locking: Convert __raw_spin* functions to arch_spin*
[deliverable/linux.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
29 #define CLONE_NEWNET 0x40000000 /* New network namespace */
30 #define CLONE_IO 0x80000000 /* Clone io context */
31
32 /*
33 * Scheduling policies
34 */
35 #define SCHED_NORMAL 0
36 #define SCHED_FIFO 1
37 #define SCHED_RR 2
38 #define SCHED_BATCH 3
39 /* SCHED_ISO: reserved but not implemented yet */
40 #define SCHED_IDLE 5
41 /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
42 #define SCHED_RESET_ON_FORK 0x40000000
43
44 #ifdef __KERNEL__
45
46 struct sched_param {
47 int sched_priority;
48 };
49
50 #include <asm/param.h> /* for HZ */
51
52 #include <linux/capability.h>
53 #include <linux/threads.h>
54 #include <linux/kernel.h>
55 #include <linux/types.h>
56 #include <linux/timex.h>
57 #include <linux/jiffies.h>
58 #include <linux/rbtree.h>
59 #include <linux/thread_info.h>
60 #include <linux/cpumask.h>
61 #include <linux/errno.h>
62 #include <linux/nodemask.h>
63 #include <linux/mm_types.h>
64
65 #include <asm/system.h>
66 #include <asm/page.h>
67 #include <asm/ptrace.h>
68 #include <asm/cputime.h>
69
70 #include <linux/smp.h>
71 #include <linux/sem.h>
72 #include <linux/signal.h>
73 #include <linux/path.h>
74 #include <linux/compiler.h>
75 #include <linux/completion.h>
76 #include <linux/pid.h>
77 #include <linux/percpu.h>
78 #include <linux/topology.h>
79 #include <linux/proportions.h>
80 #include <linux/seccomp.h>
81 #include <linux/rcupdate.h>
82 #include <linux/rculist.h>
83 #include <linux/rtmutex.h>
84
85 #include <linux/time.h>
86 #include <linux/param.h>
87 #include <linux/resource.h>
88 #include <linux/timer.h>
89 #include <linux/hrtimer.h>
90 #include <linux/task_io_accounting.h>
91 #include <linux/kobject.h>
92 #include <linux/latencytop.h>
93 #include <linux/cred.h>
94
95 #include <asm/processor.h>
96
97 struct exec_domain;
98 struct futex_pi_state;
99 struct robust_list_head;
100 struct bio;
101 struct fs_struct;
102 struct bts_context;
103 struct perf_event_context;
104
105 /*
106 * List of flags we want to share for kernel threads,
107 * if only because they are not used by them anyway.
108 */
109 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
110
111 /*
112 * These are the constant used to fake the fixed-point load-average
113 * counting. Some notes:
114 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
115 * a load-average precision of 10 bits integer + 11 bits fractional
116 * - if you want to count load-averages more often, you need more
117 * precision, or rounding will get you. With 2-second counting freq,
118 * the EXP_n values would be 1981, 2034 and 2043 if still using only
119 * 11 bit fractions.
120 */
121 extern unsigned long avenrun[]; /* Load averages */
122 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
123
124 #define FSHIFT 11 /* nr of bits of precision */
125 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
126 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
127 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
128 #define EXP_5 2014 /* 1/exp(5sec/5min) */
129 #define EXP_15 2037 /* 1/exp(5sec/15min) */
130
131 #define CALC_LOAD(load,exp,n) \
132 load *= exp; \
133 load += n*(FIXED_1-exp); \
134 load >>= FSHIFT;
135
136 extern unsigned long total_forks;
137 extern int nr_threads;
138 DECLARE_PER_CPU(unsigned long, process_counts);
139 extern int nr_processes(void);
140 extern unsigned long nr_running(void);
141 extern unsigned long nr_uninterruptible(void);
142 extern unsigned long nr_iowait(void);
143 extern unsigned long nr_iowait_cpu(void);
144 extern unsigned long this_cpu_load(void);
145
146
147 extern void calc_global_load(void);
148
149 extern unsigned long get_parent_ip(unsigned long addr);
150
151 struct seq_file;
152 struct cfs_rq;
153 struct task_group;
154 #ifdef CONFIG_SCHED_DEBUG
155 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
156 extern void proc_sched_set_task(struct task_struct *p);
157 extern void
158 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
159 #else
160 static inline void
161 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
162 {
163 }
164 static inline void proc_sched_set_task(struct task_struct *p)
165 {
166 }
167 static inline void
168 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
169 {
170 }
171 #endif
172
173 /*
174 * Task state bitmask. NOTE! These bits are also
175 * encoded in fs/proc/array.c: get_task_state().
176 *
177 * We have two separate sets of flags: task->state
178 * is about runnability, while task->exit_state are
179 * about the task exiting. Confusing, but this way
180 * modifying one set can't modify the other one by
181 * mistake.
182 */
183 #define TASK_RUNNING 0
184 #define TASK_INTERRUPTIBLE 1
185 #define TASK_UNINTERRUPTIBLE 2
186 #define __TASK_STOPPED 4
187 #define __TASK_TRACED 8
188 /* in tsk->exit_state */
189 #define EXIT_ZOMBIE 16
190 #define EXIT_DEAD 32
191 /* in tsk->state again */
192 #define TASK_DEAD 64
193 #define TASK_WAKEKILL 128
194 #define TASK_WAKING 256
195
196 /* Convenience macros for the sake of set_task_state */
197 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
198 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
199 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
200
201 /* Convenience macros for the sake of wake_up */
202 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
203 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
204
205 /* get_task_state() */
206 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
207 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
208 __TASK_TRACED)
209
210 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
211 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
212 #define task_is_stopped_or_traced(task) \
213 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
214 #define task_contributes_to_load(task) \
215 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
216 (task->flags & PF_FREEZING) == 0)
217
218 #define __set_task_state(tsk, state_value) \
219 do { (tsk)->state = (state_value); } while (0)
220 #define set_task_state(tsk, state_value) \
221 set_mb((tsk)->state, (state_value))
222
223 /*
224 * set_current_state() includes a barrier so that the write of current->state
225 * is correctly serialised wrt the caller's subsequent test of whether to
226 * actually sleep:
227 *
228 * set_current_state(TASK_UNINTERRUPTIBLE);
229 * if (do_i_need_to_sleep())
230 * schedule();
231 *
232 * If the caller does not need such serialisation then use __set_current_state()
233 */
234 #define __set_current_state(state_value) \
235 do { current->state = (state_value); } while (0)
236 #define set_current_state(state_value) \
237 set_mb(current->state, (state_value))
238
239 /* Task command name length */
240 #define TASK_COMM_LEN 16
241
242 #include <linux/spinlock.h>
243
244 /*
245 * This serializes "schedule()" and also protects
246 * the run-queue from deletions/modifications (but
247 * _adding_ to the beginning of the run-queue has
248 * a separate lock).
249 */
250 extern rwlock_t tasklist_lock;
251 extern spinlock_t mmlist_lock;
252
253 struct task_struct;
254
255 extern void sched_init(void);
256 extern void sched_init_smp(void);
257 extern asmlinkage void schedule_tail(struct task_struct *prev);
258 extern void init_idle(struct task_struct *idle, int cpu);
259 extern void init_idle_bootup_task(struct task_struct *idle);
260
261 extern int runqueue_is_locked(int cpu);
262 extern void task_rq_unlock_wait(struct task_struct *p);
263
264 extern cpumask_var_t nohz_cpu_mask;
265 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
266 extern int select_nohz_load_balancer(int cpu);
267 extern int get_nohz_load_balancer(void);
268 #else
269 static inline int select_nohz_load_balancer(int cpu)
270 {
271 return 0;
272 }
273 #endif
274
275 /*
276 * Only dump TASK_* tasks. (0 for all tasks)
277 */
278 extern void show_state_filter(unsigned long state_filter);
279
280 static inline void show_state(void)
281 {
282 show_state_filter(0);
283 }
284
285 extern void show_regs(struct pt_regs *);
286
287 /*
288 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
289 * task), SP is the stack pointer of the first frame that should be shown in the back
290 * trace (or NULL if the entire call-chain of the task should be shown).
291 */
292 extern void show_stack(struct task_struct *task, unsigned long *sp);
293
294 void io_schedule(void);
295 long io_schedule_timeout(long timeout);
296
297 extern void cpu_init (void);
298 extern void trap_init(void);
299 extern void update_process_times(int user);
300 extern void scheduler_tick(void);
301
302 extern void sched_show_task(struct task_struct *p);
303
304 #ifdef CONFIG_DETECT_SOFTLOCKUP
305 extern void softlockup_tick(void);
306 extern void touch_softlockup_watchdog(void);
307 extern void touch_all_softlockup_watchdogs(void);
308 extern int proc_dosoftlockup_thresh(struct ctl_table *table, int write,
309 void __user *buffer,
310 size_t *lenp, loff_t *ppos);
311 extern unsigned int softlockup_panic;
312 extern int softlockup_thresh;
313 #else
314 static inline void softlockup_tick(void)
315 {
316 }
317 static inline void touch_softlockup_watchdog(void)
318 {
319 }
320 static inline void touch_all_softlockup_watchdogs(void)
321 {
322 }
323 #endif
324
325 #ifdef CONFIG_DETECT_HUNG_TASK
326 extern unsigned int sysctl_hung_task_panic;
327 extern unsigned long sysctl_hung_task_check_count;
328 extern unsigned long sysctl_hung_task_timeout_secs;
329 extern unsigned long sysctl_hung_task_warnings;
330 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
331 void __user *buffer,
332 size_t *lenp, loff_t *ppos);
333 #endif
334
335 /* Attach to any functions which should be ignored in wchan output. */
336 #define __sched __attribute__((__section__(".sched.text")))
337
338 /* Linker adds these: start and end of __sched functions */
339 extern char __sched_text_start[], __sched_text_end[];
340
341 /* Is this address in the __sched functions? */
342 extern int in_sched_functions(unsigned long addr);
343
344 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
345 extern signed long schedule_timeout(signed long timeout);
346 extern signed long schedule_timeout_interruptible(signed long timeout);
347 extern signed long schedule_timeout_killable(signed long timeout);
348 extern signed long schedule_timeout_uninterruptible(signed long timeout);
349 asmlinkage void schedule(void);
350 extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner);
351
352 struct nsproxy;
353 struct user_namespace;
354
355 /*
356 * Default maximum number of active map areas, this limits the number of vmas
357 * per mm struct. Users can overwrite this number by sysctl but there is a
358 * problem.
