CRED: Make execve() take advantage of copy-on-write credentials
[deliverable/linux.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
29 #define CLONE_NEWNET 0x40000000 /* New network namespace */
30 #define CLONE_IO 0x80000000 /* Clone io context */
31
32 /*
33 * Scheduling policies
34 */
35 #define SCHED_NORMAL 0
36 #define SCHED_FIFO 1
37 #define SCHED_RR 2
38 #define SCHED_BATCH 3
39 /* SCHED_ISO: reserved but not implemented yet */
40 #define SCHED_IDLE 5
41
42 #ifdef __KERNEL__
43
44 struct sched_param {
45 int sched_priority;
46 };
47
48 #include <asm/param.h> /* for HZ */
49
50 #include <linux/capability.h>
51 #include <linux/threads.h>
52 #include <linux/kernel.h>
53 #include <linux/types.h>
54 #include <linux/timex.h>
55 #include <linux/jiffies.h>
56 #include <linux/rbtree.h>
57 #include <linux/thread_info.h>
58 #include <linux/cpumask.h>
59 #include <linux/errno.h>
60 #include <linux/nodemask.h>
61 #include <linux/mm_types.h>
62
63 #include <asm/system.h>
64 #include <asm/page.h>
65 #include <asm/ptrace.h>
66 #include <asm/cputime.h>
67
68 #include <linux/smp.h>
69 #include <linux/sem.h>
70 #include <linux/signal.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compiler.h>
73 #include <linux/completion.h>
74 #include <linux/pid.h>
75 #include <linux/percpu.h>
76 #include <linux/topology.h>
77 #include <linux/proportions.h>
78 #include <linux/seccomp.h>
79 #include <linux/rcupdate.h>
80 #include <linux/rtmutex.h>
81
82 #include <linux/time.h>
83 #include <linux/param.h>
84 #include <linux/resource.h>
85 #include <linux/timer.h>
86 #include <linux/hrtimer.h>
87 #include <linux/task_io_accounting.h>
88 #include <linux/kobject.h>
89 #include <linux/latencytop.h>
90 #include <linux/cred.h>
91
92 #include <asm/processor.h>
93
94 struct mem_cgroup;
95 struct exec_domain;
96 struct futex_pi_state;
97 struct robust_list_head;
98 struct bio;
99
100 /*
101 * List of flags we want to share for kernel threads,
102 * if only because they are not used by them anyway.
103 */
104 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
105
106 /*
107 * These are the constant used to fake the fixed-point load-average
108 * counting. Some notes:
109 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
110 * a load-average precision of 10 bits integer + 11 bits fractional
111 * - if you want to count load-averages more often, you need more
112 * precision, or rounding will get you. With 2-second counting freq,
113 * the EXP_n values would be 1981, 2034 and 2043 if still using only
114 * 11 bit fractions.
115 */
116 extern unsigned long avenrun[]; /* Load averages */
117
118 #define FSHIFT 11 /* nr of bits of precision */
119 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
120 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
121 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
122 #define EXP_5 2014 /* 1/exp(5sec/5min) */
123 #define EXP_15 2037 /* 1/exp(5sec/15min) */
124
125 #define CALC_LOAD(load,exp,n) \
126 load *= exp; \
127 load += n*(FIXED_1-exp); \
128 load >>= FSHIFT;
129
130 extern unsigned long total_forks;
131 extern int nr_threads;
132 DECLARE_PER_CPU(unsigned long, process_counts);
133 extern int nr_processes(void);
134 extern unsigned long nr_running(void);
135 extern unsigned long nr_uninterruptible(void);
136 extern unsigned long nr_active(void);
137 extern unsigned long nr_iowait(void);
138
139 struct seq_file;
140 struct cfs_rq;
141 struct task_group;
142 #ifdef CONFIG_SCHED_DEBUG
143 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
144 extern void proc_sched_set_task(struct task_struct *p);
145 extern void
146 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
147 #else
148 static inline void
149 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
150 {
151 }
152 static inline void proc_sched_set_task(struct task_struct *p)
153 {
154 }
155 static inline void
156 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
157 {
158 }
159 #endif
160
161 extern unsigned long long time_sync_thresh;
162
163 /*
164 * Task state bitmask. NOTE! These bits are also
165 * encoded in fs/proc/array.c: get_task_state().
166 *
167 * We have two separate sets of flags: task->state
168 * is about runnability, while task->exit_state are
169 * about the task exiting. Confusing, but this way
170 * modifying one set can't modify the other one by
171 * mistake.
172 */
173 #define TASK_RUNNING 0
174 #define TASK_INTERRUPTIBLE 1
175 #define TASK_UNINTERRUPTIBLE 2
176 #define __TASK_STOPPED 4
177 #define __TASK_TRACED 8
178 /* in tsk->exit_state */
179 #define EXIT_ZOMBIE 16
180 #define EXIT_DEAD 32
181 /* in tsk->state again */
182 #define TASK_DEAD 64
183 #define TASK_WAKEKILL 128
184
185 /* Convenience macros for the sake of set_task_state */
186 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
187 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
188 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
189
190 /* Convenience macros for the sake of wake_up */
191 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
192 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
193
194 /* get_task_state() */
195 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
196 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
197 __TASK_TRACED)
198
199 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
200 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
201 #define task_is_stopped_or_traced(task) \
202 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
203 #define task_contributes_to_load(task) \
204 ((task->state & TASK_UNINTERRUPTIBLE) != 0)
205
206 #define __set_task_state(tsk, state_value) \
207 do { (tsk)->state = (state_value); } while (0)
208 #define set_task_state(tsk, state_value) \
209 set_mb((tsk)->state, (state_value))
210
211 /*
212 * set_current_state() includes a barrier so that the write of current->state
213 * is correctly serialised wrt the caller's subsequent test of whether to
214 * actually sleep:
215 *
216 * set_current_state(TASK_UNINTERRUPTIBLE);
217 * if (do_i_need_to_sleep())
218 * schedule();
219 *
220 * If the caller does not need such serialisation then use __set_current_state()
221 */
222 #define __set_current_state(state_value) \
223 do { current->state = (state_value); } while (0)
224 #define set_current_state(state_value) \
225 set_mb(current->state, (state_value))
226
227 /* Task command name length */
228 #define TASK_COMM_LEN 16
229
230 #include <linux/spinlock.h>
231
232 /*
233 * This serializes "schedule()" and also protects
234 * the run-queue from deletions/modifications (but
235 * _adding_ to the beginning of the run-queue has
236 * a separate lock).
237 */
238 extern rwlock_t tasklist_lock;
239 extern spinlock_t mmlist_lock;
240
241 struct task_struct;
242
243 extern void sched_init(void);
244 extern void sched_init_smp(void);
245 extern asmlinkage void schedule_tail(struct task_struct *prev);
246 extern void init_idle(struct task_struct *idle, int cpu);
247 extern void init_idle_bootup_task(struct task_struct *idle);
248
249 extern int runqueue_is_locked(void);
250
251 extern cpumask_t nohz_cpu_mask;
252 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
253 extern int select_nohz_load_balancer(int cpu);
254 #else
255 static inline int select_nohz_load_balancer(int cpu)
256 {
257 return 0;
258 }
259 #endif
260
261 extern unsigned long rt_needs_cpu(int cpu);
262
263 /*
264 * Only dump TASK_* tasks. (0 for all tasks)
265 */
266 extern void show_state_filter(unsigned long state_filter);
267
268 static inline void show_state(void)
269 {
270 show_state_filter(0);
271 }
272
273 extern void show_regs(struct pt_regs *);
274
275 /*
276 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
277 * task), SP is the stack pointer of the first frame that should be shown in the back
278 * trace (or NULL if the entire call-chain of the task should be shown).
