sched: fix build error, provide partition_sched_domains() unconditionally
[deliverable/linux.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
29 #define CLONE_NEWNET 0x40000000 /* New network namespace */
30 #define CLONE_IO 0x80000000 /* Clone io context */
31
32 /*
33 * Scheduling policies
34 */
35 #define SCHED_NORMAL 0
36 #define SCHED_FIFO 1
37 #define SCHED_RR 2
38 #define SCHED_BATCH 3
39 /* SCHED_ISO: reserved but not implemented yet */
40 #define SCHED_IDLE 5
41
42 #ifdef __KERNEL__
43
44 struct sched_param {
45 int sched_priority;
46 };
47
48 #include <asm/param.h> /* for HZ */
49
50 #include <linux/capability.h>
51 #include <linux/threads.h>
52 #include <linux/kernel.h>
53 #include <linux/types.h>
54 #include <linux/timex.h>
55 #include <linux/jiffies.h>
56 #include <linux/rbtree.h>
57 #include <linux/thread_info.h>
58 #include <linux/cpumask.h>
59 #include <linux/errno.h>
60 #include <linux/nodemask.h>
61 #include <linux/mm_types.h>
62
63 #include <asm/system.h>
64 #include <asm/page.h>
65 #include <asm/ptrace.h>
66 #include <asm/cputime.h>
67
68 #include <linux/smp.h>
69 #include <linux/sem.h>
70 #include <linux/signal.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compiler.h>
73 #include <linux/completion.h>
74 #include <linux/pid.h>
75 #include <linux/percpu.h>
76 #include <linux/topology.h>
77 #include <linux/proportions.h>
78 #include <linux/seccomp.h>
79 #include <linux/rcupdate.h>
80 #include <linux/rtmutex.h>
81
82 #include <linux/time.h>
83 #include <linux/param.h>
84 #include <linux/resource.h>
85 #include <linux/timer.h>
86 #include <linux/hrtimer.h>
87 #include <linux/task_io_accounting.h>
88 #include <linux/kobject.h>
89 #include <linux/latencytop.h>
90
91 #include <asm/processor.h>
92
93 struct mem_cgroup;
94 struct exec_domain;
95 struct futex_pi_state;
96 struct robust_list_head;
97 struct bio;
98
99 /*
100 * List of flags we want to share for kernel threads,
101 * if only because they are not used by them anyway.
102 */
103 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
104
105 /*
106 * These are the constant used to fake the fixed-point load-average
107 * counting. Some notes:
108 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
109 * a load-average precision of 10 bits integer + 11 bits fractional
110 * - if you want to count load-averages more often, you need more
111 * precision, or rounding will get you. With 2-second counting freq,
112 * the EXP_n values would be 1981, 2034 and 2043 if still using only
113 * 11 bit fractions.
114 */
115 extern unsigned long avenrun[]; /* Load averages */
116
117 #define FSHIFT 11 /* nr of bits of precision */
118 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
119 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
120 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
121 #define EXP_5 2014 /* 1/exp(5sec/5min) */
122 #define EXP_15 2037 /* 1/exp(5sec/15min) */
123
124 #define CALC_LOAD(load,exp,n) \
125 load *= exp; \
126 load += n*(FIXED_1-exp); \
127 load >>= FSHIFT;
128
129 extern unsigned long total_forks;
130 extern int nr_threads;
131 DECLARE_PER_CPU(unsigned long, process_counts);
132 extern int nr_processes(void);
133 extern unsigned long nr_running(void);
134 extern unsigned long nr_uninterruptible(void);
135 extern unsigned long nr_active(void);
136 extern unsigned long nr_iowait(void);
137
138 struct seq_file;
139 struct cfs_rq;
140 struct task_group;
141 #ifdef CONFIG_SCHED_DEBUG
142 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
143 extern void proc_sched_set_task(struct task_struct *p);
144 extern void
145 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
146 #else
147 static inline void
148 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
149 {
150 }
151 static inline void proc_sched_set_task(struct task_struct *p)
152 {
153 }
154 static inline void
155 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
156 {
157 }
158 #endif
159
160 extern unsigned long long time_sync_thresh;
161
162 /*
163 * Task state bitmask. NOTE! These bits are also
164 * encoded in fs/proc/array.c: get_task_state().
165 *
166 * We have two separate sets of flags: task->state
167 * is about runnability, while task->exit_state are
168 * about the task exiting. Confusing, but this way
169 * modifying one set can't modify the other one by
170 * mistake.
171 */
172 #define TASK_RUNNING 0
173 #define TASK_INTERRUPTIBLE 1
174 #define TASK_UNINTERRUPTIBLE 2
175 #define __TASK_STOPPED 4
176 #define __TASK_TRACED 8
177 /* in tsk->exit_state */
178 #define EXIT_ZOMBIE 16
179 #define EXIT_DEAD 32
180 /* in tsk->state again */
181 #define TASK_DEAD 64
182 #define TASK_WAKEKILL 128
183
184 /* Convenience macros for the sake of set_task_state */
185 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
186 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
187 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
188
189 /* Convenience macros for the sake of wake_up */
190 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
191 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
192
193 /* get_task_state() */
194 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
195 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
196 __TASK_TRACED)
197
198 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
199 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
200 #define task_is_stopped_or_traced(task) \
201 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
202 #define task_contributes_to_load(task) \
203 ((task->state & TASK_UNINTERRUPTIBLE) != 0)
204
205 #define __set_task_state(tsk, state_value) \
206 do { (tsk)->state = (state_value); } while (0)
207 #define set_task_state(tsk, state_value) \
208 set_mb((tsk)->state, (state_value))
209
210 /*
211 * set_current_state() includes a barrier so that the write of current->state
212 * is correctly serialised wrt the caller's subsequent test of whether to
213 * actually sleep:
214 *
215 * set_current_state(TASK_UNINTERRUPTIBLE);
216 * if (do_i_need_to_sleep())
217 * schedule();
218 *
219 * If the caller does not need such serialisation then use __set_current_state()
220 */
221 #define __set_current_state(state_value) \
222 do { current->state = (state_value); } while (0)
223 #define set_current_state(state_value) \
224 set_mb(current->state, (state_value))
225
226 /* Task command name length */
227 #define TASK_COMM_LEN 16
228
229 #include <linux/spinlock.h>
230
231 /*
232 * This serializes "schedule()" and also protects
233 * the run-queue from deletions/modifications (but
234 * _adding_ to the beginning of the run-queue has
235 * a separate lock).
236 */
237 extern rwlock_t tasklist_lock;
238 extern spinlock_t mmlist_lock;
239
240 struct task_struct;
241
242 extern void sched_init(void);
243 extern void sched_init_smp(void);
244 extern asmlinkage void schedule_tail(struct task_struct *prev);
245 extern void init_idle(struct task_struct *idle, int cpu);
246 extern void init_idle_bootup_task(struct task_struct *idle);
247
248 extern int runqueue_is_locked(void);
249
250 extern cpumask_t nohz_cpu_mask;
251 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
252 extern int select_nohz_load_balancer(int cpu);
253 #else
254 static inline int select_nohz_load_balancer(int cpu)
255 {
256 return 0;
257 }
258 #endif
259
260 extern unsigned long rt_needs_cpu(int cpu);
261
262 /*
263 * Only dump TASK_* tasks. (0 for all tasks)
264 */
265 extern void show_state_filter(unsigned long state_filter);
266
267 static inline void show_state(void)
268 {
269 show_state_filter(0);
270 }
271
272 extern void show_regs(struct pt_regs *);
273
274 /*
275 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
276 * task), SP is the stack pointer of the first frame that should be shown in the back
277 * trace (or NULL if the entire call-chain of the task should be shown).
