sched: Transform resched_task() into resched_curr()
[deliverable/linux.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <uapi/linux/sched.h>
5
6 #include <linux/sched/prio.h>
7
8
9 struct sched_param {
10 int sched_priority;
11 };
12
13 #include <asm/param.h> /* for HZ */
14
15 #include <linux/capability.h>
16 #include <linux/threads.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/timex.h>
20 #include <linux/jiffies.h>
21 #include <linux/plist.h>
22 #include <linux/rbtree.h>
23 #include <linux/thread_info.h>
24 #include <linux/cpumask.h>
25 #include <linux/errno.h>
26 #include <linux/nodemask.h>
27 #include <linux/mm_types.h>
28 #include <linux/preempt_mask.h>
29
30 #include <asm/page.h>
31 #include <asm/ptrace.h>
32 #include <linux/cputime.h>
33
34 #include <linux/smp.h>
35 #include <linux/sem.h>
36 #include <linux/signal.h>
37 #include <linux/compiler.h>
38 #include <linux/completion.h>
39 #include <linux/pid.h>
40 #include <linux/percpu.h>
41 #include <linux/topology.h>
42 #include <linux/proportions.h>
43 #include <linux/seccomp.h>
44 #include <linux/rcupdate.h>
45 #include <linux/rculist.h>
46 #include <linux/rtmutex.h>
47
48 #include <linux/time.h>
49 #include <linux/param.h>
50 #include <linux/resource.h>
51 #include <linux/timer.h>
52 #include <linux/hrtimer.h>
53 #include <linux/task_io_accounting.h>
54 #include <linux/latencytop.h>
55 #include <linux/cred.h>
56 #include <linux/llist.h>
57 #include <linux/uidgid.h>
58 #include <linux/gfp.h>
59
60 #include <asm/processor.h>
61
62 #define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */
63
64 /*
65 * Extended scheduling parameters data structure.
66 *
67 * This is needed because the original struct sched_param can not be
68 * altered without introducing ABI issues with legacy applications
69 * (e.g., in sched_getparam()).
70 *
71 * However, the possibility of specifying more than just a priority for
72 * the tasks may be useful for a wide variety of application fields, e.g.,
73 * multimedia, streaming, automation and control, and many others.
74 *
75 * This variant (sched_attr) is meant at describing a so-called
76 * sporadic time-constrained task. In such model a task is specified by:
77 * - the activation period or minimum instance inter-arrival time;
78 * - the maximum (or average, depending on the actual scheduling
79 * discipline) computation time of all instances, a.k.a. runtime;
80 * - the deadline (relative to the actual activation time) of each
81 * instance.
82 * Very briefly, a periodic (sporadic) task asks for the execution of
83 * some specific computation --which is typically called an instance--
84 * (at most) every period. Moreover, each instance typically lasts no more
85 * than the runtime and must be completed by time instant t equal to
86 * the instance activation time + the deadline.
87 *
88 * This is reflected by the actual fields of the sched_attr structure:
89 *
90 * @size size of the structure, for fwd/bwd compat.
91 *
92 * @sched_policy task's scheduling policy
93 * @sched_flags for customizing the scheduler behaviour
94 * @sched_nice task's nice value (SCHED_NORMAL/BATCH)
95 * @sched_priority task's static priority (SCHED_FIFO/RR)
96 * @sched_deadline representative of the task's deadline
97 * @sched_runtime representative of the task's runtime
98 * @sched_period representative of the task's period
99 *
100 * Given this task model, there are a multiplicity of scheduling algorithms
101 * and policies, that can be used to ensure all the tasks will make their
102 * timing constraints.
103 *
104 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
105 * only user of this new interface. More information about the algorithm
106 * available in the scheduling class file or in Documentation/.