279 */
280 extern void show_stack(struct task_struct *task, unsigned long *sp);
281
282 void io_schedule(void);
283 long io_schedule_timeout(long timeout);
284
285 extern void cpu_init (void);
286 extern void trap_init(void);
287 extern void account_process_tick(struct task_struct *task, int user);
288 extern void update_process_times(int user);
289 extern void scheduler_tick(void);
290
291 extern void sched_show_task(struct task_struct *p);
292
293 #ifdef CONFIG_DETECT_SOFTLOCKUP
294 extern void softlockup_tick(void);
295 extern void touch_softlockup_watchdog(void);
296 extern void touch_all_softlockup_watchdogs(void);
297 extern unsigned int softlockup_panic;
298 extern unsigned long sysctl_hung_task_check_count;
299 extern unsigned long sysctl_hung_task_timeout_secs;
300 extern unsigned long sysctl_hung_task_warnings;
301 extern int softlockup_thresh;
302 #else
303 static inline void softlockup_tick(void)
304 {
305 }
306 static inline void spawn_softlockup_task(void)
307 {
308 }
309 static inline void touch_softlockup_watchdog(void)
310 {
311 }
312 static inline void touch_all_softlockup_watchdogs(void)
313 {
314 }
315 #endif
316
317
318 /* Attach to any functions which should be ignored in wchan output. */
319 #define __sched __attribute__((__section__(".sched.text")))
320
321 /* Linker adds these: start and end of __sched functions */
322 extern char __sched_text_start[], __sched_text_end[];
323
324 /* Is this address in the __sched functions? */
325 extern int in_sched_functions(unsigned long addr);
326
327 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
328 extern signed long schedule_timeout(signed long timeout);
329 extern signed long schedule_timeout_interruptible(signed long timeout);
330 extern signed long schedule_timeout_killable(signed long timeout);
331 extern signed long schedule_timeout_uninterruptible(signed long timeout);
332 asmlinkage void schedule(void);
333
334 struct nsproxy;
335 struct user_namespace;
336
337 /* Maximum number of active map areas.. This is a random (large) number */
338 #define DEFAULT_MAX_MAP_COUNT 65536
339
340 extern int sysctl_max_map_count;
341
342 #include <linux/aio.h>
343
344 extern unsigned long
345 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
346 unsigned long, unsigned long);
347 extern unsigned long
348 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
349 unsigned long len, unsigned long pgoff,
350 unsigned long flags);
351 extern void arch_unmap_area(struct mm_struct *, unsigned long);
352 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
353
354 #if USE_SPLIT_PTLOCKS
355 /*
356 * The mm counters are not protected by its page_table_lock,
357 * so must be incremented atomically.
358 */
359 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
360 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
361 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
362 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
363 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
364
365 #else /* !USE_SPLIT_PTLOCKS */
366 /*
367 * The mm counters are protected by its page_table_lock,
368 * so can be incremented directly.
369 */
370 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
371 #define get_mm_counter(mm, member) ((mm)->_##member)
372 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
373 #define inc_mm_counter(mm, member) (mm)->_##member++
374 #define dec_mm_counter(mm, member) (mm)->_##member--
375
376 #endif /* !USE_SPLIT_PTLOCKS */
377
378 #define get_mm_rss(mm) \
379 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
380 #define update_hiwater_rss(mm) do { \
381 unsigned long _rss = get_mm_rss(mm); \
382 if ((mm)->hiwater_rss < _rss) \
383 (mm)->hiwater_rss = _rss; \
384 } while (0)
385 #define update_hiwater_vm(mm) do { \
386 if ((mm)->hiwater_vm < (mm)->total_vm) \
387 (mm)->hiwater_vm = (mm)->total_vm; \
388 } while (0)
389
390 extern void set_dumpable(struct mm_struct *mm, int value);
391 extern int get_dumpable(struct mm_struct *mm);
392
393 /* mm flags */
394 /* dumpable bits */
395 #define MMF_DUMPABLE 0 /* core dump is permitted */
396 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
397 #define MMF_DUMPABLE_BITS 2
398
399 /* coredump filter bits */
400 #define MMF_DUMP_ANON_PRIVATE 2
401 #define MMF_DUMP_ANON_SHARED 3
402 #define MMF_DUMP_MAPPED_PRIVATE 4
403 #define MMF_DUMP_MAPPED_SHARED 5
404 #define MMF_DUMP_ELF_HEADERS 6
405 #define MMF_DUMP_HUGETLB_PRIVATE 7
406 #define MMF_DUMP_HUGETLB_SHARED 8
407 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
408 #define MMF_DUMP_FILTER_BITS 7
409 #define MMF_DUMP_FILTER_MASK \
410 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
411 #define MMF_DUMP_FILTER_DEFAULT \
412 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
413 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
414
415 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
416 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
417 #else
418 # define MMF_DUMP_MASK_DEFAULT_ELF 0
419 #endif
420
421 struct sighand_struct {
422 atomic_t count;
423 struct k_sigaction action[_NSIG];
424 spinlock_t siglock;
425 wait_queue_head_t signalfd_wqh;
426 };
427
428 struct pacct_struct {
429 int ac_flag;
430 long ac_exitcode;
431 unsigned long ac_mem;
432 cputime_t ac_utime, ac_stime;
433 unsigned long ac_minflt, ac_majflt;
434 };
435
436 /**
437 * struct task_cputime - collected CPU time counts
438 * @utime: time spent in user mode, in &cputime_t units
439 * @stime: time spent in kernel mode, in &cputime_t units
440 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
441 *
442 * This structure groups together three kinds of CPU time that are
443 * tracked for threads and thread groups. Most things considering
444 * CPU time want to group these counts together and treat all three
445 * of them in parallel.
446 */
447 struct task_cputime {
448 cputime_t utime;
449 cputime_t stime;
450 unsigned long long sum_exec_runtime;
451 };
452 /* Alternate field names when used to cache expirations. */
453 #define prof_exp stime
454 #define virt_exp utime
455 #define sched_exp sum_exec_runtime
456
457 /**
458 * struct thread_group_cputime - thread group interval timer counts
459 * @totals: thread group interval timers; substructure for
460 * uniprocessor kernel, per-cpu for SMP kernel.
461 *
462 * This structure contains the version of task_cputime, above, that is
463 * used for thread group CPU clock calculations.
464 */
465 struct thread_group_cputime {
466 struct task_cputime *totals;
467 };
468
469 /*
470 * NOTE! "signal_struct" does not have it's own
471 * locking, because a shared signal_struct always
472 * implies a shared sighand_struct, so locking
473 * sighand_struct is always a proper superset of
474 * the locking of signal_struct.
475 */
476 struct signal_struct {
477 atomic_t count;
478 atomic_t live;
479
480 wait_queue_head_t wait_chldexit; /* for wait4() */
481
482 /* current thread group signal load-balancing target: */
483 struct task_struct *curr_target;
484
485 /* shared signal handling: */
486 struct sigpending shared_pending;
487
488 /* thread group exit support */
489 int group_exit_code;
490 /* overloaded:
491 * - notify group_exit_task when ->count is equal to notify_count
492 * - everyone except group_exit_task is stopped during signal delivery
493 * of fatal signals, group_exit_task processes the signal.
494 */
495 int notify_count;
496 struct task_struct *group_exit_task;
497
498 /* thread group stop support, overloads group_exit_code too */
499 int group_stop_count;
500 unsigned int flags; /* see SIGNAL_* flags below */
501
502 /* POSIX.1b Interval Timers */
503 struct list_head posix_timers;
504
505 /* ITIMER_REAL timer for the process */
506 struct hrtimer real_timer;
507 struct pid *leader_pid;
508 ktime_t it_real_incr;
509
510 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
511 cputime_t it_prof_expires, it_virt_expires;
512 cputime_t it_prof_incr, it_virt_incr;
513
514 /*
515 * Thread group totals for process CPU clocks.
516 * See thread_group_cputime(), et al, for details.
517 */
518 struct thread_group_cputime cputime;
519
520 /* Earliest-expiration cache. */
521 struct task_cputime cputime_expires;
522
523 struct list_head cpu_timers[3];
524
525 /* job control IDs */
526
527 /*
528 * pgrp and session fields are deprecated.
529 * use the task_session_Xnr and task_pgrp_Xnr routines below
530 */
531
532 union {
533 pid_t pgrp __deprecated;
534 pid_t __pgrp;
535 };
536
537 struct pid *tty_old_pgrp;
538
539 union {
540 pid_t session __deprecated;
541 pid_t __session;
542 };
543
544 /* boolean value for session group leader */
545 int leader;
546
547 struct tty_struct *tty; /* NULL if no tty */
548
549 /*
550 * Cumulative resource counters for dead threads in the group,
551 * and for reaped dead child processes forked by this group.
552 * Live threads maintain their own counters and add to these
553 * in __exit_signal, except for the group leader.
554 */
555 cputime_t cutime, cstime;
556 cputime_t gtime;
557 cputime_t cgtime;
558 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
559 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
560 unsigned long inblock, oublock, cinblock, coublock;
561 struct task_io_accounting ioac;
562
563 /*
564 * We don't bother to synchronize most readers of this at all,
565 * because there is no reader checking a limit that actually needs
566 * to get both rlim_cur and rlim_max atomically, and either one
567 * alone is a single word that can safely be read normally.
568 * getrlimit/setrlimit use task_lock(current->group_leader) to
569 * protect this instead of the siglock, because they really
570 * have no need to disable irqs.