278 */
279 extern void show_stack(struct task_struct *task, unsigned long *sp);
280
281 void io_schedule(void);
282 long io_schedule_timeout(long timeout);
283
284 extern void cpu_init (void);
285 extern void trap_init(void);
286 extern void account_process_tick(struct task_struct *task, int user);
287 extern void update_process_times(int user);
288 extern void scheduler_tick(void);
289 extern void hrtick_resched(void);
290
291 extern void sched_show_task(struct task_struct *p);
292
293 #ifdef CONFIG_DETECT_SOFTLOCKUP
294 extern void softlockup_tick(void);
295 extern void spawn_softlockup_task(void);
296 extern void touch_softlockup_watchdog(void);
297 extern void touch_all_softlockup_watchdogs(void);
298 extern unsigned long softlockup_thresh;
299 extern unsigned long sysctl_hung_task_check_count;
300 extern unsigned long sysctl_hung_task_timeout_secs;
301 extern unsigned long sysctl_hung_task_warnings;
302 #else
303 static inline void softlockup_tick(void)
304 {
305 }
306 static inline void spawn_softlockup_task(void)
307 {
308 }
309 static inline void touch_softlockup_watchdog(void)
310 {
311 }
312 static inline void touch_all_softlockup_watchdogs(void)
313 {
314 }
315 #endif
316
317
318 /* Attach to any functions which should be ignored in wchan output. */
319 #define __sched __attribute__((__section__(".sched.text")))
320
321 /* Linker adds these: start and end of __sched functions */
322 extern char __sched_text_start[], __sched_text_end[];
323
324 /* Is this address in the __sched functions? */
325 extern int in_sched_functions(unsigned long addr);
326
327 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
328 extern signed long schedule_timeout(signed long timeout);
329 extern signed long schedule_timeout_interruptible(signed long timeout);
330 extern signed long schedule_timeout_killable(signed long timeout);
331 extern signed long schedule_timeout_uninterruptible(signed long timeout);
332 asmlinkage void schedule(void);
333
334 struct nsproxy;
335 struct user_namespace;
336
337 /* Maximum number of active map areas.. This is a random (large) number */
338 #define DEFAULT_MAX_MAP_COUNT 65536
339
340 extern int sysctl_max_map_count;
341
342 #include <linux/aio.h>
343
344 extern unsigned long
345 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
346 unsigned long, unsigned long);
347 extern unsigned long
348 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
349 unsigned long len, unsigned long pgoff,
350 unsigned long flags);
351 extern void arch_unmap_area(struct mm_struct *, unsigned long);
352 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
353
354 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
355 /*
356 * The mm counters are not protected by its page_table_lock,
357 * so must be incremented atomically.
358 */
359 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
360 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
361 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
362 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
363 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
364
365 #else /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
366 /*
367 * The mm counters are protected by its page_table_lock,
368 * so can be incremented directly.
369 */
370 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
371 #define get_mm_counter(mm, member) ((mm)->_##member)
372 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
373 #define inc_mm_counter(mm, member) (mm)->_##member++
374 #define dec_mm_counter(mm, member) (mm)->_##member--
375
376 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
377
378 #define get_mm_rss(mm) \
379 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
380 #define update_hiwater_rss(mm) do { \
381 unsigned long _rss = get_mm_rss(mm); \
382 if ((mm)->hiwater_rss < _rss) \
383 (mm)->hiwater_rss = _rss; \
384 } while (0)
385 #define update_hiwater_vm(mm) do { \
386 if ((mm)->hiwater_vm < (mm)->total_vm) \
387 (mm)->hiwater_vm = (mm)->total_vm; \
388 } while (0)
389
390 extern void set_dumpable(struct mm_struct *mm, int value);
391 extern int get_dumpable(struct mm_struct *mm);
392
393 /* mm flags */
394 /* dumpable bits */
395 #define MMF_DUMPABLE 0 /* core dump is permitted */
396 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
397 #define MMF_DUMPABLE_BITS 2
398
399 /* coredump filter bits */
400 #define MMF_DUMP_ANON_PRIVATE 2
401 #define MMF_DUMP_ANON_SHARED 3
402 #define MMF_DUMP_MAPPED_PRIVATE 4
403 #define MMF_DUMP_MAPPED_SHARED 5
404 #define MMF_DUMP_ELF_HEADERS 6
405 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
406 #define MMF_DUMP_FILTER_BITS 5
407 #define MMF_DUMP_FILTER_MASK \
408 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
409 #define MMF_DUMP_FILTER_DEFAULT \
410 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED))
411
412 struct sighand_struct {
413 atomic_t count;
414 struct k_sigaction action[_NSIG];
415 spinlock_t siglock;
416 wait_queue_head_t signalfd_wqh;
417 };
418
419 struct pacct_struct {
420 int ac_flag;
421 long ac_exitcode;
422 unsigned long ac_mem;
423 cputime_t ac_utime, ac_stime;
424 unsigned long ac_minflt, ac_majflt;
425 };
426
427 /*
428 * NOTE! "signal_struct" does not have it's own
429 * locking, because a shared signal_struct always
430 * implies a shared sighand_struct, so locking
431 * sighand_struct is always a proper superset of
432 * the locking of signal_struct.
433 */
434 struct signal_struct {
435 atomic_t count;
436 atomic_t live;
437
438 wait_queue_head_t wait_chldexit; /* for wait4() */
439
440 /* current thread group signal load-balancing target: */
441 struct task_struct *curr_target;
442
443 /* shared signal handling: */
444 struct sigpending shared_pending;
445
446 /* thread group exit support */
447 int group_exit_code;
448 /* overloaded:
449 * - notify group_exit_task when ->count is equal to notify_count
450 * - everyone except group_exit_task is stopped during signal delivery
451 * of fatal signals, group_exit_task processes the signal.
452 */
453 struct task_struct *group_exit_task;
454 int notify_count;
455
456 /* thread group stop support, overloads group_exit_code too */
457 int group_stop_count;
458 unsigned int flags; /* see SIGNAL_* flags below */
459
460 /* POSIX.1b Interval Timers */
461 struct list_head posix_timers;
462
463 /* ITIMER_REAL timer for the process */
464 struct hrtimer real_timer;
465 struct pid *leader_pid;
466 ktime_t it_real_incr;
467
468 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
469 cputime_t it_prof_expires, it_virt_expires;
470 cputime_t it_prof_incr, it_virt_incr;
471
472 /* job control IDs */
473
474 /*
475 * pgrp and session fields are deprecated.
476 * use the task_session_Xnr and task_pgrp_Xnr routines below
477 */
478
479 union {
480 pid_t pgrp __deprecated;
481 pid_t __pgrp;
482 };
483
484 struct pid *tty_old_pgrp;
485
486 union {
487 pid_t session __deprecated;
488 pid_t __session;
489 };
490
491 /* boolean value for session group leader */
492 int leader;
493
494 struct tty_struct *tty; /* NULL if no tty */
495
496 /*
497 * Cumulative resource counters for dead threads in the group,
498 * and for reaped dead child processes forked by this group.
499 * Live threads maintain their own counters and add to these
500 * in __exit_signal, except for the group leader.
501 */
502 cputime_t utime, stime, cutime, cstime;
503 cputime_t gtime;
504 cputime_t cgtime;
505 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
506 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
507 unsigned long inblock, oublock, cinblock, coublock;
508
509 /*
510 * Cumulative ns of scheduled CPU time for dead threads in the
511 * group, not including a zombie group leader. (This only differs
512 * from jiffies_to_ns(utime + stime) if sched_clock uses something
513 * other than jiffies.)
514 */
515 unsigned long long sum_sched_runtime;
516
517 /*
518 * We don't bother to synchronize most readers of this at all,
519 * because there is no reader checking a limit that actually needs
520 * to get both rlim_cur and rlim_max atomically, and either one
521 * alone is a single word that can safely be read normally.
522 * getrlimit/setrlimit use task_lock(current->group_leader) to
523 * protect this instead of the siglock, because they really
524 * have no need to disable irqs.
525 */
526 struct rlimit rlim[RLIM_NLIMITS];
527
528 struct list_head cpu_timers[3];
529
530 /* keep the process-shared keyrings here so that they do the right
531 * thing in threads created with CLONE_THREAD */
532 #ifdef CONFIG_KEYS
533 struct key *session_keyring; /* keyring inherited over fork */
534 struct key *process_keyring; /* keyring private to this process */
535 #endif
536 #ifdef CONFIG_BSD_PROCESS_ACCT
537 struct pacct_struct pacct; /* per-process accounting information */
538 #endif
539 #ifdef CONFIG_TASKSTATS
540 struct taskstats *stats;
541 #endif
542 #ifdef CONFIG_AUDIT
543 unsigned audit_tty;
544 struct tty_audit_buf *tty_audit_buf;
545 #endif
546 };
547
548 /* Context switch must be unlocked if interrupts are to be enabled */
549 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
550 # define __ARCH_WANT_UNLOCKED_CTXSW
551 #endif
552
553 /*
554 * Bits in flags field of signal_struct.
555 */
556 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
557 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
558 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
559 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
560 /*
561 * Pending notifications to parent.
562 */
563 #define SIGNAL_CLD_STOPPED 0x00000010
564 #define SIGNAL_CLD_CONTINUED 0x00000020
565 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
566
567 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
568
569 /* If true, all threads except ->group_exit_task have pending SIGKILL */
570 static inline int signal_group_exit(const struct signal_struct *sig)
571 {
572 return (sig->flags & SIGNAL_GROUP_EXIT) ||
573 (sig->group_exit_task != NULL);
574 }
575
576 /*
577 * Some day this will be a full-fledged user tracking system..
