[NETFILTER]: Replace sk_buff ** with sk_buff *
[deliverable/linux.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <linux/auxvec.h> /* For AT_VECTOR_SIZE */
5
6 /*
7 * cloning flags:
8 */
9 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
10 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
11 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
12 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
13 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
14 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
15 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
16 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
17 #define CLONE_THREAD 0x00010000 /* Same thread group? */
18 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
19 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
20 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
21 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
22 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
23 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
24 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
25 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
26 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
27 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
28 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
29 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
30 #define CLONE_NEWNET 0x40000000 /* New network namespace */
31
32 /*
33 * Scheduling policies
34 */
35 #define SCHED_NORMAL 0
36 #define SCHED_FIFO 1
37 #define SCHED_RR 2
38 #define SCHED_BATCH 3
39 /* SCHED_ISO: reserved but not implemented yet */
40 #define SCHED_IDLE 5
41
42 #ifdef __KERNEL__
43
44 struct sched_param {
45 int sched_priority;
46 };
47
48 #include <asm/param.h> /* for HZ */
49
50 #include <linux/capability.h>
51 #include <linux/threads.h>
52 #include <linux/kernel.h>
53 #include <linux/types.h>
54 #include <linux/timex.h>
55 #include <linux/jiffies.h>
56 #include <linux/rbtree.h>
57 #include <linux/thread_info.h>
58 #include <linux/cpumask.h>
59 #include <linux/errno.h>
60 #include <linux/nodemask.h>
61
62 #include <asm/system.h>
63 #include <asm/semaphore.h>
64 #include <asm/page.h>
65 #include <asm/ptrace.h>
66 #include <asm/mmu.h>
67 #include <asm/cputime.h>
68
69 #include <linux/smp.h>
70 #include <linux/sem.h>
71 #include <linux/signal.h>
72 #include <linux/securebits.h>
73 #include <linux/fs_struct.h>
74 #include <linux/compiler.h>
75 #include <linux/completion.h>
76 #include <linux/pid.h>
77 #include <linux/percpu.h>
78 #include <linux/topology.h>
79 #include <linux/seccomp.h>
80 #include <linux/rcupdate.h>
81 #include <linux/futex.h>
82 #include <linux/rtmutex.h>
83
84 #include <linux/time.h>
85 #include <linux/param.h>
86 #include <linux/resource.h>
87 #include <linux/timer.h>
88 #include <linux/hrtimer.h>
89 #include <linux/task_io_accounting.h>
90 #include <linux/kobject.h>
91
92 #include <asm/processor.h>
93
94 struct exec_domain;
95 struct futex_pi_state;
96 struct bio;
97
98 /*
99 * List of flags we want to share for kernel threads,
100 * if only because they are not used by them anyway.
101 */
102 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
103
104 /*
105 * These are the constant used to fake the fixed-point load-average
106 * counting. Some notes:
107 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
108 * a load-average precision of 10 bits integer + 11 bits fractional
109 * - if you want to count load-averages more often, you need more
110 * precision, or rounding will get you. With 2-second counting freq,
111 * the EXP_n values would be 1981, 2034 and 2043 if still using only
112 * 11 bit fractions.
113 */
114 extern unsigned long avenrun[]; /* Load averages */
115
116 #define FSHIFT 11 /* nr of bits of precision */
117 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
118 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
119 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
120 #define EXP_5 2014 /* 1/exp(5sec/5min) */
121 #define EXP_15 2037 /* 1/exp(5sec/15min) */
122
123 #define CALC_LOAD(load,exp,n) \
124 load *= exp; \
125 load += n*(FIXED_1-exp); \
126 load >>= FSHIFT;
127
128 extern unsigned long total_forks;
129 extern int nr_threads;
130 DECLARE_PER_CPU(unsigned long, process_counts);
131 extern int nr_processes(void);
132 extern unsigned long nr_running(void);
133 extern unsigned long nr_uninterruptible(void);
134 extern unsigned long nr_active(void);
135 extern unsigned long nr_iowait(void);
136 extern unsigned long weighted_cpuload(const int cpu);
137
138 struct seq_file;
139 struct cfs_rq;
140 struct task_group;
141 #ifdef CONFIG_SCHED_DEBUG
142 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
143 extern void proc_sched_set_task(struct task_struct *p);
144 extern void
145 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
146 #else
147 static inline void
148 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
149 {
150 }
151 static inline void proc_sched_set_task(struct task_struct *p)
152 {
153 }
154 static inline void
155 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
156 {
157 }
158 #endif
159
160 /*
161 * Task state bitmask. NOTE! These bits are also
162 * encoded in fs/proc/array.c: get_task_state().
163 *
164 * We have two separate sets of flags: task->state
165 * is about runnability, while task->exit_state are
166 * about the task exiting. Confusing, but this way
167 * modifying one set can't modify the other one by
168 * mistake.
169 */
170 #define TASK_RUNNING 0
171 #define TASK_INTERRUPTIBLE 1
172 #define TASK_UNINTERRUPTIBLE 2
173 #define TASK_STOPPED 4
174 #define TASK_TRACED 8
175 /* in tsk->exit_state */
176 #define EXIT_ZOMBIE 16
177 #define EXIT_DEAD 32
178 /* in tsk->state again */
179 #define TASK_DEAD 64
180
181 #define __set_task_state(tsk, state_value) \
182 do { (tsk)->state = (state_value); } while (0)
183 #define set_task_state(tsk, state_value) \
184 set_mb((tsk)->state, (state_value))
185
186 /*
187 * set_current_state() includes a barrier so that the write of current->state
188 * is correctly serialised wrt the caller's subsequent test of whether to
189 * actually sleep:
190 *
191 * set_current_state(TASK_UNINTERRUPTIBLE);
192 * if (do_i_need_to_sleep())
193 * schedule();
194 *
195 * If the caller does not need such serialisation then use __set_current_state()
196 */
197 #define __set_current_state(state_value) \
198 do { current->state = (state_value); } while (0)
199 #define set_current_state(state_value) \
200 set_mb(current->state, (state_value))
201
202 /* Task command name length */
203 #define TASK_COMM_LEN 16
204
205 #include <linux/spinlock.h>
206
207 /*
208 * This serializes "schedule()" and also protects
209 * the run-queue from deletions/modifications (but
210 * _adding_ to the beginning of the run-queue has
211 * a separate lock).
212 */
213 extern rwlock_t tasklist_lock;
214 extern spinlock_t mmlist_lock;
215
216 struct task_struct;
217
218 extern void sched_init(void);
219 extern void sched_init_smp(void);
220 extern void init_idle(struct task_struct *idle, int cpu);
221 extern void init_idle_bootup_task(struct task_struct *idle);
222
223 extern cpumask_t nohz_cpu_mask;
224 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
225 extern int select_nohz_load_balancer(int cpu);
226 #else
227 static inline int select_nohz_load_balancer(int cpu)
228 {
229 return 0;
230 }
231 #endif
232
233 /*
234 * Only dump TASK_* tasks. (0 for all tasks)
235 */
236 extern void show_state_filter(unsigned long state_filter);
237
238 static inline void show_state(void)
239 {
240 show_state_filter(0);
241 }
242
243 extern void show_regs(struct pt_regs *);
244
245 /*
246 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
247 * task), SP is the stack pointer of the first frame that should be shown in the back
248 * trace (or NULL if the entire call-chain of the task should be shown).