359 *
360 * When a program's coredump is generated as ELF format, a section is created
361 * per a vma. In ELF, the number of sections is represented in unsigned short.
362 * This means the number of sections should be smaller than 65535 at coredump.
363 * Because the kernel adds some informative sections to a image of program at
364 * generating coredump, we need some margin. The number of extra sections is
365 * 1-3 now and depends on arch. We use "5" as safe margin, here.
366 */
367 #define MAPCOUNT_ELF_CORE_MARGIN (5)
368 #define DEFAULT_MAX_MAP_COUNT (USHORT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
369
370 extern int sysctl_max_map_count;
371
372 #include <linux/aio.h>
373
374 extern unsigned long
375 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
376 unsigned long, unsigned long);
377 extern unsigned long
378 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
379 unsigned long len, unsigned long pgoff,
380 unsigned long flags);
381 extern void arch_unmap_area(struct mm_struct *, unsigned long);
382 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
383
384 #if USE_SPLIT_PTLOCKS
385 /*
386 * The mm counters are not protected by its page_table_lock,
387 * so must be incremented atomically.
388 */
389 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
390 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
391 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
392 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
393 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
394
395 #else /* !USE_SPLIT_PTLOCKS */
396 /*
397 * The mm counters are protected by its page_table_lock,
398 * so can be incremented directly.
399 */
400 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
401 #define get_mm_counter(mm, member) ((mm)->_##member)
402 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
403 #define inc_mm_counter(mm, member) (mm)->_##member++
404 #define dec_mm_counter(mm, member) (mm)->_##member--
405
406 #endif /* !USE_SPLIT_PTLOCKS */
407
408 #define get_mm_rss(mm) \
409 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
410 #define update_hiwater_rss(mm) do { \
411 unsigned long _rss = get_mm_rss(mm); \
412 if ((mm)->hiwater_rss < _rss) \
413 (mm)->hiwater_rss = _rss; \
414 } while (0)
415 #define update_hiwater_vm(mm) do { \
416 if ((mm)->hiwater_vm < (mm)->total_vm) \
417 (mm)->hiwater_vm = (mm)->total_vm; \
418 } while (0)
419
420 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
421 {
422 return max(mm->hiwater_rss, get_mm_rss(mm));
423 }
424
425 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
426 struct mm_struct *mm)
427 {
428 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
429
430 if (*maxrss < hiwater_rss)
431 *maxrss = hiwater_rss;
432 }
433
434 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
435 {
436 return max(mm->hiwater_vm, mm->total_vm);
437 }
438
439 extern void set_dumpable(struct mm_struct *mm, int value);
440 extern int get_dumpable(struct mm_struct *mm);
441
442 /* mm flags */
443 /* dumpable bits */
444 #define MMF_DUMPABLE 0 /* core dump is permitted */
445 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
446
447 #define MMF_DUMPABLE_BITS 2
448 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
449
450 /* coredump filter bits */
451 #define MMF_DUMP_ANON_PRIVATE 2
452 #define MMF_DUMP_ANON_SHARED 3
453 #define MMF_DUMP_MAPPED_PRIVATE 4
454 #define MMF_DUMP_MAPPED_SHARED 5
455 #define MMF_DUMP_ELF_HEADERS 6
456 #define MMF_DUMP_HUGETLB_PRIVATE 7
457 #define MMF_DUMP_HUGETLB_SHARED 8
458
459 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
460 #define MMF_DUMP_FILTER_BITS 7
461 #define MMF_DUMP_FILTER_MASK \
462 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
463 #define MMF_DUMP_FILTER_DEFAULT \
464 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
465 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
466
467 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
468 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
469 #else
470 # define MMF_DUMP_MASK_DEFAULT_ELF 0
471 #endif
472 /* leave room for more dump flags */
473 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
474
475 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
476
477 struct sighand_struct {
478 atomic_t count;
479 struct k_sigaction action[_NSIG];
480 spinlock_t siglock;
481 wait_queue_head_t signalfd_wqh;
482 };
483
484 struct pacct_struct {
485 int ac_flag;
486 long ac_exitcode;
487 unsigned long ac_mem;
488 cputime_t ac_utime, ac_stime;
489 unsigned long ac_minflt, ac_majflt;
490 };
491
492 struct cpu_itimer {
493 cputime_t expires;
494 cputime_t incr;
495 u32 error;
496 u32 incr_error;
497 };
498
499 /**
500 * struct task_cputime - collected CPU time counts
501 * @utime: time spent in user mode, in &cputime_t units
502 * @stime: time spent in kernel mode, in &cputime_t units
503 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
504 *
505 * This structure groups together three kinds of CPU time that are
506 * tracked for threads and thread groups. Most things considering
507 * CPU time want to group these counts together and treat all three
508 * of them in parallel.
509 */
510 struct task_cputime {
511 cputime_t utime;
512 cputime_t stime;
513 unsigned long long sum_exec_runtime;
514 };
515 /* Alternate field names when used to cache expirations. */
516 #define prof_exp stime
517 #define virt_exp utime
518 #define sched_exp sum_exec_runtime
519
520 #define INIT_CPUTIME \
521 (struct task_cputime) { \
522 .utime = cputime_zero, \
523 .stime = cputime_zero, \
524 .sum_exec_runtime = 0, \
525 }
526
527 /*
528 * Disable preemption until the scheduler is running.
529 * Reset by start_kernel()->sched_init()->init_idle().
530 *
531 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
532 * before the scheduler is active -- see should_resched().
533 */
534 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
535
536 /**
537 * struct thread_group_cputimer - thread group interval timer counts
538 * @cputime: thread group interval timers.
539 * @running: non-zero when there are timers running and
540 * @cputime receives updates.
541 * @lock: lock for fields in this struct.
542 *
543 * This structure contains the version of task_cputime, above, that is
544 * used for thread group CPU timer calculations.
545 */
546 struct thread_group_cputimer {
547 struct task_cputime cputime;
548 int running;
549 spinlock_t lock;
550 };
551
552 /*
553 * NOTE! "signal_struct" does not have it's own
554 * locking, because a shared signal_struct always
555 * implies a shared sighand_struct, so locking
556 * sighand_struct is always a proper superset of
557 * the locking of signal_struct.
558 */
559 struct signal_struct {
560 atomic_t count;
561 atomic_t live;
562
563 wait_queue_head_t wait_chldexit; /* for wait4() */
564
565 /* current thread group signal load-balancing target: */
566 struct task_struct *curr_target;
567
568 /* shared signal handling: */
569 struct sigpending shared_pending;
570
571 /* thread group exit support */
572 int group_exit_code;
573 /* overloaded:
574 * - notify group_exit_task when ->count is equal to notify_count
575 * - everyone except group_exit_task is stopped during signal delivery
576 * of fatal signals, group_exit_task processes the signal.
577 */
578 int notify_count;
579 struct task_struct *group_exit_task;
580
581 /* thread group stop support, overloads group_exit_code too */
582 int group_stop_count;
583 unsigned int flags; /* see SIGNAL_* flags below */
584
585 /* POSIX.1b Interval Timers */
586 struct list_head posix_timers;
587
588 /* ITIMER_REAL timer for the process */
589 struct hrtimer real_timer;
590 struct pid *leader_pid;
591 ktime_t it_real_incr;
592
593 /*
594 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
595 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
596 * values are defined to 0 and 1 respectively
597 */
598 struct cpu_itimer it[2];
599
600 /*
601 * Thread group totals for process CPU timers.
602 * See thread_group_cputimer(), et al, for details.
603 */
604 struct thread_group_cputimer cputimer;
605
606 /* Earliest-expiration cache. */
607 struct task_cputime cputime_expires;
608
609 struct list_head cpu_timers[3];
610
611 struct pid *tty_old_pgrp;
612
613 /* boolean value for session group leader */
614 int leader;
615
616 struct tty_struct *tty; /* NULL if no tty */
617
618 /*
619 * Cumulative resource counters for dead threads in the group,
620 * and for reaped dead child processes forked by this group.
621 * Live threads maintain their own counters and add to these
622 * in __exit_signal, except for the group leader.
623 */
624 cputime_t utime, stime, cutime, cstime;
625 cputime_t gtime;
626 cputime_t cgtime;
627 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
628 cputime_t prev_utime, prev_stime;
629 #endif
630 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
631 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
632 unsigned long inblock, oublock, cinblock, coublock;
633 unsigned long maxrss, cmaxrss;
634 struct task_io_accounting ioac;
635
636 /*
637 * Cumulative ns of schedule CPU time fo dead threads in the
638 * group, not including a zombie group leader, (This only differs
639 * from jiffies_to_ns(utime + stime) if sched_clock uses something
640 * other than jiffies.)
641 */
642 unsigned long long sum_sched_runtime;
643
644 /*
645 * We don't bother to synchronize most readers of this at all,
646 * because there is no reader checking a limit that actually needs
647 * to get both rlim_cur and rlim_max atomically, and either one
648 * alone is a single word that can safely be read normally.
649 * getrlimit/setrlimit use task_lock(current->group_leader) to
650 * protect this instead of the siglock, because they really
651 * have no need to disable irqs.
