sched: Rename sync arguments
[deliverable/linux.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
29 #define CLONE_NEWNET 0x40000000 /* New network namespace */
30 #define CLONE_IO 0x80000000 /* Clone io context */
31
32 /*
33 * Scheduling policies
34 */
35 #define SCHED_NORMAL 0
36 #define SCHED_FIFO 1
37 #define SCHED_RR 2
38 #define SCHED_BATCH 3
39 /* SCHED_ISO: reserved but not implemented yet */
40 #define SCHED_IDLE 5
41 /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
42 #define SCHED_RESET_ON_FORK 0x40000000
43
44 #ifdef __KERNEL__
45
46 struct sched_param {
47 int sched_priority;
48 };
49
50 #include <asm/param.h> /* for HZ */
51
52 #include <linux/capability.h>
53 #include <linux/threads.h>
54 #include <linux/kernel.h>
55 #include <linux/types.h>
56 #include <linux/timex.h>
57 #include <linux/jiffies.h>
58 #include <linux/rbtree.h>
59 #include <linux/thread_info.h>
60 #include <linux/cpumask.h>
61 #include <linux/errno.h>
62 #include <linux/nodemask.h>
63 #include <linux/mm_types.h>
64
65 #include <asm/system.h>
66 #include <asm/page.h>
67 #include <asm/ptrace.h>
68 #include <asm/cputime.h>
69
70 #include <linux/smp.h>
71 #include <linux/sem.h>
72 #include <linux/signal.h>
73 #include <linux/path.h>
74 #include <linux/compiler.h>
75 #include <linux/completion.h>
76 #include <linux/pid.h>
77 #include <linux/percpu.h>
78 #include <linux/topology.h>
79 #include <linux/proportions.h>
80 #include <linux/seccomp.h>
81 #include <linux/rcupdate.h>
82 #include <linux/rculist.h>
83 #include <linux/rtmutex.h>
84
85 #include <linux/time.h>
86 #include <linux/param.h>
87 #include <linux/resource.h>
88 #include <linux/timer.h>
89 #include <linux/hrtimer.h>
90 #include <linux/task_io_accounting.h>
91 #include <linux/kobject.h>
92 #include <linux/latencytop.h>
93 #include <linux/cred.h>
94
95 #include <asm/processor.h>
96
97 struct exec_domain;
98 struct futex_pi_state;
99 struct robust_list_head;
100 struct bio;
101 struct fs_struct;
102 struct bts_context;
103 struct perf_counter_context;
104
105 /*
106 * List of flags we want to share for kernel threads,
107 * if only because they are not used by them anyway.
108 */
109 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
110
111 /*
112 * These are the constant used to fake the fixed-point load-average
113 * counting. Some notes:
114 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
115 * a load-average precision of 10 bits integer + 11 bits fractional
116 * - if you want to count load-averages more often, you need more
117 * precision, or rounding will get you. With 2-second counting freq,
118 * the EXP_n values would be 1981, 2034 and 2043 if still using only
119 * 11 bit fractions.
120 */
121 extern unsigned long avenrun[]; /* Load averages */
122 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
123
124 #define FSHIFT 11 /* nr of bits of precision */
125 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
126 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
127 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
128 #define EXP_5 2014 /* 1/exp(5sec/5min) */
129 #define EXP_15 2037 /* 1/exp(5sec/15min) */
130
131 #define CALC_LOAD(load,exp,n) \
132 load *= exp; \
133 load += n*(FIXED_1-exp); \
134 load >>= FSHIFT;
135
136 extern unsigned long total_forks;
137 extern int nr_threads;
138 DECLARE_PER_CPU(unsigned long, process_counts);
139 extern int nr_processes(void);
140 extern unsigned long nr_running(void);
141 extern unsigned long nr_uninterruptible(void);
142 extern unsigned long nr_iowait(void);
143 extern void calc_global_load(void);
144 extern u64 cpu_nr_migrations(int cpu);
145
146 extern unsigned long get_parent_ip(unsigned long addr);
147
148 struct seq_file;
149 struct cfs_rq;
150 struct task_group;
151 #ifdef CONFIG_SCHED_DEBUG
152 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
153 extern void proc_sched_set_task(struct task_struct *p);
154 extern void
155 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
156 #else
157 static inline void
158 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
159 {
160 }
161 static inline void proc_sched_set_task(struct task_struct *p)
162 {
163 }
164 static inline void
165 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
166 {
167 }
168 #endif
169
170 extern unsigned long long time_sync_thresh;
171
172 /*
173 * Task state bitmask. NOTE! These bits are also
174 * encoded in fs/proc/array.c: get_task_state().
175 *
176 * We have two separate sets of flags: task->state
177 * is about runnability, while task->exit_state are
178 * about the task exiting. Confusing, but this way
179 * modifying one set can't modify the other one by
180 * mistake.
181 */
182 #define TASK_RUNNING 0
183 #define TASK_INTERRUPTIBLE 1
184 #define TASK_UNINTERRUPTIBLE 2
185 #define __TASK_STOPPED 4
186 #define __TASK_TRACED 8
187 /* in tsk->exit_state */
188 #define EXIT_ZOMBIE 16
189 #define EXIT_DEAD 32
190 /* in tsk->state again */
191 #define TASK_DEAD 64
192 #define TASK_WAKEKILL 128
193 #define TASK_WAKING 256
194
195 /* Convenience macros for the sake of set_task_state */
196 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
197 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
198 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
199
200 /* Convenience macros for the sake of wake_up */
201 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
202 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
203
204 /* get_task_state() */
205 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
206 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
207 __TASK_TRACED)
208
209 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
210 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
211 #define task_is_stopped_or_traced(task) \
212 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
213 #define task_contributes_to_load(task) \
214 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
215 (task->flags & PF_FREEZING) == 0)
216
217 #define __set_task_state(tsk, state_value) \
218 do { (tsk)->state = (state_value); } while (0)
219 #define set_task_state(tsk, state_value) \
220 set_mb((tsk)->state, (state_value))
221
222 /*
223 * set_current_state() includes a barrier so that the write of current->state
224 * is correctly serialised wrt the caller's subsequent test of whether to
225 * actually sleep:
226 *
227 * set_current_state(TASK_UNINTERRUPTIBLE);
228 * if (do_i_need_to_sleep())
229 * schedule();
230 *
231 * If the caller does not need such serialisation then use __set_current_state()
232 */
233 #define __set_current_state(state_value) \
234 do { current->state = (state_value); } while (0)
235 #define set_current_state(state_value) \
236 set_mb(current->state, (state_value))
237
238 /* Task command name length */
239 #define TASK_COMM_LEN 16
240
241 #include <linux/spinlock.h>
242
243 /*
244 * This serializes "schedule()" and also protects
245 * the run-queue from deletions/modifications (but
246 * _adding_ to the beginning of the run-queue has
247 * a separate lock).
248 */
249 extern rwlock_t tasklist_lock;
250 extern spinlock_t mmlist_lock;
251
252 struct task_struct;
253
254 extern void sched_init(void);
255 extern void sched_init_smp(void);
256 extern asmlinkage void schedule_tail(struct task_struct *prev);
257 extern void init_idle(struct task_struct *idle, int cpu);
258 extern void init_idle_bootup_task(struct task_struct *idle);
259
260 extern int runqueue_is_locked(void);
261 extern void task_rq_unlock_wait(struct task_struct *p);
262
263 extern cpumask_var_t nohz_cpu_mask;
264 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
265 extern int select_nohz_load_balancer(int cpu);
266 extern int get_nohz_load_balancer(void);
267 #else
268 static inline int select_nohz_load_balancer(int cpu)
269 {
270 return 0;
271 }
272 #endif
273
274 /*
275 * Only dump TASK_* tasks. (0 for all tasks)
276 */
277 extern void show_state_filter(unsigned long state_filter);
278
279 static inline void show_state(void)
280 {
281 show_state_filter(0);
282 }
283
284 extern void show_regs(struct pt_regs *);
285
286 /*
287 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
288 * task), SP is the stack pointer of the first frame that should be shown in the back
289 * trace (or NULL if the entire call-chain of the task should be shown).
290 */
291 extern void show_stack(struct task_struct *task, unsigned long *sp);
292
293 void io_schedule(void);
294 long io_schedule_timeout(long timeout);
295
296 extern void cpu_init (void);
297 extern void trap_init(void);
298 extern void update_process_times(int user);
299 extern void scheduler_tick(void);
300
301 extern void sched_show_task(struct task_struct *p);
302
303 #ifdef CONFIG_DETECT_SOFTLOCKUP
304 extern void softlockup_tick(void);
305 extern void touch_softlockup_watchdog(void);
306 extern void touch_all_softlockup_watchdogs(void);
307 extern int proc_dosoftlockup_thresh(struct ctl_table *table, int write,
308 struct file *filp, void __user *buffer,
309 size_t *lenp, loff_t *ppos);
310 extern unsigned int softlockup_panic;
311 extern int softlockup_thresh;
312 #else
313 static inline void softlockup_tick(void)
314 {
315 }
316 static inline void touch_softlockup_watchdog(void)
317 {
318 }
319 static inline void touch_all_softlockup_watchdogs(void)
320 {
321 }
322 #endif
323
324 #ifdef CONFIG_DETECT_HUNG_TASK
325 extern unsigned int sysctl_hung_task_panic;
326 extern unsigned long sysctl_hung_task_check_count;
327 extern unsigned long sysctl_hung_task_timeout_secs;
328 extern unsigned long sysctl_hung_task_warnings;
329 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
330 struct file *filp, void __user *buffer,
331 size_t *lenp, loff_t *ppos);
332 #endif
333
334 /* Attach to any functions which should be ignored in wchan output. */
335 #define __sched __attribute__((__section__(".sched.text")))
336
337 /* Linker adds these: start and end of __sched functions */
338 extern char __sched_text_start[], __sched_text_end[];
339
340 /* Is this address in the __sched functions? */
341 extern int in_sched_functions(unsigned long addr);
342
343 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
344 extern signed long schedule_timeout(signed long timeout);
345 extern signed long schedule_timeout_interruptible(signed long timeout);
346 extern signed long schedule_timeout_killable(signed long timeout);
347 extern signed long schedule_timeout_uninterruptible(signed long timeout);
348 asmlinkage void __schedule(void);
349 asmlinkage void schedule(void);
350 extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner);
351
352 struct nsproxy;
353 struct user_namespace;
354
355 /*
356 * Default maximum number of active map areas, this limits the number of vmas
357 * per mm struct. Users can overwrite this number by sysctl but there is a
358 * problem.