578 */
579 struct user_struct {
580 atomic_t __count; /* reference count */
581 atomic_t processes; /* How many processes does this user have? */
582 atomic_t files; /* How many open files does this user have? */
583 atomic_t sigpending; /* How many pending signals does this user have? */
584 #ifdef CONFIG_INOTIFY_USER
585 atomic_t inotify_watches; /* How many inotify watches does this user have? */
586 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
587 #endif
588 #ifdef CONFIG_POSIX_MQUEUE
589 /* protected by mq_lock */
590 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
591 #endif
592 unsigned long locked_shm; /* How many pages of mlocked shm ? */
593
594 #ifdef CONFIG_KEYS
595 struct key *uid_keyring; /* UID specific keyring */
596 struct key *session_keyring; /* UID's default session keyring */
597 #endif
598
599 /* Hash table maintenance information */
600 struct hlist_node uidhash_node;
601 uid_t uid;
602
603 #ifdef CONFIG_USER_SCHED
604 struct task_group *tg;
605 #ifdef CONFIG_SYSFS
606 struct kobject kobj;
607 struct work_struct work;
608 #endif
609 #endif
610 };
611
612 extern int uids_sysfs_init(void);
613
614 extern struct user_struct *find_user(uid_t);
615
616 extern struct user_struct root_user;
617 #define INIT_USER (&root_user)
618
619 struct backing_dev_info;
620 struct reclaim_state;
621
622 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
623 struct sched_info {
624 /* cumulative counters */
625 unsigned long pcount; /* # of times run on this cpu */
626 unsigned long long cpu_time, /* time spent on the cpu */
627 run_delay; /* time spent waiting on a runqueue */
628
629 /* timestamps */
630 unsigned long long last_arrival,/* when we last ran on a cpu */
631 last_queued; /* when we were last queued to run */
632 #ifdef CONFIG_SCHEDSTATS
633 /* BKL stats */
634 unsigned int bkl_count;
635 #endif
636 };
637 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
638
639 #ifdef CONFIG_SCHEDSTATS
640 extern const struct file_operations proc_schedstat_operations;
641 #endif /* CONFIG_SCHEDSTATS */
642
643 #ifdef CONFIG_TASK_DELAY_ACCT
644 struct task_delay_info {
645 spinlock_t lock;
646 unsigned int flags; /* Private per-task flags */
647
648 /* For each stat XXX, add following, aligned appropriately
649 *
650 * struct timespec XXX_start, XXX_end;
651 * u64 XXX_delay;
652 * u32 XXX_count;
653 *
654 * Atomicity of updates to XXX_delay, XXX_count protected by
655 * single lock above (split into XXX_lock if contention is an issue).
656 */
657
658 /*
659 * XXX_count is incremented on every XXX operation, the delay
660 * associated with the operation is added to XXX_delay.
661 * XXX_delay contains the accumulated delay time in nanoseconds.
662 */
663 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
664 u64 blkio_delay; /* wait for sync block io completion */
665 u64 swapin_delay; /* wait for swapin block io completion */
666 u32 blkio_count; /* total count of the number of sync block */
667 /* io operations performed */
668 u32 swapin_count; /* total count of the number of swapin block */
669 /* io operations performed */
670 };
671 #endif /* CONFIG_TASK_DELAY_ACCT */
672
673 static inline int sched_info_on(void)
674 {
675 #ifdef CONFIG_SCHEDSTATS
676 return 1;
677 #elif defined(CONFIG_TASK_DELAY_ACCT)
678 extern int delayacct_on;
679 return delayacct_on;
680 #else
681 return 0;
682 #endif
683 }
684
685 enum cpu_idle_type {
686 CPU_IDLE,
687 CPU_NOT_IDLE,
688 CPU_NEWLY_IDLE,
689 CPU_MAX_IDLE_TYPES
690 };
691
692 /*
693 * sched-domains (multiprocessor balancing) declarations:
694 */
695
696 /*
697 * Increase resolution of nice-level calculations:
698 */
699 #define SCHED_LOAD_SHIFT 10
700 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
701
702 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
703
704 #ifdef CONFIG_SMP
705 #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */
706 #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */
707 #define SD_BALANCE_EXEC 4 /* Balance on exec */
708 #define SD_BALANCE_FORK 8 /* Balance on fork, clone */
709 #define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */
710 #define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */
711 #define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */
712 #define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */
713 #define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */
714 #define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */
715 #define SD_SERIALIZE 1024 /* Only a single load balancing instance */
716 #define SD_WAKE_IDLE_FAR 2048 /* Gain latency sacrificing cache hit */
717
718 #define BALANCE_FOR_MC_POWER \
719 (sched_smt_power_savings ? SD_POWERSAVINGS_BALANCE : 0)
720
721 #define BALANCE_FOR_PKG_POWER \
722 ((sched_mc_power_savings || sched_smt_power_savings) ? \
723 SD_POWERSAVINGS_BALANCE : 0)
724
725 #define test_sd_parent(sd, flag) ((sd->parent && \
726 (sd->parent->flags & flag)) ? 1 : 0)
727
728
729 struct sched_group {
730 struct sched_group *next; /* Must be a circular list */
731 cpumask_t cpumask;
732
733 /*
734 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
735 * single CPU. This is read only (except for setup, hotplug CPU).
736 * Note : Never change cpu_power without recompute its reciprocal
737 */
738 unsigned int __cpu_power;
739 /*
740 * reciprocal value of cpu_power to avoid expensive divides
741 * (see include/linux/reciprocal_div.h)
742 */
743 u32 reciprocal_cpu_power;
744 };
745
746 enum sched_domain_level {
747 SD_LV_NONE = 0,
748 SD_LV_SIBLING,
749 SD_LV_MC,
750 SD_LV_CPU,
751 SD_LV_NODE,
752 SD_LV_ALLNODES,
753 SD_LV_MAX
754 };
755
756 struct sched_domain_attr {
757 int relax_domain_level;
758 };
759
760 #define SD_ATTR_INIT (struct sched_domain_attr) { \
761 .relax_domain_level = -1, \
762 }
763
764 struct sched_domain {
765 /* These fields must be setup */
766 struct sched_domain *parent; /* top domain must be null terminated */
767 struct sched_domain *child; /* bottom domain must be null terminated */
768 struct sched_group *groups; /* the balancing groups of the domain */
769 cpumask_t span; /* span of all CPUs in this domain */
770 unsigned long min_interval; /* Minimum balance interval ms */
771 unsigned long max_interval; /* Maximum balance interval ms */
772 unsigned int busy_factor; /* less balancing by factor if busy */
773 unsigned int imbalance_pct; /* No balance until over watermark */
774 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
775 unsigned int busy_idx;
776 unsigned int idle_idx;
777 unsigned int newidle_idx;
778 unsigned int wake_idx;
779 unsigned int forkexec_idx;
780 int flags; /* See SD_* */
781 enum sched_domain_level level;
782
783 /* Runtime fields. */
784 unsigned long last_balance; /* init to jiffies. units in jiffies */
785 unsigned int balance_interval; /* initialise to 1. units in ms. */
786 unsigned int nr_balance_failed; /* initialise to 0 */
787
788 u64 last_update;
789
790 #ifdef CONFIG_SCHEDSTATS
791 /* load_balance() stats */
792 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
793 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
794 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
795 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
796 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
797 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
798 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
799 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
800
801 /* Active load balancing */
802 unsigned int alb_count;
803 unsigned int alb_failed;
804 unsigned int alb_pushed;
805
806 /* SD_BALANCE_EXEC stats */
807 unsigned int sbe_count;
808 unsigned int sbe_balanced;
809 unsigned int sbe_pushed;
810
811 /* SD_BALANCE_FORK stats */
812 unsigned int sbf_count;
813 unsigned int sbf_balanced;
814 unsigned int sbf_pushed;
815
816 /* try_to_wake_up() stats */
817 unsigned int ttwu_wake_remote;
818 unsigned int ttwu_move_affine;
819 unsigned int ttwu_move_balance;
820 #endif
821 };
822
823 extern void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
824 struct sched_domain_attr *dattr_new);
825 extern int arch_reinit_sched_domains(void);
826
827 #else /* CONFIG_SMP */
828
829 struct sched_domain_attr;
830
831 static inline void
832 partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
833 struct sched_domain_attr *dattr_new)
834 {
835 }
836 #endif /* !CONFIG_SMP */
837
838 struct io_context; /* See blkdev.h */
839 #define NGROUPS_SMALL 32
840 #define NGROUPS_PER_BLOCK ((unsigned int)(PAGE_SIZE / sizeof(gid_t)))
841 struct group_info {
842 int ngroups;
843 atomic_t usage;
844 gid_t small_block[NGROUPS_SMALL];
845 int nblocks;
846 gid_t *blocks[0];
847 };
848
849 /*
850 * get_group_info() must be called with the owning task locked (via task_lock())
851 * when task != current. The reason being that the vast majority of callers are
852 * looking at current->group_info, which can not be changed except by the
853 * current task. Changing current->group_info requires the task lock, too.