249 */
250 extern void show_stack(struct task_struct *task, unsigned long *sp);
251
252 void io_schedule(void);
253 long io_schedule_timeout(long timeout);
254
255 extern void cpu_init (void);
256 extern void trap_init(void);
257 extern void update_process_times(int user);
258 extern void scheduler_tick(void);
259
260 #ifdef CONFIG_DETECT_SOFTLOCKUP
261 extern void softlockup_tick(void);
262 extern void spawn_softlockup_task(void);
263 extern void touch_softlockup_watchdog(void);
264 extern void touch_all_softlockup_watchdogs(void);
265 #else
266 static inline void softlockup_tick(void)
267 {
268 }
269 static inline void spawn_softlockup_task(void)
270 {
271 }
272 static inline void touch_softlockup_watchdog(void)
273 {
274 }
275 static inline void touch_all_softlockup_watchdogs(void)
276 {
277 }
278 #endif
279
280
281 /* Attach to any functions which should be ignored in wchan output. */
282 #define __sched __attribute__((__section__(".sched.text")))
283 /* Is this address in the __sched functions? */
284 extern int in_sched_functions(unsigned long addr);
285
286 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
287 extern signed long FASTCALL(schedule_timeout(signed long timeout));
288 extern signed long schedule_timeout_interruptible(signed long timeout);
289 extern signed long schedule_timeout_uninterruptible(signed long timeout);
290 asmlinkage void schedule(void);
291
292 struct nsproxy;
293 struct user_namespace;
294
295 /* Maximum number of active map areas.. This is a random (large) number */
296 #define DEFAULT_MAX_MAP_COUNT 65536
297
298 extern int sysctl_max_map_count;
299
300 #include <linux/aio.h>
301
302 extern unsigned long
303 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
304 unsigned long, unsigned long);
305 extern unsigned long
306 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
307 unsigned long len, unsigned long pgoff,
308 unsigned long flags);
309 extern void arch_unmap_area(struct mm_struct *, unsigned long);
310 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
311
312 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
313 /*
314 * The mm counters are not protected by its page_table_lock,
315 * so must be incremented atomically.
316 */
317 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
318 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
319 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
320 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
321 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
322 typedef atomic_long_t mm_counter_t;
323
324 #else /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
325 /*
326 * The mm counters are protected by its page_table_lock,
327 * so can be incremented directly.
328 */
329 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
330 #define get_mm_counter(mm, member) ((mm)->_##member)
331 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
332 #define inc_mm_counter(mm, member) (mm)->_##member++
333 #define dec_mm_counter(mm, member) (mm)->_##member--
334 typedef unsigned long mm_counter_t;
335
336 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
337
338 #define get_mm_rss(mm) \
339 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
340 #define update_hiwater_rss(mm) do { \
341 unsigned long _rss = get_mm_rss(mm); \
342 if ((mm)->hiwater_rss < _rss) \
343 (mm)->hiwater_rss = _rss; \
344 } while (0)
345 #define update_hiwater_vm(mm) do { \
346 if ((mm)->hiwater_vm < (mm)->total_vm) \
347 (mm)->hiwater_vm = (mm)->total_vm; \
348 } while (0)
349
350 extern void set_dumpable(struct mm_struct *mm, int value);
351 extern int get_dumpable(struct mm_struct *mm);
352
353 /* mm flags */
354 /* dumpable bits */
355 #define MMF_DUMPABLE 0 /* core dump is permitted */
356 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
357 #define MMF_DUMPABLE_BITS 2
358
359 /* coredump filter bits */
360 #define MMF_DUMP_ANON_PRIVATE 2
361 #define MMF_DUMP_ANON_SHARED 3
362 #define MMF_DUMP_MAPPED_PRIVATE 4
363 #define MMF_DUMP_MAPPED_SHARED 5
364 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
365 #define MMF_DUMP_FILTER_BITS 4
366 #define MMF_DUMP_FILTER_MASK \
367 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
368 #define MMF_DUMP_FILTER_DEFAULT \
369 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED))
370
371 struct mm_struct {
372 struct vm_area_struct * mmap; /* list of VMAs */
373 struct rb_root mm_rb;
374 struct vm_area_struct * mmap_cache; /* last find_vma result */
375 unsigned long (*get_unmapped_area) (struct file *filp,
376 unsigned long addr, unsigned long len,
377 unsigned long pgoff, unsigned long flags);
378 void (*unmap_area) (struct mm_struct *mm, unsigned long addr);
379 unsigned long mmap_base; /* base of mmap area */
380 unsigned long task_size; /* size of task vm space */
381 unsigned long cached_hole_size; /* if non-zero, the largest hole below free_area_cache */
382 unsigned long free_area_cache; /* first hole of size cached_hole_size or larger */
383 pgd_t * pgd;
384 atomic_t mm_users; /* How many users with user space? */
385 atomic_t mm_count; /* How many references to "struct mm_struct" (users count as 1) */
386 int map_count; /* number of VMAs */
387 struct rw_semaphore mmap_sem;
388 spinlock_t page_table_lock; /* Protects page tables and some counters */
389
390 struct list_head mmlist; /* List of maybe swapped mm's. These are globally strung
391 * together off init_mm.mmlist, and are protected
392 * by mmlist_lock
393 */
394
395 /* Special counters, in some configurations protected by the
396 * page_table_lock, in other configurations by being atomic.
397 */
398 mm_counter_t _file_rss;
399 mm_counter_t _anon_rss;
400
401 unsigned long hiwater_rss; /* High-watermark of RSS usage */
402 unsigned long hiwater_vm; /* High-water virtual memory usage */
403
404 unsigned long total_vm, locked_vm, shared_vm, exec_vm;
405 unsigned long stack_vm, reserved_vm, def_flags, nr_ptes;
406 unsigned long start_code, end_code, start_data, end_data;
407 unsigned long start_brk, brk, start_stack;
408 unsigned long arg_start, arg_end, env_start, env_end;
409
410 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
411
412 cpumask_t cpu_vm_mask;
413
414 /* Architecture-specific MM context */
415 mm_context_t context;
416
417 /* Swap token stuff */
418 /*
419 * Last value of global fault stamp as seen by this process.
420 * In other words, this value gives an indication of how long
421 * it has been since this task got the token.
422 * Look at mm/thrash.c
423 */
424 unsigned int faultstamp;
425 unsigned int token_priority;
426 unsigned int last_interval;
427
428 unsigned long flags; /* Must use atomic bitops to access the bits */
429
430 /* coredumping support */
431 int core_waiters;
432 struct completion *core_startup_done, core_done;
433
434 /* aio bits */
435 rwlock_t ioctx_list_lock;
436 struct kioctx *ioctx_list;
437 };
438
439 struct sighand_struct {
440 atomic_t count;
441 struct k_sigaction action[_NSIG];
442 spinlock_t siglock;
443 wait_queue_head_t signalfd_wqh;
444 };
445
446 struct pacct_struct {
447 int ac_flag;
448 long ac_exitcode;
449 unsigned long ac_mem;
450 cputime_t ac_utime, ac_stime;
451 unsigned long ac_minflt, ac_majflt;
452 };
453
454 /*
455 * NOTE! "signal_struct" does not have it's own
456 * locking, because a shared signal_struct always
457 * implies a shared sighand_struct, so locking
458 * sighand_struct is always a proper superset of
459 * the locking of signal_struct.
460 */
461 struct signal_struct {
462 atomic_t count;
463 atomic_t live;
464
465 wait_queue_head_t wait_chldexit; /* for wait4() */
466
467 /* current thread group signal load-balancing target: */
468 struct task_struct *curr_target;
469
470 /* shared signal handling: */
471 struct sigpending shared_pending;
472
473 /* thread group exit support */
474 int group_exit_code;
475 /* overloaded:
476 * - notify group_exit_task when ->count is equal to notify_count
477 * - everyone except group_exit_task is stopped during signal delivery
478 * of fatal signals, group_exit_task processes the signal.
479 */
480 struct task_struct *group_exit_task;
481 int notify_count;
482
483 /* thread group stop support, overloads group_exit_code too */
484 int group_stop_count;
485 unsigned int flags; /* see SIGNAL_* flags below */
486
487 /* POSIX.1b Interval Timers */
488 struct list_head posix_timers;
489
490 /* ITIMER_REAL timer for the process */
491 struct hrtimer real_timer;
492 struct task_struct *tsk;
493 ktime_t it_real_incr;
494
495 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
496 cputime_t it_prof_expires, it_virt_expires;
497 cputime_t it_prof_incr, it_virt_incr;
498
499 /* job control IDs */
500 pid_t pgrp;
501 struct pid *tty_old_pgrp;
502
503 union {
504 pid_t session __deprecated;
505 pid_t __session;
506 };
507
508 /* boolean value for session group leader */
509 int leader;
510
511 struct tty_struct *tty; /* NULL if no tty */
512
513 /*
514 * Cumulative resource counters for dead threads in the group,
515 * and for reaped dead child processes forked by this group.