652 */
653 struct rlimit rlim[RLIM_NLIMITS];
654
655 #ifdef CONFIG_BSD_PROCESS_ACCT
656 struct pacct_struct pacct; /* per-process accounting information */
657 #endif
658 #ifdef CONFIG_TASKSTATS
659 struct taskstats *stats;
660 #endif
661 #ifdef CONFIG_AUDIT
662 unsigned audit_tty;
663 struct tty_audit_buf *tty_audit_buf;
664 #endif
665
666 int oom_adj; /* OOM kill score adjustment (bit shift) */
667 };
668
669 /* Context switch must be unlocked if interrupts are to be enabled */
670 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
671 # define __ARCH_WANT_UNLOCKED_CTXSW
672 #endif
673
674 /*
675 * Bits in flags field of signal_struct.
676 */
677 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
678 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
679 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
680 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
681 /*
682 * Pending notifications to parent.
683 */
684 #define SIGNAL_CLD_STOPPED 0x00000010
685 #define SIGNAL_CLD_CONTINUED 0x00000020
686 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
687
688 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
689
690 /* If true, all threads except ->group_exit_task have pending SIGKILL */
691 static inline int signal_group_exit(const struct signal_struct *sig)
692 {
693 return (sig->flags & SIGNAL_GROUP_EXIT) ||
694 (sig->group_exit_task != NULL);
695 }
696
697 /*
698 * Some day this will be a full-fledged user tracking system..
699 */
700 struct user_struct {
701 atomic_t __count; /* reference count */
702 atomic_t processes; /* How many processes does this user have? */
703 atomic_t files; /* How many open files does this user have? */
704 atomic_t sigpending; /* How many pending signals does this user have? */
705 #ifdef CONFIG_INOTIFY_USER
706 atomic_t inotify_watches; /* How many inotify watches does this user have? */
707 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
708 #endif
709 #ifdef CONFIG_EPOLL
710 atomic_t epoll_watches; /* The number of file descriptors currently watched */
711 #endif
712 #ifdef CONFIG_POSIX_MQUEUE
713 /* protected by mq_lock */
714 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
715 #endif
716 unsigned long locked_shm; /* How many pages of mlocked shm ? */
717
718 #ifdef CONFIG_KEYS
719 struct key *uid_keyring; /* UID specific keyring */
720 struct key *session_keyring; /* UID's default session keyring */
721 #endif
722
723 /* Hash table maintenance information */
724 struct hlist_node uidhash_node;
725 uid_t uid;
726 struct user_namespace *user_ns;
727
728 #ifdef CONFIG_USER_SCHED
729 struct task_group *tg;
730 #ifdef CONFIG_SYSFS
731 struct kobject kobj;
732 struct delayed_work work;
733 #endif
734 #endif
735
736 #ifdef CONFIG_PERF_EVENTS
737 atomic_long_t locked_vm;
738 #endif
739 };
740
741 extern int uids_sysfs_init(void);
742
743 extern struct user_struct *find_user(uid_t);
744
745 extern struct user_struct root_user;
746 #define INIT_USER (&root_user)
747
748
749 struct backing_dev_info;
750 struct reclaim_state;
751
752 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
753 struct sched_info {
754 /* cumulative counters */
755 unsigned long pcount; /* # of times run on this cpu */
756 unsigned long long run_delay; /* time spent waiting on a runqueue */
757
758 /* timestamps */
759 unsigned long long last_arrival,/* when we last ran on a cpu */
760 last_queued; /* when we were last queued to run */
761 #ifdef CONFIG_SCHEDSTATS
762 /* BKL stats */
763 unsigned int bkl_count;
764 #endif
765 };
766 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
767
768 #ifdef CONFIG_TASK_DELAY_ACCT
769 struct task_delay_info {
770 spinlock_t lock;
771 unsigned int flags; /* Private per-task flags */
772
773 /* For each stat XXX, add following, aligned appropriately
774 *
775 * struct timespec XXX_start, XXX_end;
776 * u64 XXX_delay;
777 * u32 XXX_count;
778 *
779 * Atomicity of updates to XXX_delay, XXX_count protected by
780 * single lock above (split into XXX_lock if contention is an issue).
781 */
782
783 /*
784 * XXX_count is incremented on every XXX operation, the delay
785 * associated with the operation is added to XXX_delay.
786 * XXX_delay contains the accumulated delay time in nanoseconds.
787 */
788 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
789 u64 blkio_delay; /* wait for sync block io completion */
790 u64 swapin_delay; /* wait for swapin block io completion */
791 u32 blkio_count; /* total count of the number of sync block */
792 /* io operations performed */
793 u32 swapin_count; /* total count of the number of swapin block */
794 /* io operations performed */
795
796 struct timespec freepages_start, freepages_end;
797 u64 freepages_delay; /* wait for memory reclaim */
798 u32 freepages_count; /* total count of memory reclaim */
799 };
800 #endif /* CONFIG_TASK_DELAY_ACCT */
801
802 static inline int sched_info_on(void)
803 {
804 #ifdef CONFIG_SCHEDSTATS
805 return 1;
806 #elif defined(CONFIG_TASK_DELAY_ACCT)
807 extern int delayacct_on;
808 return delayacct_on;
809 #else
810 return 0;
811 #endif
812 }
813
814 enum cpu_idle_type {
815 CPU_IDLE,
816 CPU_NOT_IDLE,
817 CPU_NEWLY_IDLE,
818 CPU_MAX_IDLE_TYPES
819 };
820
821 /*
822 * sched-domains (multiprocessor balancing) declarations:
823 */
824
825 /*
826 * Increase resolution of nice-level calculations:
827 */
828 #define SCHED_LOAD_SHIFT 10
829 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
830
831 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
832
833 #ifdef CONFIG_SMP
834 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
835 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
836 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
837 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
838 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
839 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
840 #define SD_PREFER_LOCAL 0x0040 /* Prefer to keep tasks local to this domain */
841 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
842 #define SD_POWERSAVINGS_BALANCE 0x0100 /* Balance for power savings */
843 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
844 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
845
846 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
847
848 enum powersavings_balance_level {
849 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */
850 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package
851 * first for long running threads
852 */
853 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle
854 * cpu package for power savings
855 */
856 MAX_POWERSAVINGS_BALANCE_LEVELS
857 };
858
859 extern int sched_mc_power_savings, sched_smt_power_savings;
860
861 static inline int sd_balance_for_mc_power(void)
862 {
863 if (sched_smt_power_savings)
864 return SD_POWERSAVINGS_BALANCE;
865
866 return SD_PREFER_SIBLING;
867 }
868
869 static inline int sd_balance_for_package_power(void)
870 {
871 if (sched_mc_power_savings | sched_smt_power_savings)
872 return SD_POWERSAVINGS_BALANCE;
873
874 return SD_PREFER_SIBLING;
875 }
876
877 /*
878 * Optimise SD flags for power savings:
879 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings.
880 * Keep default SD flags if sched_{smt,mc}_power_saving=0
881 */
882
883 static inline int sd_power_saving_flags(void)
884 {
885 if (sched_mc_power_savings | sched_smt_power_savings)
886 return SD_BALANCE_NEWIDLE;
887
888 return 0;
889 }
890
891 struct sched_group {
892 struct sched_group *next; /* Must be a circular list */
893
894 /*
895 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
896 * single CPU.
897 */
898 unsigned int cpu_power;
899
900 /*
901 * The CPUs this group covers.
902 *
903 * NOTE: this field is variable length. (Allocated dynamically
904 * by attaching extra space to the end of the structure,
905 * depending on how many CPUs the kernel has booted up with)
906 *
907 * It is also be embedded into static data structures at build
908 * time. (See 'struct static_sched_group' in kernel/sched.c)
909 */
910 unsigned long cpumask[0];
911 };
912
913 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
914 {
915 return to_cpumask(sg->cpumask);
916 }
917
918 enum sched_domain_level {
919 SD_LV_NONE = 0,
920 SD_LV_SIBLING,
921 SD_LV_MC,
922 SD_LV_CPU,
923 SD_LV_NODE,
924 SD_LV_ALLNODES,
925 SD_LV_MAX
926 };
927
928 struct sched_domain_attr {
929 int relax_domain_level;
930 };
931
932 #define SD_ATTR_INIT (struct sched_domain_attr) { \
933 .relax_domain_level = -1, \
934 }
935
936 struct sched_domain {
937 /* These fields must be setup */
938 struct sched_domain *parent; /* top domain must be null terminated */
939 struct sched_domain *child; /* bottom domain must be null terminated */
940 struct sched_group *groups; /* the balancing groups of the domain */
941 unsigned long min_interval; /* Minimum balance interval ms */
942 unsigned long max_interval; /* Maximum balance interval ms */
943 unsigned int busy_factor; /* less balancing by factor if busy */
944 unsigned int imbalance_pct; /* No balance until over watermark */
945 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
946 unsigned int busy_idx;
947 unsigned int idle_idx;
948 unsigned int newidle_idx;
949 unsigned int wake_idx;
950 unsigned int forkexec_idx;
951 unsigned int smt_gain;
952 int flags; /* See SD_* */
953 enum sched_domain_level level;
954
955 /* Runtime fields. */
956 unsigned long last_balance; /* init to jiffies. units in jiffies */
957 unsigned int balance_interval; /* initialise to 1. units in ms. */
958 unsigned int nr_balance_failed; /* initialise to 0 */
959
960 u64 last_update;
961
962 #ifdef CONFIG_SCHEDSTATS
963 /* load_balance() stats */
964 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
965 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
966 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
967 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
968 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
969 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
970 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
971 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
972
973 /* Active load balancing */
974 unsigned int alb_count;
975 unsigned int alb_failed;
976 unsigned int alb_pushed;
977
978 /* SD_BALANCE_EXEC stats */
979 unsigned int sbe_count;
980 unsigned int sbe_balanced;
981 unsigned int sbe_pushed;
982
983 /* SD_BALANCE_FORK stats */
984 unsigned int sbf_count;
985 unsigned int sbf_balanced;
986 unsigned int sbf_pushed;
987
988 /* try_to_wake_up() stats */
989 unsigned int ttwu_wake_remote;
990 unsigned int ttwu_move_affine;
991 unsigned int ttwu_move_balance;
992 #endif
993 #ifdef CONFIG_SCHED_DEBUG
994 char *name;
995 #endif
996
997 /*
998 * Span of all CPUs in this domain.