359 *
360 * When a program's coredump is generated as ELF format, a section is created
361 * per a vma. In ELF, the number of sections is represented in unsigned short.
362 * This means the number of sections should be smaller than 65535 at coredump.
363 * Because the kernel adds some informative sections to a image of program at
364 * generating coredump, we need some margin. The number of extra sections is
365 * 1-3 now and depends on arch. We use "5" as safe margin, here.
366 */
367 #define MAPCOUNT_ELF_CORE_MARGIN (5)
368 #define DEFAULT_MAX_MAP_COUNT (USHORT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
369
370 extern int sysctl_max_map_count;
371
372 #include <linux/aio.h>
373
374 extern unsigned long
375 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
376 unsigned long, unsigned long);
377 extern unsigned long
378 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
379 unsigned long len, unsigned long pgoff,
380 unsigned long flags);
381 extern void arch_unmap_area(struct mm_struct *, unsigned long);
382 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
383
384 #if USE_SPLIT_PTLOCKS
385 /*
386 * The mm counters are not protected by its page_table_lock,
387 * so must be incremented atomically.
388 */
389 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
390 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
391 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
392 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
393 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
394
395 #else /* !USE_SPLIT_PTLOCKS */
396 /*
397 * The mm counters are protected by its page_table_lock,
398 * so can be incremented directly.
399 */
400 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
401 #define get_mm_counter(mm, member) ((mm)->_##member)
402 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
403 #define inc_mm_counter(mm, member) (mm)->_##member++
404 #define dec_mm_counter(mm, member) (mm)->_##member--
405
406 #endif /* !USE_SPLIT_PTLOCKS */
407
408 #define get_mm_rss(mm) \
409 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
410 #define update_hiwater_rss(mm) do { \
411 unsigned long _rss = get_mm_rss(mm); \
412 if ((mm)->hiwater_rss < _rss) \
413 (mm)->hiwater_rss = _rss; \
414 } while (0)
415 #define update_hiwater_vm(mm) do { \
416 if ((mm)->hiwater_vm < (mm)->total_vm) \
417 (mm)->hiwater_vm = (mm)->total_vm; \
418 } while (0)
419
420 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
421 {
422 return max(mm->hiwater_rss, get_mm_rss(mm));
423 }
424
425 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
426 {
427 return max(mm->hiwater_vm, mm->total_vm);
428 }
429
430 extern void set_dumpable(struct mm_struct *mm, int value);
431 extern int get_dumpable(struct mm_struct *mm);
432
433 /* mm flags */
434 /* dumpable bits */
435 #define MMF_DUMPABLE 0 /* core dump is permitted */
436 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
437 #define MMF_DUMPABLE_BITS 2
438
439 /* coredump filter bits */
440 #define MMF_DUMP_ANON_PRIVATE 2
441 #define MMF_DUMP_ANON_SHARED 3
442 #define MMF_DUMP_MAPPED_PRIVATE 4
443 #define MMF_DUMP_MAPPED_SHARED 5
444 #define MMF_DUMP_ELF_HEADERS 6
445 #define MMF_DUMP_HUGETLB_PRIVATE 7
446 #define MMF_DUMP_HUGETLB_SHARED 8
447 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
448 #define MMF_DUMP_FILTER_BITS 7
449 #define MMF_DUMP_FILTER_MASK \
450 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
451 #define MMF_DUMP_FILTER_DEFAULT \
452 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
453 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
454
455 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
456 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
457 #else
458 # define MMF_DUMP_MASK_DEFAULT_ELF 0
459 #endif
460
461 struct sighand_struct {
462 atomic_t count;
463 struct k_sigaction action[_NSIG];
464 spinlock_t siglock;
465 wait_queue_head_t signalfd_wqh;
466 };
467
468 struct pacct_struct {
469 int ac_flag;
470 long ac_exitcode;
471 unsigned long ac_mem;
472 cputime_t ac_utime, ac_stime;
473 unsigned long ac_minflt, ac_majflt;
474 };
475
476 /**
477 * struct task_cputime - collected CPU time counts
478 * @utime: time spent in user mode, in &cputime_t units
479 * @stime: time spent in kernel mode, in &cputime_t units
480 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
481 *
482 * This structure groups together three kinds of CPU time that are
483 * tracked for threads and thread groups. Most things considering
484 * CPU time want to group these counts together and treat all three
485 * of them in parallel.
486 */
487 struct task_cputime {
488 cputime_t utime;
489 cputime_t stime;
490 unsigned long long sum_exec_runtime;
491 };
492 /* Alternate field names when used to cache expirations. */
493 #define prof_exp stime
494 #define virt_exp utime
495 #define sched_exp sum_exec_runtime
496
497 #define INIT_CPUTIME \
498 (struct task_cputime) { \
499 .utime = cputime_zero, \
500 .stime = cputime_zero, \
501 .sum_exec_runtime = 0, \
502 }
503
504 /*
505 * Disable preemption until the scheduler is running.
506 * Reset by start_kernel()->sched_init()->init_idle().
507 *
508 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
509 * before the scheduler is active -- see should_resched().
510 */
511 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
512
513 /**
514 * struct thread_group_cputimer - thread group interval timer counts
515 * @cputime: thread group interval timers.
516 * @running: non-zero when there are timers running and
517 * @cputime receives updates.
518 * @lock: lock for fields in this struct.
519 *
520 * This structure contains the version of task_cputime, above, that is
521 * used for thread group CPU timer calculations.
522 */
523 struct thread_group_cputimer {
524 struct task_cputime cputime;
525 int running;
526 spinlock_t lock;
527 };
528
529 /*
530 * NOTE! "signal_struct" does not have it's own
531 * locking, because a shared signal_struct always
532 * implies a shared sighand_struct, so locking
533 * sighand_struct is always a proper superset of
534 * the locking of signal_struct.
535 */
536 struct signal_struct {
537 atomic_t count;
538 atomic_t live;
539
540 wait_queue_head_t wait_chldexit; /* for wait4() */
541
542 /* current thread group signal load-balancing target: */
543 struct task_struct *curr_target;
544
545 /* shared signal handling: */
546 struct sigpending shared_pending;
547
548 /* thread group exit support */
549 int group_exit_code;
550 /* overloaded:
551 * - notify group_exit_task when ->count is equal to notify_count
552 * - everyone except group_exit_task is stopped during signal delivery
553 * of fatal signals, group_exit_task processes the signal.
554 */
555 int notify_count;
556 struct task_struct *group_exit_task;
557
558 /* thread group stop support, overloads group_exit_code too */
559 int group_stop_count;
560 unsigned int flags; /* see SIGNAL_* flags below */
561
562 /* POSIX.1b Interval Timers */
563 struct list_head posix_timers;
564
565 /* ITIMER_REAL timer for the process */
566 struct hrtimer real_timer;
567 struct pid *leader_pid;
568 ktime_t it_real_incr;
569
570 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
571 cputime_t it_prof_expires, it_virt_expires;
572 cputime_t it_prof_incr, it_virt_incr;
573
574 /*
575 * Thread group totals for process CPU timers.
576 * See thread_group_cputimer(), et al, for details.
577 */
578 struct thread_group_cputimer cputimer;
579
580 /* Earliest-expiration cache. */
581 struct task_cputime cputime_expires;
582
583 struct list_head cpu_timers[3];
584
585 struct pid *tty_old_pgrp;
586
587 /* boolean value for session group leader */
588 int leader;
589
590 struct tty_struct *tty; /* NULL if no tty */
591
592 /*
593 * Cumulative resource counters for dead threads in the group,
594 * and for reaped dead child processes forked by this group.
595 * Live threads maintain their own counters and add to these
596 * in __exit_signal, except for the group leader.
597 */
598 cputime_t utime, stime, cutime, cstime;
599 cputime_t gtime;
600 cputime_t cgtime;
601 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
602 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
603 unsigned long inblock, oublock, cinblock, coublock;
604 struct task_io_accounting ioac;
605
606 /*
607 * Cumulative ns of schedule CPU time fo dead threads in the
608 * group, not including a zombie group leader, (This only differs
609 * from jiffies_to_ns(utime + stime) if sched_clock uses something
610 * other than jiffies.)
611 */
612 unsigned long long sum_sched_runtime;
613
614 /*
615 * We don't bother to synchronize most readers of this at all,
616 * because there is no reader checking a limit that actually needs
617 * to get both rlim_cur and rlim_max atomically, and either one
618 * alone is a single word that can safely be read normally.
619 * getrlimit/setrlimit use task_lock(current->group_leader) to
620 * protect this instead of the siglock, because they really
621 * have no need to disable irqs.