854 */
855 #define get_group_info(group_info) do { \
856 atomic_inc(&(group_info)->usage); \
857 } while (0)
858
859 #define put_group_info(group_info) do { \
860 if (atomic_dec_and_test(&(group_info)->usage)) \
861 groups_free(group_info); \
862 } while (0)
863
864 extern struct group_info *groups_alloc(int gidsetsize);
865 extern void groups_free(struct group_info *group_info);
866 extern int set_current_groups(struct group_info *group_info);
867 extern int groups_search(struct group_info *group_info, gid_t grp);
868 /* access the groups "array" with this macro */
869 #define GROUP_AT(gi, i) \
870 ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK])
871
872 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
873 extern void prefetch_stack(struct task_struct *t);
874 #else
875 static inline void prefetch_stack(struct task_struct *t) { }
876 #endif
877
878 struct audit_context; /* See audit.c */
879 struct mempolicy;
880 struct pipe_inode_info;
881 struct uts_namespace;
882
883 struct rq;
884 struct sched_domain;
885
886 struct sched_class {
887 const struct sched_class *next;
888
889 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
890 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
891 void (*yield_task) (struct rq *rq);
892 int (*select_task_rq)(struct task_struct *p, int sync);
893
894 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p);
895
896 struct task_struct * (*pick_next_task) (struct rq *rq);
897 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
898
899 #ifdef CONFIG_SMP
900 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
901 struct rq *busiest, unsigned long max_load_move,
902 struct sched_domain *sd, enum cpu_idle_type idle,
903 int *all_pinned, int *this_best_prio);
904
905 int (*move_one_task) (struct rq *this_rq, int this_cpu,
906 struct rq *busiest, struct sched_domain *sd,
907 enum cpu_idle_type idle);
908 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
909 void (*post_schedule) (struct rq *this_rq);
910 void (*task_wake_up) (struct rq *this_rq, struct task_struct *task);
911 #endif
912
913 void (*set_curr_task) (struct rq *rq);
914 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
915 void (*task_new) (struct rq *rq, struct task_struct *p);
916 void (*set_cpus_allowed)(struct task_struct *p,
917 const cpumask_t *newmask);
918
919 void (*rq_online)(struct rq *rq);
920 void (*rq_offline)(struct rq *rq);
921
922 void (*switched_from) (struct rq *this_rq, struct task_struct *task,
923 int running);
924 void (*switched_to) (struct rq *this_rq, struct task_struct *task,
925 int running);
926 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
927 int oldprio, int running);
928
929 #ifdef CONFIG_FAIR_GROUP_SCHED
930 void (*moved_group) (struct task_struct *p);
931 #endif
932 };
933
934 struct load_weight {
935 unsigned long weight, inv_weight;
936 };
937
938 /*
939 * CFS stats for a schedulable entity (task, task-group etc)
940 *
941 * Current field usage histogram:
942 *
943 * 4 se->block_start
944 * 4 se->run_node
945 * 4 se->sleep_start
946 * 6 se->load.weight
947 */
948 struct sched_entity {
949 struct load_weight load; /* for load-balancing */
950 struct rb_node run_node;
951 struct list_head group_node;
952 unsigned int on_rq;
953
954 u64 exec_start;
955 u64 sum_exec_runtime;
956 u64 vruntime;
957 u64 prev_sum_exec_runtime;
958
959 u64 last_wakeup;
960 u64 avg_overlap;
961
962 #ifdef CONFIG_SCHEDSTATS
963 u64 wait_start;
964 u64 wait_max;
965 u64 wait_count;
966 u64 wait_sum;
967
968 u64 sleep_start;
969 u64 sleep_max;
970 s64 sum_sleep_runtime;
971
972 u64 block_start;
973 u64 block_max;
974 u64 exec_max;
975 u64 slice_max;
976
977 u64 nr_migrations;
978 u64 nr_migrations_cold;
979 u64 nr_failed_migrations_affine;
980 u64 nr_failed_migrations_running;
981 u64 nr_failed_migrations_hot;
982 u64 nr_forced_migrations;
983 u64 nr_forced2_migrations;
984
985 u64 nr_wakeups;
986 u64 nr_wakeups_sync;
987 u64 nr_wakeups_migrate;
988 u64 nr_wakeups_local;
989 u64 nr_wakeups_remote;
990 u64 nr_wakeups_affine;
991 u64 nr_wakeups_affine_attempts;
992 u64 nr_wakeups_passive;
993 u64 nr_wakeups_idle;
994 #endif
995
996 #ifdef CONFIG_FAIR_GROUP_SCHED
997 struct sched_entity *parent;
998 /* rq on which this entity is (to be) queued: */
999 struct cfs_rq *cfs_rq;
1000 /* rq "owned" by this entity/group: */
1001 struct cfs_rq *my_q;
1002 #endif
1003 };
1004
1005 struct sched_rt_entity {
1006 struct list_head run_list;
1007 unsigned int time_slice;
1008 unsigned long timeout;
1009 int nr_cpus_allowed;
1010
1011 struct sched_rt_entity *back;
1012 #ifdef CONFIG_RT_GROUP_SCHED
1013 struct sched_rt_entity *parent;
1014 /* rq on which this entity is (to be) queued: */
1015 struct rt_rq *rt_rq;
1016 /* rq "owned" by this entity/group: */
1017 struct rt_rq *my_q;
1018 #endif
1019 };
1020
1021 struct task_struct {
1022 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1023 void *stack;
1024 atomic_t usage;
1025 unsigned int flags; /* per process flags, defined below */
1026 unsigned int ptrace;
1027
1028 int lock_depth; /* BKL lock depth */
1029
1030 #ifdef CONFIG_SMP
1031 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1032 int oncpu;
1033 #endif
1034 #endif
1035
1036 int prio, static_prio, normal_prio;
1037 unsigned int rt_priority;
1038 const struct sched_class *sched_class;
1039 struct sched_entity se;
1040 struct sched_rt_entity rt;
1041
1042 #ifdef CONFIG_PREEMPT_NOTIFIERS
1043 /* list of struct preempt_notifier: */
1044 struct hlist_head preempt_notifiers;
1045 #endif
1046
1047 /*
1048 * fpu_counter contains the number of consecutive context switches
1049 * that the FPU is used. If this is over a threshold, the lazy fpu
1050 * saving becomes unlazy to save the trap. This is an unsigned char
1051 * so that after 256 times the counter wraps and the behavior turns
1052 * lazy again; this to deal with bursty apps that only use FPU for
1053 * a short time
1054 */
1055 unsigned char fpu_counter;
1056 s8 oomkilladj; /* OOM kill score adjustment (bit shift). */
1057 #ifdef CONFIG_BLK_DEV_IO_TRACE
1058 unsigned int btrace_seq;
1059 #endif
1060
1061 unsigned int policy;
1062 cpumask_t cpus_allowed;
1063
1064 #ifdef CONFIG_PREEMPT_RCU
1065 int rcu_read_lock_nesting;
1066 int rcu_flipctr_idx;
1067 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1068
1069 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1070 struct sched_info sched_info;
1071 #endif
1072
1073 struct list_head tasks;
1074
1075 struct mm_struct *mm, *active_mm;
1076
1077 /* task state */
1078 struct linux_binfmt *binfmt;
1079 int exit_state;
1080 int exit_code, exit_signal;
1081 int pdeath_signal; /* The signal sent when the parent dies */
1082 /* ??? */
1083 unsigned int personality;
1084 unsigned did_exec:1;
1085 pid_t pid;
1086 pid_t tgid;
1087
1088 #ifdef CONFIG_CC_STACKPROTECTOR
1089 /* Canary value for the -fstack-protector gcc feature */
1090 unsigned long stack_canary;
1091 #endif
1092 /*
1093 * pointers to (original) parent process, youngest child, younger sibling,
1094 * older sibling, respectively. (p->father can be replaced with
1095 * p->real_parent->pid)
1096 */
1097 struct task_struct *real_parent; /* real parent process */
1098 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1099 /*
1100 * children/sibling forms the list of my natural children
1101 */
1102 struct list_head children; /* list of my children */
1103 struct list_head sibling; /* linkage in my parent's children list */
1104 struct task_struct *group_leader; /* threadgroup leader */
1105
1106 /*
1107 * ptraced is the list of tasks this task is using ptrace on.
1108 * This includes both natural children and PTRACE_ATTACH targets.