107 */
108 struct sched_attr {
109 u32 size;
110
111 u32 sched_policy;
112 u64 sched_flags;
113
114 /* SCHED_NORMAL, SCHED_BATCH */
115 s32 sched_nice;
116
117 /* SCHED_FIFO, SCHED_RR */
118 u32 sched_priority;
119
120 /* SCHED_DEADLINE */
121 u64 sched_runtime;
122 u64 sched_deadline;
123 u64 sched_period;
124 };
125
126 struct exec_domain;
127 struct futex_pi_state;
128 struct robust_list_head;
129 struct bio_list;
130 struct fs_struct;
131 struct perf_event_context;
132 struct blk_plug;
133 struct filename;
134
135 #define VMACACHE_BITS 2
136 #define VMACACHE_SIZE (1U << VMACACHE_BITS)
137 #define VMACACHE_MASK (VMACACHE_SIZE - 1)
138
139 /*
140 * These are the constant used to fake the fixed-point load-average
141 * counting. Some notes:
142 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
143 * a load-average precision of 10 bits integer + 11 bits fractional
144 * - if you want to count load-averages more often, you need more
145 * precision, or rounding will get you. With 2-second counting freq,
146 * the EXP_n values would be 1981, 2034 and 2043 if still using only
147 * 11 bit fractions.
148 */
149 extern unsigned long avenrun[]; /* Load averages */
150 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
151
152 #define FSHIFT 11 /* nr of bits of precision */
153 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
154 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
155 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
156 #define EXP_5 2014 /* 1/exp(5sec/5min) */
157 #define EXP_15 2037 /* 1/exp(5sec/15min) */
158
159 #define CALC_LOAD(load,exp,n) \
160 load *= exp; \
161 load += n*(FIXED_1-exp); \
162 load >>= FSHIFT;
163
164 extern unsigned long total_forks;
165 extern int nr_threads;
166 DECLARE_PER_CPU(unsigned long, process_counts);
167 extern int nr_processes(void);
168 extern unsigned long nr_running(void);
169 extern unsigned long nr_iowait(void);
170 extern unsigned long nr_iowait_cpu(int cpu);
171 extern unsigned long this_cpu_load(void);
172
173
174 extern void calc_global_load(unsigned long ticks);
175 extern void update_cpu_load_nohz(void);
176
177 extern unsigned long get_parent_ip(unsigned long addr);
178
179 extern void dump_cpu_task(int cpu);
180
181 struct seq_file;
182 struct cfs_rq;
183 struct task_group;
184 #ifdef CONFIG_SCHED_DEBUG
185 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
186 extern void proc_sched_set_task(struct task_struct *p);
187 extern void
188 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
189 #endif
190
191 /*
192 * Task state bitmask. NOTE! These bits are also
193 * encoded in fs/proc/array.c: get_task_state().
194 *
195 * We have two separate sets of flags: task->state
196 * is about runnability, while task->exit_state are
197 * about the task exiting. Confusing, but this way
198 * modifying one set can't modify the other one by
199 * mistake.