516 * Live threads maintain their own counters and add to these
517 * in __exit_signal, except for the group leader.
518 */
519 cputime_t utime, stime, cutime, cstime;
520 cputime_t gtime;
521 cputime_t cgtime;
522 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
523 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
524 unsigned long inblock, oublock, cinblock, coublock;
525
526 /*
527 * Cumulative ns of scheduled CPU time for dead threads in the
528 * group, not including a zombie group leader. (This only differs
529 * from jiffies_to_ns(utime + stime) if sched_clock uses something
530 * other than jiffies.)
531 */
532 unsigned long long sum_sched_runtime;
533
534 /*
535 * We don't bother to synchronize most readers of this at all,
536 * because there is no reader checking a limit that actually needs
537 * to get both rlim_cur and rlim_max atomically, and either one
538 * alone is a single word that can safely be read normally.
539 * getrlimit/setrlimit use task_lock(current->group_leader) to
540 * protect this instead of the siglock, because they really
541 * have no need to disable irqs.
542 */
543 struct rlimit rlim[RLIM_NLIMITS];
544
545 struct list_head cpu_timers[3];
546
547 /* keep the process-shared keyrings here so that they do the right
548 * thing in threads created with CLONE_THREAD */
549 #ifdef CONFIG_KEYS
550 struct key *session_keyring; /* keyring inherited over fork */
551 struct key *process_keyring; /* keyring private to this process */
552 #endif
553 #ifdef CONFIG_BSD_PROCESS_ACCT
554 struct pacct_struct pacct; /* per-process accounting information */
555 #endif
556 #ifdef CONFIG_TASKSTATS
557 struct taskstats *stats;
558 #endif
559 #ifdef CONFIG_AUDIT
560 unsigned audit_tty;
561 struct tty_audit_buf *tty_audit_buf;
562 #endif
563 };
564
565 /* Context switch must be unlocked if interrupts are to be enabled */
566 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
567 # define __ARCH_WANT_UNLOCKED_CTXSW
568 #endif
569
570 /*
571 * Bits in flags field of signal_struct.
572 */
573 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
574 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
575 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
576 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
577
578 /*
579 * Some day this will be a full-fledged user tracking system..
580 */
581 struct user_struct {
582 atomic_t __count; /* reference count */
583 atomic_t processes; /* How many processes does this user have? */
584 atomic_t files; /* How many open files does this user have? */
585 atomic_t sigpending; /* How many pending signals does this user have? */
586 #ifdef CONFIG_INOTIFY_USER
587 atomic_t inotify_watches; /* How many inotify watches does this user have? */
588 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
589 #endif
590 /* protected by mq_lock */
591 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
592 unsigned long locked_shm; /* How many pages of mlocked shm ? */
593
594 #ifdef CONFIG_KEYS
595 struct key *uid_keyring; /* UID specific keyring */
596 struct key *session_keyring; /* UID's default session keyring */
597 #endif
598
599 /* Hash table maintenance information */
600 struct hlist_node uidhash_node;
601 uid_t uid;
602
603 #ifdef CONFIG_FAIR_USER_SCHED
604 struct task_group *tg;
605 struct kset kset;
606 struct subsys_attribute user_attr;
607 struct work_struct work;
608 #endif
609 };
610
611 #ifdef CONFIG_FAIR_USER_SCHED
612 extern int uids_kobject_init(void);
613 #else
614 static inline int uids_kobject_init(void) { return 0; }
615 #endif
616
617 extern struct user_struct *find_user(uid_t);
618
619 extern struct user_struct root_user;
620 #define INIT_USER (&root_user)
621
622 struct backing_dev_info;
623 struct reclaim_state;
624
625 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
626 struct sched_info {
627 /* cumulative counters */
628 unsigned long pcount; /* # of times run on this cpu */
629 unsigned long long cpu_time, /* time spent on the cpu */
630 run_delay; /* time spent waiting on a runqueue */
631
632 /* timestamps */
633 unsigned long long last_arrival,/* when we last ran on a cpu */
634 last_queued; /* when we were last queued to run */
635 #ifdef CONFIG_SCHEDSTATS
636 /* BKL stats */
637 unsigned long bkl_count;
638 #endif
639 };
640 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
641
642 #ifdef CONFIG_SCHEDSTATS
643 extern const struct file_operations proc_schedstat_operations;
644 #endif /* CONFIG_SCHEDSTATS */
645
646 #ifdef CONFIG_TASK_DELAY_ACCT
647 struct task_delay_info {
648 spinlock_t lock;
649 unsigned int flags; /* Private per-task flags */
650
651 /* For each stat XXX, add following, aligned appropriately
652 *
653 * struct timespec XXX_start, XXX_end;
654 * u64 XXX_delay;
655 * u32 XXX_count;
656 *
657 * Atomicity of updates to XXX_delay, XXX_count protected by
658 * single lock above (split into XXX_lock if contention is an issue).
659 */
660
661 /*
662 * XXX_count is incremented on every XXX operation, the delay
663 * associated with the operation is added to XXX_delay.
664 * XXX_delay contains the accumulated delay time in nanoseconds.
665 */
666 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
667 u64 blkio_delay; /* wait for sync block io completion */
668 u64 swapin_delay; /* wait for swapin block io completion */
669 u32 blkio_count; /* total count of the number of sync block */
670 /* io operations performed */
671 u32 swapin_count; /* total count of the number of swapin block */
672 /* io operations performed */
673 };
674 #endif /* CONFIG_TASK_DELAY_ACCT */
675
676 static inline int sched_info_on(void)
677 {
678 #ifdef CONFIG_SCHEDSTATS
679 return 1;
680 #elif defined(CONFIG_TASK_DELAY_ACCT)
681 extern int delayacct_on;
682 return delayacct_on;
683 #else
684 return 0;
685 #endif
686 }
687
688 enum cpu_idle_type {
689 CPU_IDLE,
690 CPU_NOT_IDLE,
691 CPU_NEWLY_IDLE,
692 CPU_MAX_IDLE_TYPES
693 };
694
695 /*
696 * sched-domains (multiprocessor balancing) declarations:
697 */
698
699 /*
700 * Increase resolution of nice-level calculations:
701 */
702 #define SCHED_LOAD_SHIFT 10
703 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
704
705 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
706
707 #ifdef CONFIG_SMP
708 #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */
709 #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */
710 #define SD_BALANCE_EXEC 4 /* Balance on exec */
711 #define SD_BALANCE_FORK 8 /* Balance on fork, clone */
712 #define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */
713 #define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */
714 #define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */
715 #define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */
716 #define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */
717 #define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */
718 #define SD_SERIALIZE 1024 /* Only a single load balancing instance */
719
720 #define BALANCE_FOR_MC_POWER \
721 (sched_smt_power_savings ? SD_POWERSAVINGS_BALANCE : 0)
722
723 #define BALANCE_FOR_PKG_POWER \
724 ((sched_mc_power_savings || sched_smt_power_savings) ? \
725 SD_POWERSAVINGS_BALANCE : 0)
726
727 #define test_sd_parent(sd, flag) ((sd->parent && \
728 (sd->parent->flags & flag)) ? 1 : 0)
729
730
731 struct sched_group {
732 struct sched_group *next; /* Must be a circular list */
733 cpumask_t cpumask;
734
735 /*
736 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
737 * single CPU. This is read only (except for setup, hotplug CPU).