1109 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1110 */
1111 struct list_head ptraced;
1112 struct list_head ptrace_entry;
1113
1114 /* PID/PID hash table linkage. */
1115 struct pid_link pids[PIDTYPE_MAX];
1116 struct list_head thread_group;
1117
1118 struct completion *vfork_done; /* for vfork() */
1119 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1120 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1121
1122 cputime_t utime, stime, utimescaled, stimescaled;
1123 cputime_t gtime;
1124 cputime_t prev_utime, prev_stime;
1125 unsigned long nvcsw, nivcsw; /* context switch counts */
1126 struct timespec start_time; /* monotonic time */
1127 struct timespec real_start_time; /* boot based time */
1128 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1129 unsigned long min_flt, maj_flt;
1130
1131 cputime_t it_prof_expires, it_virt_expires;
1132 unsigned long long it_sched_expires;
1133 struct list_head cpu_timers[3];
1134
1135 /* process credentials */
1136 uid_t uid,euid,suid,fsuid;
1137 gid_t gid,egid,sgid,fsgid;
1138 struct group_info *group_info;
1139 kernel_cap_t cap_effective, cap_inheritable, cap_permitted, cap_bset;
1140 struct user_struct *user;
1141 unsigned securebits;
1142 #ifdef CONFIG_KEYS
1143 unsigned char jit_keyring; /* default keyring to attach requested keys to */
1144 struct key *request_key_auth; /* assumed request_key authority */
1145 struct key *thread_keyring; /* keyring private to this thread */
1146 #endif
1147 char comm[TASK_COMM_LEN]; /* executable name excluding path
1148 - access with [gs]et_task_comm (which lock
1149 it with task_lock())
1150 - initialized normally by flush_old_exec */
1151 /* file system info */
1152 int link_count, total_link_count;
1153 #ifdef CONFIG_SYSVIPC
1154 /* ipc stuff */
1155 struct sysv_sem sysvsem;
1156 #endif
1157 #ifdef CONFIG_DETECT_SOFTLOCKUP
1158 /* hung task detection */
1159 unsigned long last_switch_timestamp;
1160 unsigned long last_switch_count;
1161 #endif
1162 /* CPU-specific state of this task */
1163 struct thread_struct thread;
1164 /* filesystem information */
1165 struct fs_struct *fs;
1166 /* open file information */
1167 struct files_struct *files;
1168 /* namespaces */
1169 struct nsproxy *nsproxy;
1170 /* signal handlers */
1171 struct signal_struct *signal;
1172 struct sighand_struct *sighand;
1173
1174 sigset_t blocked, real_blocked;
1175 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1176 struct sigpending pending;
1177
1178 unsigned long sas_ss_sp;
1179 size_t sas_ss_size;
1180 int (*notifier)(void *priv);
1181 void *notifier_data;
1182 sigset_t *notifier_mask;
1183 #ifdef CONFIG_SECURITY
1184 void *security;
1185 #endif
1186 struct audit_context *audit_context;
1187 #ifdef CONFIG_AUDITSYSCALL
1188 uid_t loginuid;
1189 unsigned int sessionid;
1190 #endif
1191 seccomp_t seccomp;
1192
1193 /* Thread group tracking */
1194 u32 parent_exec_id;
1195 u32 self_exec_id;
1196 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
1197 spinlock_t alloc_lock;
1198
1199 /* Protection of the PI data structures: */
1200 spinlock_t pi_lock;
1201
1202 #ifdef CONFIG_RT_MUTEXES
1203 /* PI waiters blocked on a rt_mutex held by this task */
1204 struct plist_head pi_waiters;
1205 /* Deadlock detection and priority inheritance handling */
1206 struct rt_mutex_waiter *pi_blocked_on;
1207 #endif
1208
1209 #ifdef CONFIG_DEBUG_MUTEXES
1210 /* mutex deadlock detection */
1211 struct mutex_waiter *blocked_on;
1212 #endif
1213 #ifdef CONFIG_TRACE_IRQFLAGS
1214 unsigned int irq_events;
1215 int hardirqs_enabled;
1216 unsigned long hardirq_enable_ip;
1217 unsigned int hardirq_enable_event;
1218 unsigned long hardirq_disable_ip;
1219 unsigned int hardirq_disable_event;
1220 int softirqs_enabled;
1221 unsigned long softirq_disable_ip;
1222 unsigned int softirq_disable_event;
1223 unsigned long softirq_enable_ip;
1224 unsigned int softirq_enable_event;
1225 int hardirq_context;
1226 int softirq_context;
1227 #endif
1228 #ifdef CONFIG_LOCKDEP
1229 # define MAX_LOCK_DEPTH 48UL
1230 u64 curr_chain_key;
1231 int lockdep_depth;
1232 unsigned int lockdep_recursion;
1233 struct held_lock held_locks[MAX_LOCK_DEPTH];
1234 #endif
1235
1236 /* journalling filesystem info */
1237 void *journal_info;
1238
1239 /* stacked block device info */
1240 struct bio *bio_list, **bio_tail;
1241
1242 /* VM state */
1243 struct reclaim_state *reclaim_state;
1244
1245 struct backing_dev_info *backing_dev_info;
1246
1247 struct io_context *io_context;
1248
1249 unsigned long ptrace_message;
1250 siginfo_t *last_siginfo; /* For ptrace use. */
1251 #ifdef CONFIG_TASK_XACCT
1252 /* i/o counters(bytes read/written, #syscalls */
1253 u64 rchar, wchar, syscr, syscw;
1254 #endif
1255 struct task_io_accounting ioac;
1256 #if defined(CONFIG_TASK_XACCT)
1257 u64 acct_rss_mem1; /* accumulated rss usage */
1258 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1259 cputime_t acct_stimexpd;/* stime since last update */
1260 #endif
1261 #ifdef CONFIG_CPUSETS
1262 nodemask_t mems_allowed;
1263 int cpuset_mems_generation;
1264 int cpuset_mem_spread_rotor;
1265 #endif
1266 #ifdef CONFIG_CGROUPS
1267 /* Control Group info protected by css_set_lock */
1268 struct css_set *cgroups;
1269 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1270 struct list_head cg_list;
1271 #endif
1272 #ifdef CONFIG_FUTEX
1273 struct robust_list_head __user *robust_list;
1274 #ifdef CONFIG_COMPAT
1275 struct compat_robust_list_head __user *compat_robust_list;
1276 #endif
1277 struct list_head pi_state_list;
1278 struct futex_pi_state *pi_state_cache;
1279 #endif
1280 #ifdef CONFIG_NUMA
1281 struct mempolicy *mempolicy;
1282 short il_next;
1283 #endif
1284 atomic_t fs_excl; /* holding fs exclusive resources */
1285 struct rcu_head rcu;
1286
1287 /*
1288 * cache last used pipe for splice
1289 */
1290 struct pipe_inode_info *splice_pipe;
1291 #ifdef CONFIG_TASK_DELAY_ACCT
1292 struct task_delay_info *delays;
1293 #endif
1294 #ifdef CONFIG_FAULT_INJECTION
1295 int make_it_fail;
1296 #endif
1297 struct prop_local_single dirties;
1298 #ifdef CONFIG_LATENCYTOP
1299 int latency_record_count;
1300 struct latency_record latency_record[LT_SAVECOUNT];
1301 #endif
1302 };
1303
1304 /*
1305 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1306 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1307 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1308 * values are inverted: lower p->prio value means higher priority.
1309 *
1310 * The MAX_USER_RT_PRIO value allows the actual maximum
1311 * RT priority to be separate from the value exported to
1312 * user-space. This allows kernel threads to set their
1313 * priority to a value higher than any user task. Note:
1314 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1315 */
1316
1317 #define MAX_USER_RT_PRIO 100
1318 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1319
1320 #define MAX_PRIO (MAX_RT_PRIO + 40)
1321 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1322
1323 static inline int rt_prio(int prio)
1324 {
1325 if (unlikely(prio < MAX_RT_PRIO))
1326 return 1;
1327 return 0;
1328 }
1329
1330 static inline int rt_task(struct task_struct *p)
1331 {
1332 return rt_prio(p->prio);
1333 }
1334
1335 static inline void set_task_session(struct task_struct *tsk, pid_t session)
1336 {
1337 tsk->signal->__session = session;
1338 }
1339
1340 static inline void set_task_pgrp(struct task_struct *tsk, pid_t pgrp)
1341 {
1342 tsk->signal->__pgrp = pgrp;
1343 }
1344
1345 static inline struct pid *task_pid(struct task_struct *task)
1346 {
1347 return task->pids[PIDTYPE_PID].pid;
1348 }
1349
1350 static inline struct pid *task_tgid(struct task_struct *task)
1351 {
1352 return task->group_leader->pids[PIDTYPE_PID].pid;
1353 }
1354
1355 static inline struct pid *task_pgrp(struct task_struct *task)
1356 {
1357 return task->group_leader->pids[PIDTYPE_PGID].pid;
1358 }
1359
1360 static inline struct pid *task_session(struct task_struct *task)
1361 {
1362 return task->group_leader->pids[PIDTYPE_SID].pid;
1363 }
1364
1365 struct pid_namespace;
1366
1367 /*
1368 * the helpers to get the task's different pids as they are seen
1369 * from various namespaces
1370 *
1371 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1372 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1373 * current.
