984 static inline int test_sd_parent(struct sched_domain *sd, int flag)
985 {
986 if (sd->parent && (sd->parent->flags & flag))
987 return 1;
988
989 return 0;
990 }
991
992 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
993 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
994
995 bool cpus_share_cache(int this_cpu, int that_cpu);
996
997 #else /* CONFIG_SMP */
998
999 struct sched_domain_attr;
1000
1001 static inline void
1002 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1003 struct sched_domain_attr *dattr_new)
1004 {
1005 }
1006
1007 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1008 {
1009 return true;
1010 }
1011
1012 #endif /* !CONFIG_SMP */
1013
1014
1015 struct io_context; /* See blkdev.h */
1016
1017
1018 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1019 extern void prefetch_stack(struct task_struct *t);
1020 #else
1021 static inline void prefetch_stack(struct task_struct *t) { }
1022 #endif
1023
1024 struct audit_context; /* See audit.c */
1025 struct mempolicy;
1026 struct pipe_inode_info;
1027 struct uts_namespace;
1028
1029 struct rq;
1030 struct sched_domain;
1031
1032 /*
1033 * wake flags
1034 */
1035 #define WF_SYNC 0x01 /* waker goes to sleep after wakup */
1036 #define WF_FORK 0x02 /* child wakeup after fork */
1037 #define WF_MIGRATED 0x04 /* internal use, task got migrated */
1038
1039 #define ENQUEUE_WAKEUP 1
1040 #define ENQUEUE_HEAD 2
1041 #ifdef CONFIG_SMP
1042 #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
1043 #else
1044 #define ENQUEUE_WAKING 0
1045 #endif
1046
1047 #define DEQUEUE_SLEEP 1
1048
1049 struct sched_class {
1050 const struct sched_class *next;
1051
1052 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1053 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1054 void (*yield_task) (struct rq *rq);
1055 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1056
1057 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1058
1059 struct task_struct * (*pick_next_task) (struct rq *rq);
1060 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1061
1062 #ifdef CONFIG_SMP
1063 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
1064
1065 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1066 void (*post_schedule) (struct rq *this_rq);
1067 void (*task_waking) (struct task_struct *task);
1068 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1069
1070 void (*set_cpus_allowed)(struct task_struct *p,
1071 const struct cpumask *newmask);
1072
1073 void (*rq_online)(struct rq *rq);
1074 void (*rq_offline)(struct rq *rq);
1075 #endif
1076
1077 void (*set_curr_task) (struct rq *rq);
1078 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1079 void (*task_fork) (struct task_struct *p);
1080
1081 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1082 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1083 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1084 int oldprio);
1085
1086 unsigned int (*get_rr_interval) (struct rq *rq,
1087 struct task_struct *task);
1088
1089 #ifdef CONFIG_FAIR_GROUP_SCHED
1090 void (*task_move_group) (struct task_struct *p, int on_rq);
1091 #endif
1092 };
1093
1094 struct load_weight {
1095 unsigned long weight, inv_weight;
1096 };
1097
1098 #ifdef CONFIG_SCHEDSTATS
1099 struct sched_statistics {
1100 u64 wait_start;
1101 u64 wait_max;
1102 u64 wait_count;
1103 u64 wait_sum;
1104 u64 iowait_count;
1105 u64 iowait_sum;
1106
1107 u64 sleep_start;
1108 u64 sleep_max;
1109 s64 sum_sleep_runtime;
1110
1111 u64 block_start;
1112 u64 block_max;
1113 u64 exec_max;
1114 u64 slice_max;
1115
1116 u64 nr_migrations_cold;
1117 u64 nr_failed_migrations_affine;
1118 u64 nr_failed_migrations_running;
1119 u64 nr_failed_migrations_hot;
1120 u64 nr_forced_migrations;
1121
1122 u64 nr_wakeups;
1123 u64 nr_wakeups_sync;
1124 u64 nr_wakeups_migrate;
1125 u64 nr_wakeups_local;
1126 u64 nr_wakeups_remote;
1127 u64 nr_wakeups_affine;
1128 u64 nr_wakeups_affine_attempts;
1129 u64 nr_wakeups_passive;
1130 u64 nr_wakeups_idle;
1131 };
1132 #endif
1133
1134 struct sched_entity {
1135 struct load_weight load; /* for load-balancing */
1136 struct rb_node run_node;
1137 struct list_head group_node;
1138 unsigned int on_rq;
1139
1140 u64 exec_start;
1141 u64 sum_exec_runtime;
1142 u64 vruntime;
1143 u64 prev_sum_exec_runtime;
1144
1145 u64 nr_migrations;
1146
1147 #ifdef CONFIG_SCHEDSTATS
1148 struct sched_statistics statistics;
1149 #endif
1150
1151 #ifdef CONFIG_FAIR_GROUP_SCHED
1152 struct sched_entity *parent;
1153 /* rq on which this entity is (to be) queued: */
1154 struct cfs_rq *cfs_rq;
1155 /* rq "owned" by this entity/group: */
1156 struct cfs_rq *my_q;
1157 #endif
1158 };
1159
1160 struct sched_rt_entity {
1161 struct list_head run_list;
1162 unsigned long timeout;
1163 unsigned int time_slice;
1164
1165 struct sched_rt_entity *back;
1166 #ifdef CONFIG_RT_GROUP_SCHED
1167 struct sched_rt_entity *parent;
1168 /* rq on which this entity is (to be) queued: */
1169 struct rt_rq *rt_rq;
1170 /* rq "owned" by this entity/group: */
1171 struct rt_rq *my_q;
1172 #endif
1173 };
1174
1175 /*
1176 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1177 * Timeslices get refilled after they expire.