738 * Note : Never change cpu_power without recompute its reciprocal
739 */
740 unsigned int __cpu_power;
741 /*
742 * reciprocal value of cpu_power to avoid expensive divides
743 * (see include/linux/reciprocal_div.h)
744 */
745 u32 reciprocal_cpu_power;
746 };
747
748 struct sched_domain {
749 /* These fields must be setup */
750 struct sched_domain *parent; /* top domain must be null terminated */
751 struct sched_domain *child; /* bottom domain must be null terminated */
752 struct sched_group *groups; /* the balancing groups of the domain */
753 cpumask_t span; /* span of all CPUs in this domain */
754 unsigned long min_interval; /* Minimum balance interval ms */
755 unsigned long max_interval; /* Maximum balance interval ms */
756 unsigned int busy_factor; /* less balancing by factor if busy */
757 unsigned int imbalance_pct; /* No balance until over watermark */
758 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
759 unsigned int busy_idx;
760 unsigned int idle_idx;
761 unsigned int newidle_idx;
762 unsigned int wake_idx;
763 unsigned int forkexec_idx;
764 int flags; /* See SD_* */
765
766 /* Runtime fields. */
767 unsigned long last_balance; /* init to jiffies. units in jiffies */
768 unsigned int balance_interval; /* initialise to 1. units in ms. */
769 unsigned int nr_balance_failed; /* initialise to 0 */
770
771 #ifdef CONFIG_SCHEDSTATS
772 /* load_balance() stats */
773 unsigned long lb_count[CPU_MAX_IDLE_TYPES];
774 unsigned long lb_failed[CPU_MAX_IDLE_TYPES];
775 unsigned long lb_balanced[CPU_MAX_IDLE_TYPES];
776 unsigned long lb_imbalance[CPU_MAX_IDLE_TYPES];
777 unsigned long lb_gained[CPU_MAX_IDLE_TYPES];
778 unsigned long lb_hot_gained[CPU_MAX_IDLE_TYPES];
779 unsigned long lb_nobusyg[CPU_MAX_IDLE_TYPES];
780 unsigned long lb_nobusyq[CPU_MAX_IDLE_TYPES];
781
782 /* Active load balancing */
783 unsigned long alb_count;
784 unsigned long alb_failed;
785 unsigned long alb_pushed;
786
787 /* SD_BALANCE_EXEC stats */
788 unsigned long sbe_count;
789 unsigned long sbe_balanced;
790 unsigned long sbe_pushed;
791
792 /* SD_BALANCE_FORK stats */
793 unsigned long sbf_count;
794 unsigned long sbf_balanced;
795 unsigned long sbf_pushed;
796
797 /* try_to_wake_up() stats */
798 unsigned long ttwu_wake_remote;
799 unsigned long ttwu_move_affine;
800 unsigned long ttwu_move_balance;
801 #endif
802 };
803
804 extern int partition_sched_domains(cpumask_t *partition1,
805 cpumask_t *partition2);
806
807 #endif /* CONFIG_SMP */
808
809 /*
810 * A runqueue laden with a single nice 0 task scores a weighted_cpuload of
811 * SCHED_LOAD_SCALE. This function returns 1 if any cpu is laden with a
812 * task of nice 0 or enough lower priority tasks to bring up the
813 * weighted_cpuload
814 */
815 static inline int above_background_load(void)
816 {
817 unsigned long cpu;
818
819 for_each_online_cpu(cpu) {
820 if (weighted_cpuload(cpu) >= SCHED_LOAD_SCALE)
821 return 1;
822 }
823 return 0;
824 }
825
826 struct io_context; /* See blkdev.h */
827 struct cpuset;
828
829 #define NGROUPS_SMALL 32
830 #define NGROUPS_PER_BLOCK ((int)(PAGE_SIZE / sizeof(gid_t)))
831 struct group_info {
832 int ngroups;
833 atomic_t usage;
834 gid_t small_block[NGROUPS_SMALL];
835 int nblocks;
836 gid_t *blocks[0];
837 };
838
839 /*
840 * get_group_info() must be called with the owning task locked (via task_lock())
841 * when task != current. The reason being that the vast majority of callers are
842 * looking at current->group_info, which can not be changed except by the
843 * current task. Changing current->group_info requires the task lock, too.
844 */
845 #define get_group_info(group_info) do { \
846 atomic_inc(&(group_info)->usage); \
847 } while (0)
848
849 #define put_group_info(group_info) do { \
850 if (atomic_dec_and_test(&(group_info)->usage)) \
851 groups_free(group_info); \
852 } while (0)
853
854 extern struct group_info *groups_alloc(int gidsetsize);
855 extern void groups_free(struct group_info *group_info);
856 extern int set_current_groups(struct group_info *group_info);
857 extern int groups_search(struct group_info *group_info, gid_t grp);
858 /* access the groups "array" with this macro */
859 #define GROUP_AT(gi, i) \
860 ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK])
861
862 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
863 extern void prefetch_stack(struct task_struct *t);
864 #else
865 static inline void prefetch_stack(struct task_struct *t) { }
866 #endif
867
868 struct audit_context; /* See audit.c */
869 struct mempolicy;
870 struct pipe_inode_info;
871 struct uts_namespace;
872
873 struct rq;
874 struct sched_domain;
875
876 struct sched_class {
877 const struct sched_class *next;
878
879 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
880 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
881 void (*yield_task) (struct rq *rq);
882
883 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p);
884
885 struct task_struct * (*pick_next_task) (struct rq *rq);
886 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
887
888 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
889 struct rq *busiest,
890 unsigned long max_nr_move, unsigned long max_load_move,
891 struct sched_domain *sd, enum cpu_idle_type idle,
892 int *all_pinned, int *this_best_prio);
893
894 void (*set_curr_task) (struct rq *rq);
895 void (*task_tick) (struct rq *rq, struct task_struct *p);
896 void (*task_new) (struct rq *rq, struct task_struct *p);
897 };
898
899 struct load_weight {
900 unsigned long weight, inv_weight;
901 };
902
903 /*
904 * CFS stats for a schedulable entity (task, task-group etc)
905 *
906 * Current field usage histogram:
907 *
908 * 4 se->block_start
909 * 4 se->run_node
910 * 4 se->sleep_start
911 * 6 se->load.weight
912 */
913 struct sched_entity {
914 struct load_weight load; /* for load-balancing */
915 struct rb_node run_node;
916 unsigned int on_rq;
917 int peer_preempt;
918
919 u64 exec_start;
920 u64 sum_exec_runtime;
921 u64 vruntime;
922 u64 prev_sum_exec_runtime;
923
924 #ifdef CONFIG_SCHEDSTATS
925 u64 wait_start;
926 u64 wait_max;
927
928 u64 sleep_start;
929 u64 sleep_max;
930 s64 sum_sleep_runtime;
931
932 u64 block_start;
933 u64 block_max;
934 u64 exec_max;
935 u64 slice_max;
936
937 u64 nr_migrations;
938 u64 nr_migrations_cold;
939 u64 nr_failed_migrations_affine;
940 u64 nr_failed_migrations_running;
941 u64 nr_failed_migrations_hot;
942 u64 nr_forced_migrations;
943 u64 nr_forced2_migrations;
944
945 u64 nr_wakeups;
946 u64 nr_wakeups_sync;
947 u64 nr_wakeups_migrate;
948 u64 nr_wakeups_local;
949 u64 nr_wakeups_remote;
950 u64 nr_wakeups_affine;
951 u64 nr_wakeups_affine_attempts;
952 u64 nr_wakeups_passive;
953 u64 nr_wakeups_idle;
954 #endif
955
956 #ifdef CONFIG_FAIR_GROUP_SCHED
957 struct sched_entity *parent;
958 /* rq on which this entity is (to be) queued: */
959 struct cfs_rq *cfs_rq;
960 /* rq "owned" by this entity/group: */
961 struct cfs_rq *my_q;
962 #endif
963 };
964
965 struct task_struct {
966 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
967 void *stack;
968 atomic_t usage;
969 unsigned int flags; /* per process flags, defined below */
970 unsigned int ptrace;
971
972 int lock_depth; /* BKL lock depth */
973
974 #ifdef CONFIG_SMP
975 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
976 int oncpu;
977 #endif
978 #endif
979
980 int prio, static_prio, normal_prio;
981 struct list_head run_list;
982 const struct sched_class *sched_class;
983 struct sched_entity se;
984
985 #ifdef CONFIG_PREEMPT_NOTIFIERS
986 /* list of struct preempt_notifier: */
987 struct hlist_head preempt_notifiers;
988 #endif
989
990 unsigned short ioprio;
991 #ifdef CONFIG_BLK_DEV_IO_TRACE
992 unsigned int btrace_seq;
993 #endif
994
995 unsigned int policy;
996 cpumask_t cpus_allowed;
997 unsigned int time_slice;
998
999 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1000 struct sched_info sched_info;
1001 #endif
1002
1003 struct list_head tasks;
1004 /*
1005 * ptrace_list/ptrace_children forms the list of my children
1006 * that were stolen by a ptracer.