1374 * task_xid_nr_ns() : id seen from the ns specified;
1375 *
1376 * set_task_vxid() : assigns a virtual id to a task;
1377 *
1378 * see also pid_nr() etc in include/linux/pid.h
1379 */
1380
1381 static inline pid_t task_pid_nr(struct task_struct *tsk)
1382 {
1383 return tsk->pid;
1384 }
1385
1386 pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1387
1388 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1389 {
1390 return pid_vnr(task_pid(tsk));
1391 }
1392
1393
1394 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1395 {
1396 return tsk->tgid;
1397 }
1398
1399 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1400
1401 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1402 {
1403 return pid_vnr(task_tgid(tsk));
1404 }
1405
1406
1407 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1408 {
1409 return tsk->signal->__pgrp;
1410 }
1411
1412 pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1413
1414 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1415 {
1416 return pid_vnr(task_pgrp(tsk));
1417 }
1418
1419
1420 static inline pid_t task_session_nr(struct task_struct *tsk)
1421 {
1422 return tsk->signal->__session;
1423 }
1424
1425 pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1426
1427 static inline pid_t task_session_vnr(struct task_struct *tsk)
1428 {
1429 return pid_vnr(task_session(tsk));
1430 }
1431
1432
1433 /**
1434 * pid_alive - check that a task structure is not stale
1435 * @p: Task structure to be checked.
1436 *
1437 * Test if a process is not yet dead (at most zombie state)
1438 * If pid_alive fails, then pointers within the task structure
1439 * can be stale and must not be dereferenced.
1440 */
1441 static inline int pid_alive(struct task_struct *p)
1442 {
1443 return p->pids[PIDTYPE_PID].pid != NULL;
1444 }
1445
1446 /**
1447 * is_global_init - check if a task structure is init
1448 * @tsk: Task structure to be checked.
1449 *
1450 * Check if a task structure is the first user space task the kernel created.
1451 */
1452 static inline int is_global_init(struct task_struct *tsk)
1453 {
1454 return tsk->pid == 1;
1455 }
1456
1457 /*
1458 * is_container_init:
1459 * check whether in the task is init in its own pid namespace.
1460 */
1461 extern int is_container_init(struct task_struct *tsk);
1462
1463 extern struct pid *cad_pid;
1464
1465 extern void free_task(struct task_struct *tsk);
1466 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1467
1468 extern void __put_task_struct(struct task_struct *t);
1469
1470 static inline void put_task_struct(struct task_struct *t)
1471 {
1472 if (atomic_dec_and_test(&t->usage))
1473 __put_task_struct(t);
1474 }
1475
1476 /*
1477 * Per process flags
1478 */
1479 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1480 /* Not implemented yet, only for 486*/
1481 #define PF_STARTING 0x00000002 /* being created */
1482 #define PF_EXITING 0x00000004 /* getting shut down */
1483 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1484 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1485 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1486 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1487 #define PF_DUMPCORE 0x00000200 /* dumped core */
1488 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1489 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1490 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1491 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1492 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1493 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1494 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1495 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1496 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */
1497 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1498 #define PF_BORROWED_MM 0x00200000 /* I am a kthread doing use_mm */
1499 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1500 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1501 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1502 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1503 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1504 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1505 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1506 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1507 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */
1508
1509 /*
1510 * Only the _current_ task can read/write to tsk->flags, but other
1511 * tasks can access tsk->flags in readonly mode for example
1512 * with tsk_used_math (like during threaded core dumping).
1513 * There is however an exception to this rule during ptrace
1514 * or during fork: the ptracer task is allowed to write to the
1515 * child->flags of its traced child (same goes for fork, the parent
1516 * can write to the child->flags), because we're guaranteed the
1517 * child is not running and in turn not changing child->flags
1518 * at the same time the parent does it.
1519 */
1520 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1521 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1522 #define clear_used_math() clear_stopped_child_used_math(current)
1523 #define set_used_math() set_stopped_child_used_math(current)
1524 #define conditional_stopped_child_used_math(condition, child) \
1525 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1526 #define conditional_used_math(condition) \
1527 conditional_stopped_child_used_math(condition, current)
1528 #define copy_to_stopped_child_used_math(child) \
1529 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1530 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1531 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1532 #define used_math() tsk_used_math(current)
1533
1534 #ifdef CONFIG_SMP
1535 extern int set_cpus_allowed_ptr(struct task_struct *p,
1536 const cpumask_t *new_mask);
1537 #else
1538 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1539 const cpumask_t *new_mask)
1540 {
1541 if (!cpu_isset(0, *new_mask))
1542 return -EINVAL;
1543 return 0;
1544 }
1545 #endif
1546 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1547 {
1548 return set_cpus_allowed_ptr(p, &new_mask);
1549 }
1550
1551 extern unsigned long long sched_clock(void);
1552
1553 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1554 static inline void sched_clock_init(void)
1555 {
1556 }
1557
1558 static inline u64 sched_clock_cpu(int cpu)
1559 {
1560 return sched_clock();
1561 }
1562
1563 static inline void sched_clock_tick(void)
1564 {
1565 }
1566
1567 static inline void sched_clock_idle_sleep_event(void)
1568 {
1569 }
1570
1571 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1572 {
1573 }
1574
1575 #ifdef CONFIG_NO_HZ
1576 static inline void sched_clock_tick_stop(int cpu)
1577 {
1578 }
1579
1580 static inline void sched_clock_tick_start(int cpu)
1581 {
1582 }
1583 #endif
1584
1585 #else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
1586 extern void sched_clock_init(void);
1587 extern u64 sched_clock_cpu(int cpu);
1588 extern void sched_clock_tick(void);
1589 extern void sched_clock_idle_sleep_event(void);
1590 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1591 #ifdef CONFIG_NO_HZ
1592 extern void sched_clock_tick_stop(int cpu);
1593 extern void sched_clock_tick_start(int cpu);
1594 #endif
1595 #endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
1596
1597 /*
1598 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1599 * clock constructed from sched_clock():
1600 */
1601 extern unsigned long long cpu_clock(int cpu);
1602
1603 extern unsigned long long
1604 task_sched_runtime(struct task_struct *task);
1605
1606 /* sched_exec is called by processes performing an exec */
1607 #ifdef CONFIG_SMP
1608 extern void sched_exec(void);
1609 #else
1610 #define sched_exec() {}
1611 #endif
1612
1613 extern void sched_clock_idle_sleep_event(void);
1614 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1615
1616 #ifdef CONFIG_HOTPLUG_CPU
1617 extern void idle_task_exit(void);
1618 #else
1619 static inline void idle_task_exit(void) {}
1620 #endif
1621
1622 extern void sched_idle_next(void);
1623
1624 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1625 extern void wake_up_idle_cpu(int cpu);
1626 #else
1627 static inline void wake_up_idle_cpu(int cpu) { }
1628 #endif
1629
1630 #ifdef CONFIG_SCHED_DEBUG
1631 extern unsigned int sysctl_sched_latency;
1632 extern unsigned int sysctl_sched_min_granularity;
1633 extern unsigned int sysctl_sched_wakeup_granularity;
1634 extern unsigned int sysctl_sched_child_runs_first;
1635 extern unsigned int sysctl_sched_features;
1636 extern unsigned int sysctl_sched_migration_cost;
1637 extern unsigned int sysctl_sched_nr_migrate;
1638 extern unsigned int sysctl_sched_shares_ratelimit;
1639
1640 int sched_nr_latency_handler(struct ctl_table *table, int write,
1641 struct file *file, void __user *buffer, size_t *length,
1642 loff_t *ppos);
1643 #endif
1644 extern unsigned int sysctl_sched_rt_period;
1645 extern int sysctl_sched_rt_runtime;
1646
1647 int sched_rt_handler(struct ctl_table *table, int write,
1648 struct file *filp, void __user *buffer, size_t *lenp,
1649 loff_t *ppos);
1650
1651 extern unsigned int sysctl_sched_compat_yield;
1652
1653 #ifdef CONFIG_RT_MUTEXES
1654 extern int rt_mutex_getprio(struct task_struct *p);
1655 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1656 extern void rt_mutex_adjust_pi(struct task_struct *p);
1657 #else
1658 static inline int rt_mutex_getprio(struct task_struct *p)
1659 {
1660 return p->normal_prio;
1661 }
1662 # define rt_mutex_adjust_pi(p) do { } while (0)
1663 #endif
1664
1665 extern void set_user_nice(struct task_struct *p, long nice);
1666 extern int task_prio(const struct task_struct *p);
1667 extern int task_nice(const struct task_struct *p);
1668 extern int can_nice(const struct task_struct *p, const int nice);
1669 extern int task_curr(const struct task_struct *p);
1670 extern int idle_cpu(int cpu);
1671 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1672 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1673 struct sched_param *);
1674 extern struct task_struct *idle_task(int cpu);
1675 extern struct task_struct *curr_task(int cpu);
1676 extern void set_curr_task(int cpu, struct task_struct *p);
1677
1678 void yield(void);
1679
1680 /*
1681 * The default (Linux) execution domain.