1178 */
1179 #define RR_TIMESLICE (100 * HZ / 1000)
1180
1181 struct rcu_node;
1182
1183 enum perf_event_task_context {
1184 perf_invalid_context = -1,
1185 perf_hw_context = 0,
1186 perf_sw_context,
1187 perf_nr_task_contexts,
1188 };
1189
1190 struct task_struct {
1191 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1192 void *stack;
1193 atomic_t usage;
1194 unsigned int flags; /* per process flags, defined below */
1195 unsigned int ptrace;
1196
1197 #ifdef CONFIG_SMP
1198 struct llist_node wake_entry;
1199 int on_cpu;
1200 #endif
1201 int on_rq;
1202
1203 int prio, static_prio, normal_prio;
1204 unsigned int rt_priority;
1205 const struct sched_class *sched_class;
1206 struct sched_entity se;
1207 struct sched_rt_entity rt;
1208 #ifdef CONFIG_CGROUP_SCHED
1209 struct task_group *sched_task_group;
1210 #endif
1211
1212 #ifdef CONFIG_PREEMPT_NOTIFIERS
1213 /* list of struct preempt_notifier: */
1214 struct hlist_head preempt_notifiers;
1215 #endif
1216
1217 /*
1218 * fpu_counter contains the number of consecutive context switches
1219 * that the FPU is used. If this is over a threshold, the lazy fpu
1220 * saving becomes unlazy to save the trap. This is an unsigned char
1221 * so that after 256 times the counter wraps and the behavior turns
1222 * lazy again; this to deal with bursty apps that only use FPU for
1223 * a short time
1224 */
1225 unsigned char fpu_counter;
1226 #ifdef CONFIG_BLK_DEV_IO_TRACE
1227 unsigned int btrace_seq;
1228 #endif
1229
1230 unsigned int policy;
1231 int nr_cpus_allowed;
1232 cpumask_t cpus_allowed;
1233
1234 #ifdef CONFIG_PREEMPT_RCU
1235 int rcu_read_lock_nesting;
1236 char rcu_read_unlock_special;
1237 struct list_head rcu_node_entry;
1238 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1239 #ifdef CONFIG_TREE_PREEMPT_RCU
1240 struct rcu_node *rcu_blocked_node;
1241 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1242 #ifdef CONFIG_RCU_BOOST
1243 struct rt_mutex *rcu_boost_mutex;
1244 #endif /* #ifdef CONFIG_RCU_BOOST */
1245
1246 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1247 struct sched_info sched_info;
1248 #endif
1249
1250 struct list_head tasks;
1251 #ifdef CONFIG_SMP
1252 struct plist_node pushable_tasks;
1253 #endif
1254
1255 struct mm_struct *mm, *active_mm;
1256 #ifdef CONFIG_COMPAT_BRK
1257 unsigned brk_randomized:1;
1258 #endif
1259 #if defined(SPLIT_RSS_COUNTING)
1260 struct task_rss_stat rss_stat;
1261 #endif
1262 /* task state */
1263 int exit_state;
1264 int exit_code, exit_signal;
1265 int pdeath_signal; /* The signal sent when the parent dies */
1266 unsigned int jobctl; /* JOBCTL_*, siglock protected */
1267 /* ??? */
1268 unsigned int personality;
1269 unsigned did_exec:1;
1270 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1271 * execve */
1272 unsigned in_iowait:1;
1273
1274 /* task may not gain privileges */
1275 unsigned no_new_privs:1;
1276
1277 /* Revert to default priority/policy when forking */
1278 unsigned sched_reset_on_fork:1;
1279 unsigned sched_contributes_to_load:1;
1280
1281 pid_t pid;
1282 pid_t tgid;
1283
1284 #ifdef CONFIG_CC_STACKPROTECTOR
1285 /* Canary value for the -fstack-protector gcc feature */
1286 unsigned long stack_canary;
1287 #endif
1288 /*
1289 * pointers to (original) parent process, youngest child, younger sibling,
1290 * older sibling, respectively. (p->father can be replaced with
1291 * p->real_parent->pid)
1292 */
1293 struct task_struct __rcu *real_parent; /* real parent process */
1294 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1295 /*
1296 * children/sibling forms the list of my natural children
1297 */
1298 struct list_head children; /* list of my children */
1299 struct list_head sibling; /* linkage in my parent's children list */
1300 struct task_struct *group_leader; /* threadgroup leader */
1301
1302 /*
1303 * ptraced is the list of tasks this task is using ptrace on.
1304 * This includes both natural children and PTRACE_ATTACH targets.
1305 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1306 */
1307 struct list_head ptraced;
1308 struct list_head ptrace_entry;
1309
1310 /* PID/PID hash table linkage. */
1311 struct pid_link pids[PIDTYPE_MAX];
1312 struct list_head thread_group;
1313
1314 struct completion *vfork_done; /* for vfork() */
1315 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1316 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1317
1318 cputime_t utime, stime, utimescaled, stimescaled;
1319 cputime_t gtime;
1320 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1321 cputime_t prev_utime, prev_stime;
1322 #endif
1323 unsigned long nvcsw, nivcsw; /* context switch counts */
1324 struct timespec start_time; /* monotonic time */
1325 struct timespec real_start_time; /* boot based time */
1326 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1327 unsigned long min_flt, maj_flt;
1328
1329 struct task_cputime cputime_expires;
1330 struct list_head cpu_timers[3];
1331
1332 /* process credentials */
1333 const struct cred __rcu *real_cred; /* objective and real subjective task
1334 * credentials (COW) */
1335 const struct cred __rcu *cred; /* effective (overridable) subjective task
1336 * credentials (COW) */
1337 char comm[TASK_COMM_LEN]; /* executable name excluding path
1338 - access with [gs]et_task_comm (which lock
1339 it with task_lock())
1340 - initialized normally by setup_new_exec */
1341 /* file system info */
1342 int link_count, total_link_count;
1343 #ifdef CONFIG_SYSVIPC
1344 /* ipc stuff */
1345 struct sysv_sem sysvsem;
1346 #endif
1347 #ifdef CONFIG_DETECT_HUNG_TASK
1348 /* hung task detection */
1349 unsigned long last_switch_count;
1350 #endif
1351 /* CPU-specific state of this task */
1352 struct thread_struct thread;
1353 /* filesystem information */
1354 struct fs_struct *fs;
1355 /* open file information */
1356 struct files_struct *files;
1357 /* namespaces */
1358 struct nsproxy *nsproxy;
1359 /* signal handlers */
1360 struct signal_struct *signal;
1361 struct sighand_struct *sighand;
1362
1363 sigset_t blocked, real_blocked;
1364 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1365 struct sigpending pending;
1366
1367 unsigned long sas_ss_sp;
1368 size_t sas_ss_size;
1369 int (*notifier)(void *priv);
1370 void *notifier_data;
1371 sigset_t *notifier_mask;
1372 struct callback_head *task_works;
1373
1374 struct audit_context *audit_context;
1375 #ifdef CONFIG_AUDITSYSCALL
1376 kuid_t loginuid;
1377 unsigned int sessionid;
1378 #endif
1379 struct seccomp seccomp;
1380
1381 /* Thread group tracking */
1382 u32 parent_exec_id;
1383 u32 self_exec_id;
1384 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1385 * mempolicy */
1386 spinlock_t alloc_lock;
1387
1388 /* Protection of the PI data structures: */
1389 raw_spinlock_t pi_lock;
1390
1391 #ifdef CONFIG_RT_MUTEXES
1392 /* PI waiters blocked on a rt_mutex held by this task */
1393 struct plist_head pi_waiters;
1394 /* Deadlock detection and priority inheritance handling */
1395 struct rt_mutex_waiter *pi_blocked_on;
1396 #endif
1397
1398 #ifdef CONFIG_DEBUG_MUTEXES