1007 */
1008 struct list_head ptrace_children;
1009 struct list_head ptrace_list;
1010
1011 struct mm_struct *mm, *active_mm;
1012
1013 /* task state */
1014 struct linux_binfmt *binfmt;
1015 int exit_state;
1016 int exit_code, exit_signal;
1017 int pdeath_signal; /* The signal sent when the parent dies */
1018 /* ??? */
1019 unsigned int personality;
1020 unsigned did_exec:1;
1021 pid_t pid;
1022 pid_t tgid;
1023
1024 #ifdef CONFIG_CC_STACKPROTECTOR
1025 /* Canary value for the -fstack-protector gcc feature */
1026 unsigned long stack_canary;
1027 #endif
1028 /*
1029 * pointers to (original) parent process, youngest child, younger sibling,
1030 * older sibling, respectively. (p->father can be replaced with
1031 * p->parent->pid)
1032 */
1033 struct task_struct *real_parent; /* real parent process (when being debugged) */
1034 struct task_struct *parent; /* parent process */
1035 /*
1036 * children/sibling forms the list of my children plus the
1037 * tasks I'm ptracing.
1038 */
1039 struct list_head children; /* list of my children */
1040 struct list_head sibling; /* linkage in my parent's children list */
1041 struct task_struct *group_leader; /* threadgroup leader */
1042
1043 /* PID/PID hash table linkage. */
1044 struct pid_link pids[PIDTYPE_MAX];
1045 struct list_head thread_group;
1046
1047 struct completion *vfork_done; /* for vfork() */
1048 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1049 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1050
1051 unsigned int rt_priority;
1052 cputime_t utime, stime;
1053 cputime_t gtime;
1054 unsigned long nvcsw, nivcsw; /* context switch counts */
1055 struct timespec start_time; /* monotonic time */
1056 struct timespec real_start_time; /* boot based time */
1057 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1058 unsigned long min_flt, maj_flt;
1059
1060 cputime_t it_prof_expires, it_virt_expires;
1061 unsigned long long it_sched_expires;
1062 struct list_head cpu_timers[3];
1063
1064 /* process credentials */
1065 uid_t uid,euid,suid,fsuid;
1066 gid_t gid,egid,sgid,fsgid;
1067 struct group_info *group_info;
1068 kernel_cap_t cap_effective, cap_inheritable, cap_permitted;
1069 unsigned keep_capabilities:1;
1070 struct user_struct *user;
1071 #ifdef CONFIG_KEYS
1072 struct key *request_key_auth; /* assumed request_key authority */
1073 struct key *thread_keyring; /* keyring private to this thread */
1074 unsigned char jit_keyring; /* default keyring to attach requested keys to */
1075 #endif
1076 /*
1077 * fpu_counter contains the number of consecutive context switches
1078 * that the FPU is used. If this is over a threshold, the lazy fpu
1079 * saving becomes unlazy to save the trap. This is an unsigned char
1080 * so that after 256 times the counter wraps and the behavior turns
1081 * lazy again; this to deal with bursty apps that only use FPU for
1082 * a short time
1083 */
1084 unsigned char fpu_counter;
1085 int oomkilladj; /* OOM kill score adjustment (bit shift). */
1086 char comm[TASK_COMM_LEN]; /* executable name excluding path
1087 - access with [gs]et_task_comm (which lock
1088 it with task_lock())
1089 - initialized normally by flush_old_exec */
1090 /* file system info */
1091 int link_count, total_link_count;
1092 #ifdef CONFIG_SYSVIPC
1093 /* ipc stuff */
1094 struct sysv_sem sysvsem;
1095 #endif
1096 /* CPU-specific state of this task */
1097 struct thread_struct thread;
1098 /* filesystem information */
1099 struct fs_struct *fs;
1100 /* open file information */
1101 struct files_struct *files;
1102 /* namespaces */
1103 struct nsproxy *nsproxy;
1104 /* signal handlers */
1105 struct signal_struct *signal;
1106 struct sighand_struct *sighand;
1107
1108 sigset_t blocked, real_blocked;
1109 sigset_t saved_sigmask; /* To be restored with TIF_RESTORE_SIGMASK */
1110 struct sigpending pending;
1111
1112 unsigned long sas_ss_sp;
1113 size_t sas_ss_size;
1114 int (*notifier)(void *priv);
1115 void *notifier_data;
1116 sigset_t *notifier_mask;
1117
1118 void *security;
1119 struct audit_context *audit_context;
1120 seccomp_t seccomp;
1121
1122 /* Thread group tracking */
1123 u32 parent_exec_id;
1124 u32 self_exec_id;
1125 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
1126 spinlock_t alloc_lock;
1127
1128 /* Protection of the PI data structures: */
1129 spinlock_t pi_lock;
1130
1131 #ifdef CONFIG_RT_MUTEXES
1132 /* PI waiters blocked on a rt_mutex held by this task */
1133 struct plist_head pi_waiters;
1134 /* Deadlock detection and priority inheritance handling */
1135 struct rt_mutex_waiter *pi_blocked_on;
1136 #endif
1137
1138 #ifdef CONFIG_DEBUG_MUTEXES
1139 /* mutex deadlock detection */
1140 struct mutex_waiter *blocked_on;
1141 #endif
1142 #ifdef CONFIG_TRACE_IRQFLAGS
1143 unsigned int irq_events;
1144 int hardirqs_enabled;
1145 unsigned long hardirq_enable_ip;
1146 unsigned int hardirq_enable_event;
1147 unsigned long hardirq_disable_ip;
1148 unsigned int hardirq_disable_event;
1149 int softirqs_enabled;
1150 unsigned long softirq_disable_ip;
1151 unsigned int softirq_disable_event;
1152 unsigned long softirq_enable_ip;
1153 unsigned int softirq_enable_event;
1154 int hardirq_context;
1155 int softirq_context;
1156 #endif
1157 #ifdef CONFIG_LOCKDEP
1158 # define MAX_LOCK_DEPTH 30UL
1159 u64 curr_chain_key;
1160 int lockdep_depth;
1161 struct held_lock held_locks[MAX_LOCK_DEPTH];
1162 unsigned int lockdep_recursion;
1163 #endif
1164
1165 /* journalling filesystem info */
1166 void *journal_info;
1167
1168 /* stacked block device info */
1169 struct bio *bio_list, **bio_tail;
1170
1171 /* VM state */
1172 struct reclaim_state *reclaim_state;
1173
1174 struct backing_dev_info *backing_dev_info;
1175
1176 struct io_context *io_context;
1177
1178 unsigned long ptrace_message;
1179 siginfo_t *last_siginfo; /* For ptrace use. */
1180 /*
1181 * current io wait handle: wait queue entry to use for io waits
1182 * If this thread is processing aio, this points at the waitqueue
1183 * inside the currently handled kiocb. It may be NULL (i.e. default
1184 * to a stack based synchronous wait) if its doing sync IO.