622 */
623 struct rlimit rlim[RLIM_NLIMITS];
624
625 #ifdef CONFIG_BSD_PROCESS_ACCT
626 struct pacct_struct pacct; /* per-process accounting information */
627 #endif
628 #ifdef CONFIG_TASKSTATS
629 struct taskstats *stats;
630 #endif
631 #ifdef CONFIG_AUDIT
632 unsigned audit_tty;
633 struct tty_audit_buf *tty_audit_buf;
634 #endif
635 };
636
637 /* Context switch must be unlocked if interrupts are to be enabled */
638 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
639 # define __ARCH_WANT_UNLOCKED_CTXSW
640 #endif
641
642 /*
643 * Bits in flags field of signal_struct.
644 */
645 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
646 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
647 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
648 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
649 /*
650 * Pending notifications to parent.
651 */
652 #define SIGNAL_CLD_STOPPED 0x00000010
653 #define SIGNAL_CLD_CONTINUED 0x00000020
654 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
655
656 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
657
658 /* If true, all threads except ->group_exit_task have pending SIGKILL */
659 static inline int signal_group_exit(const struct signal_struct *sig)
660 {
661 return (sig->flags & SIGNAL_GROUP_EXIT) ||
662 (sig->group_exit_task != NULL);
663 }
664
665 /*
666 * Some day this will be a full-fledged user tracking system..
667 */
668 struct user_struct {
669 atomic_t __count; /* reference count */
670 atomic_t processes; /* How many processes does this user have? */
671 atomic_t files; /* How many open files does this user have? */
672 atomic_t sigpending; /* How many pending signals does this user have? */
673 #ifdef CONFIG_INOTIFY_USER
674 atomic_t inotify_watches; /* How many inotify watches does this user have? */
675 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
676 #endif
677 #ifdef CONFIG_EPOLL
678 atomic_t epoll_watches; /* The number of file descriptors currently watched */
679 #endif
680 #ifdef CONFIG_POSIX_MQUEUE
681 /* protected by mq_lock */
682 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
683 #endif
684 unsigned long locked_shm; /* How many pages of mlocked shm ? */
685
686 #ifdef CONFIG_KEYS
687 struct key *uid_keyring; /* UID specific keyring */
688 struct key *session_keyring; /* UID's default session keyring */
689 #endif
690
691 /* Hash table maintenance information */
692 struct hlist_node uidhash_node;
693 uid_t uid;
694 struct user_namespace *user_ns;
695
696 #ifdef CONFIG_USER_SCHED
697 struct task_group *tg;
698 #ifdef CONFIG_SYSFS
699 struct kobject kobj;
700 struct delayed_work work;
701 #endif
702 #endif
703
704 #ifdef CONFIG_PERF_COUNTERS
705 atomic_long_t locked_vm;
706 #endif
707 };
708
709 extern int uids_sysfs_init(void);
710
711 extern struct user_struct *find_user(uid_t);
712
713 extern struct user_struct root_user;
714 #define INIT_USER (&root_user)
715
716
717 struct backing_dev_info;
718 struct reclaim_state;
719
720 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
721 struct sched_info {
722 /* cumulative counters */
723 unsigned long pcount; /* # of times run on this cpu */
724 unsigned long long run_delay; /* time spent waiting on a runqueue */
725
726 /* timestamps */
727 unsigned long long last_arrival,/* when we last ran on a cpu */
728 last_queued; /* when we were last queued to run */
729 #ifdef CONFIG_SCHEDSTATS
730 /* BKL stats */
731 unsigned int bkl_count;
732 #endif
733 };
734 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
735
736 #ifdef CONFIG_TASK_DELAY_ACCT
737 struct task_delay_info {
738 spinlock_t lock;
739 unsigned int flags; /* Private per-task flags */
740
741 /* For each stat XXX, add following, aligned appropriately
742 *
743 * struct timespec XXX_start, XXX_end;
744 * u64 XXX_delay;
745 * u32 XXX_count;
746 *
747 * Atomicity of updates to XXX_delay, XXX_count protected by
748 * single lock above (split into XXX_lock if contention is an issue).
749 */
750
751 /*
752 * XXX_count is incremented on every XXX operation, the delay
753 * associated with the operation is added to XXX_delay.
754 * XXX_delay contains the accumulated delay time in nanoseconds.
755 */
756 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
757 u64 blkio_delay; /* wait for sync block io completion */
758 u64 swapin_delay; /* wait for swapin block io completion */
759 u32 blkio_count; /* total count of the number of sync block */
760 /* io operations performed */
761 u32 swapin_count; /* total count of the number of swapin block */
762 /* io operations performed */
763
764 struct timespec freepages_start, freepages_end;
765 u64 freepages_delay; /* wait for memory reclaim */
766 u32 freepages_count; /* total count of memory reclaim */
767 };
768 #endif /* CONFIG_TASK_DELAY_ACCT */
769
770 static inline int sched_info_on(void)
771 {
772 #ifdef CONFIG_SCHEDSTATS
773 return 1;
774 #elif defined(CONFIG_TASK_DELAY_ACCT)
775 extern int delayacct_on;
776 return delayacct_on;
777 #else
778 return 0;
779 #endif
780 }
781
782 enum cpu_idle_type {
783 CPU_IDLE,
784 CPU_NOT_IDLE,
785 CPU_NEWLY_IDLE,
786 CPU_MAX_IDLE_TYPES
787 };
788
789 /*
790 * sched-domains (multiprocessor balancing) declarations:
791 */
792
793 /*
794 * Increase resolution of nice-level calculations:
795 */
796 #define SCHED_LOAD_SHIFT 10
797 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
798
799 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
800
801 #ifdef CONFIG_SMP
802 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
803 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
804 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
805 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
806 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
807 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
808
809 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
810 #define SD_POWERSAVINGS_BALANCE 0x0100 /* Balance for power savings */
811 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
812 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
813
814 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
815
816 enum powersavings_balance_level {
817 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */
818 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package
819 * first for long running threads
820 */
821 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle
822 * cpu package for power savings
823 */
824 MAX_POWERSAVINGS_BALANCE_LEVELS
825 };
826
827 extern int sched_mc_power_savings, sched_smt_power_savings;
828
829 static inline int sd_balance_for_mc_power(void)
830 {
831 if (sched_smt_power_savings)
832 return SD_POWERSAVINGS_BALANCE;
833
834 return SD_PREFER_SIBLING;
835 }
836
837 static inline int sd_balance_for_package_power(void)
838 {
839 if (sched_mc_power_savings | sched_smt_power_savings)
840 return SD_POWERSAVINGS_BALANCE;
841
842 return SD_PREFER_SIBLING;
843 }
844
845 /*
846 * Optimise SD flags for power savings:
847 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings.
848 * Keep default SD flags if sched_{smt,mc}_power_saving=0
849 */
850
851 static inline int sd_power_saving_flags(void)
852 {
853 if (sched_mc_power_savings | sched_smt_power_savings)
854 return SD_BALANCE_NEWIDLE;
855
856 return 0;
857 }
858
859 struct sched_group {
860 struct sched_group *next; /* Must be a circular list */
861
862 /*
863 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
864 * single CPU.
865 */
866 unsigned int cpu_power;
867
868 /*
869 * The CPUs this group covers.
870 *
871 * NOTE: this field is variable length. (Allocated dynamically
872 * by attaching extra space to the end of the structure,
873 * depending on how many CPUs the kernel has booted up with)
874 *
875 * It is also be embedded into static data structures at build
876 * time. (See 'struct static_sched_group' in kernel/sched.c)
877 */
878 unsigned long cpumask[0];
879 };
880
881 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
882 {
883 return to_cpumask(sg->cpumask);
884 }
885
886 enum sched_domain_level {
887 SD_LV_NONE = 0,
888 SD_LV_SIBLING,
889 SD_LV_MC,
890 SD_LV_CPU,
891 SD_LV_NODE,
892 SD_LV_ALLNODES,
893 SD_LV_MAX
894 };
895
896 struct sched_domain_attr {
897 int relax_domain_level;
898 };
899
900 #define SD_ATTR_INIT (struct sched_domain_attr) { \
901 .relax_domain_level = -1, \
902 }
903
904 struct sched_domain {
905 /* These fields must be setup */
906 struct sched_domain *parent; /* top domain must be null terminated */
907 struct sched_domain *child; /* bottom domain must be null terminated */
908 struct sched_group *groups; /* the balancing groups of the domain */
909 unsigned long min_interval; /* Minimum balance interval ms */
910 unsigned long max_interval; /* Maximum balance interval ms */
911 unsigned int busy_factor; /* less balancing by factor if busy */
912 unsigned int imbalance_pct; /* No balance until over watermark */
913 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
914 unsigned int busy_idx;
915 unsigned int idle_idx;
916 unsigned int newidle_idx;
917 unsigned int wake_idx;
918 unsigned int forkexec_idx;
919 unsigned int smt_gain;
920 int flags; /* See SD_* */
921 enum sched_domain_level level;
922
923 /* Runtime fields. */
924 unsigned long last_balance; /* init to jiffies. units in jiffies */
925 unsigned int balance_interval; /* initialise to 1. units in ms. */
926 unsigned int nr_balance_failed; /* initialise to 0 */
927
928 u64 last_update;
929
930 #ifdef CONFIG_SCHEDSTATS
931 /* load_balance() stats */
932 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
933 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
934 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
935 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
936 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
937 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
938 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
939 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
940
941 /* Active load balancing */
942 unsigned int alb_count;
943 unsigned int alb_failed;
944 unsigned int alb_pushed;
945
946 /* SD_BALANCE_EXEC stats */
947 unsigned int sbe_count;
948 unsigned int sbe_balanced;
949 unsigned int sbe_pushed;
950
951 /* SD_BALANCE_FORK stats */
952 unsigned int sbf_count;
953 unsigned int sbf_balanced;
954 unsigned int sbf_pushed;
955
956 /* try_to_wake_up() stats */
957 unsigned int ttwu_wake_remote;
958 unsigned int ttwu_move_affine;
959 unsigned int ttwu_move_balance;
960 #endif
961 #ifdef CONFIG_SCHED_DEBUG
962 char *name;
963 #endif
964
965 /*
966 * Span of all CPUs in this domain.