1399 /* mutex deadlock detection */
1400 struct mutex_waiter *blocked_on;
1401 #endif
1402 #ifdef CONFIG_TRACE_IRQFLAGS
1403 unsigned int irq_events;
1404 unsigned long hardirq_enable_ip;
1405 unsigned long hardirq_disable_ip;
1406 unsigned int hardirq_enable_event;
1407 unsigned int hardirq_disable_event;
1408 int hardirqs_enabled;
1409 int hardirq_context;
1410 unsigned long softirq_disable_ip;
1411 unsigned long softirq_enable_ip;
1412 unsigned int softirq_disable_event;
1413 unsigned int softirq_enable_event;
1414 int softirqs_enabled;
1415 int softirq_context;
1416 #endif
1417 #ifdef CONFIG_LOCKDEP
1418 # define MAX_LOCK_DEPTH 48UL
1419 u64 curr_chain_key;
1420 int lockdep_depth;
1421 unsigned int lockdep_recursion;
1422 struct held_lock held_locks[MAX_LOCK_DEPTH];
1423 gfp_t lockdep_reclaim_gfp;
1424 #endif
1425
1426 /* journalling filesystem info */
1427 void *journal_info;
1428
1429 /* stacked block device info */
1430 struct bio_list *bio_list;
1431
1432 #ifdef CONFIG_BLOCK
1433 /* stack plugging */
1434 struct blk_plug *plug;
1435 #endif
1436
1437 /* VM state */
1438 struct reclaim_state *reclaim_state;
1439
1440 struct backing_dev_info *backing_dev_info;
1441
1442 struct io_context *io_context;
1443
1444 unsigned long ptrace_message;
1445 siginfo_t *last_siginfo; /* For ptrace use. */
1446 struct task_io_accounting ioac;
1447 #if defined(CONFIG_TASK_XACCT)
1448 u64 acct_rss_mem1; /* accumulated rss usage */
1449 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1450 cputime_t acct_timexpd; /* stime + utime since last update */
1451 #endif
1452 #ifdef CONFIG_CPUSETS
1453 nodemask_t mems_allowed; /* Protected by alloc_lock */
1454 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
1455 int cpuset_mem_spread_rotor;
1456 int cpuset_slab_spread_rotor;
1457 #endif
1458 #ifdef CONFIG_CGROUPS
1459 /* Control Group info protected by css_set_lock */
1460 struct css_set __rcu *cgroups;
1461 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1462 struct list_head cg_list;
1463 #endif
1464 #ifdef CONFIG_FUTEX
1465 struct robust_list_head __user *robust_list;
1466 #ifdef CONFIG_COMPAT
1467 struct compat_robust_list_head __user *compat_robust_list;
1468 #endif
1469 struct list_head pi_state_list;
1470 struct futex_pi_state *pi_state_cache;
1471 #endif
1472 #ifdef CONFIG_PERF_EVENTS
1473 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1474 struct mutex perf_event_mutex;
1475 struct list_head perf_event_list;
1476 #endif
1477 #ifdef CONFIG_NUMA
1478 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1479 short il_next;
1480 short pref_node_fork;
1481 #endif
1482 struct rcu_head rcu;
1483
1484 /*
1485 * cache last used pipe for splice
1486 */
1487 struct pipe_inode_info *splice_pipe;
1488
1489 struct page_frag task_frag;
1490
1491 #ifdef CONFIG_TASK_DELAY_ACCT
1492 struct task_delay_info *delays;
1493 #endif
1494 #ifdef CONFIG_FAULT_INJECTION
1495 int make_it_fail;
1496 #endif
1497 /*
1498 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1499 * balance_dirty_pages() for some dirty throttling pause
1500 */
1501 int nr_dirtied;
1502 int nr_dirtied_pause;
1503 unsigned long dirty_paused_when; /* start of a write-and-pause period */
1504
1505 #ifdef CONFIG_LATENCYTOP
1506 int latency_record_count;
1507 struct latency_record latency_record[LT_SAVECOUNT];
1508 #endif
1509 /*
1510 * time slack values; these are used to round up poll() and
1511 * select() etc timeout values. These are in nanoseconds.
1512 */
1513 unsigned long timer_slack_ns;
1514 unsigned long default_timer_slack_ns;
1515
1516 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1517 /* Index of current stored address in ret_stack */
1518 int curr_ret_stack;
1519 /* Stack of return addresses for return function tracing */
1520 struct ftrace_ret_stack *ret_stack;
1521 /* time stamp for last schedule */
1522 unsigned long long ftrace_timestamp;
1523 /*
1524 * Number of functions that haven't been traced
1525 * because of depth overrun.
1526 */
1527 atomic_t trace_overrun;
1528 /* Pause for the tracing */
1529 atomic_t tracing_graph_pause;
1530 #endif
1531 #ifdef CONFIG_TRACING
1532 /* state flags for use by tracers */
1533 unsigned long trace;
1534 /* bitmask and counter of trace recursion */
1535 unsigned long trace_recursion;
1536 #endif /* CONFIG_TRACING */
1537 #ifdef CONFIG_MEMCG /* memcg uses this to do batch job */
1538 struct memcg_batch_info {
1539 int do_batch; /* incremented when batch uncharge started */
1540 struct mem_cgroup *memcg; /* target memcg of uncharge */
1541 unsigned long nr_pages; /* uncharged usage */
1542 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1543 } memcg_batch;
1544 #endif
1545 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1546 atomic_t ptrace_bp_refcnt;
1547 #endif
1548 #ifdef CONFIG_UPROBES
1549 struct uprobe_task *utask;
1550 #endif
1551 };
1552
1553 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1554 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1555
1556 /*
1557 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1558 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1559 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1560 * values are inverted: lower p->prio value means higher priority.
1561 *
1562 * The MAX_USER_RT_PRIO value allows the actual maximum
1563 * RT priority to be separate from the value exported to
1564 * user-space. This allows kernel threads to set their
1565 * priority to a value higher than any user task. Note:
1566 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1567 */
1568
1569 #define MAX_USER_RT_PRIO 100
1570 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1571
1572 #define MAX_PRIO (MAX_RT_PRIO + 40)
1573 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1574
1575 static inline int rt_prio(int prio)
1576 {
1577 if (unlikely(prio < MAX_RT_PRIO))
1578 return 1;
1579 return 0;
1580 }
1581
1582 static inline int rt_task(struct task_struct *p)
1583 {
1584 return rt_prio(p->prio);
1585 }
1586
1587 static inline struct pid *task_pid(struct task_struct *task)
1588 {
1589 return task->pids[PIDTYPE_PID].pid;
1590 }
1591
1592 static inline struct pid *task_tgid(struct task_struct *task)
1593 {
1594 return task->group_leader->pids[PIDTYPE_PID].pid;
1595 }
1596
1597 /*
1598 * Without tasklist or rcu lock it is not safe to dereference
1599 * the result of task_pgrp/task_session even if task == current,
1600 * we can race with another thread doing sys_setsid/sys_setpgid.
1601 */
1602 static inline struct pid *task_pgrp(struct task_struct *task)
1603 {
1604 return task->group_leader->pids[PIDTYPE_PGID].pid;
1605 }
1606
1607 static inline struct pid *task_session(struct task_struct *task)
1608 {
1609 return task->group_leader->pids[PIDTYPE_SID].pid;
1610 }
1611
1612 struct pid_namespace;
1613
1614 /*
1615 * the helpers to get the task's different pids as they are seen
1616 * from various namespaces
1617 *
1618 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1619 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1620 * current.