999 *
1000 * NOTE: this field is variable length. (Allocated dynamically
1001 * by attaching extra space to the end of the structure,
1002 * depending on how many CPUs the kernel has booted up with)
1003 *
1004 * It is also be embedded into static data structures at build
1005 * time. (See 'struct static_sched_domain' in kernel/sched.c)
1006 */
1007 unsigned long span[0];
1008 };
1009
1010 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1011 {
1012 return to_cpumask(sd->span);
1013 }
1014
1015 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1016 struct sched_domain_attr *dattr_new);
1017
1018 /* Allocate an array of sched domains, for partition_sched_domains(). */
1019 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1020 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1021
1022 /* Test a flag in parent sched domain */
1023 static inline int test_sd_parent(struct sched_domain *sd, int flag)
1024 {
1025 if (sd->parent && (sd->parent->flags & flag))
1026 return 1;
1027
1028 return 0;
1029 }
1030
1031 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
1032 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
1033
1034 #else /* CONFIG_SMP */
1035
1036 struct sched_domain_attr;
1037
1038 static inline void
1039 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1040 struct sched_domain_attr *dattr_new)
1041 {
1042 }
1043 #endif /* !CONFIG_SMP */
1044
1045
1046 struct io_context; /* See blkdev.h */
1047
1048
1049 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1050 extern void prefetch_stack(struct task_struct *t);
1051 #else
1052 static inline void prefetch_stack(struct task_struct *t) { }
1053 #endif
1054
1055 struct audit_context; /* See audit.c */
1056 struct mempolicy;
1057 struct pipe_inode_info;
1058 struct uts_namespace;
1059
1060 struct rq;
1061 struct sched_domain;
1062
1063 /*
1064 * wake flags
1065 */
1066 #define WF_SYNC 0x01 /* waker goes to sleep after wakup */
1067 #define WF_FORK 0x02 /* child wakeup after fork */
1068
1069 struct sched_class {
1070 const struct sched_class *next;
1071
1072 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
1073 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
1074 void (*yield_task) (struct rq *rq);
1075
1076 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1077
1078 struct task_struct * (*pick_next_task) (struct rq *rq);
1079 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1080
1081 #ifdef CONFIG_SMP
1082 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
1083
1084 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
1085 struct rq *busiest, unsigned long max_load_move,
1086 struct sched_domain *sd, enum cpu_idle_type idle,
1087 int *all_pinned, int *this_best_prio);
1088
1089 int (*move_one_task) (struct rq *this_rq, int this_cpu,
1090 struct rq *busiest, struct sched_domain *sd,
1091 enum cpu_idle_type idle);
1092 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1093 void (*post_schedule) (struct rq *this_rq);
1094 void (*task_wake_up) (struct rq *this_rq, struct task_struct *task);
1095
1096 void (*set_cpus_allowed)(struct task_struct *p,
1097 const struct cpumask *newmask);
1098
1099 void (*rq_online)(struct rq *rq);
1100 void (*rq_offline)(struct rq *rq);
1101 #endif
1102
1103 void (*set_curr_task) (struct rq *rq);
1104 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1105 void (*task_fork) (struct task_struct *p);
1106
1107 void (*switched_from) (struct rq *this_rq, struct task_struct *task,
1108 int running);
1109 void (*switched_to) (struct rq *this_rq, struct task_struct *task,
1110 int running);
1111 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1112 int oldprio, int running);
1113
1114 unsigned int (*get_rr_interval) (struct rq *rq,
1115 struct task_struct *task);
1116
1117 #ifdef CONFIG_FAIR_GROUP_SCHED
1118 void (*moved_group) (struct task_struct *p);
1119 #endif
1120 };
1121
1122 struct load_weight {
1123 unsigned long weight, inv_weight;
1124 };
1125
1126 /*
1127 * CFS stats for a schedulable entity (task, task-group etc)
1128 *
1129 * Current field usage histogram:
1130 *
1131 * 4 se->block_start
1132 * 4 se->run_node
1133 * 4 se->sleep_start
1134 * 6 se->load.weight
1135 */
1136 struct sched_entity {
1137 struct load_weight load; /* for load-balancing */
1138 struct rb_node run_node;
1139 struct list_head group_node;
1140 unsigned int on_rq;
1141
1142 u64 exec_start;
1143 u64 sum_exec_runtime;
1144 u64 vruntime;
1145 u64 prev_sum_exec_runtime;
1146
1147 u64 last_wakeup;
1148 u64 avg_overlap;
1149
1150 u64 nr_migrations;
1151
1152 u64 start_runtime;
1153 u64 avg_wakeup;
1154
1155 #ifdef CONFIG_SCHEDSTATS
1156 u64 wait_start;
1157 u64 wait_max;
1158 u64 wait_count;
1159 u64 wait_sum;
1160 u64 iowait_count;
1161 u64 iowait_sum;
1162
1163 u64 sleep_start;
1164 u64 sleep_max;
1165 s64 sum_sleep_runtime;
1166
1167 u64 block_start;
1168 u64 block_max;
1169 u64 exec_max;
1170 u64 slice_max;
1171
1172 u64 nr_migrations_cold;
1173 u64 nr_failed_migrations_affine;
1174 u64 nr_failed_migrations_running;
1175 u64 nr_failed_migrations_hot;
1176 u64 nr_forced_migrations;
1177
1178 u64 nr_wakeups;
1179 u64 nr_wakeups_sync;
1180 u64 nr_wakeups_migrate;
1181 u64 nr_wakeups_local;
1182 u64 nr_wakeups_remote;
1183 u64 nr_wakeups_affine;
1184 u64 nr_wakeups_affine_attempts;
1185 u64 nr_wakeups_passive;
1186 u64 nr_wakeups_idle;
1187 #endif
1188
1189 #ifdef CONFIG_FAIR_GROUP_SCHED
1190 struct sched_entity *parent;
1191 /* rq on which this entity is (to be) queued: */
1192 struct cfs_rq *cfs_rq;
1193 /* rq "owned" by this entity/group: */
1194 struct cfs_rq *my_q;
1195 #endif
1196 };
1197
1198 struct sched_rt_entity {
1199 struct list_head run_list;
1200 unsigned long timeout;
1201 unsigned int time_slice;
1202 int nr_cpus_allowed;
1203
1204 struct sched_rt_entity *back;
1205 #ifdef CONFIG_RT_GROUP_SCHED
1206 struct sched_rt_entity *parent;
1207 /* rq on which this entity is (to be) queued: */
1208 struct rt_rq *rt_rq;
1209 /* rq "owned" by this entity/group: */
1210 struct rt_rq *my_q;
1211 #endif
1212 };
1213
1214 struct rcu_node;
1215
1216 struct task_struct {
1217 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1218 void *stack;
1219 atomic_t usage;
1220 unsigned int flags; /* per process flags, defined below */
1221 unsigned int ptrace;
1222
1223 int lock_depth; /* BKL lock depth */
1224
1225 #ifdef CONFIG_SMP
1226 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1227 int oncpu;
1228 #endif
1229 #endif
1230
1231 int prio, static_prio, normal_prio;
1232 unsigned int rt_priority;
1233 const struct sched_class *sched_class;
1234 struct sched_entity se;
1235 struct sched_rt_entity rt;
1236
1237 #ifdef CONFIG_PREEMPT_NOTIFIERS
1238 /* list of struct preempt_notifier: */
1239 struct hlist_head preempt_notifiers;
1240 #endif
1241
1242 /*
1243 * fpu_counter contains the number of consecutive context switches
1244 * that the FPU is used. If this is over a threshold, the lazy fpu
1245 * saving becomes unlazy to save the trap. This is an unsigned char
1246 * so that after 256 times the counter wraps and the behavior turns
1247 * lazy again; this to deal with bursty apps that only use FPU for
1248 * a short time
1249 */
1250 unsigned char fpu_counter;
1251 #ifdef CONFIG_BLK_DEV_IO_TRACE
1252 unsigned int btrace_seq;
1253 #endif
1254
1255 unsigned int policy;
1256 cpumask_t cpus_allowed;
1257
1258 #ifdef CONFIG_TREE_PREEMPT_RCU
1259 int rcu_read_lock_nesting;
1260 char rcu_read_unlock_special;
1261 struct rcu_node *rcu_blocked_node;
1262 struct list_head rcu_node_entry;
1263 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1264
1265 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1266 struct sched_info sched_info;
1267 #endif
1268
1269 struct list_head tasks;
1270 struct plist_node pushable_tasks;
1271
1272 struct mm_struct *mm, *active_mm;
1273
1274 /* task state */
1275 int exit_state;
1276 int exit_code, exit_signal;
1277 int pdeath_signal; /* The signal sent when the parent dies */
1278 /* ??? */
1279 unsigned int personality;
1280 unsigned did_exec:1;
1281 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1282 * execve */
1283 unsigned in_iowait:1;
1284
1285
1286 /* Revert to default priority/policy when forking */
1287 unsigned sched_reset_on_fork:1;
1288
1289 pid_t pid;
1290 pid_t tgid;
1291
1292 #ifdef CONFIG_CC_STACKPROTECTOR
1293 /* Canary value for the -fstack-protector gcc feature */
1294 unsigned long stack_canary;
1295 #endif
1296
1297 /*
1298 * pointers to (original) parent process, youngest child, younger sibling,
1299 * older sibling, respectively. (p->father can be replaced with
1300 * p->real_parent->pid)
1301 */
1302 struct task_struct *real_parent; /* real parent process */
1303 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1304 /*
1305 * children/sibling forms the list of my natural children
1306 */
1307 struct list_head children; /* list of my children */
1308 struct list_head sibling; /* linkage in my parent's children list */
1309 struct task_struct *group_leader; /* threadgroup leader */
1310
1311 /*
1312 * ptraced is the list of tasks this task is using ptrace on.