571 */
572 struct rlimit rlim[RLIM_NLIMITS];
573
574 #ifdef CONFIG_BSD_PROCESS_ACCT
575 struct pacct_struct pacct; /* per-process accounting information */
576 #endif
577 #ifdef CONFIG_TASKSTATS
578 struct taskstats *stats;
579 #endif
580 #ifdef CONFIG_AUDIT
581 unsigned audit_tty;
582 struct tty_audit_buf *tty_audit_buf;
583 #endif
584 };
585
586 /* Context switch must be unlocked if interrupts are to be enabled */
587 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
588 # define __ARCH_WANT_UNLOCKED_CTXSW
589 #endif
590
591 /*
592 * Bits in flags field of signal_struct.
593 */
594 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
595 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
596 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
597 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
598 /*
599 * Pending notifications to parent.
600 */
601 #define SIGNAL_CLD_STOPPED 0x00000010
602 #define SIGNAL_CLD_CONTINUED 0x00000020
603 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
604
605 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
606
607 /* If true, all threads except ->group_exit_task have pending SIGKILL */
608 static inline int signal_group_exit(const struct signal_struct *sig)
609 {
610 return (sig->flags & SIGNAL_GROUP_EXIT) ||
611 (sig->group_exit_task != NULL);
612 }
613
614 /*
615 * Some day this will be a full-fledged user tracking system..
616 */
617 struct user_struct {
618 atomic_t __count; /* reference count */
619 atomic_t processes; /* How many processes does this user have? */
620 atomic_t files; /* How many open files does this user have? */
621 atomic_t sigpending; /* How many pending signals does this user have? */
622 #ifdef CONFIG_INOTIFY_USER
623 atomic_t inotify_watches; /* How many inotify watches does this user have? */
624 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
625 #endif
626 #ifdef CONFIG_POSIX_MQUEUE
627 /* protected by mq_lock */
628 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
629 #endif
630 unsigned long locked_shm; /* How many pages of mlocked shm ? */
631
632 #ifdef CONFIG_KEYS
633 struct key *uid_keyring; /* UID specific keyring */
634 struct key *session_keyring; /* UID's default session keyring */
635 #endif
636
637 /* Hash table maintenance information */
638 struct hlist_node uidhash_node;
639 uid_t uid;
640
641 #ifdef CONFIG_USER_SCHED
642 struct task_group *tg;
643 #ifdef CONFIG_SYSFS
644 struct kobject kobj;
645 struct work_struct work;
646 #endif
647 #endif
648 };
649
650 extern int uids_sysfs_init(void);
651
652 extern struct user_struct *find_user(uid_t);
653
654 extern struct user_struct root_user;
655 #define INIT_USER (&root_user)
656
657
658 struct backing_dev_info;
659 struct reclaim_state;
660
661 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
662 struct sched_info {
663 /* cumulative counters */
664 unsigned long pcount; /* # of times run on this cpu */
665 unsigned long long cpu_time, /* time spent on the cpu */
666 run_delay; /* time spent waiting on a runqueue */
667
668 /* timestamps */
669 unsigned long long last_arrival,/* when we last ran on a cpu */
670 last_queued; /* when we were last queued to run */
671 #ifdef CONFIG_SCHEDSTATS
672 /* BKL stats */
673 unsigned int bkl_count;
674 #endif
675 };
676 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
677
678 #ifdef CONFIG_TASK_DELAY_ACCT
679 struct task_delay_info {
680 spinlock_t lock;
681 unsigned int flags; /* Private per-task flags */
682
683 /* For each stat XXX, add following, aligned appropriately
684 *
685 * struct timespec XXX_start, XXX_end;
686 * u64 XXX_delay;
687 * u32 XXX_count;
688 *
689 * Atomicity of updates to XXX_delay, XXX_count protected by
690 * single lock above (split into XXX_lock if contention is an issue).
691 */
692
693 /*
694 * XXX_count is incremented on every XXX operation, the delay
695 * associated with the operation is added to XXX_delay.
696 * XXX_delay contains the accumulated delay time in nanoseconds.
697 */
698 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
699 u64 blkio_delay; /* wait for sync block io completion */
700 u64 swapin_delay; /* wait for swapin block io completion */
701 u32 blkio_count; /* total count of the number of sync block */
702 /* io operations performed */
703 u32 swapin_count; /* total count of the number of swapin block */
704 /* io operations performed */
705
706 struct timespec freepages_start, freepages_end;
707 u64 freepages_delay; /* wait for memory reclaim */
708 u32 freepages_count; /* total count of memory reclaim */
709 };
710 #endif /* CONFIG_TASK_DELAY_ACCT */
711
712 static inline int sched_info_on(void)
713 {
714 #ifdef CONFIG_SCHEDSTATS
715 return 1;
716 #elif defined(CONFIG_TASK_DELAY_ACCT)
717 extern int delayacct_on;
718 return delayacct_on;
719 #else
720 return 0;
721 #endif
722 }
723
724 enum cpu_idle_type {
725 CPU_IDLE,
726 CPU_NOT_IDLE,
727 CPU_NEWLY_IDLE,
728 CPU_MAX_IDLE_TYPES
729 };
730
731 /*
732 * sched-domains (multiprocessor balancing) declarations:
733 */
734
735 /*
736 * Increase resolution of nice-level calculations:
737 */
738 #define SCHED_LOAD_SHIFT 10
739 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
740
741 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
742
743 #ifdef CONFIG_SMP
744 #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */
745 #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */
746 #define SD_BALANCE_EXEC 4 /* Balance on exec */
747 #define SD_BALANCE_FORK 8 /* Balance on fork, clone */
748 #define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */
749 #define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */
750 #define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */
751 #define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */
752 #define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */
753 #define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */
754 #define SD_SERIALIZE 1024 /* Only a single load balancing instance */
755 #define SD_WAKE_IDLE_FAR 2048 /* Gain latency sacrificing cache hit */
756
757 #define BALANCE_FOR_MC_POWER \
758 (sched_smt_power_savings ? SD_POWERSAVINGS_BALANCE : 0)
759
760 #define BALANCE_FOR_PKG_POWER \
761 ((sched_mc_power_savings || sched_smt_power_savings) ? \
762 SD_POWERSAVINGS_BALANCE : 0)
763
764 #define test_sd_parent(sd, flag) ((sd->parent && \
765 (sd->parent->flags & flag)) ? 1 : 0)
766
767
768 struct sched_group {
769 struct sched_group *next; /* Must be a circular list */
770 cpumask_t cpumask;
771
772 /*
773 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
774 * single CPU. This is read only (except for setup, hotplug CPU).