1621 * task_xid_nr_ns() : id seen from the ns specified;
1622 *
1623 * set_task_vxid() : assigns a virtual id to a task;
1624 *
1625 * see also pid_nr() etc in include/linux/pid.h
1626 */
1627 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1628 struct pid_namespace *ns);
1629
1630 static inline pid_t task_pid_nr(struct task_struct *tsk)
1631 {
1632 return tsk->pid;
1633 }
1634
1635 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1636 struct pid_namespace *ns)
1637 {
1638 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1639 }
1640
1641 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1642 {
1643 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1644 }
1645
1646
1647 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1648 {
1649 return tsk->tgid;
1650 }
1651
1652 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1653
1654 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1655 {
1656 return pid_vnr(task_tgid(tsk));
1657 }
1658
1659
1660 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1661 struct pid_namespace *ns)
1662 {
1663 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1664 }
1665
1666 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1667 {
1668 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1669 }
1670
1671
1672 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1673 struct pid_namespace *ns)
1674 {
1675 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1676 }
1677
1678 static inline pid_t task_session_vnr(struct task_struct *tsk)
1679 {
1680 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1681 }
1682
1683 /* obsolete, do not use */
1684 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1685 {
1686 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1687 }
1688
1689 /**
1690 * pid_alive - check that a task structure is not stale
1691 * @p: Task structure to be checked.
1692 *
1693 * Test if a process is not yet dead (at most zombie state)
1694 * If pid_alive fails, then pointers within the task structure
1695 * can be stale and must not be dereferenced.
1696 */
1697 static inline int pid_alive(struct task_struct *p)
1698 {
1699 return p->pids[PIDTYPE_PID].pid != NULL;
1700 }
1701
1702 /**
1703 * is_global_init - check if a task structure is init
1704 * @tsk: Task structure to be checked.
1705 *
1706 * Check if a task structure is the first user space task the kernel created.
1707 */
1708 static inline int is_global_init(struct task_struct *tsk)
1709 {
1710 return tsk->pid == 1;
1711 }
1712
1713 /*
1714 * is_container_init:
1715 * check whether in the task is init in its own pid namespace.
1716 */
1717 extern int is_container_init(struct task_struct *tsk);
1718
1719 extern struct pid *cad_pid;
1720
1721 extern void free_task(struct task_struct *tsk);
1722 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1723
1724 extern void __put_task_struct(struct task_struct *t);
1725
1726 static inline void put_task_struct(struct task_struct *t)
1727 {
1728 if (atomic_dec_and_test(&t->usage))
1729 __put_task_struct(t);
1730 }
1731
1732 extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1733 extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1734
1735 /*
1736 * Per process flags
1737 */
1738 #define PF_EXITING 0x00000004 /* getting shut down */
1739 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1740 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1741 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1742 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1743 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1744 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1745 #define PF_DUMPCORE 0x00000200 /* dumped core */
1746 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1747 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1748 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1749 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1750 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1751 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1752 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1753 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1754 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1755 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1756 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1757 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1758 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1759 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1760 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1761 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1762 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1763 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1764 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1765
1766 /*
1767 * Only the _current_ task can read/write to tsk->flags, but other
1768 * tasks can access tsk->flags in readonly mode for example
1769 * with tsk_used_math (like during threaded core dumping).
1770 * There is however an exception to this rule during ptrace
1771 * or during fork: the ptracer task is allowed to write to the
1772 * child->flags of its traced child (same goes for fork, the parent
1773 * can write to the child->flags), because we're guaranteed the
1774 * child is not running and in turn not changing child->flags
1775 * at the same time the parent does it.
1776 */
1777 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1778 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1779 #define clear_used_math() clear_stopped_child_used_math(current)
1780 #define set_used_math() set_stopped_child_used_math(current)
1781 #define conditional_stopped_child_used_math(condition, child) \
1782 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1783 #define conditional_used_math(condition) \
1784 conditional_stopped_child_used_math(condition, current)
1785 #define copy_to_stopped_child_used_math(child) \
1786 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1787 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1788 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1789 #define used_math() tsk_used_math(current)
1790
1791 /*
1792 * task->jobctl flags
1793 */
1794 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
1795
1796 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
1797 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
1798 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
1799 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
1800 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
1801 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
1802 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
1803
1804 #define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT)
1805 #define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT)
1806 #define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT)
1807 #define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT)
1808 #define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT)
1809 #define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT)
1810 #define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT)
1811
1812 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1813 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1814
1815 extern bool task_set_jobctl_pending(struct task_struct *task,
1816 unsigned int mask);
1817 extern void task_clear_jobctl_trapping(struct task_struct *task);
1818 extern void task_clear_jobctl_pending(struct task_struct *task,
1819 unsigned int mask);
1820
1821 #ifdef CONFIG_PREEMPT_RCU
1822
1823 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1824 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1825
1826 static inline void rcu_copy_process(struct task_struct *p)
1827 {
1828 p->rcu_read_lock_nesting = 0;
1829 p->rcu_read_unlock_special = 0;
1830 #ifdef CONFIG_TREE_PREEMPT_RCU
1831 p->rcu_blocked_node = NULL;
1832 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1833 #ifdef CONFIG_RCU_BOOST
1834 p->rcu_boost_mutex = NULL;
1835 #endif /* #ifdef CONFIG_RCU_BOOST */
1836 INIT_LIST_HEAD(&p->rcu_node_entry);
1837 }
1838
1839 #else
1840
1841 static inline void rcu_copy_process(struct task_struct *p)
1842 {
1843 }
1844
1845 #endif
1846
1847 static inline void rcu_switch(struct task_struct *prev,
1848 struct task_struct *next)
1849 {
1850 #ifdef CONFIG_RCU_USER_QS
1851 rcu_user_hooks_switch(prev, next);
1852 #endif
1853 }
1854
1855 static inline void tsk_restore_flags(struct task_struct *task,
1856 unsigned long orig_flags, unsigned long flags)
1857 {
1858 task->flags &= ~flags;
1859 task->flags |= orig_flags & flags;
1860 }
1861
1862 #ifdef CONFIG_SMP
1863 extern void do_set_cpus_allowed(struct task_struct *p,
1864 const struct cpumask *new_mask);
1865
1866 extern int set_cpus_allowed_ptr(struct task_struct *p,
1867 const struct cpumask *new_mask);
1868 #else
1869 static inline void do_set_cpus_allowed(struct task_struct *p,
1870 const struct cpumask *new_mask)
1871 {
1872 }
1873 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1874 const struct cpumask *new_mask)
1875 {
1876 if (!cpumask_test_cpu(0, new_mask))
1877 return -EINVAL;
1878 return 0;
1879 }
1880 #endif
1881
1882 #ifdef CONFIG_NO_HZ
1883 void calc_load_enter_idle(void);
1884 void calc_load_exit_idle(void);
1885 #else
1886 static inline void calc_load_enter_idle(void) { }
1887 static inline void calc_load_exit_idle(void) { }
1888 #endif /* CONFIG_NO_HZ */
1889
1890 #ifndef CONFIG_CPUMASK_OFFSTACK
1891 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1892 {
1893 return set_cpus_allowed_ptr(p, &new_mask);
1894 }
1895 #endif
1896
1897 /*
1898 * Do not use outside of architecture code which knows its limitations.