200 */
201 #define TASK_RUNNING 0
202 #define TASK_INTERRUPTIBLE 1
203 #define TASK_UNINTERRUPTIBLE 2
204 #define __TASK_STOPPED 4
205 #define __TASK_TRACED 8
206 /* in tsk->exit_state */
207 #define EXIT_DEAD 16
208 #define EXIT_ZOMBIE 32
209 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
210 /* in tsk->state again */
211 #define TASK_DEAD 64
212 #define TASK_WAKEKILL 128
213 #define TASK_WAKING 256
214 #define TASK_PARKED 512
215 #define TASK_STATE_MAX 1024
216
217 #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWP"
218
219 extern char ___assert_task_state[1 - 2*!!(
220 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
221
222 /* Convenience macros for the sake of set_task_state */
223 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
224 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
225 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
226
227 /* Convenience macros for the sake of wake_up */
228 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
229 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
230
231 /* get_task_state() */
232 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
233 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
234 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
235
236 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
237 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
238 #define task_is_stopped_or_traced(task) \
239 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
240 #define task_contributes_to_load(task) \
241 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
242 (task->flags & PF_FROZEN) == 0)
243
244 #define __set_task_state(tsk, state_value) \
245 do { (tsk)->state = (state_value); } while (0)
246 #define set_task_state(tsk, state_value) \
247 set_mb((tsk)->state, (state_value))
248
249 /*
250 * set_current_state() includes a barrier so that the write of current->state
251 * is correctly serialised wrt the caller's subsequent test of whether to
252 * actually sleep:
253 *
254 * set_current_state(TASK_UNINTERRUPTIBLE);
255 * if (do_i_need_to_sleep())
256 * schedule();
257 *
258 * If the caller does not need such serialisation then use __set_current_state()
259 */
260 #define __set_current_state(state_value) \
261 do { current->state = (state_value); } while (0)
262 #define set_current_state(state_value) \
263 set_mb(current->state, (state_value))
264
265 /* Task command name length */
266 #define TASK_COMM_LEN 16
267
268 #include <linux/spinlock.h>
269
270 /*
271 * This serializes "schedule()" and also protects
272 * the run-queue from deletions/modifications (but
273 * _adding_ to the beginning of the run-queue has
274 * a separate lock).
275 */
276 extern rwlock_t tasklist_lock;
277 extern spinlock_t mmlist_lock;
278
279 struct task_struct;
280
281 #ifdef CONFIG_PROVE_RCU
282 extern int lockdep_tasklist_lock_is_held(void);
283 #endif /* #ifdef CONFIG_PROVE_RCU */
284
285 extern void sched_init(void);
286 extern void sched_init_smp(void);
287 extern asmlinkage void schedule_tail(struct task_struct *prev);
288 extern void init_idle(struct task_struct *idle, int cpu);
289 extern void init_idle_bootup_task(struct task_struct *idle);
290
291 extern int runqueue_is_locked(int cpu);
292
293 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
294 extern void nohz_balance_enter_idle(int cpu);
295 extern void set_cpu_sd_state_idle(void);
296 extern int get_nohz_timer_target(int pinned);
297 #else
298 static inline void nohz_balance_enter_idle(int cpu) { }
299 static inline void set_cpu_sd_state_idle(void) { }
300 static inline int get_nohz_timer_target(int pinned)
301 {
302 return smp_processor_id();
303 }
304 #endif
305
306 /*
307 * Only dump TASK_* tasks. (0 for all tasks)
308 */
309 extern void show_state_filter(unsigned long state_filter);
310
311 static inline void show_state(void)
312 {
313 show_state_filter(0);
314 }
315
316 extern void show_regs(struct pt_regs *);
317
318 /*
319 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
320 * task), SP is the stack pointer of the first frame that should be shown in the back
321 * trace (or NULL if the entire call-chain of the task should be shown).