1185 */
1186 wait_queue_t *io_wait;
1187 #ifdef CONFIG_TASK_XACCT
1188 /* i/o counters(bytes read/written, #syscalls */
1189 u64 rchar, wchar, syscr, syscw;
1190 #endif
1191 struct task_io_accounting ioac;
1192 #if defined(CONFIG_TASK_XACCT)
1193 u64 acct_rss_mem1; /* accumulated rss usage */
1194 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1195 cputime_t acct_stimexpd;/* stime since last update */
1196 #endif
1197 #ifdef CONFIG_NUMA
1198 struct mempolicy *mempolicy;
1199 short il_next;
1200 #endif
1201 #ifdef CONFIG_CPUSETS
1202 struct cpuset *cpuset;
1203 nodemask_t mems_allowed;
1204 int cpuset_mems_generation;
1205 int cpuset_mem_spread_rotor;
1206 #endif
1207 struct robust_list_head __user *robust_list;
1208 #ifdef CONFIG_COMPAT
1209 struct compat_robust_list_head __user *compat_robust_list;
1210 #endif
1211 struct list_head pi_state_list;
1212 struct futex_pi_state *pi_state_cache;
1213
1214 atomic_t fs_excl; /* holding fs exclusive resources */
1215 struct rcu_head rcu;
1216
1217 /*
1218 * cache last used pipe for splice
1219 */
1220 struct pipe_inode_info *splice_pipe;
1221 #ifdef CONFIG_TASK_DELAY_ACCT
1222 struct task_delay_info *delays;
1223 #endif
1224 #ifdef CONFIG_FAULT_INJECTION
1225 int make_it_fail;
1226 #endif
1227 };
1228
1229 /*
1230 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1231 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1232 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1233 * values are inverted: lower p->prio value means higher priority.
1234 *
1235 * The MAX_USER_RT_PRIO value allows the actual maximum
1236 * RT priority to be separate from the value exported to
1237 * user-space. This allows kernel threads to set their
1238 * priority to a value higher than any user task. Note:
1239 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1240 */
1241
1242 #define MAX_USER_RT_PRIO 100
1243 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1244
1245 #define MAX_PRIO (MAX_RT_PRIO + 40)
1246 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1247
1248 static inline int rt_prio(int prio)
1249 {
1250 if (unlikely(prio < MAX_RT_PRIO))
1251 return 1;
1252 return 0;
1253 }
1254
1255 static inline int rt_task(struct task_struct *p)
1256 {
1257 return rt_prio(p->prio);
1258 }
1259
1260 static inline pid_t process_group(struct task_struct *tsk)
1261 {
1262 return tsk->signal->pgrp;
1263 }
1264
1265 static inline pid_t signal_session(struct signal_struct *sig)
1266 {
1267 return sig->__session;
1268 }
1269
1270 static inline pid_t process_session(struct task_struct *tsk)
1271 {
1272 return signal_session(tsk->signal);
1273 }
1274
1275 static inline void set_signal_session(struct signal_struct *sig, pid_t session)
1276 {
1277 sig->__session = session;
1278 }
1279
1280 static inline struct pid *task_pid(struct task_struct *task)
1281 {
1282 return task->pids[PIDTYPE_PID].pid;
1283 }
1284
1285 static inline struct pid *task_tgid(struct task_struct *task)
1286 {
1287 return task->group_leader->pids[PIDTYPE_PID].pid;
1288 }
1289
1290 static inline struct pid *task_pgrp(struct task_struct *task)
1291 {
1292 return task->group_leader->pids[PIDTYPE_PGID].pid;
1293 }
1294
1295 static inline struct pid *task_session(struct task_struct *task)
1296 {
1297 return task->group_leader->pids[PIDTYPE_SID].pid;
1298 }
1299
1300 /**
1301 * pid_alive - check that a task structure is not stale
1302 * @p: Task structure to be checked.
1303 *
1304 * Test if a process is not yet dead (at most zombie state)
1305 * If pid_alive fails, then pointers within the task structure
1306 * can be stale and must not be dereferenced.
1307 */
1308 static inline int pid_alive(struct task_struct *p)
1309 {
1310 return p->pids[PIDTYPE_PID].pid != NULL;
1311 }
1312
1313 /**
1314 * is_init - check if a task structure is init
1315 * @tsk: Task structure to be checked.
1316 *
1317 * Check if a task structure is the first user space task the kernel created.
1318 */
1319 static inline int is_init(struct task_struct *tsk)
1320 {
1321 return tsk->pid == 1;
1322 }
1323
1324 extern struct pid *cad_pid;
1325
1326 extern void free_task(struct task_struct *tsk);
1327 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1328
1329 extern void __put_task_struct(struct task_struct *t);
1330
1331 static inline void put_task_struct(struct task_struct *t)
1332 {
1333 if (atomic_dec_and_test(&t->usage))
1334 __put_task_struct(t);
1335 }
1336
1337 /*
1338 * Per process flags
1339 */
1340 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1341 /* Not implemented yet, only for 486*/
1342 #define PF_STARTING 0x00000002 /* being created */
1343 #define PF_EXITING 0x00000004 /* getting shut down */
1344 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1345 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1346 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1347 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1348 #define PF_DUMPCORE 0x00000200 /* dumped core */
1349 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1350 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1351 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1352 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1353 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1354 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1355 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1356 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1357 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */
1358 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1359 #define PF_BORROWED_MM 0x00200000 /* I am a kthread doing use_mm */
1360 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1361 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1362 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1363 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1364 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1365 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1366 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1367
1368 /*
1369 * Only the _current_ task can read/write to tsk->flags, but other
1370 * tasks can access tsk->flags in readonly mode for example
1371 * with tsk_used_math (like during threaded core dumping).
1372 * There is however an exception to this rule during ptrace
1373 * or during fork: the ptracer task is allowed to write to the
1374 * child->flags of its traced child (same goes for fork, the parent
1375 * can write to the child->flags), because we're guaranteed the
1376 * child is not running and in turn not changing child->flags
1377 * at the same time the parent does it.
1378 */
1379 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1380 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1381 #define clear_used_math() clear_stopped_child_used_math(current)
1382 #define set_used_math() set_stopped_child_used_math(current)
1383 #define conditional_stopped_child_used_math(condition, child) \
1384 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1385 #define conditional_used_math(condition) \
1386 conditional_stopped_child_used_math(condition, current)
1387 #define copy_to_stopped_child_used_math(child) \
1388 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1389 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1390 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1391 #define used_math() tsk_used_math(current)
1392
1393 #ifdef CONFIG_SMP
1394 extern int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask);
1395 #else
1396 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1397 {
1398 if (!cpu_isset(0, new_mask))
1399 return -EINVAL;
1400 return 0;
1401 }
1402 #endif
1403
1404 extern unsigned long long sched_clock(void);
1405
1406 /*
1407 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1408 * clock constructed from sched_clock():
1409 */
1410 extern unsigned long long cpu_clock(int cpu);
1411
1412 extern unsigned long long
1413 task_sched_runtime(struct task_struct *task);
1414
1415 /* sched_exec is called by processes performing an exec */
1416 #ifdef CONFIG_SMP
1417 extern void sched_exec(void);
1418 #else
1419 #define sched_exec() {}
1420 #endif
1421
1422 extern void sched_clock_idle_sleep_event(void);
1423 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1424
1425 #ifdef CONFIG_HOTPLUG_CPU
1426 extern void idle_task_exit(void);
1427 #else
1428 static inline void idle_task_exit(void) {}
1429 #endif
1430
1431 extern void sched_idle_next(void);
1432
1433 #ifdef CONFIG_SCHED_DEBUG
1434 extern unsigned int sysctl_sched_latency;
1435 extern unsigned int sysctl_sched_nr_latency;
1436 extern unsigned int sysctl_sched_wakeup_granularity;
1437 extern unsigned int sysctl_sched_batch_wakeup_granularity;
1438 extern unsigned int sysctl_sched_child_runs_first;
1439 extern unsigned int sysctl_sched_features;
1440 extern unsigned int sysctl_sched_migration_cost;
1441 #endif
1442
1443 extern unsigned int sysctl_sched_compat_yield;
1444
1445 #ifdef CONFIG_RT_MUTEXES
1446 extern int rt_mutex_getprio(struct task_struct *p);
1447 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1448 extern void rt_mutex_adjust_pi(struct task_struct *p);
1449 #else
1450 static inline int rt_mutex_getprio(struct task_struct *p)
1451 {
1452 return p->normal_prio;
1453 }
1454 # define rt_mutex_adjust_pi(p) do { } while (0)
1455 #endif
1456
1457 extern void set_user_nice(struct task_struct *p, long nice);
1458 extern int task_prio(const struct task_struct *p);
1459 extern int task_nice(const struct task_struct *p);
1460 extern int can_nice(const struct task_struct *p, const int nice);
1461 extern int task_curr(const struct task_struct *p);
1462 extern int idle_cpu(int cpu);
1463 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1464 extern struct task_struct *idle_task(int cpu);
1465 extern struct task_struct *curr_task(int cpu);
1466 extern void set_curr_task(int cpu, struct task_struct *p);
1467
1468 void yield(void);
1469
1470 /*
1471 * The default (Linux) execution domain.