1899 *
1900 * sched_clock() has no promise of monotonicity or bounded drift between
1901 * CPUs, use (which you should not) requires disabling IRQs.
1902 *
1903 * Please use one of the three interfaces below.
1904 */
1905 extern unsigned long long notrace sched_clock(void);
1906 /*
1907 * See the comment in kernel/sched/clock.c
1908 */
1909 extern u64 cpu_clock(int cpu);
1910 extern u64 local_clock(void);
1911 extern u64 sched_clock_cpu(int cpu);
1912
1913
1914 extern void sched_clock_init(void);
1915
1916 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1917 static inline void sched_clock_tick(void)
1918 {
1919 }
1920
1921 static inline void sched_clock_idle_sleep_event(void)
1922 {
1923 }
1924
1925 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1926 {
1927 }
1928 #else
1929 /*
1930 * Architectures can set this to 1 if they have specified
1931 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1932 * but then during bootup it turns out that sched_clock()
1933 * is reliable after all:
1934 */
1935 extern int sched_clock_stable;
1936
1937 extern void sched_clock_tick(void);
1938 extern void sched_clock_idle_sleep_event(void);
1939 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1940 #endif
1941
1942 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1943 /*
1944 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1945 * The reason for this explicit opt-in is not to have perf penalty with
1946 * slow sched_clocks.
1947 */
1948 extern void enable_sched_clock_irqtime(void);
1949 extern void disable_sched_clock_irqtime(void);
1950 #else
1951 static inline void enable_sched_clock_irqtime(void) {}
1952 static inline void disable_sched_clock_irqtime(void) {}
1953 #endif
1954
1955 extern unsigned long long
1956 task_sched_runtime(struct task_struct *task);
1957
1958 /* sched_exec is called by processes performing an exec */
1959 #ifdef CONFIG_SMP
1960 extern void sched_exec(void);
1961 #else
1962 #define sched_exec() {}
1963 #endif
1964
1965 extern void sched_clock_idle_sleep_event(void);
1966 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1967
1968 #ifdef CONFIG_HOTPLUG_CPU
1969 extern void idle_task_exit(void);
1970 #else
1971 static inline void idle_task_exit(void) {}
1972 #endif
1973
1974 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1975 extern void wake_up_idle_cpu(int cpu);
1976 #else
1977 static inline void wake_up_idle_cpu(int cpu) { }
1978 #endif
1979
1980 extern unsigned int sysctl_sched_latency;
1981 extern unsigned int sysctl_sched_min_granularity;
1982 extern unsigned int sysctl_sched_wakeup_granularity;
1983 extern unsigned int sysctl_sched_child_runs_first;
1984
1985 enum sched_tunable_scaling {
1986 SCHED_TUNABLESCALING_NONE,
1987 SCHED_TUNABLESCALING_LOG,
1988 SCHED_TUNABLESCALING_LINEAR,
1989 SCHED_TUNABLESCALING_END,
1990 };
1991 extern enum sched_tunable_scaling sysctl_sched_tunable_scaling;
1992
1993 #ifdef CONFIG_SCHED_DEBUG
1994 extern unsigned int sysctl_sched_migration_cost;
1995 extern unsigned int sysctl_sched_nr_migrate;
1996 extern unsigned int sysctl_sched_time_avg;
1997 extern unsigned int sysctl_timer_migration;
1998 extern unsigned int sysctl_sched_shares_window;
1999
2000 int sched_proc_update_handler(struct ctl_table *table, int write,
2001 void __user *buffer, size_t *length,
2002 loff_t *ppos);
2003 #endif
2004 #ifdef CONFIG_SCHED_DEBUG
2005 static inline unsigned int get_sysctl_timer_migration(void)
2006 {
2007 return sysctl_timer_migration;
2008 }
2009 #else
2010 static inline unsigned int get_sysctl_timer_migration(void)
2011 {
2012 return 1;
2013 }
2014 #endif
2015 extern unsigned int sysctl_sched_rt_period;
2016 extern int sysctl_sched_rt_runtime;
2017
2018 int sched_rt_handler(struct ctl_table *table, int write,
2019 void __user *buffer, size_t *lenp,
2020 loff_t *ppos);
2021
2022 #ifdef CONFIG_SCHED_AUTOGROUP
2023 extern unsigned int sysctl_sched_autogroup_enabled;
2024
2025 extern void sched_autogroup_create_attach(struct task_struct *p);
2026 extern void sched_autogroup_detach(struct task_struct *p);
2027 extern void sched_autogroup_fork(struct signal_struct *sig);
2028 extern void sched_autogroup_exit(struct signal_struct *sig);
2029 #ifdef CONFIG_PROC_FS
2030 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2031 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2032 #endif
2033 #else
2034 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2035 static inline void sched_autogroup_detach(struct task_struct *p) { }
2036 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2037 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2038 #endif
2039
2040 #ifdef CONFIG_CFS_BANDWIDTH
2041 extern unsigned int sysctl_sched_cfs_bandwidth_slice;
2042 #endif
2043
2044 #ifdef CONFIG_RT_MUTEXES
2045 extern int rt_mutex_getprio(struct task_struct *p);
2046 extern void rt_mutex_setprio(struct task_struct *p, int prio);
2047 extern void rt_mutex_adjust_pi(struct task_struct *p);
2048 static inline bool tsk_is_pi_blocked(struct task_struct *tsk)
2049 {
2050 return tsk->pi_blocked_on != NULL;
2051 }
2052 #else
2053 static inline int rt_mutex_getprio(struct task_struct *p)
2054 {
2055 return p->normal_prio;
2056 }
2057 # define rt_mutex_adjust_pi(p) do { } while (0)
2058 static inline bool tsk_is_pi_blocked(struct task_struct *tsk)
2059 {
2060 return false;
2061 }
2062 #endif
2063
2064 extern bool yield_to(struct task_struct *p, bool preempt);
2065 extern void set_user_nice(struct task_struct *p, long nice);
2066 extern int task_prio(const struct task_struct *p);
2067 extern int task_nice(const struct task_struct *p);
2068 extern int can_nice(const struct task_struct *p, const int nice);
2069 extern int task_curr(const struct task_struct *p);
2070 extern int idle_cpu(int cpu);
2071 extern int sched_setscheduler(struct task_struct *, int,
2072 const struct sched_param *);
2073 extern int sched_setscheduler_nocheck(struct task_struct *, int,
2074 const struct sched_param *);
2075 extern struct task_struct *idle_task(int cpu);
2076 /**
2077 * is_idle_task - is the specified task an idle task?
2078 * @p: the task in question.