775 * Note : Never change cpu_power without recompute its reciprocal
776 */
777 unsigned int __cpu_power;
778 /*
779 * reciprocal value of cpu_power to avoid expensive divides
780 * (see include/linux/reciprocal_div.h)
781 */
782 u32 reciprocal_cpu_power;
783 };
784
785 enum sched_domain_level {
786 SD_LV_NONE = 0,
787 SD_LV_SIBLING,
788 SD_LV_MC,
789 SD_LV_CPU,
790 SD_LV_NODE,
791 SD_LV_ALLNODES,
792 SD_LV_MAX
793 };
794
795 struct sched_domain_attr {
796 int relax_domain_level;
797 };
798
799 #define SD_ATTR_INIT (struct sched_domain_attr) { \
800 .relax_domain_level = -1, \
801 }
802
803 struct sched_domain {
804 /* These fields must be setup */
805 struct sched_domain *parent; /* top domain must be null terminated */
806 struct sched_domain *child; /* bottom domain must be null terminated */
807 struct sched_group *groups; /* the balancing groups of the domain */
808 cpumask_t span; /* span of all CPUs in this domain */
809 unsigned long min_interval; /* Minimum balance interval ms */
810 unsigned long max_interval; /* Maximum balance interval ms */
811 unsigned int busy_factor; /* less balancing by factor if busy */
812 unsigned int imbalance_pct; /* No balance until over watermark */
813 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
814 unsigned int busy_idx;
815 unsigned int idle_idx;
816 unsigned int newidle_idx;
817 unsigned int wake_idx;
818 unsigned int forkexec_idx;
819 int flags; /* See SD_* */
820 enum sched_domain_level level;
821
822 /* Runtime fields. */
823 unsigned long last_balance; /* init to jiffies. units in jiffies */
824 unsigned int balance_interval; /* initialise to 1. units in ms. */
825 unsigned int nr_balance_failed; /* initialise to 0 */
826
827 u64 last_update;
828
829 #ifdef CONFIG_SCHEDSTATS
830 /* load_balance() stats */
831 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
832 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
833 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
834 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
835 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
836 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
837 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
838 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
839
840 /* Active load balancing */
841 unsigned int alb_count;
842 unsigned int alb_failed;
843 unsigned int alb_pushed;
844
845 /* SD_BALANCE_EXEC stats */
846 unsigned int sbe_count;
847 unsigned int sbe_balanced;
848 unsigned int sbe_pushed;
849
850 /* SD_BALANCE_FORK stats */
851 unsigned int sbf_count;
852 unsigned int sbf_balanced;
853 unsigned int sbf_pushed;
854
855 /* try_to_wake_up() stats */
856 unsigned int ttwu_wake_remote;
857 unsigned int ttwu_move_affine;
858 unsigned int ttwu_move_balance;
859 #endif
860 #ifdef CONFIG_SCHED_DEBUG
861 char *name;
862 #endif
863 };
864
865 extern void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
866 struct sched_domain_attr *dattr_new);
867 extern int arch_reinit_sched_domains(void);
868
869 #else /* CONFIG_SMP */
870
871 struct sched_domain_attr;
872
873 static inline void
874 partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
875 struct sched_domain_attr *dattr_new)
876 {
877 }
878 #endif /* !CONFIG_SMP */
879
880 struct io_context; /* See blkdev.h */
881
882
883 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
884 extern void prefetch_stack(struct task_struct *t);
885 #else
886 static inline void prefetch_stack(struct task_struct *t) { }
887 #endif
888
889 struct audit_context; /* See audit.c */
890 struct mempolicy;
891 struct pipe_inode_info;
892 struct uts_namespace;
893
894 struct rq;
895 struct sched_domain;
896
897 struct sched_class {
898 const struct sched_class *next;
899
900 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
901 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
902 void (*yield_task) (struct rq *rq);
903
904 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int sync);
905
906 struct task_struct * (*pick_next_task) (struct rq *rq);
907 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
908
909 #ifdef CONFIG_SMP
910 int (*select_task_rq)(struct task_struct *p, int sync);
911
912 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
913 struct rq *busiest, unsigned long max_load_move,
914 struct sched_domain *sd, enum cpu_idle_type idle,
915 int *all_pinned, int *this_best_prio);
916
917 int (*move_one_task) (struct rq *this_rq, int this_cpu,
918 struct rq *busiest, struct sched_domain *sd,
919 enum cpu_idle_type idle);
920 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
921 void (*post_schedule) (struct rq *this_rq);
922 void (*task_wake_up) (struct rq *this_rq, struct task_struct *task);
923
924 void (*set_cpus_allowed)(struct task_struct *p,
925 const cpumask_t *newmask);
926
927 void (*rq_online)(struct rq *rq);
928 void (*rq_offline)(struct rq *rq);
929 #endif
930
931 void (*set_curr_task) (struct rq *rq);
932 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
933 void (*task_new) (struct rq *rq, struct task_struct *p);
934
935 void (*switched_from) (struct rq *this_rq, struct task_struct *task,
936 int running);
937 void (*switched_to) (struct rq *this_rq, struct task_struct *task,
938 int running);
939 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
940 int oldprio, int running);
941
942 #ifdef CONFIG_FAIR_GROUP_SCHED
943 void (*moved_group) (struct task_struct *p);
944 #endif
945 };
946
947 struct load_weight {
948 unsigned long weight, inv_weight;
949 };
950
951 /*
952 * CFS stats for a schedulable entity (task, task-group etc)
953 *
954 * Current field usage histogram:
955 *
956 * 4 se->block_start
957 * 4 se->run_node
958 * 4 se->sleep_start
959 * 6 se->load.weight
960 */
961 struct sched_entity {
962 struct load_weight load; /* for load-balancing */
963 struct rb_node run_node;
964 struct list_head group_node;
965 unsigned int on_rq;
966
967 u64 exec_start;
968 u64 sum_exec_runtime;
969 u64 vruntime;
970 u64 prev_sum_exec_runtime;
971
972 u64 last_wakeup;
973 u64 avg_overlap;
974
975 #ifdef CONFIG_SCHEDSTATS
976 u64 wait_start;
977 u64 wait_max;
978 u64 wait_count;
979 u64 wait_sum;
980
981 u64 sleep_start;
982 u64 sleep_max;
983 s64 sum_sleep_runtime;
984
985 u64 block_start;
986 u64 block_max;
987 u64 exec_max;
988 u64 slice_max;
989
990 u64 nr_migrations;
991 u64 nr_migrations_cold;
992 u64 nr_failed_migrations_affine;
993 u64 nr_failed_migrations_running;
994 u64 nr_failed_migrations_hot;
995 u64 nr_forced_migrations;
996 u64 nr_forced2_migrations;
997
998 u64 nr_wakeups;
999 u64 nr_wakeups_sync;
1000 u64 nr_wakeups_migrate;
1001 u64 nr_wakeups_local;
1002 u64 nr_wakeups_remote;
1003 u64 nr_wakeups_affine;
1004 u64 nr_wakeups_affine_attempts;
1005 u64 nr_wakeups_passive;
1006 u64 nr_wakeups_idle;
1007 #endif
1008
1009 #ifdef CONFIG_FAIR_GROUP_SCHED
1010 struct sched_entity *parent;
1011 /* rq on which this entity is (to be) queued: */
1012 struct cfs_rq *cfs_rq;
1013 /* rq "owned" by this entity/group: */
1014 struct cfs_rq *my_q;
1015 #endif
1016 };
1017
1018 struct sched_rt_entity {
1019 struct list_head run_list;
1020 unsigned long timeout;
1021 unsigned int time_slice;
1022 int nr_cpus_allowed;
1023
1024 struct sched_rt_entity *back;
1025 #ifdef CONFIG_RT_GROUP_SCHED
1026 struct sched_rt_entity *parent;
1027 /* rq on which this entity is (to be) queued: */
1028 struct rt_rq *rt_rq;
1029 /* rq "owned" by this entity/group: */
1030 struct rt_rq *my_q;
1031 #endif
1032 };
1033
1034 struct task_struct {
1035 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1036 void *stack;
1037 atomic_t usage;
1038 unsigned int flags; /* per process flags, defined below */
1039 unsigned int ptrace;
1040
1041 int lock_depth; /* BKL lock depth */
1042
1043 #ifdef CONFIG_SMP
1044 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1045 int oncpu;
1046 #endif
1047 #endif
1048
1049 int prio, static_prio, normal_prio;
1050 unsigned int rt_priority;
1051 const struct sched_class *sched_class;
1052 struct sched_entity se;
1053 struct sched_rt_entity rt;
1054
1055 #ifdef CONFIG_PREEMPT_NOTIFIERS
1056 /* list of struct preempt_notifier: */
1057 struct hlist_head preempt_notifiers;
1058 #endif
1059
1060 /*
1061 * fpu_counter contains the number of consecutive context switches
1062 * that the FPU is used. If this is over a threshold, the lazy fpu
1063 * saving becomes unlazy to save the trap. This is an unsigned char
1064 * so that after 256 times the counter wraps and the behavior turns
1065 * lazy again; this to deal with bursty apps that only use FPU for
1066 * a short time
1067 */
1068 unsigned char fpu_counter;
1069 s8 oomkilladj; /* OOM kill score adjustment (bit shift). */
1070 #ifdef CONFIG_BLK_DEV_IO_TRACE
1071 unsigned int btrace_seq;
1072 #endif
1073
1074 unsigned int policy;
1075 cpumask_t cpus_allowed;
1076
1077 #ifdef CONFIG_PREEMPT_RCU
1078 int rcu_read_lock_nesting;
1079 int rcu_flipctr_idx;
1080 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1081
1082 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1083 struct sched_info sched_info;
1084 #endif
1085
1086 struct list_head tasks;
1087
1088 struct mm_struct *mm, *active_mm;
1089
1090 /* task state */
1091 struct linux_binfmt *binfmt;
1092 int exit_state;
1093 int exit_code, exit_signal;
1094 int pdeath_signal; /* The signal sent when the parent dies */
1095 /* ??? */
1096 unsigned int personality;
1097 unsigned did_exec:1;
1098 pid_t pid;
1099 pid_t tgid;
1100
1101 #ifdef CONFIG_CC_STACKPROTECTOR
1102 /* Canary value for the -fstack-protector gcc feature */
1103 unsigned long stack_canary;
1104 #endif
1105 /*
1106 * pointers to (original) parent process, youngest child, younger sibling,
1107 * older sibling, respectively. (p->father can be replaced with
1108 * p->real_parent->pid)
1109 */
1110 struct task_struct *real_parent; /* real parent process */
1111 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1112 /*
1113 * children/sibling forms the list of my natural children
1114 */
1115 struct list_head children; /* list of my children */
1116 struct list_head sibling; /* linkage in my parent's children list */
1117 struct task_struct *group_leader; /* threadgroup leader */
1118
1119 /*
1120 * ptraced is the list of tasks this task is using ptrace on.
1121 * This includes both natural children and PTRACE_ATTACH targets.