1682 */
1683 extern struct exec_domain default_exec_domain;
1684
1685 union thread_union {
1686 struct thread_info thread_info;
1687 unsigned long stack[THREAD_SIZE/sizeof(long)];
1688 };
1689
1690 #ifndef __HAVE_ARCH_KSTACK_END
1691 static inline int kstack_end(void *addr)
1692 {
1693 /* Reliable end of stack detection:
1694 * Some APM bios versions misalign the stack
1695 */
1696 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1697 }
1698 #endif
1699
1700 extern union thread_union init_thread_union;
1701 extern struct task_struct init_task;
1702
1703 extern struct mm_struct init_mm;
1704
1705 extern struct pid_namespace init_pid_ns;
1706
1707 /*
1708 * find a task by one of its numerical ids
1709 *
1710 * find_task_by_pid_type_ns():
1711 * it is the most generic call - it finds a task by all id,
1712 * type and namespace specified
1713 * find_task_by_pid_ns():
1714 * finds a task by its pid in the specified namespace
1715 * find_task_by_vpid():
1716 * finds a task by its virtual pid
1717 * find_task_by_pid():
1718 * finds a task by its global pid
1719 *
1720 * see also find_pid() etc in include/linux/pid.h
1721 */
1722
1723 extern struct task_struct *find_task_by_pid_type_ns(int type, int pid,
1724 struct pid_namespace *ns);
1725
1726 static inline struct task_struct *__deprecated find_task_by_pid(pid_t nr)
1727 {
1728 return find_task_by_pid_type_ns(PIDTYPE_PID, nr, &init_pid_ns);
1729 }
1730 extern struct task_struct *find_task_by_vpid(pid_t nr);
1731 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1732 struct pid_namespace *ns);
1733
1734 extern void __set_special_pids(struct pid *pid);
1735
1736 /* per-UID process charging. */
1737 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1738 static inline struct user_struct *get_uid(struct user_struct *u)
1739 {
1740 atomic_inc(&u->__count);
1741 return u;
1742 }
1743 extern void free_uid(struct user_struct *);
1744 extern void switch_uid(struct user_struct *);
1745 extern void release_uids(struct user_namespace *ns);
1746
1747 #include <asm/current.h>
1748
1749 extern void do_timer(unsigned long ticks);
1750
1751 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1752 extern int wake_up_process(struct task_struct *tsk);
1753 extern void wake_up_new_task(struct task_struct *tsk,
1754 unsigned long clone_flags);
1755 #ifdef CONFIG_SMP
1756 extern void kick_process(struct task_struct *tsk);
1757 #else
1758 static inline void kick_process(struct task_struct *tsk) { }
1759 #endif
1760 extern void sched_fork(struct task_struct *p, int clone_flags);
1761 extern void sched_dead(struct task_struct *p);
1762
1763 extern int in_group_p(gid_t);
1764 extern int in_egroup_p(gid_t);
1765
1766 extern void proc_caches_init(void);
1767 extern void flush_signals(struct task_struct *);
1768 extern void ignore_signals(struct task_struct *);
1769 extern void flush_signal_handlers(struct task_struct *, int force_default);
1770 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1771
1772 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1773 {
1774 unsigned long flags;
1775 int ret;
1776
1777 spin_lock_irqsave(&tsk->sighand->siglock, flags);
1778 ret = dequeue_signal(tsk, mask, info);
1779 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1780
1781 return ret;
1782 }
1783
1784 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1785 sigset_t *mask);
1786 extern void unblock_all_signals(void);
1787 extern void release_task(struct task_struct * p);
1788 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1789 extern int force_sigsegv(int, struct task_struct *);
1790 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1791 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1792 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
1793 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
1794 extern int kill_pgrp(struct pid *pid, int sig, int priv);
1795 extern int kill_pid(struct pid *pid, int sig, int priv);
1796 extern int kill_proc_info(int, struct siginfo *, pid_t);
1797 extern void do_notify_parent(struct task_struct *, int);
1798 extern void force_sig(int, struct task_struct *);
1799 extern void force_sig_specific(int, struct task_struct *);
1800 extern int send_sig(int, struct task_struct *, int);
1801 extern void zap_other_threads(struct task_struct *p);
1802 extern int kill_proc(pid_t, int, int);
1803 extern struct sigqueue *sigqueue_alloc(void);
1804 extern void sigqueue_free(struct sigqueue *);
1805 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
1806 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1807 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1808
1809 static inline int kill_cad_pid(int sig, int priv)
1810 {
1811 return kill_pid(cad_pid, sig, priv);
1812 }
1813
1814 /* These can be the second arg to send_sig_info/send_group_sig_info. */
1815 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
1816 #define SEND_SIG_PRIV ((struct siginfo *) 1)
1817 #define SEND_SIG_FORCED ((struct siginfo *) 2)
1818
1819 static inline int is_si_special(const struct siginfo *info)
1820 {
1821 return info <= SEND_SIG_FORCED;
1822 }
1823
1824 /* True if we are on the alternate signal stack. */
1825
1826 static inline int on_sig_stack(unsigned long sp)
1827 {
1828 return (sp - current->sas_ss_sp < current->sas_ss_size);
1829 }
1830
1831 static inline int sas_ss_flags(unsigned long sp)
1832 {
1833 return (current->sas_ss_size == 0 ? SS_DISABLE
1834 : on_sig_stack(sp) ? SS_ONSTACK : 0);
1835 }
1836
1837 /*
1838 * Routines for handling mm_structs
1839 */
1840 extern struct mm_struct * mm_alloc(void);
1841
1842 /* mmdrop drops the mm and the page tables */
1843 extern void __mmdrop(struct mm_struct *);
1844 static inline void mmdrop(struct mm_struct * mm)
1845 {
1846 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1847 __mmdrop(mm);
1848 }
1849
1850 /* mmput gets rid of the mappings and all user-space */
1851 extern void mmput(struct mm_struct *);
1852 /* Grab a reference to a task's mm, if it is not already going away */
1853 extern struct mm_struct *get_task_mm(struct task_struct *task);
1854 /* Remove the current tasks stale references to the old mm_struct */
1855 extern void mm_release(struct task_struct *, struct mm_struct *);
1856 /* Allocate a new mm structure and copy contents from tsk->mm */
1857 extern struct mm_struct *dup_mm(struct task_struct *tsk);
1858
1859 extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
1860 extern void flush_thread(void);
1861 extern void exit_thread(void);
1862
1863 extern void exit_files(struct task_struct *);
1864 extern void __cleanup_signal(struct signal_struct *);
1865 extern void __cleanup_sighand(struct sighand_struct *);
1866
1867 extern void exit_itimers(struct signal_struct *);
1868 extern void flush_itimer_signals(void);
1869
1870 extern NORET_TYPE void do_group_exit(int);
1871
1872 extern void daemonize(const char *, ...);
1873 extern int allow_signal(int);
1874 extern int disallow_signal(int);
1875
1876 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
1877 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
1878 struct task_struct *fork_idle(int);
1879
1880 extern void set_task_comm(struct task_struct *tsk, char *from);
1881 extern char *get_task_comm(char *to, struct task_struct *tsk);
1882
1883 #ifdef CONFIG_SMP
1884 extern void wait_task_inactive(struct task_struct * p);
1885 #else
1886 #define wait_task_inactive(p) do { } while (0)
1887 #endif
1888
1889 #define next_task(p) list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks)
1890
1891 #define for_each_process(p) \
1892 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
1893
1894 /*
1895 * Careful: do_each_thread/while_each_thread is a double loop so
1896 * 'break' will not work as expected - use goto instead.
1897 */
1898 #define do_each_thread(g, t) \
1899 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
1900
1901 #define while_each_thread(g, t) \
1902 while ((t = next_thread(t)) != g)
1903
1904 /* de_thread depends on thread_group_leader not being a pid based check */
1905 #define thread_group_leader(p) (p == p->group_leader)
1906
1907 /* Do to the insanities of de_thread it is possible for a process
1908 * to have the pid of the thread group leader without actually being
1909 * the thread group leader. For iteration through the pids in proc
1910 * all we care about is that we have a task with the appropriate
1911 * pid, we don't actually care if we have the right task.
1912 */
1913 static inline int has_group_leader_pid(struct task_struct *p)
1914 {
1915 return p->pid == p->tgid;
1916 }
1917
1918 static inline
1919 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
1920 {
1921 return p1->tgid == p2->tgid;
1922 }
1923
1924 static inline struct task_struct *next_thread(const struct task_struct *p)
1925 {
1926 return list_entry(rcu_dereference(p->thread_group.next),
1927 struct task_struct, thread_group);
1928 }
1929
1930 static inline int thread_group_empty(struct task_struct *p)
1931 {
1932 return list_empty(&p->thread_group);
1933 }
1934
1935 #define delay_group_leader(p) \
1936 (thread_group_leader(p) && !thread_group_empty(p))
1937
1938 /*
1939 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
1940 * subscriptions and synchronises with wait4(). Also used in procfs. Also
1941 * pins the final release of task.io_context. Also protects ->cpuset and
1942 * ->cgroup.subsys[].