2079 */
2080 static inline bool is_idle_task(const struct task_struct *p)
2081 {
2082 return p->pid == 0;
2083 }
2084 extern struct task_struct *curr_task(int cpu);
2085 extern void set_curr_task(int cpu, struct task_struct *p);
2086
2087 void yield(void);
2088
2089 /*
2090 * The default (Linux) execution domain.
2091 */
2092 extern struct exec_domain default_exec_domain;
2093
2094 union thread_union {
2095 struct thread_info thread_info;
2096 unsigned long stack[THREAD_SIZE/sizeof(long)];
2097 };
2098
2099 #ifndef __HAVE_ARCH_KSTACK_END
2100 static inline int kstack_end(void *addr)
2101 {
2102 /* Reliable end of stack detection:
2103 * Some APM bios versions misalign the stack
2104 */
2105 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2106 }
2107 #endif
2108
2109 extern union thread_union init_thread_union;
2110 extern struct task_struct init_task;
2111
2112 extern struct mm_struct init_mm;
2113
2114 extern struct pid_namespace init_pid_ns;
2115
2116 /*
2117 * find a task by one of its numerical ids
2118 *
2119 * find_task_by_pid_ns():
2120 * finds a task by its pid in the specified namespace
2121 * find_task_by_vpid():
2122 * finds a task by its virtual pid
2123 *
2124 * see also find_vpid() etc in include/linux/pid.h
2125 */
2126
2127 extern struct task_struct *find_task_by_vpid(pid_t nr);
2128 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2129 struct pid_namespace *ns);
2130
2131 extern void __set_special_pids(struct pid *pid);
2132
2133 /* per-UID process charging. */
2134 extern struct user_struct * alloc_uid(kuid_t);
2135 static inline struct user_struct *get_uid(struct user_struct *u)
2136 {
2137 atomic_inc(&u->__count);
2138 return u;
2139 }
2140 extern void free_uid(struct user_struct *);
2141
2142 #include <asm/current.h>
2143
2144 extern void xtime_update(unsigned long ticks);
2145
2146 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2147 extern int wake_up_process(struct task_struct *tsk);
2148 extern void wake_up_new_task(struct task_struct *tsk);
2149 #ifdef CONFIG_SMP
2150 extern void kick_process(struct task_struct *tsk);
2151 #else
2152 static inline void kick_process(struct task_struct *tsk) { }
2153 #endif
2154 extern void sched_fork(struct task_struct *p);
2155 extern void sched_dead(struct task_struct *p);
2156
2157 extern void proc_caches_init(void);
2158 extern void flush_signals(struct task_struct *);
2159 extern void __flush_signals(struct task_struct *);
2160 extern void ignore_signals(struct task_struct *);
2161 extern void flush_signal_handlers(struct task_struct *, int force_default);
2162 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2163
2164 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2165 {
2166 unsigned long flags;
2167 int ret;
2168
2169 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2170 ret = dequeue_signal(tsk, mask, info);
2171 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2172
2173 return ret;
2174 }
2175
2176 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2177 sigset_t *mask);
2178 extern void unblock_all_signals(void);
2179 extern void release_task(struct task_struct * p);
2180 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2181 extern int force_sigsegv(int, struct task_struct *);
2182 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2183 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2184 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2185 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2186 const struct cred *, u32);
2187 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2188 extern int kill_pid(struct pid *pid, int sig, int priv);
2189 extern int kill_proc_info(int, struct siginfo *, pid_t);
2190 extern __must_check bool do_notify_parent(struct task_struct *, int);
2191 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2192 extern void force_sig(int, struct task_struct *);
2193 extern int send_sig(int, struct task_struct *, int);
2194 extern int zap_other_threads(struct task_struct *p);
2195 extern struct sigqueue *sigqueue_alloc(void);
2196 extern void sigqueue_free(struct sigqueue *);
2197 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2198 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2199 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2200
2201 static inline void restore_saved_sigmask(void)
2202 {
2203 if (test_and_clear_restore_sigmask())
2204 __set_current_blocked(&current->saved_sigmask);
2205 }
2206
2207 static inline sigset_t *sigmask_to_save(void)
2208 {
2209 sigset_t *res = &current->blocked;
2210 if (unlikely(test_restore_sigmask()))
2211 res = &current->saved_sigmask;
2212 return res;
2213 }
2214
2215 static inline int kill_cad_pid(int sig, int priv)
2216 {
2217 return kill_pid(cad_pid, sig, priv);
2218 }
2219
2220 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2221 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2222 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2223 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2224
2225 /*
2226 * True if we are on the alternate signal stack.
2227 */
2228 static inline int on_sig_stack(unsigned long sp)
2229 {
2230 #ifdef CONFIG_STACK_GROWSUP
2231 return sp >= current->sas_ss_sp &&
2232 sp - current->sas_ss_sp < current->sas_ss_size;
2233 #else
2234 return sp > current->sas_ss_sp &&
2235 sp - current->sas_ss_sp <= current->sas_ss_size;
2236 #endif
2237 }
2238
2239 static inline int sas_ss_flags(unsigned long sp)
2240 {
2241 return (current->sas_ss_size == 0 ? SS_DISABLE
2242 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2243 }
2244
2245 /*
2246 * Routines for handling mm_structs
2247 */
2248 extern struct mm_struct * mm_alloc(void);
2249
2250 /* mmdrop drops the mm and the page tables */
2251 extern void __mmdrop(struct mm_struct *);
2252 static inline void mmdrop(struct mm_struct * mm)
2253 {
2254 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2255 __mmdrop(mm);
2256 }
2257
2258 /* mmput gets rid of the mappings and all user-space */
2259 extern void mmput(struct mm_struct *);
2260 /* Grab a reference to a task's mm, if it is not already going away */
2261 extern struct mm_struct *get_task_mm(struct task_struct *task);
2262 /*
2263 * Grab a reference to a task's mm, if it is not already going away
2264 * and ptrace_may_access with the mode parameter passed to it
2265 * succeeds.
2266 */
2267 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2268 /* Remove the current tasks stale references to the old mm_struct */
2269 extern void mm_release(struct task_struct *, struct mm_struct *);
2270 /* Allocate a new mm structure and copy contents from tsk->mm */
2271 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2272
2273 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2274 struct task_struct *);
2275 extern void flush_thread(void);
2276 extern void exit_thread(void);
2277
2278 extern void exit_files(struct task_struct *);
2279 extern void __cleanup_sighand(struct sighand_struct *);
2280
2281 extern void exit_itimers(struct signal_struct *);
2282 extern void flush_itimer_signals(void);
2283
2284 extern void do_group_exit(int);
2285
2286 extern int allow_signal(int);
2287 extern int disallow_signal(int);
2288
2289 extern int do_execve(const char *,
2290 const char __user * const __user *,
2291 const char __user * const __user *);
2292 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2293 struct task_struct *fork_idle(int);
2294 #ifdef CONFIG_GENERIC_KERNEL_THREAD
2295 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2296 #endif
2297
2298 extern void set_task_comm(struct task_struct *tsk, char *from);
2299 extern char *get_task_comm(char *to, struct task_struct *tsk);
2300
2301 #ifdef CONFIG_SMP
2302 void scheduler_ipi(void);
2303 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2304 #else
2305 static inline void scheduler_ipi(void) { }
2306 static inline unsigned long wait_task_inactive(struct task_struct *p,
2307 long match_state)
2308 {
2309 return 1;
2310 }
2311 #endif
2312
2313 #define next_task(p) \
2314 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2315
2316 #define for_each_process(p) \
2317 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2318
2319 extern bool current_is_single_threaded(void);
2320
2321 /*
2322 * Careful: do_each_thread/while_each_thread is a double loop so
2323 * 'break' will not work as expected - use goto instead.