322 */
323 extern void show_stack(struct task_struct *task, unsigned long *sp);
324
325 void io_schedule(void);
326 long io_schedule_timeout(long timeout);
327
328 extern void cpu_init (void);
329 extern void trap_init(void);
330 extern void update_process_times(int user);
331 extern void scheduler_tick(void);
332
333 extern void sched_show_task(struct task_struct *p);
334
335 #ifdef CONFIG_LOCKUP_DETECTOR
336 extern void touch_softlockup_watchdog(void);
337 extern void touch_softlockup_watchdog_sync(void);
338 extern void touch_all_softlockup_watchdogs(void);
339 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
340 void __user *buffer,
341 size_t *lenp, loff_t *ppos);
342 extern unsigned int softlockup_panic;
343 void lockup_detector_init(void);
344 #else
345 static inline void touch_softlockup_watchdog(void)
346 {
347 }
348 static inline void touch_softlockup_watchdog_sync(void)
349 {
350 }
351 static inline void touch_all_softlockup_watchdogs(void)
352 {
353 }
354 static inline void lockup_detector_init(void)
355 {
356 }
357 #endif
358
359 #ifdef CONFIG_DETECT_HUNG_TASK
360 void reset_hung_task_detector(void);
361 #else
362 static inline void reset_hung_task_detector(void)
363 {
364 }
365 #endif
366
367 /* Attach to any functions which should be ignored in wchan output. */
368 #define __sched __attribute__((__section__(".sched.text")))
369
370 /* Linker adds these: start and end of __sched functions */
371 extern char __sched_text_start[], __sched_text_end[];
372
373 /* Is this address in the __sched functions? */
374 extern int in_sched_functions(unsigned long addr);
375
376 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
377 extern signed long schedule_timeout(signed long timeout);
378 extern signed long schedule_timeout_interruptible(signed long timeout);
379 extern signed long schedule_timeout_killable(signed long timeout);
380 extern signed long schedule_timeout_uninterruptible(signed long timeout);
381 asmlinkage void schedule(void);
382 extern void schedule_preempt_disabled(void);
383
384 struct nsproxy;
385 struct user_namespace;
386
387 #ifdef CONFIG_MMU
388 extern void arch_pick_mmap_layout(struct mm_struct *mm);
389 extern unsigned long
390 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
391 unsigned long, unsigned long);
392 extern unsigned long
393 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
394 unsigned long len, unsigned long pgoff,
395 unsigned long flags);
396 #else
397 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
398 #endif
399
400 #define SUID_DUMP_DISABLE 0 /* No setuid dumping */
401 #define SUID_DUMP_USER 1 /* Dump as user of process */
402 #define SUID_DUMP_ROOT 2 /* Dump as root */
403
404 /* mm flags */
405
406 /* for SUID_DUMP_* above */
407 #define MMF_DUMPABLE_BITS 2
408 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
409
410 extern void set_dumpable(struct mm_struct *mm, int value);
411 /*
412 * This returns the actual value of the suid_dumpable flag. For things
413 * that are using this for checking for privilege transitions, it must
414 * test against SUID_DUMP_USER rather than treating it as a boolean
415 * value.
416 */
417 static inline int __get_dumpable(unsigned long mm_flags)
418 {
419 return mm_flags & MMF_DUMPABLE_MASK;
420 }
421
422 static inline int get_dumpable(struct mm_struct *mm)
423 {
424 return __get_dumpable(mm->flags);
425 }
426
427 /* coredump filter bits */
428 #define MMF_DUMP_ANON_PRIVATE 2
429 #define MMF_DUMP_ANON_SHARED 3
430 #define MMF_DUMP_MAPPED_PRIVATE 4
431 #define MMF_DUMP_MAPPED_SHARED 5
432 #define MMF_DUMP_ELF_HEADERS 6
433 #define MMF_DUMP_HUGETLB_PRIVATE 7
434 #define MMF_DUMP_HUGETLB_SHARED 8
435
436 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
437 #define MMF_DUMP_FILTER_BITS 7
438 #define MMF_DUMP_FILTER_MASK \
439 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
440 #define MMF_DUMP_FILTER_DEFAULT \
441 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
442 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
443
444 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
445 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
446 #else
447 # define MMF_DUMP_MASK_DEFAULT_ELF 0
448 #endif
449 /* leave room for more dump flags */
450 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
451 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
452 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
453
454 #define MMF_HAS_UPROBES 19 /* has uprobes */
455 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
456
457 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
458
459 struct sighand_struct {
460 atomic_t count;
461 struct k_sigaction action[_NSIG];
462 spinlock_t siglock;
463 wait_queue_head_t signalfd_wqh;
464 };
465
466 struct pacct_struct {
467 int ac_flag;
468 long ac_exitcode;
469 unsigned long ac_mem;
470 cputime_t ac_utime, ac_stime;
471 unsigned long ac_minflt, ac_majflt;
472 };
473
474 struct cpu_itimer {
475 cputime_t expires;
476 cputime_t incr;
477 u32 error;
478 u32 incr_error;
479 };
480
481 /**
482 * struct cputime - snaphsot of system and user cputime
483 * @utime: time spent in user mode
484 * @stime: time spent in system mode
485 *
486 * Gathers a generic snapshot of user and system time.