1313 * This includes both natural children and PTRACE_ATTACH targets.
1314 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1315 */
1316 struct list_head ptraced;
1317 struct list_head ptrace_entry;
1318
1319 /*
1320 * This is the tracer handle for the ptrace BTS extension.
1321 * This field actually belongs to the ptracer task.
1322 */
1323 struct bts_context *bts;
1324
1325 /* PID/PID hash table linkage. */
1326 struct pid_link pids[PIDTYPE_MAX];
1327 struct list_head thread_group;
1328
1329 struct completion *vfork_done; /* for vfork() */
1330 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1331 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1332
1333 cputime_t utime, stime, utimescaled, stimescaled;
1334 cputime_t gtime;
1335 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1336 cputime_t prev_utime, prev_stime;
1337 #endif
1338 unsigned long nvcsw, nivcsw; /* context switch counts */
1339 struct timespec start_time; /* monotonic time */
1340 struct timespec real_start_time; /* boot based time */
1341 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1342 unsigned long min_flt, maj_flt;
1343
1344 struct task_cputime cputime_expires;
1345 struct list_head cpu_timers[3];
1346
1347 /* process credentials */
1348 const struct cred *real_cred; /* objective and real subjective task
1349 * credentials (COW) */
1350 const struct cred *cred; /* effective (overridable) subjective task
1351 * credentials (COW) */
1352 struct mutex cred_guard_mutex; /* guard against foreign influences on
1353 * credential calculations
1354 * (notably. ptrace) */
1355 struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */
1356
1357 char comm[TASK_COMM_LEN]; /* executable name excluding path
1358 - access with [gs]et_task_comm (which lock
1359 it with task_lock())
1360 - initialized normally by flush_old_exec */
1361 /* file system info */
1362 int link_count, total_link_count;
1363 #ifdef CONFIG_SYSVIPC
1364 /* ipc stuff */
1365 struct sysv_sem sysvsem;
1366 #endif
1367 #ifdef CONFIG_DETECT_HUNG_TASK
1368 /* hung task detection */
1369 unsigned long last_switch_count;
1370 #endif
1371 /* CPU-specific state of this task */
1372 struct thread_struct thread;
1373 /* filesystem information */
1374 struct fs_struct *fs;
1375 /* open file information */
1376 struct files_struct *files;
1377 /* namespaces */
1378 struct nsproxy *nsproxy;
1379 /* signal handlers */
1380 struct signal_struct *signal;
1381 struct sighand_struct *sighand;
1382
1383 sigset_t blocked, real_blocked;
1384 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1385 struct sigpending pending;
1386
1387 unsigned long sas_ss_sp;
1388 size_t sas_ss_size;
1389 int (*notifier)(void *priv);
1390 void *notifier_data;
1391 sigset_t *notifier_mask;
1392 struct audit_context *audit_context;
1393 #ifdef CONFIG_AUDITSYSCALL
1394 uid_t loginuid;
1395 unsigned int sessionid;
1396 #endif
1397 seccomp_t seccomp;
1398
1399 /* Thread group tracking */
1400 u32 parent_exec_id;
1401 u32 self_exec_id;
1402 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1403 * mempolicy */
1404 spinlock_t alloc_lock;
1405
1406 #ifdef CONFIG_GENERIC_HARDIRQS
1407 /* IRQ handler threads */
1408 struct irqaction *irqaction;
1409 #endif
1410
1411 /* Protection of the PI data structures: */
1412 spinlock_t pi_lock;
1413
1414 #ifdef CONFIG_RT_MUTEXES
1415 /* PI waiters blocked on a rt_mutex held by this task */
1416 struct plist_head pi_waiters;
1417 /* Deadlock detection and priority inheritance handling */
1418 struct rt_mutex_waiter *pi_blocked_on;
1419 #endif
1420
1421 #ifdef CONFIG_DEBUG_MUTEXES
1422 /* mutex deadlock detection */
1423 struct mutex_waiter *blocked_on;
1424 #endif
1425 #ifdef CONFIG_TRACE_IRQFLAGS
1426 unsigned int irq_events;
1427 unsigned long hardirq_enable_ip;
1428 unsigned long hardirq_disable_ip;
1429 unsigned int hardirq_enable_event;
1430 unsigned int hardirq_disable_event;
1431 int hardirqs_enabled;
1432 int hardirq_context;
1433 unsigned long softirq_disable_ip;
1434 unsigned long softirq_enable_ip;
1435 unsigned int softirq_disable_event;
1436 unsigned int softirq_enable_event;
1437 int softirqs_enabled;
1438 int softirq_context;
1439 #endif
1440 #ifdef CONFIG_LOCKDEP
1441 # define MAX_LOCK_DEPTH 48UL
1442 u64 curr_chain_key;
1443 int lockdep_depth;
1444 unsigned int lockdep_recursion;
1445 struct held_lock held_locks[MAX_LOCK_DEPTH];
1446 gfp_t lockdep_reclaim_gfp;
1447 #endif
1448
1449 /* journalling filesystem info */
1450 void *journal_info;
1451
1452 /* stacked block device info */
1453 struct bio *bio_list, **bio_tail;
1454
1455 /* VM state */
1456 struct reclaim_state *reclaim_state;
1457
1458 struct backing_dev_info *backing_dev_info;
1459
1460 struct io_context *io_context;
1461
1462 unsigned long ptrace_message;
1463 siginfo_t *last_siginfo; /* For ptrace use. */
1464 struct task_io_accounting ioac;
1465 #if defined(CONFIG_TASK_XACCT)
1466 u64 acct_rss_mem1; /* accumulated rss usage */
1467 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1468 cputime_t acct_timexpd; /* stime + utime since last update */
1469 #endif
1470 #ifdef CONFIG_CPUSETS
1471 nodemask_t mems_allowed; /* Protected by alloc_lock */
1472 int cpuset_mem_spread_rotor;
1473 #endif
1474 #ifdef CONFIG_CGROUPS
1475 /* Control Group info protected by css_set_lock */
1476 struct css_set *cgroups;
1477 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1478 struct list_head cg_list;
1479 #endif
1480 #ifdef CONFIG_FUTEX
1481 struct robust_list_head __user *robust_list;
1482 #ifdef CONFIG_COMPAT
1483 struct compat_robust_list_head __user *compat_robust_list;
1484 #endif
1485 struct list_head pi_state_list;
1486 struct futex_pi_state *pi_state_cache;
1487 #endif
1488 #ifdef CONFIG_PERF_EVENTS
1489 struct perf_event_context *perf_event_ctxp;
1490 struct mutex perf_event_mutex;
1491 struct list_head perf_event_list;
1492 #endif
1493 #ifdef CONFIG_NUMA
1494 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1495 short il_next;
1496 #endif
1497 atomic_t fs_excl; /* holding fs exclusive resources */
1498 struct rcu_head rcu;
1499
1500 /*
1501 * cache last used pipe for splice
1502 */
1503 struct pipe_inode_info *splice_pipe;
1504 #ifdef CONFIG_TASK_DELAY_ACCT
1505 struct task_delay_info *delays;
1506 #endif
1507 #ifdef CONFIG_FAULT_INJECTION
1508 int make_it_fail;
1509 #endif
1510 struct prop_local_single dirties;
1511 #ifdef CONFIG_LATENCYTOP
1512 int latency_record_count;
1513 struct latency_record latency_record[LT_SAVECOUNT];
1514 #endif
1515 /*
1516 * time slack values; these are used to round up poll() and
1517 * select() etc timeout values. These are in nanoseconds.
1518 */
1519 unsigned long timer_slack_ns;
1520 unsigned long default_timer_slack_ns;
1521
1522 struct list_head *scm_work_list;
1523 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1524 /* Index of current stored adress in ret_stack */
1525 int curr_ret_stack;
1526 /* Stack of return addresses for return function tracing */
1527 struct ftrace_ret_stack *ret_stack;
1528 /* time stamp for last schedule */
1529 unsigned long long ftrace_timestamp;
1530 /*
1531 * Number of functions that haven't been traced
1532 * because of depth overrun.
1533 */
1534 atomic_t trace_overrun;
1535 /* Pause for the tracing */
1536 atomic_t tracing_graph_pause;
1537 #endif
1538 #ifdef CONFIG_TRACING
1539 /* state flags for use by tracers */
1540 unsigned long trace;
1541 /* bitmask of trace recursion */
1542 unsigned long trace_recursion;
1543 #endif /* CONFIG_TRACING */
1544 unsigned long stack_start;
1545 };
1546
1547 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1548 #define tsk_cpumask(tsk) (&(tsk)->cpus_allowed)
1549
1550 /*
1551 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1552 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1553 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1554 * values are inverted: lower p->prio value means higher priority.
1555 *
1556 * The MAX_USER_RT_PRIO value allows the actual maximum
1557 * RT priority to be separate from the value exported to
1558 * user-space. This allows kernel threads to set their
1559 * priority to a value higher than any user task. Note:
1560 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1561 */
1562
1563 #define MAX_USER_RT_PRIO 100
1564 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1565
1566 #define MAX_PRIO (MAX_RT_PRIO + 40)
1567 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1568
1569 static inline int rt_prio(int prio)
1570 {
1571 if (unlikely(prio < MAX_RT_PRIO))
1572 return 1;
1573 return 0;
1574 }
1575
1576 static inline int rt_task(struct task_struct *p)
1577 {
1578 return rt_prio(p->prio);
1579 }
1580
1581 static inline struct pid *task_pid(struct task_struct *task)
1582 {
1583 return task->pids[PIDTYPE_PID].pid;
1584 }
1585
1586 static inline struct pid *task_tgid(struct task_struct *task)
1587 {
1588 return task->group_leader->pids[PIDTYPE_PID].pid;
1589 }
1590
1591 /*
1592 * Without tasklist or rcu lock it is not safe to dereference
1593 * the result of task_pgrp/task_session even if task == current,
1594 * we can race with another thread doing sys_setsid/sys_setpgid.