2324 */
2325 #define do_each_thread(g, t) \
2326 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2327
2328 #define while_each_thread(g, t) \
2329 while ((t = next_thread(t)) != g)
2330
2331 static inline int get_nr_threads(struct task_struct *tsk)
2332 {
2333 return tsk->signal->nr_threads;
2334 }
2335
2336 static inline bool thread_group_leader(struct task_struct *p)
2337 {
2338 return p->exit_signal >= 0;
2339 }
2340
2341 /* Do to the insanities of de_thread it is possible for a process
2342 * to have the pid of the thread group leader without actually being
2343 * the thread group leader. For iteration through the pids in proc
2344 * all we care about is that we have a task with the appropriate
2345 * pid, we don't actually care if we have the right task.
2346 */
2347 static inline int has_group_leader_pid(struct task_struct *p)
2348 {
2349 return p->pid == p->tgid;
2350 }
2351
2352 static inline
2353 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2354 {
2355 return p1->tgid == p2->tgid;
2356 }
2357
2358 static inline struct task_struct *next_thread(const struct task_struct *p)
2359 {
2360 return list_entry_rcu(p->thread_group.next,
2361 struct task_struct, thread_group);
2362 }
2363
2364 static inline int thread_group_empty(struct task_struct *p)
2365 {
2366 return list_empty(&p->thread_group);
2367 }
2368
2369 #define delay_group_leader(p) \
2370 (thread_group_leader(p) && !thread_group_empty(p))
2371
2372 /*
2373 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2374 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2375 * pins the final release of task.io_context. Also protects ->cpuset and
2376 * ->cgroup.subsys[]. And ->vfork_done.
2377 *
2378 * Nests both inside and outside of read_lock(&tasklist_lock).
2379 * It must not be nested with write_lock_irq(&tasklist_lock),
2380 * neither inside nor outside.
2381 */
2382 static inline void task_lock(struct task_struct *p)
2383 {
2384 spin_lock(&p->alloc_lock);
2385 }
2386
2387 static inline void task_unlock(struct task_struct *p)
2388 {
2389 spin_unlock(&p->alloc_lock);
2390 }
2391
2392 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2393 unsigned long *flags);
2394
2395 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2396 unsigned long *flags)
2397 {
2398 struct sighand_struct *ret;
2399
2400 ret = __lock_task_sighand(tsk, flags);
2401 (void)__cond_lock(&tsk->sighand->siglock, ret);
2402 return ret;
2403 }
2404
2405 static inline void unlock_task_sighand(struct task_struct *tsk,
2406 unsigned long *flags)
2407 {
2408 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2409 }
2410
2411 #ifdef CONFIG_CGROUPS
2412 static inline void threadgroup_change_begin(struct task_struct *tsk)
2413 {
2414 down_read(&tsk->signal->group_rwsem);
2415 }
2416 static inline void threadgroup_change_end(struct task_struct *tsk)
2417 {
2418 up_read(&tsk->signal->group_rwsem);
2419 }
2420
2421 /**
2422 * threadgroup_lock - lock threadgroup
2423 * @tsk: member task of the threadgroup to lock
2424 *
2425 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter
2426 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2427 * perform exec. This is useful for cases where the threadgroup needs to
2428 * stay stable across blockable operations.
2429 *
2430 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2431 * synchronization. While held, no new task will be added to threadgroup
2432 * and no existing live task will have its PF_EXITING set.
2433 *
2434 * During exec, a task goes and puts its thread group through unusual
2435 * changes. After de-threading, exclusive access is assumed to resources
2436 * which are usually shared by tasks in the same group - e.g. sighand may
2437 * be replaced with a new one. Also, the exec'ing task takes over group
2438 * leader role including its pid. Exclude these changes while locked by
2439 * grabbing cred_guard_mutex which is used to synchronize exec path.
2440 */
2441 static inline void threadgroup_lock(struct task_struct *tsk)
2442 {
2443 /*
2444 * exec uses exit for de-threading nesting group_rwsem inside
2445 * cred_guard_mutex. Grab cred_guard_mutex first.
2446 */
2447 mutex_lock(&tsk->signal->cred_guard_mutex);
2448 down_write(&tsk->signal->group_rwsem);
2449 }
2450
2451 /**
2452 * threadgroup_unlock - unlock threadgroup
2453 * @tsk: member task of the threadgroup to unlock
2454 *
2455 * Reverse threadgroup_lock().
2456 */
2457 static inline void threadgroup_unlock(struct task_struct *tsk)
2458 {
2459 up_write(&tsk->signal->group_rwsem);
2460 mutex_unlock(&tsk->signal->cred_guard_mutex);
2461 }
2462 #else
2463 static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2464 static inline void threadgroup_change_end(struct task_struct *tsk) {}
2465 static inline void threadgroup_lock(struct task_struct *tsk) {}
2466 static inline void threadgroup_unlock(struct task_struct *tsk) {}
2467 #endif
2468
2469 #ifndef __HAVE_THREAD_FUNCTIONS
2470
2471 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2472 #define task_stack_page(task) ((task)->stack)
2473
2474 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2475 {
2476 *task_thread_info(p) = *task_thread_info(org);
2477 task_thread_info(p)->task = p;
2478 }
2479
2480 static inline unsigned long *end_of_stack(struct task_struct *p)
2481 {
2482 return (unsigned long *)(task_thread_info(p) + 1);
2483 }
2484
2485 #endif
2486
2487 static inline int object_is_on_stack(void *obj)
2488 {
2489 void *stack = task_stack_page(current);
2490
2491 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2492 }
2493
2494 extern void thread_info_cache_init(void);
2495
2496 #ifdef CONFIG_DEBUG_STACK_USAGE
2497 static inline unsigned long stack_not_used(struct task_struct *p)
2498 {
2499 unsigned long *n = end_of_stack(p);
2500
2501 do { /* Skip over canary */
2502 n++;
2503 } while (!*n);
2504
2505 return (unsigned long)n - (unsigned long)end_of_stack(p);
2506 }
2507 #endif
2508
2509 /* set thread flags in other task's structures
2510 * - see asm/thread_info.h for TIF_xxxx flags available
2511 */
2512 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2513 {
2514 set_ti_thread_flag(task_thread_info(tsk), flag);
2515 }
2516
2517 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2518 {
2519 clear_ti_thread_flag(task_thread_info(tsk), flag);
2520 }
2521
2522 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2523 {
2524 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2525 }
2526
2527 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2528 {
2529 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2530 }
2531
2532 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2533 {
2534 return test_ti_thread_flag(task_thread_info(tsk), flag);
2535 }
2536
2537 static inline void set_tsk_need_resched(struct task_struct *tsk)
2538 {
2539 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2540 }
2541
2542 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2543 {
2544 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2545 }
2546
2547 static inline int test_tsk_need_resched(struct task_struct *tsk)
2548 {
2549 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2550 }
2551
2552 static inline int restart_syscall(void)
2553 {
2554 set_tsk_thread_flag(current, TIF_SIGPENDING);
2555 return -ERESTARTNOINTR;
2556 }
2557
2558 static inline int signal_pending(struct task_struct *p)
2559 {
2560 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2561 }
2562
2563 static inline int __fatal_signal_pending(struct task_struct *p)
2564 {
2565 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2566 }
2567
2568 static inline int fatal_signal_pending(struct task_struct *p)
2569 {
2570 return signal_pending(p) && __fatal_signal_pending(p);
2571 }
2572
2573 static inline int signal_pending_state(long state, struct task_struct *p)
2574 {
2575 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2576 return 0;
2577 if (!signal_pending(p))
2578 return 0;
2579
2580 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2581 }
2582
2583 static inline int need_resched(void)
2584 {
2585 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2586 }
2587
2588 /*
2589 * cond_resched() and cond_resched_lock(): latency reduction via
2590 * explicit rescheduling in places that are safe. The return
2591 * value indicates whether a reschedule was done in fact.