1122 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1123 */
1124 struct list_head ptraced;
1125 struct list_head ptrace_entry;
1126
1127 /* PID/PID hash table linkage. */
1128 struct pid_link pids[PIDTYPE_MAX];
1129 struct list_head thread_group;
1130
1131 struct completion *vfork_done; /* for vfork() */
1132 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1133 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1134
1135 cputime_t utime, stime, utimescaled, stimescaled;
1136 cputime_t gtime;
1137 cputime_t prev_utime, prev_stime;
1138 unsigned long nvcsw, nivcsw; /* context switch counts */
1139 struct timespec start_time; /* monotonic time */
1140 struct timespec real_start_time; /* boot based time */
1141 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1142 unsigned long min_flt, maj_flt;
1143
1144 struct task_cputime cputime_expires;
1145 struct list_head cpu_timers[3];
1146
1147 /* process credentials */
1148 const struct cred *cred; /* actual/objective task credentials (COW) */
1149 struct mutex cred_exec_mutex; /* execve vs ptrace cred calculation mutex */
1150
1151 char comm[TASK_COMM_LEN]; /* executable name excluding path
1152 - access with [gs]et_task_comm (which lock
1153 it with task_lock())
1154 - initialized normally by flush_old_exec */
1155 /* file system info */
1156 int link_count, total_link_count;
1157 #ifdef CONFIG_SYSVIPC
1158 /* ipc stuff */
1159 struct sysv_sem sysvsem;
1160 #endif
1161 #ifdef CONFIG_DETECT_SOFTLOCKUP
1162 /* hung task detection */
1163 unsigned long last_switch_timestamp;
1164 unsigned long last_switch_count;
1165 #endif
1166 /* CPU-specific state of this task */
1167 struct thread_struct thread;
1168 /* filesystem information */
1169 struct fs_struct *fs;
1170 /* open file information */
1171 struct files_struct *files;
1172 /* namespaces */
1173 struct nsproxy *nsproxy;
1174 /* signal handlers */
1175 struct signal_struct *signal;
1176 struct sighand_struct *sighand;
1177
1178 sigset_t blocked, real_blocked;
1179 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1180 struct sigpending pending;
1181
1182 unsigned long sas_ss_sp;
1183 size_t sas_ss_size;
1184 int (*notifier)(void *priv);
1185 void *notifier_data;
1186 sigset_t *notifier_mask;
1187 struct audit_context *audit_context;
1188 #ifdef CONFIG_AUDITSYSCALL
1189 uid_t loginuid;
1190 unsigned int sessionid;
1191 #endif
1192 seccomp_t seccomp;
1193
1194 /* Thread group tracking */
1195 u32 parent_exec_id;
1196 u32 self_exec_id;
1197 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
1198 spinlock_t alloc_lock;
1199
1200 /* Protection of the PI data structures: */
1201 spinlock_t pi_lock;
1202
1203 #ifdef CONFIG_RT_MUTEXES
1204 /* PI waiters blocked on a rt_mutex held by this task */
1205 struct plist_head pi_waiters;
1206 /* Deadlock detection and priority inheritance handling */
1207 struct rt_mutex_waiter *pi_blocked_on;
1208 #endif
1209
1210 #ifdef CONFIG_DEBUG_MUTEXES
1211 /* mutex deadlock detection */
1212 struct mutex_waiter *blocked_on;
1213 #endif
1214 #ifdef CONFIG_TRACE_IRQFLAGS
1215 unsigned int irq_events;
1216 int hardirqs_enabled;
1217 unsigned long hardirq_enable_ip;
1218 unsigned int hardirq_enable_event;
1219 unsigned long hardirq_disable_ip;
1220 unsigned int hardirq_disable_event;
1221 int softirqs_enabled;
1222 unsigned long softirq_disable_ip;
1223 unsigned int softirq_disable_event;
1224 unsigned long softirq_enable_ip;
1225 unsigned int softirq_enable_event;
1226 int hardirq_context;
1227 int softirq_context;
1228 #endif
1229 #ifdef CONFIG_LOCKDEP
1230 # define MAX_LOCK_DEPTH 48UL
1231 u64 curr_chain_key;
1232 int lockdep_depth;
1233 unsigned int lockdep_recursion;
1234 struct held_lock held_locks[MAX_LOCK_DEPTH];
1235 #endif
1236
1237 /* journalling filesystem info */
1238 void *journal_info;
1239
1240 /* stacked block device info */
1241 struct bio *bio_list, **bio_tail;
1242
1243 /* VM state */
1244 struct reclaim_state *reclaim_state;
1245
1246 struct backing_dev_info *backing_dev_info;
1247
1248 struct io_context *io_context;
1249
1250 unsigned long ptrace_message;
1251 siginfo_t *last_siginfo; /* For ptrace use. */
1252 struct task_io_accounting ioac;
1253 #if defined(CONFIG_TASK_XACCT)
1254 u64 acct_rss_mem1; /* accumulated rss usage */
1255 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1256 cputime_t acct_timexpd; /* stime + utime since last update */
1257 #endif
1258 #ifdef CONFIG_CPUSETS
1259 nodemask_t mems_allowed;
1260 int cpuset_mems_generation;
1261 int cpuset_mem_spread_rotor;
1262 #endif
1263 #ifdef CONFIG_CGROUPS
1264 /* Control Group info protected by css_set_lock */
1265 struct css_set *cgroups;
1266 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1267 struct list_head cg_list;
1268 #endif
1269 #ifdef CONFIG_FUTEX
1270 struct robust_list_head __user *robust_list;
1271 #ifdef CONFIG_COMPAT
1272 struct compat_robust_list_head __user *compat_robust_list;
1273 #endif
1274 struct list_head pi_state_list;
1275 struct futex_pi_state *pi_state_cache;
1276 #endif
1277 #ifdef CONFIG_NUMA
1278 struct mempolicy *mempolicy;
1279 short il_next;
1280 #endif
1281 atomic_t fs_excl; /* holding fs exclusive resources */
1282 struct rcu_head rcu;
1283
1284 /*
1285 * cache last used pipe for splice
1286 */
1287 struct pipe_inode_info *splice_pipe;
1288 #ifdef CONFIG_TASK_DELAY_ACCT
1289 struct task_delay_info *delays;
1290 #endif
1291 #ifdef CONFIG_FAULT_INJECTION
1292 int make_it_fail;
1293 #endif
1294 struct prop_local_single dirties;
1295 #ifdef CONFIG_LATENCYTOP
1296 int latency_record_count;
1297 struct latency_record latency_record[LT_SAVECOUNT];
1298 #endif
1299 /*
1300 * time slack values; these are used to round up poll() and
1301 * select() etc timeout values. These are in nanoseconds.
1302 */
1303 unsigned long timer_slack_ns;
1304 unsigned long default_timer_slack_ns;
1305 };
1306
1307 /*
1308 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1309 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1310 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1311 * values are inverted: lower p->prio value means higher priority.
1312 *
1313 * The MAX_USER_RT_PRIO value allows the actual maximum
1314 * RT priority to be separate from the value exported to
1315 * user-space. This allows kernel threads to set their
1316 * priority to a value higher than any user task. Note:
1317 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1318 */
1319
1320 #define MAX_USER_RT_PRIO 100
1321 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1322
1323 #define MAX_PRIO (MAX_RT_PRIO + 40)
1324 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1325
1326 static inline int rt_prio(int prio)
1327 {
1328 if (unlikely(prio < MAX_RT_PRIO))
1329 return 1;
1330 return 0;
1331 }
1332
1333 static inline int rt_task(struct task_struct *p)
1334 {
1335 return rt_prio(p->prio);
1336 }
1337
1338 static inline void set_task_session(struct task_struct *tsk, pid_t session)
1339 {
1340 tsk->signal->__session = session;
1341 }
1342
1343 static inline void set_task_pgrp(struct task_struct *tsk, pid_t pgrp)
1344 {
1345 tsk->signal->__pgrp = pgrp;
1346 }
1347
1348 static inline struct pid *task_pid(struct task_struct *task)
1349 {
1350 return task->pids[PIDTYPE_PID].pid;
1351 }
1352
1353 static inline struct pid *task_tgid(struct task_struct *task)
1354 {
1355 return task->group_leader->pids[PIDTYPE_PID].pid;
1356 }
1357
1358 static inline struct pid *task_pgrp(struct task_struct *task)
1359 {
1360 return task->group_leader->pids[PIDTYPE_PGID].pid;
1361 }
1362
1363 static inline struct pid *task_session(struct task_struct *task)
1364 {
1365 return task->group_leader->pids[PIDTYPE_SID].pid;
1366 }
1367
1368 struct pid_namespace;
1369
1370 /*
1371 * the helpers to get the task's different pids as they are seen
1372 * from various namespaces
1373 *
1374 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1375 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1376 * current.