967 *
968 * NOTE: this field is variable length. (Allocated dynamically
969 * by attaching extra space to the end of the structure,
970 * depending on how many CPUs the kernel has booted up with)
971 *
972 * It is also be embedded into static data structures at build
973 * time. (See 'struct static_sched_domain' in kernel/sched.c)
974 */
975 unsigned long span[0];
976 };
977
978 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
979 {
980 return to_cpumask(sd->span);
981 }
982
983 extern void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
984 struct sched_domain_attr *dattr_new);
985
986 /* Test a flag in parent sched domain */
987 static inline int test_sd_parent(struct sched_domain *sd, int flag)
988 {
989 if (sd->parent && (sd->parent->flags & flag))
990 return 1;
991
992 return 0;
993 }
994
995 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
996 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
997
998 #else /* CONFIG_SMP */
999
1000 struct sched_domain_attr;
1001
1002 static inline void
1003 partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1004 struct sched_domain_attr *dattr_new)
1005 {
1006 }
1007 #endif /* !CONFIG_SMP */
1008
1009
1010 struct io_context; /* See blkdev.h */
1011
1012
1013 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1014 extern void prefetch_stack(struct task_struct *t);
1015 #else
1016 static inline void prefetch_stack(struct task_struct *t) { }
1017 #endif
1018
1019 struct audit_context; /* See audit.c */
1020 struct mempolicy;
1021 struct pipe_inode_info;
1022 struct uts_namespace;
1023
1024 struct rq;
1025 struct sched_domain;
1026
1027 /*
1028 * wake flags
1029 */
1030 #define WF_SYNC 0x01 /* waker goes to sleep after wakup */
1031
1032 struct sched_class {
1033 const struct sched_class *next;
1034
1035 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
1036 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
1037 void (*yield_task) (struct rq *rq);
1038
1039 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1040
1041 struct task_struct * (*pick_next_task) (struct rq *rq);
1042 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1043
1044 #ifdef CONFIG_SMP
1045 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
1046
1047 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
1048 struct rq *busiest, unsigned long max_load_move,
1049 struct sched_domain *sd, enum cpu_idle_type idle,
1050 int *all_pinned, int *this_best_prio);
1051
1052 int (*move_one_task) (struct rq *this_rq, int this_cpu,
1053 struct rq *busiest, struct sched_domain *sd,
1054 enum cpu_idle_type idle);
1055 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1056 void (*post_schedule) (struct rq *this_rq);
1057 void (*task_wake_up) (struct rq *this_rq, struct task_struct *task);
1058
1059 void (*set_cpus_allowed)(struct task_struct *p,
1060 const struct cpumask *newmask);
1061
1062 void (*rq_online)(struct rq *rq);
1063 void (*rq_offline)(struct rq *rq);
1064 #endif
1065
1066 void (*set_curr_task) (struct rq *rq);
1067 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1068 void (*task_new) (struct rq *rq, struct task_struct *p);
1069
1070 void (*switched_from) (struct rq *this_rq, struct task_struct *task,
1071 int running);
1072 void (*switched_to) (struct rq *this_rq, struct task_struct *task,
1073 int running);
1074 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1075 int oldprio, int running);
1076
1077 #ifdef CONFIG_FAIR_GROUP_SCHED
1078 void (*moved_group) (struct task_struct *p);
1079 #endif
1080 };
1081
1082 struct load_weight {
1083 unsigned long weight, inv_weight;
1084 };
1085
1086 /*
1087 * CFS stats for a schedulable entity (task, task-group etc)
1088 *
1089 * Current field usage histogram:
1090 *
1091 * 4 se->block_start
1092 * 4 se->run_node
1093 * 4 se->sleep_start
1094 * 6 se->load.weight
1095 */
1096 struct sched_entity {
1097 struct load_weight load; /* for load-balancing */
1098 struct rb_node run_node;
1099 struct list_head group_node;
1100 unsigned int on_rq;
1101
1102 u64 exec_start;
1103 u64 sum_exec_runtime;
1104 u64 vruntime;
1105 u64 prev_sum_exec_runtime;
1106
1107 u64 last_wakeup;
1108 u64 avg_overlap;
1109
1110 u64 nr_migrations;
1111
1112 u64 start_runtime;
1113 u64 avg_wakeup;
1114
1115 #ifdef CONFIG_SCHEDSTATS
1116 u64 wait_start;
1117 u64 wait_max;
1118 u64 wait_count;
1119 u64 wait_sum;
1120 u64 iowait_count;
1121 u64 iowait_sum;
1122
1123 u64 sleep_start;
1124 u64 sleep_max;
1125 s64 sum_sleep_runtime;
1126
1127 u64 block_start;
1128 u64 block_max;
1129 u64 exec_max;
1130 u64 slice_max;
1131
1132 u64 nr_migrations_cold;
1133 u64 nr_failed_migrations_affine;
1134 u64 nr_failed_migrations_running;
1135 u64 nr_failed_migrations_hot;
1136 u64 nr_forced_migrations;
1137 u64 nr_forced2_migrations;
1138
1139 u64 nr_wakeups;
1140 u64 nr_wakeups_sync;
1141 u64 nr_wakeups_migrate;
1142 u64 nr_wakeups_local;
1143 u64 nr_wakeups_remote;
1144 u64 nr_wakeups_affine;
1145 u64 nr_wakeups_affine_attempts;
1146 u64 nr_wakeups_passive;
1147 u64 nr_wakeups_idle;
1148 #endif
1149
1150 #ifdef CONFIG_FAIR_GROUP_SCHED
1151 struct sched_entity *parent;
1152 /* rq on which this entity is (to be) queued: */
1153 struct cfs_rq *cfs_rq;
1154 /* rq "owned" by this entity/group: */
1155 struct cfs_rq *my_q;
1156 #endif
1157 };
1158
1159 struct sched_rt_entity {
1160 struct list_head run_list;
1161 unsigned long timeout;
1162 unsigned int time_slice;
1163 int nr_cpus_allowed;
1164
1165 struct sched_rt_entity *back;
1166 #ifdef CONFIG_RT_GROUP_SCHED
1167 struct sched_rt_entity *parent;
1168 /* rq on which this entity is (to be) queued: */
1169 struct rt_rq *rt_rq;
1170 /* rq "owned" by this entity/group: */
1171 struct rt_rq *my_q;
1172 #endif
1173 };
1174
1175 struct rcu_node;
1176
1177 struct task_struct {
1178 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1179 void *stack;
1180 atomic_t usage;
1181 unsigned int flags; /* per process flags, defined below */
1182 unsigned int ptrace;
1183
1184 int lock_depth; /* BKL lock depth */
1185
1186 #ifdef CONFIG_SMP
1187 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1188 int oncpu;
1189 #endif
1190 #endif
1191
1192 int prio, static_prio, normal_prio;
1193 unsigned int rt_priority;
1194 const struct sched_class *sched_class;
1195 struct sched_entity se;
1196 struct sched_rt_entity rt;
1197
1198 #ifdef CONFIG_PREEMPT_NOTIFIERS
1199 /* list of struct preempt_notifier: */
1200 struct hlist_head preempt_notifiers;
1201 #endif
1202
1203 /*
1204 * fpu_counter contains the number of consecutive context switches
1205 * that the FPU is used. If this is over a threshold, the lazy fpu
1206 * saving becomes unlazy to save the trap. This is an unsigned char
1207 * so that after 256 times the counter wraps and the behavior turns
1208 * lazy again; this to deal with bursty apps that only use FPU for
1209 * a short time
1210 */
1211 unsigned char fpu_counter;
1212 s8 oomkilladj; /* OOM kill score adjustment (bit shift). */
1213 #ifdef CONFIG_BLK_DEV_IO_TRACE
1214 unsigned int btrace_seq;
1215 #endif
1216
1217 unsigned int policy;
1218 cpumask_t cpus_allowed;
1219
1220 #ifdef CONFIG_TREE_PREEMPT_RCU
1221 int rcu_read_lock_nesting;
1222 char rcu_read_unlock_special;
1223 struct rcu_node *rcu_blocked_node;
1224 struct list_head rcu_node_entry;
1225 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1226
1227 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1228 struct sched_info sched_info;
1229 #endif
1230
1231 struct list_head tasks;
1232 struct plist_node pushable_tasks;
1233
1234 struct mm_struct *mm, *active_mm;
1235
1236 /* task state */
1237 struct linux_binfmt *binfmt;
1238 int exit_state;
1239 int exit_code, exit_signal;
1240 int pdeath_signal; /* The signal sent when the parent dies */
1241 /* ??? */
1242 unsigned int personality;
1243 unsigned did_exec:1;
1244 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1245 * execve */
1246 unsigned in_iowait:1;
1247
1248
1249 /* Revert to default priority/policy when forking */
1250 unsigned sched_reset_on_fork:1;
1251
1252 pid_t pid;
1253 pid_t tgid;
1254
1255 #ifdef CONFIG_CC_STACKPROTECTOR
1256 /* Canary value for the -fstack-protector gcc feature */
1257 unsigned long stack_canary;
1258 #endif
1259
1260 /*
1261 * pointers to (original) parent process, youngest child, younger sibling,
1262 * older sibling, respectively. (p->father can be replaced with
1263 * p->real_parent->pid)
1264 */
1265 struct task_struct *real_parent; /* real parent process */
1266 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1267 /*
1268 * children/sibling forms the list of my natural children
1269 */
1270 struct list_head children; /* list of my children */
1271 struct list_head sibling; /* linkage in my parent's children list */
1272 struct task_struct *group_leader; /* threadgroup leader */
1273
1274 /*
1275 * ptraced is the list of tasks this task is using ptrace on.