2592 * cond_resched_lock() will drop the spinlock before scheduling,
2593 * cond_resched_softirq() will enable bhs before scheduling.
2594 */
2595 extern int _cond_resched(void);
2596
2597 #define cond_resched() ({ \
2598 __might_sleep(__FILE__, __LINE__, 0); \
2599 _cond_resched(); \
2600 })
2601
2602 extern int __cond_resched_lock(spinlock_t *lock);
2603
2604 #ifdef CONFIG_PREEMPT_COUNT
2605 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2606 #else
2607 #define PREEMPT_LOCK_OFFSET 0
2608 #endif
2609
2610 #define cond_resched_lock(lock) ({ \
2611 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2612 __cond_resched_lock(lock); \
2613 })
2614
2615 extern int __cond_resched_softirq(void);
2616
2617 #define cond_resched_softirq() ({ \
2618 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2619 __cond_resched_softirq(); \
2620 })
2621
2622 /*
2623 * Does a critical section need to be broken due to another
2624 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2625 * but a general need for low latency)
2626 */
2627 static inline int spin_needbreak(spinlock_t *lock)
2628 {
2629 #ifdef CONFIG_PREEMPT
2630 return spin_is_contended(lock);
2631 #else
2632 return 0;
2633 #endif
2634 }
2635
2636 /*
2637 * Thread group CPU time accounting.
2638 */
2639 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2640 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2641
2642 static inline void thread_group_cputime_init(struct signal_struct *sig)
2643 {
2644 raw_spin_lock_init(&sig->cputimer.lock);
2645 }
2646
2647 /*
2648 * Reevaluate whether the task has signals pending delivery.
2649 * Wake the task if so.
2650 * This is required every time the blocked sigset_t changes.
2651 * callers must hold sighand->siglock.
2652 */
2653 extern void recalc_sigpending_and_wake(struct task_struct *t);
2654 extern void recalc_sigpending(void);
2655
2656 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2657
2658 /*
2659 * Wrappers for p->thread_info->cpu access. No-op on UP.
2660 */
2661 #ifdef CONFIG_SMP
2662
2663 static inline unsigned int task_cpu(const struct task_struct *p)
2664 {
2665 return task_thread_info(p)->cpu;
2666 }
2667
2668 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2669
2670 #else
2671
2672 static inline unsigned int task_cpu(const struct task_struct *p)
2673 {
2674 return 0;
2675 }
2676
2677 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2678 {
2679 }
2680
2681 #endif /* CONFIG_SMP */
2682
2683 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2684 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2685
2686 extern void normalize_rt_tasks(void);
2687
2688 #ifdef CONFIG_CGROUP_SCHED
2689
2690 extern struct task_group root_task_group;
2691
2692 extern struct task_group *sched_create_group(struct task_group *parent);
2693 extern void sched_destroy_group(struct task_group *tg);
2694 extern void sched_move_task(struct task_struct *tsk);
2695 #ifdef CONFIG_FAIR_GROUP_SCHED
2696 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2697 extern unsigned long sched_group_shares(struct task_group *tg);
2698 #endif
2699 #ifdef CONFIG_RT_GROUP_SCHED
2700 extern int sched_group_set_rt_runtime(struct task_group *tg,
2701 long rt_runtime_us);
2702 extern long sched_group_rt_runtime(struct task_group *tg);
2703 extern int sched_group_set_rt_period(struct task_group *tg,
2704 long rt_period_us);
2705 extern long sched_group_rt_period(struct task_group *tg);
2706 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2707 #endif
2708 #endif /* CONFIG_CGROUP_SCHED */
2709
2710 extern int task_can_switch_user(struct user_struct *up,
2711 struct task_struct *tsk);
2712
2713 #ifdef CONFIG_TASK_XACCT
2714 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2715 {
2716 tsk->ioac.rchar += amt;
2717 }
2718
2719 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2720 {
2721 tsk->ioac.wchar += amt;
2722 }
2723
2724 static inline void inc_syscr(struct task_struct *tsk)
2725 {
2726 tsk->ioac.syscr++;
2727 }
2728
2729 static inline void inc_syscw(struct task_struct *tsk)
2730 {
2731 tsk->ioac.syscw++;
2732 }
2733 #else
2734 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2735 {
2736 }
2737
2738 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2739 {
2740 }
2741
2742 static inline void inc_syscr(struct task_struct *tsk)
2743 {
2744 }
2745
2746 static inline void inc_syscw(struct task_struct *tsk)
2747 {
2748 }
2749 #endif
2750
2751 #ifndef TASK_SIZE_OF
2752 #define TASK_SIZE_OF(tsk) TASK_SIZE
2753 #endif
2754
2755 #ifdef CONFIG_MM_OWNER
2756 extern void mm_update_next_owner(struct mm_struct *mm);
2757 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2758 #else
2759 static inline void mm_update_next_owner(struct mm_struct *mm)
2760 {
2761 }
2762
2763 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2764 {
2765 }
2766 #endif /* CONFIG_MM_OWNER */
2767
2768 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2769 unsigned int limit)
2770 {
2771 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2772 }
2773
2774 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2775 unsigned int limit)
2776 {
2777 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2778 }
2779
2780 static inline unsigned long rlimit(unsigned int limit)
2781 {
2782 return task_rlimit(current, limit);
2783 }
2784
2785 static inline unsigned long rlimit_max(unsigned int limit)
2786 {
2787 return task_rlimit_max(current, limit);
2788 }
2789
2790 #endif
This page took 0.094674 seconds and 5 git commands to generate.