1377 * task_xid_nr_ns() : id seen from the ns specified;
1378 *
1379 * set_task_vxid() : assigns a virtual id to a task;
1380 *
1381 * see also pid_nr() etc in include/linux/pid.h
1382 */
1383
1384 static inline pid_t task_pid_nr(struct task_struct *tsk)
1385 {
1386 return tsk->pid;
1387 }
1388
1389 pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1390
1391 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1392 {
1393 return pid_vnr(task_pid(tsk));
1394 }
1395
1396
1397 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1398 {
1399 return tsk->tgid;
1400 }
1401
1402 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1403
1404 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1405 {
1406 return pid_vnr(task_tgid(tsk));
1407 }
1408
1409
1410 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1411 {
1412 return tsk->signal->__pgrp;
1413 }
1414
1415 pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1416
1417 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1418 {
1419 return pid_vnr(task_pgrp(tsk));
1420 }
1421
1422
1423 static inline pid_t task_session_nr(struct task_struct *tsk)
1424 {
1425 return tsk->signal->__session;
1426 }
1427
1428 pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1429
1430 static inline pid_t task_session_vnr(struct task_struct *tsk)
1431 {
1432 return pid_vnr(task_session(tsk));
1433 }
1434
1435
1436 /**
1437 * pid_alive - check that a task structure is not stale
1438 * @p: Task structure to be checked.
1439 *
1440 * Test if a process is not yet dead (at most zombie state)
1441 * If pid_alive fails, then pointers within the task structure
1442 * can be stale and must not be dereferenced.
1443 */
1444 static inline int pid_alive(struct task_struct *p)
1445 {
1446 return p->pids[PIDTYPE_PID].pid != NULL;
1447 }
1448
1449 /**
1450 * is_global_init - check if a task structure is init
1451 * @tsk: Task structure to be checked.
1452 *
1453 * Check if a task structure is the first user space task the kernel created.
1454 */
1455 static inline int is_global_init(struct task_struct *tsk)
1456 {
1457 return tsk->pid == 1;
1458 }
1459
1460 /*
1461 * is_container_init:
1462 * check whether in the task is init in its own pid namespace.
1463 */
1464 extern int is_container_init(struct task_struct *tsk);
1465
1466 extern struct pid *cad_pid;
1467
1468 extern void free_task(struct task_struct *tsk);
1469 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1470
1471 extern void __put_task_struct(struct task_struct *t);
1472
1473 static inline void put_task_struct(struct task_struct *t)
1474 {
1475 if (atomic_dec_and_test(&t->usage))
1476 __put_task_struct(t);
1477 }
1478
1479 extern cputime_t task_utime(struct task_struct *p);
1480 extern cputime_t task_stime(struct task_struct *p);
1481 extern cputime_t task_gtime(struct task_struct *p);
1482
1483 /*
1484 * Per process flags
1485 */
1486 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1487 /* Not implemented yet, only for 486*/
1488 #define PF_STARTING 0x00000002 /* being created */
1489 #define PF_EXITING 0x00000004 /* getting shut down */
1490 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1491 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1492 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1493 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1494 #define PF_DUMPCORE 0x00000200 /* dumped core */
1495 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1496 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1497 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1498 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1499 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1500 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1501 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1502 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1503 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */
1504 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1505 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1506 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1507 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1508 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1509 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1510 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1511 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1512 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1513 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1514 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */
1515
1516 /*
1517 * Only the _current_ task can read/write to tsk->flags, but other
1518 * tasks can access tsk->flags in readonly mode for example
1519 * with tsk_used_math (like during threaded core dumping).
1520 * There is however an exception to this rule during ptrace
1521 * or during fork: the ptracer task is allowed to write to the
1522 * child->flags of its traced child (same goes for fork, the parent
1523 * can write to the child->flags), because we're guaranteed the
1524 * child is not running and in turn not changing child->flags
1525 * at the same time the parent does it.
1526 */
1527 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1528 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1529 #define clear_used_math() clear_stopped_child_used_math(current)
1530 #define set_used_math() set_stopped_child_used_math(current)
1531 #define conditional_stopped_child_used_math(condition, child) \
1532 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1533 #define conditional_used_math(condition) \
1534 conditional_stopped_child_used_math(condition, current)
1535 #define copy_to_stopped_child_used_math(child) \
1536 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1537 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1538 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1539 #define used_math() tsk_used_math(current)
1540
1541 #ifdef CONFIG_SMP
1542 extern int set_cpus_allowed_ptr(struct task_struct *p,
1543 const cpumask_t *new_mask);
1544 #else
1545 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1546 const cpumask_t *new_mask)
1547 {
1548 if (!cpu_isset(0, *new_mask))
1549 return -EINVAL;
1550 return 0;
1551 }
1552 #endif
1553 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1554 {
1555 return set_cpus_allowed_ptr(p, &new_mask);
1556 }
1557
1558 extern unsigned long long sched_clock(void);
1559
1560 extern void sched_clock_init(void);
1561 extern u64 sched_clock_cpu(int cpu);
1562
1563 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1564 static inline void sched_clock_tick(void)
1565 {
1566 }
1567
1568 static inline void sched_clock_idle_sleep_event(void)
1569 {
1570 }
1571
1572 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1573 {
1574 }
1575 #else
1576 extern void sched_clock_tick(void);
1577 extern void sched_clock_idle_sleep_event(void);
1578 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1579 #endif
1580
1581 /*
1582 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1583 * clock constructed from sched_clock():
1584 */
1585 extern unsigned long long cpu_clock(int cpu);
1586
1587 extern unsigned long long
1588 task_sched_runtime(struct task_struct *task);
1589 extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1590
1591 /* sched_exec is called by processes performing an exec */
1592 #ifdef CONFIG_SMP
1593 extern void sched_exec(void);
1594 #else
1595 #define sched_exec() {}
1596 #endif
1597
1598 extern void sched_clock_idle_sleep_event(void);
1599 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1600
1601 #ifdef CONFIG_HOTPLUG_CPU
1602 extern void idle_task_exit(void);
1603 #else
1604 static inline void idle_task_exit(void) {}
1605 #endif
1606
1607 extern void sched_idle_next(void);
1608
1609 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1610 extern void wake_up_idle_cpu(int cpu);
1611 #else
1612 static inline void wake_up_idle_cpu(int cpu) { }
1613 #endif
1614
1615 #ifdef CONFIG_SCHED_DEBUG
1616 extern unsigned int sysctl_sched_latency;
1617 extern unsigned int sysctl_sched_min_granularity;
1618 extern unsigned int sysctl_sched_wakeup_granularity;
1619 extern unsigned int sysctl_sched_child_runs_first;
1620 extern unsigned int sysctl_sched_features;
1621 extern unsigned int sysctl_sched_migration_cost;
1622 extern unsigned int sysctl_sched_nr_migrate;
1623 extern unsigned int sysctl_sched_shares_ratelimit;
1624 extern unsigned int sysctl_sched_shares_thresh;
1625
1626 int sched_nr_latency_handler(struct ctl_table *table, int write,
1627 struct file *file, void __user *buffer, size_t *length,
1628 loff_t *ppos);
1629 #endif
1630 extern unsigned int sysctl_sched_rt_period;
1631 extern int sysctl_sched_rt_runtime;
1632
1633 int sched_rt_handler(struct ctl_table *table, int write,
1634 struct file *filp, void __user *buffer, size_t *lenp,
1635 loff_t *ppos);
1636
1637 extern unsigned int sysctl_sched_compat_yield;
1638
1639 #ifdef CONFIG_RT_MUTEXES
1640 extern int rt_mutex_getprio(struct task_struct *p);
1641 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1642 extern void rt_mutex_adjust_pi(struct task_struct *p);
1643 #else
1644 static inline int rt_mutex_getprio(struct task_struct *p)
1645 {
1646 return p->normal_prio;
1647 }
1648 # define rt_mutex_adjust_pi(p) do { } while (0)
1649 #endif
1650
1651 extern void set_user_nice(struct task_struct *p, long nice);
1652 extern int task_prio(const struct task_struct *p);
1653 extern int task_nice(const struct task_struct *p);
1654 extern int can_nice(const struct task_struct *p, const int nice);
1655 extern int task_curr(const struct task_struct *p);
1656 extern int idle_cpu(int cpu);
1657 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1658 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1659 struct sched_param *);
1660 extern struct task_struct *idle_task(int cpu);
1661 extern struct task_struct *curr_task(int cpu);
1662 extern void set_curr_task(int cpu, struct task_struct *p);
1663
1664 void yield(void);
1665
1666 /*
1667 * The default (Linux) execution domain.