1595 */
1596 static inline struct pid *task_pgrp(struct task_struct *task)
1597 {
1598 return task->group_leader->pids[PIDTYPE_PGID].pid;
1599 }
1600
1601 static inline struct pid *task_session(struct task_struct *task)
1602 {
1603 return task->group_leader->pids[PIDTYPE_SID].pid;
1604 }
1605
1606 struct pid_namespace;
1607
1608 /*
1609 * the helpers to get the task's different pids as they are seen
1610 * from various namespaces
1611 *
1612 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1613 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1614 * current.
1615 * task_xid_nr_ns() : id seen from the ns specified;
1616 *
1617 * set_task_vxid() : assigns a virtual id to a task;
1618 *
1619 * see also pid_nr() etc in include/linux/pid.h
1620 */
1621 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1622 struct pid_namespace *ns);
1623
1624 static inline pid_t task_pid_nr(struct task_struct *tsk)
1625 {
1626 return tsk->pid;
1627 }
1628
1629 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1630 struct pid_namespace *ns)
1631 {
1632 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1633 }
1634
1635 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1636 {
1637 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1638 }
1639
1640
1641 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1642 {
1643 return tsk->tgid;
1644 }
1645
1646 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1647
1648 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1649 {
1650 return pid_vnr(task_tgid(tsk));
1651 }
1652
1653
1654 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1655 struct pid_namespace *ns)
1656 {
1657 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1658 }
1659
1660 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1661 {
1662 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1663 }
1664
1665
1666 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1667 struct pid_namespace *ns)
1668 {
1669 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1670 }
1671
1672 static inline pid_t task_session_vnr(struct task_struct *tsk)
1673 {
1674 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1675 }
1676
1677 /* obsolete, do not use */
1678 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1679 {
1680 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1681 }
1682
1683 /**
1684 * pid_alive - check that a task structure is not stale
1685 * @p: Task structure to be checked.
1686 *
1687 * Test if a process is not yet dead (at most zombie state)
1688 * If pid_alive fails, then pointers within the task structure
1689 * can be stale and must not be dereferenced.
1690 */
1691 static inline int pid_alive(struct task_struct *p)
1692 {
1693 return p->pids[PIDTYPE_PID].pid != NULL;
1694 }
1695
1696 /**
1697 * is_global_init - check if a task structure is init
1698 * @tsk: Task structure to be checked.
1699 *
1700 * Check if a task structure is the first user space task the kernel created.
1701 */
1702 static inline int is_global_init(struct task_struct *tsk)
1703 {
1704 return tsk->pid == 1;
1705 }
1706
1707 /*
1708 * is_container_init:
1709 * check whether in the task is init in its own pid namespace.
1710 */
1711 extern int is_container_init(struct task_struct *tsk);
1712
1713 extern struct pid *cad_pid;
1714
1715 extern void free_task(struct task_struct *tsk);
1716 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1717
1718 extern void __put_task_struct(struct task_struct *t);
1719
1720 static inline void put_task_struct(struct task_struct *t)
1721 {
1722 if (atomic_dec_and_test(&t->usage))
1723 __put_task_struct(t);
1724 }
1725
1726 extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1727 extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1728
1729 /*
1730 * Per process flags
1731 */
1732 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1733 /* Not implemented yet, only for 486*/
1734 #define PF_STARTING 0x00000002 /* being created */
1735 #define PF_EXITING 0x00000004 /* getting shut down */
1736 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1737 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1738 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1739 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1740 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1741 #define PF_DUMPCORE 0x00000200 /* dumped core */
1742 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1743 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1744 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1745 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1746 #define PF_FREEZING 0x00004000 /* freeze in progress. do not account to load */
1747 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1748 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1749 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1750 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1751 #define PF_OOM_ORIGIN 0x00080000 /* Allocating much memory to others */
1752 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1753 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1754 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1755 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1756 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1757 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1758 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1759 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1760 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1761 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1762 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1763 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */
1764
1765 /*
1766 * Only the _current_ task can read/write to tsk->flags, but other
1767 * tasks can access tsk->flags in readonly mode for example
1768 * with tsk_used_math (like during threaded core dumping).
1769 * There is however an exception to this rule during ptrace
1770 * or during fork: the ptracer task is allowed to write to the
1771 * child->flags of its traced child (same goes for fork, the parent
1772 * can write to the child->flags), because we're guaranteed the
1773 * child is not running and in turn not changing child->flags
1774 * at the same time the parent does it.
1775 */
1776 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1777 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1778 #define clear_used_math() clear_stopped_child_used_math(current)
1779 #define set_used_math() set_stopped_child_used_math(current)
1780 #define conditional_stopped_child_used_math(condition, child) \
1781 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1782 #define conditional_used_math(condition) \
1783 conditional_stopped_child_used_math(condition, current)
1784 #define copy_to_stopped_child_used_math(child) \
1785 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1786 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1787 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1788 #define used_math() tsk_used_math(current)
1789
1790 #ifdef CONFIG_TREE_PREEMPT_RCU
1791
1792 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1793 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1794
1795 static inline void rcu_copy_process(struct task_struct *p)
1796 {
1797 p->rcu_read_lock_nesting = 0;
1798 p->rcu_read_unlock_special = 0;
1799 p->rcu_blocked_node = NULL;
1800 INIT_LIST_HEAD(&p->rcu_node_entry);
1801 }
1802
1803 #else
1804
1805 static inline void rcu_copy_process(struct task_struct *p)
1806 {
1807 }
1808
1809 #endif
1810
1811 #ifdef CONFIG_SMP
1812 extern int set_cpus_allowed_ptr(struct task_struct *p,
1813 const struct cpumask *new_mask);
1814 #else
1815 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1816 const struct cpumask *new_mask)
1817 {
1818 if (!cpumask_test_cpu(0, new_mask))
1819 return -EINVAL;
1820 return 0;
1821 }
1822 #endif
1823
1824 #ifndef CONFIG_CPUMASK_OFFSTACK
1825 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1826 {
1827 return set_cpus_allowed_ptr(p, &new_mask);
1828 }
1829 #endif
1830
1831 /*
1832 * Architectures can set this to 1 if they have specified
1833 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1834 * but then during bootup it turns out that sched_clock()
1835 * is reliable after all:
1836 */
1837 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1838 extern int sched_clock_stable;
1839 #endif
1840
1841 /* ftrace calls sched_clock() directly */
1842 extern unsigned long long notrace sched_clock(void);
1843
1844 extern void sched_clock_init(void);
1845 extern u64 sched_clock_cpu(int cpu);
1846
1847 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1848 static inline void sched_clock_tick(void)
1849 {
1850 }
1851
1852 static inline void sched_clock_idle_sleep_event(void)
1853 {
1854 }
1855
1856 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1857 {
1858 }
1859 #else
1860 extern void sched_clock_tick(void);
1861 extern void sched_clock_idle_sleep_event(void);
1862 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1863 #endif
1864
1865 /*
1866 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1867 * clock constructed from sched_clock():
1868 */
1869 extern unsigned long long cpu_clock(int cpu);
1870
1871 extern unsigned long long
1872 task_sched_runtime(struct task_struct *task);
1873 extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1874
1875 /* sched_exec is called by processes performing an exec */
1876 #ifdef CONFIG_SMP
1877 extern void sched_exec(void);
1878 #else
1879 #define sched_exec() {}
1880 #endif
1881
1882 extern void sched_clock_idle_sleep_event(void);
1883 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1884
1885 #ifdef CONFIG_HOTPLUG_CPU
1886 extern void idle_task_exit(void);
1887 #else
1888 static inline void idle_task_exit(void) {}
1889 #endif
1890
1891 extern void sched_idle_next(void);
1892
1893 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1894 extern void wake_up_idle_cpu(int cpu);
1895 #else
1896 static inline void wake_up_idle_cpu(int cpu) { }
1897 #endif
1898
1899 extern unsigned int sysctl_sched_latency;
1900 extern unsigned int sysctl_sched_min_granularity;
1901 extern unsigned int sysctl_sched_wakeup_granularity;
1902 extern unsigned int sysctl_sched_shares_ratelimit;
1903 extern unsigned int sysctl_sched_shares_thresh;
1904 extern unsigned int sysctl_sched_child_runs_first;
1905
1906 enum sched_tunable_scaling {
1907 SCHED_TUNABLESCALING_NONE,
1908 SCHED_TUNABLESCALING_LOG,
1909 SCHED_TUNABLESCALING_LINEAR,
1910 SCHED_TUNABLESCALING_END,
1911 };
1912 extern enum sched_tunable_scaling sysctl_sched_tunable_scaling;
1913
1914 #ifdef CONFIG_SCHED_DEBUG
1915 extern unsigned int sysctl_sched_migration_cost;
1916 extern unsigned int sysctl_sched_nr_migrate;
1917 extern unsigned int sysctl_sched_time_avg;
1918 extern unsigned int sysctl_timer_migration;
1919
1920 int sched_proc_update_handler(struct ctl_table *table, int write,
1921 void __user *buffer, size_t *length,
1922 loff_t *ppos);
1923 #endif
1924 #ifdef CONFIG_SCHED_DEBUG
1925 static inline unsigned int get_sysctl_timer_migration(void)
1926 {
1927 return sysctl_timer_migration;
1928 }
1929 #else
1930 static inline unsigned int get_sysctl_timer_migration(void)
1931 {
1932 return 1;
1933 }
1934 #endif
1935 extern unsigned int sysctl_sched_rt_period;
1936 extern int sysctl_sched_rt_runtime;
1937
1938 int sched_rt_handler(struct ctl_table *table, int write,
1939 void __user *buffer, size_t *lenp,
1940 loff_t *ppos);
1941
1942 extern unsigned int sysctl_sched_compat_yield;
1943
1944 #ifdef CONFIG_RT_MUTEXES
1945 extern int rt_mutex_getprio(struct task_struct *p);
1946 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1947 extern void rt_mutex_adjust_pi(struct task_struct *p);
1948 #else
1949 static inline int rt_mutex_getprio(struct task_struct *p)
1950 {
1951 return p->normal_prio;
1952 }
1953 # define rt_mutex_adjust_pi(p) do { } while (0)
1954 #endif
1955
1956 extern void set_user_nice(struct task_struct *p, long nice);
1957 extern int task_prio(const struct task_struct *p);
1958 extern int task_nice(const struct task_struct *p);
1959 extern int can_nice(const struct task_struct *p, const int nice);
1960 extern int task_curr(const struct task_struct *p);
1961 extern int idle_cpu(int cpu);
1962 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1963 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1964 struct sched_param *);
1965 extern struct task_struct *idle_task(int cpu);
1966 extern struct task_struct *curr_task(int cpu);
1967 extern void set_curr_task(int cpu, struct task_struct *p);
1968
1969 void yield(void);
1970
1971 /*
1972 * The default (Linux) execution domain.