1276 * This includes both natural children and PTRACE_ATTACH targets.
1277 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1278 */
1279 struct list_head ptraced;
1280 struct list_head ptrace_entry;
1281
1282 /*
1283 * This is the tracer handle for the ptrace BTS extension.
1284 * This field actually belongs to the ptracer task.
1285 */
1286 struct bts_context *bts;
1287
1288 /* PID/PID hash table linkage. */
1289 struct pid_link pids[PIDTYPE_MAX];
1290 struct list_head thread_group;
1291
1292 struct completion *vfork_done; /* for vfork() */
1293 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1294 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1295
1296 cputime_t utime, stime, utimescaled, stimescaled;
1297 cputime_t gtime;
1298 cputime_t prev_utime, prev_stime;
1299 unsigned long nvcsw, nivcsw; /* context switch counts */
1300 struct timespec start_time; /* monotonic time */
1301 struct timespec real_start_time; /* boot based time */
1302 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1303 unsigned long min_flt, maj_flt;
1304
1305 struct task_cputime cputime_expires;
1306 struct list_head cpu_timers[3];
1307
1308 /* process credentials */
1309 const struct cred *real_cred; /* objective and real subjective task
1310 * credentials (COW) */
1311 const struct cred *cred; /* effective (overridable) subjective task
1312 * credentials (COW) */
1313 struct mutex cred_guard_mutex; /* guard against foreign influences on
1314 * credential calculations
1315 * (notably. ptrace) */
1316 struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */
1317
1318 char comm[TASK_COMM_LEN]; /* executable name excluding path
1319 - access with [gs]et_task_comm (which lock
1320 it with task_lock())
1321 - initialized normally by flush_old_exec */
1322 /* file system info */
1323 int link_count, total_link_count;
1324 #ifdef CONFIG_SYSVIPC
1325 /* ipc stuff */
1326 struct sysv_sem sysvsem;
1327 #endif
1328 #ifdef CONFIG_DETECT_HUNG_TASK
1329 /* hung task detection */
1330 unsigned long last_switch_count;
1331 #endif
1332 /* CPU-specific state of this task */
1333 struct thread_struct thread;
1334 /* filesystem information */
1335 struct fs_struct *fs;
1336 /* open file information */
1337 struct files_struct *files;
1338 /* namespaces */
1339 struct nsproxy *nsproxy;
1340 /* signal handlers */
1341 struct signal_struct *signal;
1342 struct sighand_struct *sighand;
1343
1344 sigset_t blocked, real_blocked;
1345 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1346 struct sigpending pending;
1347
1348 unsigned long sas_ss_sp;
1349 size_t sas_ss_size;
1350 int (*notifier)(void *priv);
1351 void *notifier_data;
1352 sigset_t *notifier_mask;
1353 struct audit_context *audit_context;
1354 #ifdef CONFIG_AUDITSYSCALL
1355 uid_t loginuid;
1356 unsigned int sessionid;
1357 #endif
1358 seccomp_t seccomp;
1359
1360 /* Thread group tracking */
1361 u32 parent_exec_id;
1362 u32 self_exec_id;
1363 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1364 * mempolicy */
1365 spinlock_t alloc_lock;
1366
1367 #ifdef CONFIG_GENERIC_HARDIRQS
1368 /* IRQ handler threads */
1369 struct irqaction *irqaction;
1370 #endif
1371
1372 /* Protection of the PI data structures: */
1373 spinlock_t pi_lock;
1374
1375 #ifdef CONFIG_RT_MUTEXES
1376 /* PI waiters blocked on a rt_mutex held by this task */
1377 struct plist_head pi_waiters;
1378 /* Deadlock detection and priority inheritance handling */
1379 struct rt_mutex_waiter *pi_blocked_on;
1380 #endif
1381
1382 #ifdef CONFIG_DEBUG_MUTEXES
1383 /* mutex deadlock detection */
1384 struct mutex_waiter *blocked_on;
1385 #endif
1386 #ifdef CONFIG_TRACE_IRQFLAGS
1387 unsigned int irq_events;
1388 int hardirqs_enabled;
1389 unsigned long hardirq_enable_ip;
1390 unsigned int hardirq_enable_event;
1391 unsigned long hardirq_disable_ip;
1392 unsigned int hardirq_disable_event;
1393 int softirqs_enabled;
1394 unsigned long softirq_disable_ip;
1395 unsigned int softirq_disable_event;
1396 unsigned long softirq_enable_ip;
1397 unsigned int softirq_enable_event;
1398 int hardirq_context;
1399 int softirq_context;
1400 #endif
1401 #ifdef CONFIG_LOCKDEP
1402 # define MAX_LOCK_DEPTH 48UL
1403 u64 curr_chain_key;
1404 int lockdep_depth;
1405 unsigned int lockdep_recursion;
1406 struct held_lock held_locks[MAX_LOCK_DEPTH];
1407 gfp_t lockdep_reclaim_gfp;
1408 #endif
1409
1410 /* journalling filesystem info */
1411 void *journal_info;
1412
1413 /* stacked block device info */
1414 struct bio *bio_list, **bio_tail;
1415
1416 /* VM state */
1417 struct reclaim_state *reclaim_state;
1418
1419 struct backing_dev_info *backing_dev_info;
1420
1421 struct io_context *io_context;
1422
1423 unsigned long ptrace_message;
1424 siginfo_t *last_siginfo; /* For ptrace use. */
1425 struct task_io_accounting ioac;
1426 #if defined(CONFIG_TASK_XACCT)
1427 u64 acct_rss_mem1; /* accumulated rss usage */
1428 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1429 cputime_t acct_timexpd; /* stime + utime since last update */
1430 #endif
1431 #ifdef CONFIG_CPUSETS
1432 nodemask_t mems_allowed; /* Protected by alloc_lock */
1433 int cpuset_mem_spread_rotor;
1434 #endif
1435 #ifdef CONFIG_CGROUPS
1436 /* Control Group info protected by css_set_lock */
1437 struct css_set *cgroups;
1438 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1439 struct list_head cg_list;
1440 #endif
1441 #ifdef CONFIG_FUTEX
1442 struct robust_list_head __user *robust_list;
1443 #ifdef CONFIG_COMPAT
1444 struct compat_robust_list_head __user *compat_robust_list;
1445 #endif
1446 struct list_head pi_state_list;
1447 struct futex_pi_state *pi_state_cache;
1448 #endif
1449 #ifdef CONFIG_PERF_COUNTERS
1450 struct perf_counter_context *perf_counter_ctxp;
1451 struct mutex perf_counter_mutex;
1452 struct list_head perf_counter_list;
1453 #endif
1454 #ifdef CONFIG_NUMA
1455 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1456 short il_next;
1457 #endif
1458 atomic_t fs_excl; /* holding fs exclusive resources */
1459 struct rcu_head rcu;
1460
1461 /*
1462 * cache last used pipe for splice
1463 */
1464 struct pipe_inode_info *splice_pipe;
1465 #ifdef CONFIG_TASK_DELAY_ACCT
1466 struct task_delay_info *delays;
1467 #endif
1468 #ifdef CONFIG_FAULT_INJECTION
1469 int make_it_fail;
1470 #endif
1471 struct prop_local_single dirties;
1472 #ifdef CONFIG_LATENCYTOP
1473 int latency_record_count;
1474 struct latency_record latency_record[LT_SAVECOUNT];
1475 #endif
1476 /*
1477 * time slack values; these are used to round up poll() and
1478 * select() etc timeout values. These are in nanoseconds.
1479 */
1480 unsigned long timer_slack_ns;
1481 unsigned long default_timer_slack_ns;
1482
1483 struct list_head *scm_work_list;
1484 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1485 /* Index of current stored adress in ret_stack */
1486 int curr_ret_stack;
1487 /* Stack of return addresses for return function tracing */
1488 struct ftrace_ret_stack *ret_stack;
1489 /* time stamp for last schedule */
1490 unsigned long long ftrace_timestamp;
1491 /*
1492 * Number of functions that haven't been traced
1493 * because of depth overrun.
1494 */
1495 atomic_t trace_overrun;
1496 /* Pause for the tracing */
1497 atomic_t tracing_graph_pause;
1498 #endif
1499 #ifdef CONFIG_TRACING
1500 /* state flags for use by tracers */
1501 unsigned long trace;
1502 /* bitmask of trace recursion */
1503 unsigned long trace_recursion;
1504 #endif /* CONFIG_TRACING */
1505 };
1506
1507 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1508 #define tsk_cpumask(tsk) (&(tsk)->cpus_allowed)
1509
1510 /*
1511 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1512 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1513 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1514 * values are inverted: lower p->prio value means higher priority.
1515 *
1516 * The MAX_USER_RT_PRIO value allows the actual maximum
1517 * RT priority to be separate from the value exported to
1518 * user-space. This allows kernel threads to set their
1519 * priority to a value higher than any user task. Note:
1520 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1521 */
1522
1523 #define MAX_USER_RT_PRIO 100
1524 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1525
1526 #define MAX_PRIO (MAX_RT_PRIO + 40)
1527 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1528
1529 static inline int rt_prio(int prio)
1530 {
1531 if (unlikely(prio < MAX_RT_PRIO))
1532 return 1;
1533 return 0;
1534 }
1535
1536 static inline int rt_task(struct task_struct *p)
1537 {
1538 return rt_prio(p->prio);
1539 }
1540
1541 static inline struct pid *task_pid(struct task_struct *task)
1542 {
1543 return task->pids[PIDTYPE_PID].pid;
1544 }
1545
1546 static inline struct pid *task_tgid(struct task_struct *task)
1547 {
1548 return task->group_leader->pids[PIDTYPE_PID].pid;
1549 }
1550
1551 /*
1552 * Without tasklist or rcu lock it is not safe to dereference
1553 * the result of task_pgrp/task_session even if task == current,
1554 * we can race with another thread doing sys_setsid/sys_setpgid.