1668 */
1669 extern struct exec_domain default_exec_domain;
1670
1671 union thread_union {
1672 struct thread_info thread_info;
1673 unsigned long stack[THREAD_SIZE/sizeof(long)];
1674 };
1675
1676 #ifndef __HAVE_ARCH_KSTACK_END
1677 static inline int kstack_end(void *addr)
1678 {
1679 /* Reliable end of stack detection:
1680 * Some APM bios versions misalign the stack
1681 */
1682 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1683 }
1684 #endif
1685
1686 extern union thread_union init_thread_union;
1687 extern struct task_struct init_task;
1688
1689 extern struct mm_struct init_mm;
1690
1691 extern struct pid_namespace init_pid_ns;
1692
1693 /*
1694 * find a task by one of its numerical ids
1695 *
1696 * find_task_by_pid_type_ns():
1697 * it is the most generic call - it finds a task by all id,
1698 * type and namespace specified
1699 * find_task_by_pid_ns():
1700 * finds a task by its pid in the specified namespace
1701 * find_task_by_vpid():
1702 * finds a task by its virtual pid
1703 *
1704 * see also find_vpid() etc in include/linux/pid.h
1705 */
1706
1707 extern struct task_struct *find_task_by_pid_type_ns(int type, int pid,
1708 struct pid_namespace *ns);
1709
1710 extern struct task_struct *find_task_by_vpid(pid_t nr);
1711 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1712 struct pid_namespace *ns);
1713
1714 extern void __set_special_pids(struct pid *pid);
1715
1716 /* per-UID process charging. */
1717 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1718 static inline struct user_struct *get_uid(struct user_struct *u)
1719 {
1720 atomic_inc(&u->__count);
1721 return u;
1722 }
1723 extern void free_uid(struct user_struct *);
1724 extern void release_uids(struct user_namespace *ns);
1725
1726 #include <asm/current.h>
1727
1728 extern void do_timer(unsigned long ticks);
1729
1730 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1731 extern int wake_up_process(struct task_struct *tsk);
1732 extern void wake_up_new_task(struct task_struct *tsk,
1733 unsigned long clone_flags);
1734 #ifdef CONFIG_SMP
1735 extern void kick_process(struct task_struct *tsk);
1736 #else
1737 static inline void kick_process(struct task_struct *tsk) { }
1738 #endif
1739 extern void sched_fork(struct task_struct *p, int clone_flags);
1740 extern void sched_dead(struct task_struct *p);
1741
1742 extern void proc_caches_init(void);
1743 extern void flush_signals(struct task_struct *);
1744 extern void ignore_signals(struct task_struct *);
1745 extern void flush_signal_handlers(struct task_struct *, int force_default);
1746 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1747
1748 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1749 {
1750 unsigned long flags;
1751 int ret;
1752
1753 spin_lock_irqsave(&tsk->sighand->siglock, flags);
1754 ret = dequeue_signal(tsk, mask, info);
1755 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1756
1757 return ret;
1758 }
1759
1760 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1761 sigset_t *mask);
1762 extern void unblock_all_signals(void);
1763 extern void release_task(struct task_struct * p);
1764 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1765 extern int force_sigsegv(int, struct task_struct *);
1766 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1767 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1768 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
1769 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
1770 extern int kill_pgrp(struct pid *pid, int sig, int priv);
1771 extern int kill_pid(struct pid *pid, int sig, int priv);
1772 extern int kill_proc_info(int, struct siginfo *, pid_t);
1773 extern int do_notify_parent(struct task_struct *, int);
1774 extern void force_sig(int, struct task_struct *);
1775 extern void force_sig_specific(int, struct task_struct *);
1776 extern int send_sig(int, struct task_struct *, int);
1777 extern void zap_other_threads(struct task_struct *p);
1778 extern struct sigqueue *sigqueue_alloc(void);
1779 extern void sigqueue_free(struct sigqueue *);
1780 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
1781 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1782 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1783
1784 static inline int kill_cad_pid(int sig, int priv)
1785 {
1786 return kill_pid(cad_pid, sig, priv);
1787 }
1788
1789 /* These can be the second arg to send_sig_info/send_group_sig_info. */
1790 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
1791 #define SEND_SIG_PRIV ((struct siginfo *) 1)
1792 #define SEND_SIG_FORCED ((struct siginfo *) 2)
1793
1794 static inline int is_si_special(const struct siginfo *info)
1795 {
1796 return info <= SEND_SIG_FORCED;
1797 }
1798
1799 /* True if we are on the alternate signal stack. */
1800
1801 static inline int on_sig_stack(unsigned long sp)
1802 {
1803 return (sp - current->sas_ss_sp < current->sas_ss_size);
1804 }
1805
1806 static inline int sas_ss_flags(unsigned long sp)
1807 {
1808 return (current->sas_ss_size == 0 ? SS_DISABLE
1809 : on_sig_stack(sp) ? SS_ONSTACK : 0);
1810 }
1811
1812 /*
1813 * Routines for handling mm_structs
1814 */
1815 extern struct mm_struct * mm_alloc(void);
1816
1817 /* mmdrop drops the mm and the page tables */
1818 extern void __mmdrop(struct mm_struct *);
1819 static inline void mmdrop(struct mm_struct * mm)
1820 {
1821 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1822 __mmdrop(mm);
1823 }
1824
1825 /* mmput gets rid of the mappings and all user-space */
1826 extern void mmput(struct mm_struct *);
1827 /* Grab a reference to a task's mm, if it is not already going away */
1828 extern struct mm_struct *get_task_mm(struct task_struct *task);
1829 /* Remove the current tasks stale references to the old mm_struct */
1830 extern void mm_release(struct task_struct *, struct mm_struct *);
1831 /* Allocate a new mm structure and copy contents from tsk->mm */
1832 extern struct mm_struct *dup_mm(struct task_struct *tsk);
1833
1834 extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
1835 extern void flush_thread(void);
1836 extern void exit_thread(void);
1837
1838 extern void exit_files(struct task_struct *);
1839 extern void __cleanup_signal(struct signal_struct *);
1840 extern void __cleanup_sighand(struct sighand_struct *);
1841
1842 extern void exit_itimers(struct signal_struct *);
1843 extern void flush_itimer_signals(void);
1844
1845 extern NORET_TYPE void do_group_exit(int);
1846
1847 extern void daemonize(const char *, ...);
1848 extern int allow_signal(int);
1849 extern int disallow_signal(int);
1850
1851 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
1852 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
1853 struct task_struct *fork_idle(int);
1854
1855 extern void set_task_comm(struct task_struct *tsk, char *from);
1856 extern char *get_task_comm(char *to, struct task_struct *tsk);
1857
1858 #ifdef CONFIG_SMP
1859 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1860 #else
1861 static inline unsigned long wait_task_inactive(struct task_struct *p,
1862 long match_state)
1863 {
1864 return 1;
1865 }
1866 #endif
1867
1868 #define next_task(p) list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks)
1869
1870 #define for_each_process(p) \
1871 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
1872
1873 extern bool is_single_threaded(struct task_struct *);
1874
1875 /*
1876 * Careful: do_each_thread/while_each_thread is a double loop so
1877 * 'break' will not work as expected - use goto instead.
1878 */
1879 #define do_each_thread(g, t) \
1880 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
1881
1882 #define while_each_thread(g, t) \
1883 while ((t = next_thread(t)) != g)
1884
1885 /* de_thread depends on thread_group_leader not being a pid based check */
1886 #define thread_group_leader(p) (p == p->group_leader)
1887
1888 /* Do to the insanities of de_thread it is possible for a process
1889 * to have the pid of the thread group leader without actually being
1890 * the thread group leader. For iteration through the pids in proc
1891 * all we care about is that we have a task with the appropriate
1892 * pid, we don't actually care if we have the right task.
1893 */
1894 static inline int has_group_leader_pid(struct task_struct *p)
1895 {
1896 return p->pid == p->tgid;
1897 }
1898
1899 static inline
1900 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
1901 {
1902 return p1->tgid == p2->tgid;
1903 }
1904
1905 static inline struct task_struct *next_thread(const struct task_struct *p)
1906 {
1907 return list_entry(rcu_dereference(p->thread_group.next),
1908 struct task_struct, thread_group);
1909 }
1910
1911 static inline int thread_group_empty(struct task_struct *p)
1912 {
1913 return list_empty(&p->thread_group);
1914 }
1915
1916 #define delay_group_leader(p) \
1917 (thread_group_leader(p) && !thread_group_empty(p))
1918
1919 /*
1920 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
1921 * subscriptions and synchronises with wait4(). Also used in procfs. Also
1922 * pins the final release of task.io_context. Also protects ->cpuset and
1923 * ->cgroup.subsys[].
1924 *
1925 * Nests both inside and outside of read_lock(&tasklist_lock).
1926 * It must not be nested with write_lock_irq(&tasklist_lock),
1927 * neither inside nor outside.