1472 */
1473 extern struct exec_domain default_exec_domain;
1474
1475 union thread_union {
1476 struct thread_info thread_info;
1477 unsigned long stack[THREAD_SIZE/sizeof(long)];
1478 };
1479
1480 #ifndef __HAVE_ARCH_KSTACK_END
1481 static inline int kstack_end(void *addr)
1482 {
1483 /* Reliable end of stack detection:
1484 * Some APM bios versions misalign the stack
1485 */
1486 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1487 }
1488 #endif
1489
1490 extern union thread_union init_thread_union;
1491 extern struct task_struct init_task;
1492
1493 extern struct mm_struct init_mm;
1494
1495 #define find_task_by_pid(nr) find_task_by_pid_type(PIDTYPE_PID, nr)
1496 extern struct task_struct *find_task_by_pid_type(int type, int pid);
1497 extern void __set_special_pids(pid_t session, pid_t pgrp);
1498
1499 /* per-UID process charging. */
1500 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1501 static inline struct user_struct *get_uid(struct user_struct *u)
1502 {
1503 atomic_inc(&u->__count);
1504 return u;
1505 }
1506 extern void free_uid(struct user_struct *);
1507 extern void switch_uid(struct user_struct *);
1508 extern void release_uids(struct user_namespace *ns);
1509
1510 #include <asm/current.h>
1511
1512 extern void do_timer(unsigned long ticks);
1513
1514 extern int FASTCALL(wake_up_state(struct task_struct * tsk, unsigned int state));
1515 extern int FASTCALL(wake_up_process(struct task_struct * tsk));
1516 extern void FASTCALL(wake_up_new_task(struct task_struct * tsk,
1517 unsigned long clone_flags));
1518 #ifdef CONFIG_SMP
1519 extern void kick_process(struct task_struct *tsk);
1520 #else
1521 static inline void kick_process(struct task_struct *tsk) { }
1522 #endif
1523 extern void sched_fork(struct task_struct *p, int clone_flags);
1524 extern void sched_dead(struct task_struct *p);
1525
1526 extern int in_group_p(gid_t);
1527 extern int in_egroup_p(gid_t);
1528
1529 extern void proc_caches_init(void);
1530 extern void flush_signals(struct task_struct *);
1531 extern void ignore_signals(struct task_struct *);
1532 extern void flush_signal_handlers(struct task_struct *, int force_default);
1533 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1534
1535 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1536 {
1537 unsigned long flags;
1538 int ret;
1539
1540 spin_lock_irqsave(&tsk->sighand->siglock, flags);
1541 ret = dequeue_signal(tsk, mask, info);
1542 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1543
1544 return ret;
1545 }
1546
1547 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1548 sigset_t *mask);
1549 extern void unblock_all_signals(void);
1550 extern void release_task(struct task_struct * p);
1551 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1552 extern int send_group_sig_info(int, struct siginfo *, struct task_struct *);
1553 extern int force_sigsegv(int, struct task_struct *);
1554 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1555 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1556 extern int kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1557 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
1558 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
1559 extern int kill_pgrp(struct pid *pid, int sig, int priv);
1560 extern int kill_pid(struct pid *pid, int sig, int priv);
1561 extern int kill_proc_info(int, struct siginfo *, pid_t);
1562 extern void do_notify_parent(struct task_struct *, int);
1563 extern void force_sig(int, struct task_struct *);
1564 extern void force_sig_specific(int, struct task_struct *);
1565 extern int send_sig(int, struct task_struct *, int);
1566 extern void zap_other_threads(struct task_struct *p);
1567 extern int kill_proc(pid_t, int, int);
1568 extern struct sigqueue *sigqueue_alloc(void);
1569 extern void sigqueue_free(struct sigqueue *);
1570 extern int send_sigqueue(int, struct sigqueue *, struct task_struct *);
1571 extern int send_group_sigqueue(int, struct sigqueue *, struct task_struct *);
1572 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1573 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1574
1575 static inline int kill_cad_pid(int sig, int priv)
1576 {
1577 return kill_pid(cad_pid, sig, priv);
1578 }
1579
1580 /* These can be the second arg to send_sig_info/send_group_sig_info. */
1581 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
1582 #define SEND_SIG_PRIV ((struct siginfo *) 1)
1583 #define SEND_SIG_FORCED ((struct siginfo *) 2)
1584
1585 static inline int is_si_special(const struct siginfo *info)
1586 {
1587 return info <= SEND_SIG_FORCED;
1588 }
1589
1590 /* True if we are on the alternate signal stack. */
1591
1592 static inline int on_sig_stack(unsigned long sp)
1593 {
1594 return (sp - current->sas_ss_sp < current->sas_ss_size);
1595 }
1596
1597 static inline int sas_ss_flags(unsigned long sp)
1598 {
1599 return (current->sas_ss_size == 0 ? SS_DISABLE
1600 : on_sig_stack(sp) ? SS_ONSTACK : 0);
1601 }
1602
1603 /*
1604 * Routines for handling mm_structs
1605 */
1606 extern struct mm_struct * mm_alloc(void);
1607
1608 /* mmdrop drops the mm and the page tables */
1609 extern void FASTCALL(__mmdrop(struct mm_struct *));
1610 static inline void mmdrop(struct mm_struct * mm)
1611 {
1612 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1613 __mmdrop(mm);
1614 }
1615
1616 /* mmput gets rid of the mappings and all user-space */
1617 extern void mmput(struct mm_struct *);
1618 /* Grab a reference to a task's mm, if it is not already going away */
1619 extern struct mm_struct *get_task_mm(struct task_struct *task);
1620 /* Remove the current tasks stale references to the old mm_struct */
1621 extern void mm_release(struct task_struct *, struct mm_struct *);
1622
1623 extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
1624 extern void flush_thread(void);
1625 extern void exit_thread(void);
1626
1627 extern void exit_files(struct task_struct *);
1628 extern void __cleanup_signal(struct signal_struct *);
1629 extern void __cleanup_sighand(struct sighand_struct *);
1630 extern void exit_itimers(struct signal_struct *);
1631
1632 extern NORET_TYPE void do_group_exit(int);
1633
1634 extern void daemonize(const char *, ...);
1635 extern int allow_signal(int);
1636 extern int disallow_signal(int);
1637
1638 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
1639 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
1640 struct task_struct *fork_idle(int);
1641
1642 extern void set_task_comm(struct task_struct *tsk, char *from);
1643 extern void get_task_comm(char *to, struct task_struct *tsk);
1644
1645 #ifdef CONFIG_SMP
1646 extern void wait_task_inactive(struct task_struct * p);
1647 #else
1648 #define wait_task_inactive(p) do { } while (0)
1649 #endif
1650
1651 #define remove_parent(p) list_del_init(&(p)->sibling)
1652 #define add_parent(p) list_add_tail(&(p)->sibling,&(p)->parent->children)
1653
1654 #define next_task(p) list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks)
1655
1656 #define for_each_process(p) \
1657 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
1658
1659 /*
1660 * Careful: do_each_thread/while_each_thread is a double loop so
1661 * 'break' will not work as expected - use goto instead.