1555 */
1556 static inline struct pid *task_pgrp(struct task_struct *task)
1557 {
1558 return task->group_leader->pids[PIDTYPE_PGID].pid;
1559 }
1560
1561 static inline struct pid *task_session(struct task_struct *task)
1562 {
1563 return task->group_leader->pids[PIDTYPE_SID].pid;
1564 }
1565
1566 struct pid_namespace;
1567
1568 /*
1569 * the helpers to get the task's different pids as they are seen
1570 * from various namespaces
1571 *
1572 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1573 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1574 * current.
1575 * task_xid_nr_ns() : id seen from the ns specified;
1576 *
1577 * set_task_vxid() : assigns a virtual id to a task;
1578 *
1579 * see also pid_nr() etc in include/linux/pid.h
1580 */
1581 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1582 struct pid_namespace *ns);
1583
1584 static inline pid_t task_pid_nr(struct task_struct *tsk)
1585 {
1586 return tsk->pid;
1587 }
1588
1589 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1590 struct pid_namespace *ns)
1591 {
1592 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1593 }
1594
1595 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1596 {
1597 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1598 }
1599
1600
1601 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1602 {
1603 return tsk->tgid;
1604 }
1605
1606 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1607
1608 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1609 {
1610 return pid_vnr(task_tgid(tsk));
1611 }
1612
1613
1614 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1615 struct pid_namespace *ns)
1616 {
1617 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1618 }
1619
1620 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1621 {
1622 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1623 }
1624
1625
1626 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1627 struct pid_namespace *ns)
1628 {
1629 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1630 }
1631
1632 static inline pid_t task_session_vnr(struct task_struct *tsk)
1633 {
1634 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1635 }
1636
1637 /* obsolete, do not use */
1638 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1639 {
1640 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1641 }
1642
1643 /**
1644 * pid_alive - check that a task structure is not stale
1645 * @p: Task structure to be checked.
1646 *
1647 * Test if a process is not yet dead (at most zombie state)
1648 * If pid_alive fails, then pointers within the task structure
1649 * can be stale and must not be dereferenced.
1650 */
1651 static inline int pid_alive(struct task_struct *p)
1652 {
1653 return p->pids[PIDTYPE_PID].pid != NULL;
1654 }
1655
1656 /**
1657 * is_global_init - check if a task structure is init
1658 * @tsk: Task structure to be checked.
1659 *
1660 * Check if a task structure is the first user space task the kernel created.
1661 */
1662 static inline int is_global_init(struct task_struct *tsk)
1663 {
1664 return tsk->pid == 1;
1665 }
1666
1667 /*
1668 * is_container_init:
1669 * check whether in the task is init in its own pid namespace.
1670 */
1671 extern int is_container_init(struct task_struct *tsk);
1672
1673 extern struct pid *cad_pid;
1674
1675 extern void free_task(struct task_struct *tsk);
1676 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1677
1678 extern void __put_task_struct(struct task_struct *t);
1679
1680 static inline void put_task_struct(struct task_struct *t)
1681 {
1682 if (atomic_dec_and_test(&t->usage))
1683 __put_task_struct(t);
1684 }
1685
1686 extern cputime_t task_utime(struct task_struct *p);
1687 extern cputime_t task_stime(struct task_struct *p);
1688 extern cputime_t task_gtime(struct task_struct *p);
1689
1690 /*
1691 * Per process flags
1692 */
1693 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1694 /* Not implemented yet, only for 486*/
1695 #define PF_STARTING 0x00000002 /* being created */
1696 #define PF_EXITING 0x00000004 /* getting shut down */
1697 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1698 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1699 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1700 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1701 #define PF_DUMPCORE 0x00000200 /* dumped core */
1702 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1703 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1704 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1705 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1706 #define PF_FREEZING 0x00004000 /* freeze in progress. do not account to load */
1707 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1708 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1709 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1710 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1711 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */
1712 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1713 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1714 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1715 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1716 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1717 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1718 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1719 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1720 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1721 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1722 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */
1723
1724 /*
1725 * Only the _current_ task can read/write to tsk->flags, but other
1726 * tasks can access tsk->flags in readonly mode for example
1727 * with tsk_used_math (like during threaded core dumping).
1728 * There is however an exception to this rule during ptrace
1729 * or during fork: the ptracer task is allowed to write to the
1730 * child->flags of its traced child (same goes for fork, the parent
1731 * can write to the child->flags), because we're guaranteed the
1732 * child is not running and in turn not changing child->flags
1733 * at the same time the parent does it.
1734 */
1735 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1736 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1737 #define clear_used_math() clear_stopped_child_used_math(current)
1738 #define set_used_math() set_stopped_child_used_math(current)
1739 #define conditional_stopped_child_used_math(condition, child) \
1740 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1741 #define conditional_used_math(condition) \
1742 conditional_stopped_child_used_math(condition, current)
1743 #define copy_to_stopped_child_used_math(child) \
1744 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1745 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1746 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1747 #define used_math() tsk_used_math(current)
1748
1749 #ifdef CONFIG_TREE_PREEMPT_RCU
1750
1751 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1752 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1753 #define RCU_READ_UNLOCK_GOT_QS (1 << 2) /* CPU has responded to RCU core. */
1754
1755 static inline void rcu_copy_process(struct task_struct *p)
1756 {
1757 p->rcu_read_lock_nesting = 0;
1758 p->rcu_read_unlock_special = 0;
1759 p->rcu_blocked_node = NULL;
1760 INIT_LIST_HEAD(&p->rcu_node_entry);
1761 }
1762
1763 #else
1764
1765 static inline void rcu_copy_process(struct task_struct *p)
1766 {
1767 }
1768
1769 #endif
1770
1771 #ifdef CONFIG_SMP
1772 extern int set_cpus_allowed_ptr(struct task_struct *p,
1773 const struct cpumask *new_mask);
1774 #else
1775 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1776 const struct cpumask *new_mask)
1777 {
1778 if (!cpumask_test_cpu(0, new_mask))
1779 return -EINVAL;
1780 return 0;
1781 }
1782 #endif
1783 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1784 {
1785 return set_cpus_allowed_ptr(p, &new_mask);
1786 }
1787
1788 /*
1789 * Architectures can set this to 1 if they have specified
1790 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1791 * but then during bootup it turns out that sched_clock()
1792 * is reliable after all:
1793 */
1794 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1795 extern int sched_clock_stable;
1796 #endif
1797
1798 extern unsigned long long sched_clock(void);
1799
1800 extern void sched_clock_init(void);
1801 extern u64 sched_clock_cpu(int cpu);
1802
1803 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1804 static inline void sched_clock_tick(void)
1805 {
1806 }
1807
1808 static inline void sched_clock_idle_sleep_event(void)
1809 {
1810 }
1811
1812 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1813 {
1814 }
1815 #else
1816 extern void sched_clock_tick(void);
1817 extern void sched_clock_idle_sleep_event(void);
1818 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1819 #endif
1820
1821 /*
1822 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1823 * clock constructed from sched_clock():
1824 */
1825 extern unsigned long long cpu_clock(int cpu);
1826
1827 extern unsigned long long
1828 task_sched_runtime(struct task_struct *task);
1829 extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1830
1831 /* sched_exec is called by processes performing an exec */
1832 #ifdef CONFIG_SMP
1833 extern void sched_exec(void);
1834 #else
1835 #define sched_exec() {}
1836 #endif
1837
1838 extern void sched_clock_idle_sleep_event(void);
1839 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1840
1841 #ifdef CONFIG_HOTPLUG_CPU
1842 extern void idle_task_exit(void);
1843 #else
1844 static inline void idle_task_exit(void) {}
1845 #endif
1846
1847 extern void sched_idle_next(void);
1848
1849 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1850 extern void wake_up_idle_cpu(int cpu);
1851 #else
1852 static inline void wake_up_idle_cpu(int cpu) { }
1853 #endif
1854
1855 extern unsigned int sysctl_sched_latency;
1856 extern unsigned int sysctl_sched_min_granularity;
1857 extern unsigned int sysctl_sched_wakeup_granularity;
1858 extern unsigned int sysctl_sched_shares_ratelimit;
1859 extern unsigned int sysctl_sched_shares_thresh;
1860 extern unsigned int sysctl_sched_child_runs_first;
1861 #ifdef CONFIG_SCHED_DEBUG
1862 extern unsigned int sysctl_sched_features;
1863 extern unsigned int sysctl_sched_migration_cost;
1864 extern unsigned int sysctl_sched_nr_migrate;
1865 extern unsigned int sysctl_sched_time_avg;
1866 extern unsigned int sysctl_timer_migration;
1867
1868 int sched_nr_latency_handler(struct ctl_table *table, int write,
1869 struct file *file, void __user *buffer, size_t *length,
1870 loff_t *ppos);
1871 #endif
1872 #ifdef CONFIG_SCHED_DEBUG
1873 static inline unsigned int get_sysctl_timer_migration(void)
1874 {
1875 return sysctl_timer_migration;
1876 }
1877 #else
1878 static inline unsigned int get_sysctl_timer_migration(void)
1879 {
1880 return 1;
1881 }
1882 #endif
1883 extern unsigned int sysctl_sched_rt_period;
1884 extern int sysctl_sched_rt_runtime;
1885
1886 int sched_rt_handler(struct ctl_table *table, int write,
1887 struct file *filp, void __user *buffer, size_t *lenp,
1888 loff_t *ppos);
1889
1890 extern unsigned int sysctl_sched_compat_yield;
1891
1892 #ifdef CONFIG_RT_MUTEXES
1893 extern int rt_mutex_getprio(struct task_struct *p);
1894 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1895 extern void rt_mutex_adjust_pi(struct task_struct *p);
1896 #else
1897 static inline int rt_mutex_getprio(struct task_struct *p)
1898 {
1899 return p->normal_prio;
1900 }
1901 # define rt_mutex_adjust_pi(p) do { } while (0)
1902 #endif
1903
1904 extern void set_user_nice(struct task_struct *p, long nice);
1905 extern int task_prio(const struct task_struct *p);
1906 extern int task_nice(const struct task_struct *p);
1907 extern int can_nice(const struct task_struct *p, const int nice);
1908 extern int task_curr(const struct task_struct *p);
1909 extern int idle_cpu(int cpu);
1910 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1911 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1912 struct sched_param *);
1913 extern struct task_struct *idle_task(int cpu);
1914 extern struct task_struct *curr_task(int cpu);
1915 extern void set_curr_task(int cpu, struct task_struct *p);
1916
1917 void yield(void);
1918
1919 /*
1920 * The default (Linux) execution domain.