1928 */
1929 static inline void task_lock(struct task_struct *p)
1930 {
1931 spin_lock(&p->alloc_lock);
1932 }
1933
1934 static inline void task_unlock(struct task_struct *p)
1935 {
1936 spin_unlock(&p->alloc_lock);
1937 }
1938
1939 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
1940 unsigned long *flags);
1941
1942 static inline void unlock_task_sighand(struct task_struct *tsk,
1943 unsigned long *flags)
1944 {
1945 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
1946 }
1947
1948 #ifndef __HAVE_THREAD_FUNCTIONS
1949
1950 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
1951 #define task_stack_page(task) ((task)->stack)
1952
1953 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
1954 {
1955 *task_thread_info(p) = *task_thread_info(org);
1956 task_thread_info(p)->task = p;
1957 }
1958
1959 static inline unsigned long *end_of_stack(struct task_struct *p)
1960 {
1961 return (unsigned long *)(task_thread_info(p) + 1);
1962 }
1963
1964 #endif
1965
1966 static inline int object_is_on_stack(void *obj)
1967 {
1968 void *stack = task_stack_page(current);
1969
1970 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
1971 }
1972
1973 extern void thread_info_cache_init(void);
1974
1975 /* set thread flags in other task's structures
1976 * - see asm/thread_info.h for TIF_xxxx flags available
1977 */
1978 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1979 {
1980 set_ti_thread_flag(task_thread_info(tsk), flag);
1981 }
1982
1983 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1984 {
1985 clear_ti_thread_flag(task_thread_info(tsk), flag);
1986 }
1987
1988 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1989 {
1990 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1991 }
1992
1993 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1994 {
1995 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1996 }
1997
1998 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1999 {
2000 return test_ti_thread_flag(task_thread_info(tsk), flag);
2001 }
2002
2003 static inline void set_tsk_need_resched(struct task_struct *tsk)
2004 {
2005 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2006 }
2007
2008 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2009 {
2010 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2011 }
2012
2013 static inline int test_tsk_need_resched(struct task_struct *tsk)
2014 {
2015 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2016 }
2017
2018 static inline int signal_pending(struct task_struct *p)
2019 {
2020 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2021 }
2022
2023 extern int __fatal_signal_pending(struct task_struct *p);
2024
2025 static inline int fatal_signal_pending(struct task_struct *p)
2026 {
2027 return signal_pending(p) && __fatal_signal_pending(p);
2028 }
2029
2030 static inline int signal_pending_state(long state, struct task_struct *p)
2031 {
2032 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2033 return 0;
2034 if (!signal_pending(p))
2035 return 0;
2036
2037 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2038 }
2039
2040 static inline int need_resched(void)
2041 {
2042 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2043 }
2044
2045 /*
2046 * cond_resched() and cond_resched_lock(): latency reduction via
2047 * explicit rescheduling in places that are safe. The return
2048 * value indicates whether a reschedule was done in fact.
2049 * cond_resched_lock() will drop the spinlock before scheduling,
2050 * cond_resched_softirq() will enable bhs before scheduling.
2051 */
2052 extern int _cond_resched(void);
2053 #ifdef CONFIG_PREEMPT_BKL
2054 static inline int cond_resched(void)
2055 {
2056 return 0;
2057 }
2058 #else
2059 static inline int cond_resched(void)
2060 {
2061 return _cond_resched();
2062 }
2063 #endif
2064 extern int cond_resched_lock(spinlock_t * lock);
2065 extern int cond_resched_softirq(void);
2066 static inline int cond_resched_bkl(void)
2067 {
2068 return _cond_resched();
2069 }
2070
2071 /*
2072 * Does a critical section need to be broken due to another
2073 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2074 * but a general need for low latency)
2075 */
2076 static inline int spin_needbreak(spinlock_t *lock)
2077 {
2078 #ifdef CONFIG_PREEMPT
2079 return spin_is_contended(lock);
2080 #else
2081 return 0;
2082 #endif
2083 }
2084
2085 /*
2086 * Thread group CPU time accounting.
2087 */
2088
2089 extern int thread_group_cputime_alloc(struct task_struct *);
2090 extern void thread_group_cputime(struct task_struct *, struct task_cputime *);
2091
2092 static inline void thread_group_cputime_init(struct signal_struct *sig)
2093 {
2094 sig->cputime.totals = NULL;
2095 }
2096
2097 static inline int thread_group_cputime_clone_thread(struct task_struct *curr)
2098 {
2099 if (curr->signal->cputime.totals)
2100 return 0;
2101 return thread_group_cputime_alloc(curr);
2102 }
2103
2104 static inline void thread_group_cputime_free(struct signal_struct *sig)
2105 {
2106 free_percpu(sig->cputime.totals);
2107 }
2108
2109 /*
2110 * Reevaluate whether the task has signals pending delivery.
2111 * Wake the task if so.
2112 * This is required every time the blocked sigset_t changes.
2113 * callers must hold sighand->siglock.
2114 */
2115 extern void recalc_sigpending_and_wake(struct task_struct *t);
2116 extern void recalc_sigpending(void);
2117
2118 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2119
2120 /*
2121 * Wrappers for p->thread_info->cpu access. No-op on UP.
2122 */
2123 #ifdef CONFIG_SMP
2124
2125 static inline unsigned int task_cpu(const struct task_struct *p)
2126 {
2127 return task_thread_info(p)->cpu;
2128 }
2129
2130 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2131
2132 #else
2133
2134 static inline unsigned int task_cpu(const struct task_struct *p)
2135 {
2136 return 0;
2137 }
2138
2139 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2140 {
2141 }
2142
2143 #endif /* CONFIG_SMP */
2144
2145 extern void arch_pick_mmap_layout(struct mm_struct *mm);
2146
2147 #ifdef CONFIG_TRACING
2148 extern void
2149 __trace_special(void *__tr, void *__data,
2150 unsigned long arg1, unsigned long arg2, unsigned long arg3);
2151 #else
2152 static inline void
2153 __trace_special(void *__tr, void *__data,
2154 unsigned long arg1, unsigned long arg2, unsigned long arg3)
2155 {
2156 }
2157 #endif
2158
2159 extern long sched_setaffinity(pid_t pid, const cpumask_t *new_mask);
2160 extern long sched_getaffinity(pid_t pid, cpumask_t *mask);
2161
2162 extern int sched_mc_power_savings, sched_smt_power_savings;
2163
2164 extern void normalize_rt_tasks(void);
2165
2166 #ifdef CONFIG_GROUP_SCHED
2167
2168 extern struct task_group init_task_group;
2169 #ifdef CONFIG_USER_SCHED
2170 extern struct task_group root_task_group;
2171 #endif
2172
2173 extern struct task_group *sched_create_group(struct task_group *parent);
2174 extern void sched_destroy_group(struct task_group *tg);
2175 extern void sched_move_task(struct task_struct *tsk);
2176 #ifdef CONFIG_FAIR_GROUP_SCHED
2177 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2178 extern unsigned long sched_group_shares(struct task_group *tg);
2179 #endif
2180 #ifdef CONFIG_RT_GROUP_SCHED
2181 extern int sched_group_set_rt_runtime(struct task_group *tg,
2182 long rt_runtime_us);
2183 extern long sched_group_rt_runtime(struct task_group *tg);
2184 extern int sched_group_set_rt_period(struct task_group *tg,
2185 long rt_period_us);
2186 extern long sched_group_rt_period(struct task_group *tg);
2187 #endif
2188 #endif
2189
2190 #ifdef CONFIG_TASK_XACCT
2191 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2192 {
2193 tsk->ioac.rchar += amt;
2194 }
2195
2196 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2197 {
2198 tsk->ioac.wchar += amt;
2199 }
2200
2201 static inline void inc_syscr(struct task_struct *tsk)
2202 {
2203 tsk->ioac.syscr++;
2204 }
2205
2206 static inline void inc_syscw(struct task_struct *tsk)
2207 {
2208 tsk->ioac.syscw++;
2209 }
2210 #else
2211 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2212 {
2213 }
2214
2215 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2216 {
2217 }
2218
2219 static inline void inc_syscr(struct task_struct *tsk)
2220 {
2221 }
2222
2223 static inline void inc_syscw(struct task_struct *tsk)
2224 {
2225 }
2226 #endif
2227
2228 #ifndef TASK_SIZE_OF
2229 #define TASK_SIZE_OF(tsk) TASK_SIZE
2230 #endif
2231
2232 #ifdef CONFIG_MM_OWNER
2233 extern void mm_update_next_owner(struct mm_struct *mm);
2234 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2235 #else
2236 static inline void mm_update_next_owner(struct mm_struct *mm)
2237 {
2238 }
2239
2240 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2241 {
2242 }
2243 #endif /* CONFIG_MM_OWNER */
2244
2245 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
2246
2247 #endif /* __KERNEL__ */
2248
2249 #endif
This page took 0.102576 seconds and 5 git commands to generate.