1943 *
1944 * Nests both inside and outside of read_lock(&tasklist_lock).
1945 * It must not be nested with write_lock_irq(&tasklist_lock),
1946 * neither inside nor outside.
1947 */
1948 static inline void task_lock(struct task_struct *p)
1949 {
1950 spin_lock(&p->alloc_lock);
1951 }
1952
1953 static inline void task_unlock(struct task_struct *p)
1954 {
1955 spin_unlock(&p->alloc_lock);
1956 }
1957
1958 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
1959 unsigned long *flags);
1960
1961 static inline void unlock_task_sighand(struct task_struct *tsk,
1962 unsigned long *flags)
1963 {
1964 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
1965 }
1966
1967 #ifndef __HAVE_THREAD_FUNCTIONS
1968
1969 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
1970 #define task_stack_page(task) ((task)->stack)
1971
1972 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
1973 {
1974 *task_thread_info(p) = *task_thread_info(org);
1975 task_thread_info(p)->task = p;
1976 }
1977
1978 static inline unsigned long *end_of_stack(struct task_struct *p)
1979 {
1980 return (unsigned long *)(task_thread_info(p) + 1);
1981 }
1982
1983 #endif
1984
1985 extern void thread_info_cache_init(void);
1986
1987 /* set thread flags in other task's structures
1988 * - see asm/thread_info.h for TIF_xxxx flags available
1989 */
1990 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1991 {
1992 set_ti_thread_flag(task_thread_info(tsk), flag);
1993 }
1994
1995 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1996 {
1997 clear_ti_thread_flag(task_thread_info(tsk), flag);
1998 }
1999
2000 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2001 {
2002 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2003 }
2004
2005 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2006 {
2007 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2008 }
2009
2010 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2011 {
2012 return test_ti_thread_flag(task_thread_info(tsk), flag);
2013 }
2014
2015 static inline void set_tsk_need_resched(struct task_struct *tsk)
2016 {
2017 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2018 }
2019
2020 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2021 {
2022 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2023 }
2024
2025 static inline int test_tsk_need_resched(struct task_struct *tsk)
2026 {
2027 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2028 }
2029
2030 static inline int signal_pending(struct task_struct *p)
2031 {
2032 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2033 }
2034
2035 extern int __fatal_signal_pending(struct task_struct *p);
2036
2037 static inline int fatal_signal_pending(struct task_struct *p)
2038 {
2039 return signal_pending(p) && __fatal_signal_pending(p);
2040 }
2041
2042 static inline int signal_pending_state(long state, struct task_struct *p)
2043 {
2044 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2045 return 0;
2046 if (!signal_pending(p))
2047 return 0;
2048
2049 if (state & (__TASK_STOPPED | __TASK_TRACED))
2050 return 0;
2051
2052 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2053 }
2054
2055 static inline int need_resched(void)
2056 {
2057 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2058 }
2059
2060 /*
2061 * cond_resched() and cond_resched_lock(): latency reduction via
2062 * explicit rescheduling in places that are safe. The return
2063 * value indicates whether a reschedule was done in fact.
2064 * cond_resched_lock() will drop the spinlock before scheduling,
2065 * cond_resched_softirq() will enable bhs before scheduling.
2066 */
2067 extern int _cond_resched(void);
2068 #ifdef CONFIG_PREEMPT_BKL
2069 static inline int cond_resched(void)
2070 {
2071 return 0;
2072 }
2073 #else
2074 static inline int cond_resched(void)
2075 {
2076 return _cond_resched();
2077 }
2078 #endif
2079 extern int cond_resched_lock(spinlock_t * lock);
2080 extern int cond_resched_softirq(void);
2081 static inline int cond_resched_bkl(void)
2082 {
2083 return _cond_resched();
2084 }
2085
2086 /*
2087 * Does a critical section need to be broken due to another
2088 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2089 * but a general need for low latency)
2090 */
2091 static inline int spin_needbreak(spinlock_t *lock)
2092 {
2093 #ifdef CONFIG_PREEMPT
2094 return spin_is_contended(lock);
2095 #else
2096 return 0;
2097 #endif
2098 }
2099
2100 /*
2101 * Reevaluate whether the task has signals pending delivery.
2102 * Wake the task if so.
2103 * This is required every time the blocked sigset_t changes.
2104 * callers must hold sighand->siglock.
2105 */
2106 extern void recalc_sigpending_and_wake(struct task_struct *t);
2107 extern void recalc_sigpending(void);
2108
2109 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2110
2111 /*
2112 * Wrappers for p->thread_info->cpu access. No-op on UP.
2113 */
2114 #ifdef CONFIG_SMP
2115
2116 static inline unsigned int task_cpu(const struct task_struct *p)
2117 {
2118 return task_thread_info(p)->cpu;
2119 }
2120
2121 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2122
2123 #else
2124
2125 static inline unsigned int task_cpu(const struct task_struct *p)
2126 {
2127 return 0;
2128 }
2129
2130 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2131 {
2132 }
2133
2134 #endif /* CONFIG_SMP */
2135
2136 #ifdef HAVE_ARCH_PICK_MMAP_LAYOUT
2137 extern void arch_pick_mmap_layout(struct mm_struct *mm);
2138 #else
2139 static inline void arch_pick_mmap_layout(struct mm_struct *mm)
2140 {
2141 mm->mmap_base = TASK_UNMAPPED_BASE;
2142 mm->get_unmapped_area = arch_get_unmapped_area;
2143 mm->unmap_area = arch_unmap_area;
2144 }
2145 #endif
2146
2147 #ifdef CONFIG_TRACING
2148 extern void
2149 __trace_special(void *__tr, void *__data,
2150 unsigned long arg1, unsigned long arg2, unsigned long arg3);
2151 #else
2152 static inline void
2153 __trace_special(void *__tr, void *__data,
2154 unsigned long arg1, unsigned long arg2, unsigned long arg3)
2155 {
2156 }
2157 #endif
2158
2159 extern long sched_setaffinity(pid_t pid, const cpumask_t *new_mask);
2160 extern long sched_getaffinity(pid_t pid, cpumask_t *mask);
2161
2162 extern int sched_mc_power_savings, sched_smt_power_savings;
2163
2164 extern void normalize_rt_tasks(void);
2165
2166 #ifdef CONFIG_GROUP_SCHED
2167
2168 extern struct task_group init_task_group;
2169 #ifdef CONFIG_USER_SCHED
2170 extern struct task_group root_task_group;
2171 #endif
2172
2173 extern struct task_group *sched_create_group(struct task_group *parent);
2174 extern void sched_destroy_group(struct task_group *tg);
2175 extern void sched_move_task(struct task_struct *tsk);
2176 #ifdef CONFIG_FAIR_GROUP_SCHED
2177 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2178 extern unsigned long sched_group_shares(struct task_group *tg);
2179 #endif
2180 #ifdef CONFIG_RT_GROUP_SCHED
2181 extern int sched_group_set_rt_runtime(struct task_group *tg,
2182 long rt_runtime_us);
2183 extern long sched_group_rt_runtime(struct task_group *tg);
2184 extern int sched_group_set_rt_period(struct task_group *tg,
2185 long rt_period_us);
2186 extern long sched_group_rt_period(struct task_group *tg);
2187 #endif
2188 #endif
2189
2190 #ifdef CONFIG_TASK_XACCT
2191 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2192 {
2193 tsk->rchar += amt;
2194 }
2195
2196 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2197 {
2198 tsk->wchar += amt;
2199 }
2200
2201 static inline void inc_syscr(struct task_struct *tsk)
2202 {
2203 tsk->syscr++;
2204 }
2205
2206 static inline void inc_syscw(struct task_struct *tsk)
2207 {
2208 tsk->syscw++;
2209 }
2210 #else
2211 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2212 {
2213 }
2214
2215 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2216 {
2217 }
2218
2219 static inline void inc_syscr(struct task_struct *tsk)
2220 {
2221 }
2222
2223 static inline void inc_syscw(struct task_struct *tsk)
2224 {
2225 }
2226 #endif
2227
2228 #ifdef CONFIG_SMP
2229 void migration_init(void);
2230 #else
2231 static inline void migration_init(void)
2232 {
2233 }
2234 #endif
2235
2236 #ifndef TASK_SIZE_OF
2237 #define TASK_SIZE_OF(tsk) TASK_SIZE
2238 #endif
2239
2240 #ifdef CONFIG_MM_OWNER
2241 extern void mm_update_next_owner(struct mm_struct *mm);
2242 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2243 #else
2244 static inline void mm_update_next_owner(struct mm_struct *mm)
2245 {
2246 }
2247
2248 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2249 {
2250 }
2251 #endif /* CONFIG_MM_OWNER */
2252
2253 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
2254
2255 #endif /* __KERNEL__ */
2256
2257 #endif
This page took 0.111775 seconds and 5 git commands to generate.