1921 */
1922 extern struct exec_domain default_exec_domain;
1923
1924 union thread_union {
1925 struct thread_info thread_info;
1926 unsigned long stack[THREAD_SIZE/sizeof(long)];
1927 };
1928
1929 #ifndef __HAVE_ARCH_KSTACK_END
1930 static inline int kstack_end(void *addr)
1931 {
1932 /* Reliable end of stack detection:
1933 * Some APM bios versions misalign the stack
1934 */
1935 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1936 }
1937 #endif
1938
1939 extern union thread_union init_thread_union;
1940 extern struct task_struct init_task;
1941
1942 extern struct mm_struct init_mm;
1943
1944 extern struct pid_namespace init_pid_ns;
1945
1946 /*
1947 * find a task by one of its numerical ids
1948 *
1949 * find_task_by_pid_ns():
1950 * finds a task by its pid in the specified namespace
1951 * find_task_by_vpid():
1952 * finds a task by its virtual pid
1953 *
1954 * see also find_vpid() etc in include/linux/pid.h
1955 */
1956
1957 extern struct task_struct *find_task_by_vpid(pid_t nr);
1958 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1959 struct pid_namespace *ns);
1960
1961 extern void __set_special_pids(struct pid *pid);
1962
1963 /* per-UID process charging. */
1964 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1965 static inline struct user_struct *get_uid(struct user_struct *u)
1966 {
1967 atomic_inc(&u->__count);
1968 return u;
1969 }
1970 extern void free_uid(struct user_struct *);
1971 extern void release_uids(struct user_namespace *ns);
1972
1973 #include <asm/current.h>
1974
1975 extern void do_timer(unsigned long ticks);
1976
1977 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1978 extern int wake_up_process(struct task_struct *tsk);
1979 extern void wake_up_new_task(struct task_struct *tsk,
1980 unsigned long clone_flags);
1981 #ifdef CONFIG_SMP
1982 extern void kick_process(struct task_struct *tsk);
1983 #else
1984 static inline void kick_process(struct task_struct *tsk) { }
1985 #endif
1986 extern void sched_fork(struct task_struct *p, int clone_flags);
1987 extern void sched_dead(struct task_struct *p);
1988
1989 extern void proc_caches_init(void);
1990 extern void flush_signals(struct task_struct *);
1991 extern void __flush_signals(struct task_struct *);
1992 extern void ignore_signals(struct task_struct *);
1993 extern void flush_signal_handlers(struct task_struct *, int force_default);
1994 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1995
1996 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1997 {
1998 unsigned long flags;
1999 int ret;
2000
2001 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2002 ret = dequeue_signal(tsk, mask, info);
2003 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2004
2005 return ret;
2006 }
2007
2008 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2009 sigset_t *mask);
2010 extern void unblock_all_signals(void);
2011 extern void release_task(struct task_struct * p);
2012 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2013 extern int force_sigsegv(int, struct task_struct *);
2014 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2015 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2016 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2017 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
2018 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2019 extern int kill_pid(struct pid *pid, int sig, int priv);
2020 extern int kill_proc_info(int, struct siginfo *, pid_t);
2021 extern int do_notify_parent(struct task_struct *, int);
2022 extern void force_sig(int, struct task_struct *);
2023 extern void force_sig_specific(int, struct task_struct *);
2024 extern int send_sig(int, struct task_struct *, int);
2025 extern void zap_other_threads(struct task_struct *p);
2026 extern struct sigqueue *sigqueue_alloc(void);
2027 extern void sigqueue_free(struct sigqueue *);
2028 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2029 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2030 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2031
2032 static inline int kill_cad_pid(int sig, int priv)
2033 {
2034 return kill_pid(cad_pid, sig, priv);
2035 }
2036
2037 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2038 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2039 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2040 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2041
2042 static inline int is_si_special(const struct siginfo *info)
2043 {
2044 return info <= SEND_SIG_FORCED;
2045 }
2046
2047 /* True if we are on the alternate signal stack. */
2048
2049 static inline int on_sig_stack(unsigned long sp)
2050 {
2051 return (sp - current->sas_ss_sp < current->sas_ss_size);
2052 }
2053
2054 static inline int sas_ss_flags(unsigned long sp)
2055 {
2056 return (current->sas_ss_size == 0 ? SS_DISABLE
2057 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2058 }
2059
2060 /*
2061 * Routines for handling mm_structs
2062 */
2063 extern struct mm_struct * mm_alloc(void);
2064
2065 /* mmdrop drops the mm and the page tables */
2066 extern void __mmdrop(struct mm_struct *);
2067 static inline void mmdrop(struct mm_struct * mm)
2068 {
2069 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2070 __mmdrop(mm);
2071 }
2072
2073 /* mmput gets rid of the mappings and all user-space */
2074 extern void mmput(struct mm_struct *);
2075 /* Grab a reference to a task's mm, if it is not already going away */
2076 extern struct mm_struct *get_task_mm(struct task_struct *task);
2077 /* Remove the current tasks stale references to the old mm_struct */
2078 extern void mm_release(struct task_struct *, struct mm_struct *);
2079 /* Allocate a new mm structure and copy contents from tsk->mm */
2080 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2081
2082 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2083 struct task_struct *, struct pt_regs *);
2084 extern void flush_thread(void);
2085 extern void exit_thread(void);
2086
2087 extern void exit_files(struct task_struct *);
2088 extern void __cleanup_signal(struct signal_struct *);
2089 extern void __cleanup_sighand(struct sighand_struct *);
2090
2091 extern void exit_itimers(struct signal_struct *);
2092 extern void flush_itimer_signals(void);
2093
2094 extern NORET_TYPE void do_group_exit(int);
2095
2096 extern void daemonize(const char *, ...);
2097 extern int allow_signal(int);
2098 extern int disallow_signal(int);
2099
2100 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
2101 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2102 struct task_struct *fork_idle(int);
2103
2104 extern void set_task_comm(struct task_struct *tsk, char *from);
2105 extern char *get_task_comm(char *to, struct task_struct *tsk);
2106
2107 #ifdef CONFIG_SMP
2108 extern void wait_task_context_switch(struct task_struct *p);
2109 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2110 #else
2111 static inline void wait_task_context_switch(struct task_struct *p) {}
2112 static inline unsigned long wait_task_inactive(struct task_struct *p,
2113 long match_state)
2114 {
2115 return 1;
2116 }
2117 #endif
2118
2119 #define next_task(p) \
2120 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2121
2122 #define for_each_process(p) \
2123 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2124
2125 extern bool current_is_single_threaded(void);
2126
2127 /*
2128 * Careful: do_each_thread/while_each_thread is a double loop so
2129 * 'break' will not work as expected - use goto instead.
2130 */
2131 #define do_each_thread(g, t) \
2132 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2133
2134 #define while_each_thread(g, t) \
2135 while ((t = next_thread(t)) != g)
2136
2137 /* de_thread depends on thread_group_leader not being a pid based check */
2138 #define thread_group_leader(p) (p == p->group_leader)
2139
2140 /* Do to the insanities of de_thread it is possible for a process
2141 * to have the pid of the thread group leader without actually being
2142 * the thread group leader. For iteration through the pids in proc
2143 * all we care about is that we have a task with the appropriate
2144 * pid, we don't actually care if we have the right task.
2145 */
2146 static inline int has_group_leader_pid(struct task_struct *p)
2147 {
2148 return p->pid == p->tgid;
2149 }
2150
2151 static inline
2152 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2153 {
2154 return p1->tgid == p2->tgid;
2155 }
2156
2157 static inline struct task_struct *next_thread(const struct task_struct *p)
2158 {
2159 return list_entry_rcu(p->thread_group.next,
2160 struct task_struct, thread_group);
2161 }
2162
2163 static inline int thread_group_empty(struct task_struct *p)
2164 {
2165 return list_empty(&p->thread_group);
2166 }
2167
2168 #define delay_group_leader(p) \
2169 (thread_group_leader(p) && !thread_group_empty(p))
2170
2171 static inline int task_detached(struct task_struct *p)
2172 {
2173 return p->exit_signal == -1;
2174 }
2175
2176 /*
2177 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2178 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2179 * pins the final release of task.io_context. Also protects ->cpuset and
2180 * ->cgroup.subsys[].
2181 *
2182 * Nests both inside and outside of read_lock(&tasklist_lock).
2183 * It must not be nested with write_lock_irq(&tasklist_lock),
2184 * neither inside nor outside.