1973 */
1974 extern struct exec_domain default_exec_domain;
1975
1976 union thread_union {
1977 struct thread_info thread_info;
1978 unsigned long stack[THREAD_SIZE/sizeof(long)];
1979 };
1980
1981 #ifndef __HAVE_ARCH_KSTACK_END
1982 static inline int kstack_end(void *addr)
1983 {
1984 /* Reliable end of stack detection:
1985 * Some APM bios versions misalign the stack
1986 */
1987 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1988 }
1989 #endif
1990
1991 extern union thread_union init_thread_union;
1992 extern struct task_struct init_task;
1993
1994 extern struct mm_struct init_mm;
1995
1996 extern struct pid_namespace init_pid_ns;
1997
1998 /*
1999 * find a task by one of its numerical ids
2000 *
2001 * find_task_by_pid_ns():
2002 * finds a task by its pid in the specified namespace
2003 * find_task_by_vpid():
2004 * finds a task by its virtual pid
2005 *
2006 * see also find_vpid() etc in include/linux/pid.h
2007 */
2008
2009 extern struct task_struct *find_task_by_vpid(pid_t nr);
2010 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2011 struct pid_namespace *ns);
2012
2013 extern void __set_special_pids(struct pid *pid);
2014
2015 /* per-UID process charging. */
2016 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
2017 static inline struct user_struct *get_uid(struct user_struct *u)
2018 {
2019 atomic_inc(&u->__count);
2020 return u;
2021 }
2022 extern void free_uid(struct user_struct *);
2023 extern void release_uids(struct user_namespace *ns);
2024
2025 #include <asm/current.h>
2026
2027 extern void do_timer(unsigned long ticks);
2028
2029 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2030 extern int wake_up_process(struct task_struct *tsk);
2031 extern void wake_up_new_task(struct task_struct *tsk,
2032 unsigned long clone_flags);
2033 #ifdef CONFIG_SMP
2034 extern void kick_process(struct task_struct *tsk);
2035 #else
2036 static inline void kick_process(struct task_struct *tsk) { }
2037 #endif
2038 extern void sched_fork(struct task_struct *p, int clone_flags);
2039 extern void sched_dead(struct task_struct *p);
2040
2041 extern void proc_caches_init(void);
2042 extern void flush_signals(struct task_struct *);
2043 extern void __flush_signals(struct task_struct *);
2044 extern void ignore_signals(struct task_struct *);
2045 extern void flush_signal_handlers(struct task_struct *, int force_default);
2046 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2047
2048 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2049 {
2050 unsigned long flags;
2051 int ret;
2052
2053 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2054 ret = dequeue_signal(tsk, mask, info);
2055 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2056
2057 return ret;
2058 }
2059
2060 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2061 sigset_t *mask);
2062 extern void unblock_all_signals(void);
2063 extern void release_task(struct task_struct * p);
2064 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2065 extern int force_sigsegv(int, struct task_struct *);
2066 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2067 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2068 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2069 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
2070 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2071 extern int kill_pid(struct pid *pid, int sig, int priv);
2072 extern int kill_proc_info(int, struct siginfo *, pid_t);
2073 extern int do_notify_parent(struct task_struct *, int);
2074 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2075 extern void force_sig(int, struct task_struct *);
2076 extern void force_sig_specific(int, struct task_struct *);
2077 extern int send_sig(int, struct task_struct *, int);
2078 extern void zap_other_threads(struct task_struct *p);
2079 extern struct sigqueue *sigqueue_alloc(void);
2080 extern void sigqueue_free(struct sigqueue *);
2081 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2082 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2083 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2084
2085 static inline int kill_cad_pid(int sig, int priv)
2086 {
2087 return kill_pid(cad_pid, sig, priv);
2088 }
2089
2090 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2091 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2092 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2093 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2094
2095 static inline int is_si_special(const struct siginfo *info)
2096 {
2097 return info <= SEND_SIG_FORCED;
2098 }
2099
2100 /*
2101 * True if we are on the alternate signal stack.
2102 */
2103 static inline int on_sig_stack(unsigned long sp)
2104 {
2105 #ifdef CONFIG_STACK_GROWSUP
2106 return sp >= current->sas_ss_sp &&
2107 sp - current->sas_ss_sp < current->sas_ss_size;
2108 #else
2109 return sp > current->sas_ss_sp &&
2110 sp - current->sas_ss_sp <= current->sas_ss_size;
2111 #endif
2112 }
2113
2114 static inline int sas_ss_flags(unsigned long sp)
2115 {
2116 return (current->sas_ss_size == 0 ? SS_DISABLE
2117 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2118 }
2119
2120 /*
2121 * Routines for handling mm_structs
2122 */
2123 extern struct mm_struct * mm_alloc(void);
2124
2125 /* mmdrop drops the mm and the page tables */
2126 extern void __mmdrop(struct mm_struct *);
2127 static inline void mmdrop(struct mm_struct * mm)
2128 {
2129 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2130 __mmdrop(mm);
2131 }
2132
2133 /* mmput gets rid of the mappings and all user-space */
2134 extern void mmput(struct mm_struct *);
2135 /* Grab a reference to a task's mm, if it is not already going away */
2136 extern struct mm_struct *get_task_mm(struct task_struct *task);
2137 /* Remove the current tasks stale references to the old mm_struct */
2138 extern void mm_release(struct task_struct *, struct mm_struct *);
2139 /* Allocate a new mm structure and copy contents from tsk->mm */
2140 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2141
2142 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2143 struct task_struct *, struct pt_regs *);
2144 extern void flush_thread(void);
2145 extern void exit_thread(void);
2146
2147 extern void exit_files(struct task_struct *);
2148 extern void __cleanup_signal(struct signal_struct *);
2149 extern void __cleanup_sighand(struct sighand_struct *);
2150
2151 extern void exit_itimers(struct signal_struct *);
2152 extern void flush_itimer_signals(void);
2153
2154 extern NORET_TYPE void do_group_exit(int);
2155
2156 extern void daemonize(const char *, ...);
2157 extern int allow_signal(int);
2158 extern int disallow_signal(int);
2159
2160 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
2161 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2162 struct task_struct *fork_idle(int);
2163
2164 extern void set_task_comm(struct task_struct *tsk, char *from);
2165 extern char *get_task_comm(char *to, struct task_struct *tsk);
2166
2167 #ifdef CONFIG_SMP
2168 extern void wait_task_context_switch(struct task_struct *p);
2169 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2170 #else
2171 static inline void wait_task_context_switch(struct task_struct *p) {}
2172 static inline unsigned long wait_task_inactive(struct task_struct *p,
2173 long match_state)
2174 {
2175 return 1;
2176 }
2177 #endif
2178
2179 #define next_task(p) \
2180 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2181
2182 #define for_each_process(p) \
2183 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2184
2185 extern bool current_is_single_threaded(void);
2186
2187 /*
2188 * Careful: do_each_thread/while_each_thread is a double loop so
2189 * 'break' will not work as expected - use goto instead.
2190 */
2191 #define do_each_thread(g, t) \
2192 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2193
2194 #define while_each_thread(g, t) \
2195 while ((t = next_thread(t)) != g)
2196
2197 /* de_thread depends on thread_group_leader not being a pid based check */
2198 #define thread_group_leader(p) (p == p->group_leader)
2199
2200 /* Do to the insanities of de_thread it is possible for a process
2201 * to have the pid of the thread group leader without actually being
2202 * the thread group leader. For iteration through the pids in proc
2203 * all we care about is that we have a task with the appropriate
2204 * pid, we don't actually care if we have the right task.
2205 */
2206 static inline int has_group_leader_pid(struct task_struct *p)
2207 {
2208 return p->pid == p->tgid;
2209 }
2210
2211 static inline
2212 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2213 {
2214 return p1->tgid == p2->tgid;
2215 }
2216
2217 static inline struct task_struct *next_thread(const struct task_struct *p)
2218 {
2219 return list_entry_rcu(p->thread_group.next,
2220 struct task_struct, thread_group);
2221 }
2222
2223 static inline int thread_group_empty(struct task_struct *p)
2224 {
2225 return list_empty(&p->thread_group);
2226 }
2227
2228 #define delay_group_leader(p) \
2229 (thread_group_leader(p) && !thread_group_empty(p))
2230
2231 static inline int task_detached(struct task_struct *p)
2232 {
2233 return p->exit_signal == -1;
2234 }
2235
2236 /*
2237 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2238 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2239 * pins the final release of task.io_context. Also protects ->cpuset and
2240 * ->cgroup.subsys[].