487 */
488 struct cputime {
489 cputime_t utime;
490 cputime_t stime;
491 };
492
493 /**
494 * struct task_cputime - collected CPU time counts
495 * @utime: time spent in user mode, in &cputime_t units
496 * @stime: time spent in kernel mode, in &cputime_t units
497 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
498 *
499 * This is an extension of struct cputime that includes the total runtime
500 * spent by the task from the scheduler point of view.
501 *
502 * As a result, this structure groups together three kinds of CPU time
503 * that are tracked for threads and thread groups. Most things considering
504 * CPU time want to group these counts together and treat all three
505 * of them in parallel.
506 */
507 struct task_cputime {
508 cputime_t utime;
509 cputime_t stime;
510 unsigned long long sum_exec_runtime;
511 };
512 /* Alternate field names when used to cache expirations. */
513 #define prof_exp stime
514 #define virt_exp utime
515 #define sched_exp sum_exec_runtime
516
517 #define INIT_CPUTIME \
518 (struct task_cputime) { \
519 .utime = 0, \
520 .stime = 0, \
521 .sum_exec_runtime = 0, \
522 }
523
524 #ifdef CONFIG_PREEMPT_COUNT
525 #define PREEMPT_DISABLED (1 + PREEMPT_ENABLED)
526 #else
527 #define PREEMPT_DISABLED PREEMPT_ENABLED
528 #endif
529
530 /*
531 * Disable preemption until the scheduler is running.
532 * Reset by start_kernel()->sched_init()->init_idle().
533 *
534 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
535 * before the scheduler is active -- see should_resched().
536 */
537 #define INIT_PREEMPT_COUNT (PREEMPT_DISABLED + PREEMPT_ACTIVE)
538
539 /**
540 * struct thread_group_cputimer - thread group interval timer counts
541 * @cputime: thread group interval timers.
542 * @running: non-zero when there are timers running and
543 * @cputime receives updates.
544 * @lock: lock for fields in this struct.
545 *
546 * This structure contains the version of task_cputime, above, that is
547 * used for thread group CPU timer calculations.
548 */
549 struct thread_group_cputimer {
550 struct task_cputime cputime;
551 int running;
552 raw_spinlock_t lock;
553 };
554
555 #include <linux/rwsem.h>
556 struct autogroup;
557
558 /*
559 * NOTE! "signal_struct" does not have its own
560 * locking, because a shared signal_struct always
561 * implies a shared sighand_struct, so locking
562 * sighand_struct is always a proper superset of
563 * the locking of signal_struct.
564 */
565 struct signal_struct {
566 atomic_t sigcnt;
567 atomic_t live;
568 int nr_threads;
569 struct list_head thread_head;
570
571 wait_queue_head_t wait_chldexit; /* for wait4() */
572
573 /* current thread group signal load-balancing target: */
574 struct task_struct *curr_target;
575
576 /* shared signal handling: */
577 struct sigpending shared_pending;
578
579 /* thread group exit support */
580 int group_exit_code;
581 /* overloaded:
582 * - notify group_exit_task when ->count is equal to notify_count
583 * - everyone except group_exit_task is stopped during signal delivery
584 * of fatal signals, group_exit_task processes the signal.
585 */
586 int notify_count;
587 struct task_struct *group_exit_task;
588
589 /* thread group stop support, overloads group_exit_code too */
590 int group_stop_count;
591 unsigned int flags; /* see SIGNAL_* flags below */
592
593 /*
594 * PR_SET_CHILD_SUBREAPER marks a process, like a service
595 * manager, to re-parent orphan (double-forking) child processes
596 * to this process instead of 'init'. The service manager is
597 * able to receive SIGCHLD signals and is able to investigate
598 * the process until it calls wait(). All children of this
599 * process will inherit a flag if they should look for a
600 * child_subreaper process at exit.