2185 */
2186 static inline void task_lock(struct task_struct *p)
2187 {
2188 spin_lock(&p->alloc_lock);
2189 }
2190
2191 static inline void task_unlock(struct task_struct *p)
2192 {
2193 spin_unlock(&p->alloc_lock);
2194 }
2195
2196 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2197 unsigned long *flags);
2198
2199 static inline void unlock_task_sighand(struct task_struct *tsk,
2200 unsigned long *flags)
2201 {
2202 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2203 }
2204
2205 #ifndef __HAVE_THREAD_FUNCTIONS
2206
2207 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2208 #define task_stack_page(task) ((task)->stack)
2209
2210 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2211 {
2212 *task_thread_info(p) = *task_thread_info(org);
2213 task_thread_info(p)->task = p;
2214 }
2215
2216 static inline unsigned long *end_of_stack(struct task_struct *p)
2217 {
2218 return (unsigned long *)(task_thread_info(p) + 1);
2219 }
2220
2221 #endif
2222
2223 static inline int object_is_on_stack(void *obj)
2224 {
2225 void *stack = task_stack_page(current);
2226
2227 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2228 }
2229
2230 extern void thread_info_cache_init(void);
2231
2232 #ifdef CONFIG_DEBUG_STACK_USAGE
2233 static inline unsigned long stack_not_used(struct task_struct *p)
2234 {
2235 unsigned long *n = end_of_stack(p);
2236
2237 do { /* Skip over canary */
2238 n++;
2239 } while (!*n);
2240
2241 return (unsigned long)n - (unsigned long)end_of_stack(p);
2242 }
2243 #endif
2244
2245 /* set thread flags in other task's structures
2246 * - see asm/thread_info.h for TIF_xxxx flags available
2247 */
2248 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2249 {
2250 set_ti_thread_flag(task_thread_info(tsk), flag);
2251 }
2252
2253 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2254 {
2255 clear_ti_thread_flag(task_thread_info(tsk), flag);
2256 }
2257
2258 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2259 {
2260 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2261 }
2262
2263 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2264 {
2265 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2266 }
2267
2268 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2269 {
2270 return test_ti_thread_flag(task_thread_info(tsk), flag);
2271 }
2272
2273 static inline void set_tsk_need_resched(struct task_struct *tsk)
2274 {
2275 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2276 }
2277
2278 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2279 {
2280 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2281 }
2282
2283 static inline int test_tsk_need_resched(struct task_struct *tsk)
2284 {
2285 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2286 }
2287
2288 static inline int restart_syscall(void)
2289 {
2290 set_tsk_thread_flag(current, TIF_SIGPENDING);
2291 return -ERESTARTNOINTR;
2292 }
2293
2294 static inline int signal_pending(struct task_struct *p)
2295 {
2296 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2297 }
2298
2299 extern int __fatal_signal_pending(struct task_struct *p);
2300
2301 static inline int fatal_signal_pending(struct task_struct *p)
2302 {
2303 return signal_pending(p) && __fatal_signal_pending(p);
2304 }
2305
2306 static inline int signal_pending_state(long state, struct task_struct *p)
2307 {
2308 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2309 return 0;
2310 if (!signal_pending(p))
2311 return 0;
2312
2313 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2314 }
2315
2316 static inline int need_resched(void)
2317 {
2318 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2319 }
2320
2321 /*
2322 * cond_resched() and cond_resched_lock(): latency reduction via
2323 * explicit rescheduling in places that are safe. The return
2324 * value indicates whether a reschedule was done in fact.
2325 * cond_resched_lock() will drop the spinlock before scheduling,
2326 * cond_resched_softirq() will enable bhs before scheduling.
2327 */
2328 extern int _cond_resched(void);
2329
2330 #define cond_resched() ({ \
2331 __might_sleep(__FILE__, __LINE__, 0); \
2332 _cond_resched(); \
2333 })
2334
2335 extern int __cond_resched_lock(spinlock_t *lock);
2336
2337 #ifdef CONFIG_PREEMPT
2338 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2339 #else
2340 #define PREEMPT_LOCK_OFFSET 0
2341 #endif
2342
2343 #define cond_resched_lock(lock) ({ \
2344 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2345 __cond_resched_lock(lock); \
2346 })
2347
2348 extern int __cond_resched_softirq(void);
2349
2350 #define cond_resched_softirq() ({ \
2351 __might_sleep(__FILE__, __LINE__, SOFTIRQ_OFFSET); \
2352 __cond_resched_softirq(); \
2353 })
2354
2355 /*
2356 * Does a critical section need to be broken due to another
2357 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2358 * but a general need for low latency)
2359 */
2360 static inline int spin_needbreak(spinlock_t *lock)
2361 {
2362 #ifdef CONFIG_PREEMPT
2363 return spin_is_contended(lock);
2364 #else
2365 return 0;
2366 #endif
2367 }
2368
2369 /*
2370 * Thread group CPU time accounting.
2371 */
2372 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2373 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2374
2375 static inline void thread_group_cputime_init(struct signal_struct *sig)
2376 {
2377 sig->cputimer.cputime = INIT_CPUTIME;
2378 spin_lock_init(&sig->cputimer.lock);
2379 sig->cputimer.running = 0;
2380 }
2381
2382 static inline void thread_group_cputime_free(struct signal_struct *sig)
2383 {
2384 }
2385
2386 /*
2387 * Reevaluate whether the task has signals pending delivery.
2388 * Wake the task if so.
2389 * This is required every time the blocked sigset_t changes.
2390 * callers must hold sighand->siglock.
2391 */
2392 extern void recalc_sigpending_and_wake(struct task_struct *t);
2393 extern void recalc_sigpending(void);
2394
2395 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2396
2397 /*
2398 * Wrappers for p->thread_info->cpu access. No-op on UP.
2399 */
2400 #ifdef CONFIG_SMP
2401
2402 static inline unsigned int task_cpu(const struct task_struct *p)
2403 {
2404 return task_thread_info(p)->cpu;
2405 }
2406
2407 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2408
2409 #else
2410
2411 static inline unsigned int task_cpu(const struct task_struct *p)
2412 {
2413 return 0;
2414 }
2415
2416 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2417 {
2418 }
2419
2420 #endif /* CONFIG_SMP */
2421
2422 extern void arch_pick_mmap_layout(struct mm_struct *mm);
2423
2424 #ifdef CONFIG_TRACING
2425 extern void
2426 __trace_special(void *__tr, void *__data,
2427 unsigned long arg1, unsigned long arg2, unsigned long arg3);
2428 #else
2429 static inline void
2430 __trace_special(void *__tr, void *__data,
2431 unsigned long arg1, unsigned long arg2, unsigned long arg3)
2432 {
2433 }
2434 #endif
2435
2436 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2437 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2438
2439 extern void normalize_rt_tasks(void);
2440
2441 #ifdef CONFIG_GROUP_SCHED
2442
2443 extern struct task_group init_task_group;
2444 #ifdef CONFIG_USER_SCHED
2445 extern struct task_group root_task_group;
2446 extern void set_tg_uid(struct user_struct *user);
2447 #endif
2448
2449 extern struct task_group *sched_create_group(struct task_group *parent);
2450 extern void sched_destroy_group(struct task_group *tg);
2451 extern void sched_move_task(struct task_struct *tsk);
2452 #ifdef CONFIG_FAIR_GROUP_SCHED
2453 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2454 extern unsigned long sched_group_shares(struct task_group *tg);
2455 #endif
2456 #ifdef CONFIG_RT_GROUP_SCHED
2457 extern int sched_group_set_rt_runtime(struct task_group *tg,
2458 long rt_runtime_us);
2459 extern long sched_group_rt_runtime(struct task_group *tg);
2460 extern int sched_group_set_rt_period(struct task_group *tg,
2461 long rt_period_us);
2462 extern long sched_group_rt_period(struct task_group *tg);
2463 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2464 #endif
2465 #endif
2466
2467 extern int task_can_switch_user(struct user_struct *up,
2468 struct task_struct *tsk);
2469
2470 #ifdef CONFIG_TASK_XACCT
2471 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2472 {
2473 tsk->ioac.rchar += amt;
2474 }
2475
2476 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2477 {
2478 tsk->ioac.wchar += amt;
2479 }
2480
2481 static inline void inc_syscr(struct task_struct *tsk)
2482 {
2483 tsk->ioac.syscr++;
2484 }
2485
2486 static inline void inc_syscw(struct task_struct *tsk)
2487 {
2488 tsk->ioac.syscw++;
2489 }
2490 #else
2491 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2492 {
2493 }
2494
2495 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2496 {
2497 }
2498
2499 static inline void inc_syscr(struct task_struct *tsk)
2500 {
2501 }
2502
2503 static inline void inc_syscw(struct task_struct *tsk)
2504 {
2505 }
2506 #endif
2507
2508 #ifndef TASK_SIZE_OF
2509 #define TASK_SIZE_OF(tsk) TASK_SIZE
2510 #endif
2511
2512 /*
2513 * Call the function if the target task is executing on a CPU right now:
2514 */
2515 extern void task_oncpu_function_call(struct task_struct *p,
2516 void (*func) (void *info), void *info);
2517
2518
2519 #ifdef CONFIG_MM_OWNER
2520 extern void mm_update_next_owner(struct mm_struct *mm);
2521 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2522 #else
2523 static inline void mm_update_next_owner(struct mm_struct *mm)
2524 {
2525 }
2526
2527 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2528 {
2529 }
2530 #endif /* CONFIG_MM_OWNER */
2531
2532 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
2533
2534 #endif /* __KERNEL__ */
2535
2536 #endif
This page took 0.128593 seconds and 5 git commands to generate.