2241 *
2242 * Nests both inside and outside of read_lock(&tasklist_lock).
2243 * It must not be nested with write_lock_irq(&tasklist_lock),
2244 * neither inside nor outside.
2245 */
2246 static inline void task_lock(struct task_struct *p)
2247 {
2248 spin_lock(&p->alloc_lock);
2249 }
2250
2251 static inline void task_unlock(struct task_struct *p)
2252 {
2253 spin_unlock(&p->alloc_lock);
2254 }
2255
2256 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2257 unsigned long *flags);
2258
2259 static inline void unlock_task_sighand(struct task_struct *tsk,
2260 unsigned long *flags)
2261 {
2262 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2263 }
2264
2265 #ifndef __HAVE_THREAD_FUNCTIONS
2266
2267 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2268 #define task_stack_page(task) ((task)->stack)
2269
2270 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2271 {
2272 *task_thread_info(p) = *task_thread_info(org);
2273 task_thread_info(p)->task = p;
2274 }
2275
2276 static inline unsigned long *end_of_stack(struct task_struct *p)
2277 {
2278 return (unsigned long *)(task_thread_info(p) + 1);
2279 }
2280
2281 #endif
2282
2283 static inline int object_is_on_stack(void *obj)
2284 {
2285 void *stack = task_stack_page(current);
2286
2287 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2288 }
2289
2290 extern void thread_info_cache_init(void);
2291
2292 #ifdef CONFIG_DEBUG_STACK_USAGE
2293 static inline unsigned long stack_not_used(struct task_struct *p)
2294 {
2295 unsigned long *n = end_of_stack(p);
2296
2297 do { /* Skip over canary */
2298 n++;
2299 } while (!*n);
2300
2301 return (unsigned long)n - (unsigned long)end_of_stack(p);
2302 }
2303 #endif
2304
2305 /* set thread flags in other task's structures
2306 * - see asm/thread_info.h for TIF_xxxx flags available
2307 */
2308 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2309 {
2310 set_ti_thread_flag(task_thread_info(tsk), flag);
2311 }
2312
2313 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2314 {
2315 clear_ti_thread_flag(task_thread_info(tsk), flag);
2316 }
2317
2318 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2319 {
2320 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2321 }
2322
2323 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2324 {
2325 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2326 }
2327
2328 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2329 {
2330 return test_ti_thread_flag(task_thread_info(tsk), flag);
2331 }
2332
2333 static inline void set_tsk_need_resched(struct task_struct *tsk)
2334 {
2335 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2336 }
2337
2338 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2339 {
2340 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2341 }
2342
2343 static inline int test_tsk_need_resched(struct task_struct *tsk)
2344 {
2345 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2346 }
2347
2348 static inline int restart_syscall(void)
2349 {
2350 set_tsk_thread_flag(current, TIF_SIGPENDING);
2351 return -ERESTARTNOINTR;
2352 }
2353
2354 static inline int signal_pending(struct task_struct *p)
2355 {
2356 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2357 }
2358
2359 static inline int __fatal_signal_pending(struct task_struct *p)
2360 {
2361 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2362 }
2363
2364 static inline int fatal_signal_pending(struct task_struct *p)
2365 {
2366 return signal_pending(p) && __fatal_signal_pending(p);
2367 }
2368
2369 static inline int signal_pending_state(long state, struct task_struct *p)
2370 {
2371 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2372 return 0;
2373 if (!signal_pending(p))
2374 return 0;
2375
2376 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2377 }
2378
2379 static inline int need_resched(void)
2380 {
2381 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2382 }
2383
2384 /*
2385 * cond_resched() and cond_resched_lock(): latency reduction via
2386 * explicit rescheduling in places that are safe. The return
2387 * value indicates whether a reschedule was done in fact.
2388 * cond_resched_lock() will drop the spinlock before scheduling,
2389 * cond_resched_softirq() will enable bhs before scheduling.
2390 */
2391 extern int _cond_resched(void);
2392
2393 #define cond_resched() ({ \
2394 __might_sleep(__FILE__, __LINE__, 0); \
2395 _cond_resched(); \
2396 })
2397
2398 extern int __cond_resched_lock(spinlock_t *lock);
2399
2400 #ifdef CONFIG_PREEMPT
2401 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2402 #else
2403 #define PREEMPT_LOCK_OFFSET 0
2404 #endif
2405
2406 #define cond_resched_lock(lock) ({ \
2407 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2408 __cond_resched_lock(lock); \
2409 })
2410
2411 extern int __cond_resched_softirq(void);
2412
2413 #define cond_resched_softirq() ({ \
2414 __might_sleep(__FILE__, __LINE__, SOFTIRQ_OFFSET); \
2415 __cond_resched_softirq(); \
2416 })
2417
2418 /*
2419 * Does a critical section need to be broken due to another
2420 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2421 * but a general need for low latency)
2422 */
2423 static inline int spin_needbreak(spinlock_t *lock)
2424 {
2425 #ifdef CONFIG_PREEMPT
2426 return spin_is_contended(lock);
2427 #else
2428 return 0;
2429 #endif
2430 }
2431
2432 /*
2433 * Thread group CPU time accounting.
2434 */
2435 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2436 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2437
2438 static inline void thread_group_cputime_init(struct signal_struct *sig)
2439 {
2440 sig->cputimer.cputime = INIT_CPUTIME;
2441 spin_lock_init(&sig->cputimer.lock);
2442 sig->cputimer.running = 0;
2443 }
2444
2445 static inline void thread_group_cputime_free(struct signal_struct *sig)
2446 {
2447 }
2448
2449 /*
2450 * Reevaluate whether the task has signals pending delivery.
2451 * Wake the task if so.
2452 * This is required every time the blocked sigset_t changes.
2453 * callers must hold sighand->siglock.
2454 */
2455 extern void recalc_sigpending_and_wake(struct task_struct *t);
2456 extern void recalc_sigpending(void);
2457
2458 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2459
2460 /*
2461 * Wrappers for p->thread_info->cpu access. No-op on UP.
2462 */
2463 #ifdef CONFIG_SMP
2464
2465 static inline unsigned int task_cpu(const struct task_struct *p)
2466 {
2467 return task_thread_info(p)->cpu;
2468 }
2469
2470 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2471
2472 #else
2473
2474 static inline unsigned int task_cpu(const struct task_struct *p)
2475 {
2476 return 0;
2477 }
2478
2479 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2480 {
2481 }
2482
2483 #endif /* CONFIG_SMP */
2484
2485 extern void arch_pick_mmap_layout(struct mm_struct *mm);
2486
2487 #ifdef CONFIG_TRACING
2488 extern void
2489 __trace_special(void *__tr, void *__data,
2490 unsigned long arg1, unsigned long arg2, unsigned long arg3);
2491 #else
2492 static inline void
2493 __trace_special(void *__tr, void *__data,
2494 unsigned long arg1, unsigned long arg2, unsigned long arg3)
2495 {
2496 }
2497 #endif
2498
2499 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2500 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2501
2502 extern void normalize_rt_tasks(void);
2503
2504 #ifdef CONFIG_GROUP_SCHED
2505
2506 extern struct task_group init_task_group;
2507 #ifdef CONFIG_USER_SCHED
2508 extern struct task_group root_task_group;
2509 extern void set_tg_uid(struct user_struct *user);
2510 #endif
2511
2512 extern struct task_group *sched_create_group(struct task_group *parent);
2513 extern void sched_destroy_group(struct task_group *tg);
2514 extern void sched_move_task(struct task_struct *tsk);
2515 #ifdef CONFIG_FAIR_GROUP_SCHED
2516 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2517 extern unsigned long sched_group_shares(struct task_group *tg);
2518 #endif
2519 #ifdef CONFIG_RT_GROUP_SCHED
2520 extern int sched_group_set_rt_runtime(struct task_group *tg,
2521 long rt_runtime_us);
2522 extern long sched_group_rt_runtime(struct task_group *tg);
2523 extern int sched_group_set_rt_period(struct task_group *tg,
2524 long rt_period_us);
2525 extern long sched_group_rt_period(struct task_group *tg);
2526 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2527 #endif
2528 #endif
2529
2530 extern int task_can_switch_user(struct user_struct *up,
2531 struct task_struct *tsk);
2532
2533 #ifdef CONFIG_TASK_XACCT
2534 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2535 {
2536 tsk->ioac.rchar += amt;
2537 }
2538
2539 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2540 {
2541 tsk->ioac.wchar += amt;
2542 }
2543
2544 static inline void inc_syscr(struct task_struct *tsk)
2545 {
2546 tsk->ioac.syscr++;
2547 }
2548
2549 static inline void inc_syscw(struct task_struct *tsk)
2550 {
2551 tsk->ioac.syscw++;
2552 }
2553 #else
2554 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2555 {
2556 }
2557
2558 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2559 {
2560 }
2561
2562 static inline void inc_syscr(struct task_struct *tsk)
2563 {
2564 }
2565
2566 static inline void inc_syscw(struct task_struct *tsk)
2567 {
2568 }
2569 #endif
2570
2571 #ifndef TASK_SIZE_OF
2572 #define TASK_SIZE_OF(tsk) TASK_SIZE
2573 #endif
2574
2575 /*
2576 * Call the function if the target task is executing on a CPU right now:
2577 */
2578 extern void task_oncpu_function_call(struct task_struct *p,
2579 void (*func) (void *info), void *info);
2580
2581
2582 #ifdef CONFIG_MM_OWNER
2583 extern void mm_update_next_owner(struct mm_struct *mm);
2584 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2585 #else
2586 static inline void mm_update_next_owner(struct mm_struct *mm)
2587 {
2588 }
2589
2590 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2591 {
2592 }
2593 #endif /* CONFIG_MM_OWNER */
2594
2595 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
2596
2597 #endif /* __KERNEL__ */
2598
2599 #endif
This page took 0.08415 seconds and 5 git commands to generate.