1662 */
1663 #define do_each_thread(g, t) \
1664 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
1665
1666 #define while_each_thread(g, t) \
1667 while ((t = next_thread(t)) != g)
1668
1669 /* de_thread depends on thread_group_leader not being a pid based check */
1670 #define thread_group_leader(p) (p == p->group_leader)
1671
1672 /* Do to the insanities of de_thread it is possible for a process
1673 * to have the pid of the thread group leader without actually being
1674 * the thread group leader. For iteration through the pids in proc
1675 * all we care about is that we have a task with the appropriate
1676 * pid, we don't actually care if we have the right task.
1677 */
1678 static inline int has_group_leader_pid(struct task_struct *p)
1679 {
1680 return p->pid == p->tgid;
1681 }
1682
1683 static inline struct task_struct *next_thread(const struct task_struct *p)
1684 {
1685 return list_entry(rcu_dereference(p->thread_group.next),
1686 struct task_struct, thread_group);
1687 }
1688
1689 static inline int thread_group_empty(struct task_struct *p)
1690 {
1691 return list_empty(&p->thread_group);
1692 }
1693
1694 #define delay_group_leader(p) \
1695 (thread_group_leader(p) && !thread_group_empty(p))
1696
1697 /*
1698 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
1699 * subscriptions and synchronises with wait4(). Also used in procfs. Also
1700 * pins the final release of task.io_context. Also protects ->cpuset.
1701 *
1702 * Nests both inside and outside of read_lock(&tasklist_lock).
1703 * It must not be nested with write_lock_irq(&tasklist_lock),
1704 * neither inside nor outside.
1705 */
1706 static inline void task_lock(struct task_struct *p)
1707 {
1708 spin_lock(&p->alloc_lock);
1709 }
1710
1711 static inline void task_unlock(struct task_struct *p)
1712 {
1713 spin_unlock(&p->alloc_lock);
1714 }
1715
1716 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
1717 unsigned long *flags);
1718
1719 static inline void unlock_task_sighand(struct task_struct *tsk,
1720 unsigned long *flags)
1721 {
1722 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
1723 }
1724
1725 #ifndef __HAVE_THREAD_FUNCTIONS
1726
1727 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
1728 #define task_stack_page(task) ((task)->stack)
1729
1730 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
1731 {
1732 *task_thread_info(p) = *task_thread_info(org);
1733 task_thread_info(p)->task = p;
1734 }
1735
1736 static inline unsigned long *end_of_stack(struct task_struct *p)
1737 {
1738 return (unsigned long *)(task_thread_info(p) + 1);
1739 }
1740
1741 #endif
1742
1743 /* set thread flags in other task's structures
1744 * - see asm/thread_info.h for TIF_xxxx flags available
1745 */
1746 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1747 {
1748 set_ti_thread_flag(task_thread_info(tsk), flag);
1749 }
1750
1751 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1752 {
1753 clear_ti_thread_flag(task_thread_info(tsk), flag);
1754 }
1755
1756 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1757 {
1758 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1759 }
1760
1761 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1762 {
1763 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1764 }
1765
1766 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1767 {
1768 return test_ti_thread_flag(task_thread_info(tsk), flag);
1769 }
1770
1771 static inline void set_tsk_need_resched(struct task_struct *tsk)
1772 {
1773 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1774 }
1775
1776 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1777 {
1778 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1779 }
1780
1781 static inline int signal_pending(struct task_struct *p)
1782 {
1783 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
1784 }
1785
1786 static inline int need_resched(void)
1787 {
1788 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
1789 }
1790
1791 /*
1792 * cond_resched() and cond_resched_lock(): latency reduction via
1793 * explicit rescheduling in places that are safe. The return
1794 * value indicates whether a reschedule was done in fact.
1795 * cond_resched_lock() will drop the spinlock before scheduling,
1796 * cond_resched_softirq() will enable bhs before scheduling.
1797 */
1798 extern int cond_resched(void);
1799 extern int cond_resched_lock(spinlock_t * lock);
1800 extern int cond_resched_softirq(void);
1801
1802 /*
1803 * Does a critical section need to be broken due to another
1804 * task waiting?:
1805 */
1806 #if defined(CONFIG_PREEMPT) && defined(CONFIG_SMP)
1807 # define need_lockbreak(lock) ((lock)->break_lock)
1808 #else
1809 # define need_lockbreak(lock) 0
1810 #endif
1811
1812 /*
1813 * Does a critical section need to be broken due to another
1814 * task waiting or preemption being signalled:
1815 */
1816 static inline int lock_need_resched(spinlock_t *lock)
1817 {
1818 if (need_lockbreak(lock) || need_resched())
1819 return 1;
1820 return 0;
1821 }
1822
1823 /*
1824 * Reevaluate whether the task has signals pending delivery.
1825 * Wake the task if so.
1826 * This is required every time the blocked sigset_t changes.
1827 * callers must hold sighand->siglock.
1828 */
1829 extern void recalc_sigpending_and_wake(struct task_struct *t);
1830 extern void recalc_sigpending(void);
1831
1832 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
1833
1834 /*
1835 * Wrappers for p->thread_info->cpu access. No-op on UP.
1836 */
1837 #ifdef CONFIG_SMP
1838
1839 static inline unsigned int task_cpu(const struct task_struct *p)
1840 {
1841 return task_thread_info(p)->cpu;
1842 }
1843
1844 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1845
1846 #else
1847
1848 static inline unsigned int task_cpu(const struct task_struct *p)
1849 {
1850 return 0;
1851 }
1852
1853 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1854 {
1855 }
1856
1857 #endif /* CONFIG_SMP */
1858
1859 #ifdef HAVE_ARCH_PICK_MMAP_LAYOUT
1860 extern void arch_pick_mmap_layout(struct mm_struct *mm);
1861 #else
1862 static inline void arch_pick_mmap_layout(struct mm_struct *mm)
1863 {
1864 mm->mmap_base = TASK_UNMAPPED_BASE;
1865 mm->get_unmapped_area = arch_get_unmapped_area;
1866 mm->unmap_area = arch_unmap_area;
1867 }
1868 #endif
1869
1870 extern long sched_setaffinity(pid_t pid, cpumask_t new_mask);
1871 extern long sched_getaffinity(pid_t pid, cpumask_t *mask);
1872
1873 extern int sched_mc_power_savings, sched_smt_power_savings;
1874
1875 extern void normalize_rt_tasks(void);
1876
1877 #ifdef CONFIG_FAIR_GROUP_SCHED
1878
1879 extern struct task_group init_task_group;
1880
1881 extern struct task_group *sched_create_group(void);
1882 extern void sched_destroy_group(struct task_group *tg);
1883 extern void sched_move_task(struct task_struct *tsk);
1884 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
1885 extern unsigned long sched_group_shares(struct task_group *tg);
1886
1887 #endif
1888
1889 #ifdef CONFIG_TASK_XACCT
1890 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
1891 {
1892 tsk->rchar += amt;
1893 }
1894
1895 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
1896 {
1897 tsk->wchar += amt;
1898 }
1899
1900 static inline void inc_syscr(struct task_struct *tsk)
1901 {
1902 tsk->syscr++;
1903 }
1904
1905 static inline void inc_syscw(struct task_struct *tsk)
1906 {
1907 tsk->syscw++;
1908 }
1909 #else
1910 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
1911 {
1912 }
1913
1914 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
1915 {
1916 }
1917
1918 static inline void inc_syscr(struct task_struct *tsk)
1919 {
1920 }
1921
1922 static inline void inc_syscw(struct task_struct *tsk)
1923 {
1924 }
1925 #endif
1926
1927 #endif /* __KERNEL__ */
1928
1929 #endif
This page took 0.074895 seconds and 5 git commands to generate.