601 */
602 unsigned int is_child_subreaper:1;
603 unsigned int has_child_subreaper:1;
604
605 /* POSIX.1b Interval Timers */
606 int posix_timer_id;
607 struct list_head posix_timers;
608
609 /* ITIMER_REAL timer for the process */
610 struct hrtimer real_timer;
611 struct pid *leader_pid;
612 ktime_t it_real_incr;
613
614 /*
615 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
616 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
617 * values are defined to 0 and 1 respectively
618 */
619 struct cpu_itimer it[2];
620
621 /*
622 * Thread group totals for process CPU timers.
623 * See thread_group_cputimer(), et al, for details.
624 */
625 struct thread_group_cputimer cputimer;
626
627 /* Earliest-expiration cache. */
628 struct task_cputime cputime_expires;
629
630 struct list_head cpu_timers[3];
631
632 struct pid *tty_old_pgrp;
633
634 /* boolean value for session group leader */
635 int leader;
636
637 struct tty_struct *tty; /* NULL if no tty */
638
639 #ifdef CONFIG_SCHED_AUTOGROUP
640 struct autogroup *autogroup;
641 #endif
642 /*
643 * Cumulative resource counters for dead threads in the group,
644 * and for reaped dead child processes forked by this group.
645 * Live threads maintain their own counters and add to these
646 * in __exit_signal, except for the group leader.
647 */
648 cputime_t utime, stime, cutime, cstime;
649 cputime_t gtime;
650 cputime_t cgtime;
651 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
652 struct cputime prev_cputime;
653 #endif
654 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
655 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
656 unsigned long inblock, oublock, cinblock, coublock;
657 unsigned long maxrss, cmaxrss;
658 struct task_io_accounting ioac;
659
660 /*
661 * Cumulative ns of schedule CPU time fo dead threads in the
662 * group, not including a zombie group leader, (This only differs
663 * from jiffies_to_ns(utime + stime) if sched_clock uses something
664 * other than jiffies.)
665 */
666 unsigned long long sum_sched_runtime;
667
668 /*
669 * We don't bother to synchronize most readers of this at all,
670 * because there is no reader checking a limit that actually needs
671 * to get both rlim_cur and rlim_max atomically, and either one
672 * alone is a single word that can safely be read normally.
673 * getrlimit/setrlimit use task_lock(current->group_leader) to
674 * protect this instead of the siglock, because they really
675 * have no need to disable irqs.
676 */
677 struct rlimit rlim[RLIM_NLIMITS];
678
679 #ifdef CONFIG_BSD_PROCESS_ACCT
680 struct pacct_struct pacct; /* per-process accounting information */
681 #endif
682 #ifdef CONFIG_TASKSTATS
683 struct taskstats *stats;
684 #endif
685 #ifdef CONFIG_AUDIT
686 unsigned audit_tty;
687 unsigned audit_tty_log_passwd;
688 struct tty_audit_buf *tty_audit_buf;
689 #endif
690 #ifdef CONFIG_CGROUPS
691 /*
692 * group_rwsem prevents new tasks from entering the threadgroup and
693 * member tasks from exiting,a more specifically, setting of
694 * PF_EXITING. fork and exit paths are protected with this rwsem
695 * using threadgroup_change_begin/end(). Users which require
696 * threadgroup to remain stable should use threadgroup_[un]lock()
697 * which also takes care of exec path. Currently, cgroup is the
698 * only user.
699 */
700 struct rw_semaphore group_rwsem;
701 #endif
702
703 oom_flags_t oom_flags;
704 short oom_score_adj; /* OOM kill score adjustment */
705 short oom_score_adj_min; /* OOM kill score adjustment min value.
706 * Only settable by CAP_SYS_RESOURCE. */
707
708 struct mutex cred_guard_mutex; /* guard against foreign influences on
709 * credential calculations
710 * (notably. ptrace) */
711 };
712
713 /*
714 * Bits in flags field of signal_struct.
715 */
716 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
717 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
718 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
719 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
720 /*
721 * Pending notifications to parent.
722 */
723 #define SIGNAL_CLD_STOPPED 0x00000010
724 #define SIGNAL_CLD_CONTINUED 0x00000020
725 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
726
727 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
728
729 /* If true, all threads except ->group_exit_task have pending SIGKILL */
730 static inline int signal_group_exit(const struct signal_struct *sig)
731 {
732 return (sig->flags & SIGNAL_GROUP_EXIT) ||
733 (sig->group_exit_task != NULL);
734 }
735
736 /*
737 * Some day this will be a full-fledged user tracking system..
738 */
739 struct user_struct {
740 atomic_t __count; /* reference count */
741 atomic_t processes; /* How many processes does this user have? */
742 atomic_t sigpending; /* How many pending signals does this user have? */
743 #ifdef CONFIG_INOTIFY_USER
744 atomic_t inotify_watches; /* How many inotify watches does this user have? */
745 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
746 #endif
747 #ifdef CONFIG_FANOTIFY
748 atomic_t fanotify_listeners;
749 #endif
750 #ifdef CONFIG_EPOLL
751 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
752 #endif
753 #ifdef CONFIG_POSIX_MQUEUE
754 /* protected by mq_lock */
755 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
756 #endif
757 unsigned long locked_shm; /* How many pages of mlocked shm ? */
758
759 #ifdef CONFIG_KEYS
760 struct key *uid_keyring; /* UID specific keyring */
761 struct key *session_keyring; /* UID's default session keyring */
762 #endif
763
764 /* Hash table maintenance information */
765 struct hlist_node uidhash_node;
766 kuid_t uid;
767
768 #ifdef CONFIG_PERF_EVENTS
769 atomic_long_t locked_vm;
770 #endif
771 };
772
773 extern int uids_sysfs_init(void);
774
775 extern struct user_struct *find_user(kuid_t);
776
777 extern struct user_struct root_user;
778 #define INIT_USER (&root_user)
779
780
781 struct backing_dev_info;
782 struct reclaim_state;
783
784 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
785 struct sched_info {
786 /* cumulative counters */
787 unsigned long pcount; /* # of times run on this cpu */
788 unsigned long long run_delay; /* time spent waiting on a runqueue */
789
790 /* timestamps */
791 unsigned long long last_arrival,/* when we last ran on a cpu */
792 last_queued; /* when we were last queued to run */
793 };
794 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
795
796 #ifdef CONFIG_TASK_DELAY_ACCT
797 struct task_delay_info {
798 spinlock_t lock;
799 unsigned int flags; /* Private per-task flags */
800
801 /* For each stat XXX, add following, aligned appropriately
802 *
803 * struct timespec XXX_start, XXX_end;
804 * u64 XXX_delay;
805 * u32 XXX_count;
806 *
807 * Atomicity of updates to XXX_delay, XXX_count protected by
808 * single lock above (split into XXX_lock if contention is an issue).
809 */
810
811 /*
812 * XXX_count is incremented on every XXX operation, the delay
813 * associated with the operation is added to XXX_delay.
814 * XXX_delay contains the accumulated delay time in nanoseconds.
815 */
816 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
817 u64 blkio_delay; /* wait for sync block io completion */
818 u64 swapin_delay; /* wait for swapin block io completion */
819 u32 blkio_count; /* total count of the number of sync block */
820 /* io operations performed */
821 u32 swapin_count; /* total count of the number of swapin block */
822 /* io operations performed */
823
824 struct timespec freepages_start, freepages_end;
825 u64 freepages_delay; /* wait for memory reclaim */
826 u32 freepages_count; /* total count of memory reclaim */
827 };
828 #endif /* CONFIG_TASK_DELAY_ACCT */
829
830 static inline int sched_info_on(void)
831 {
832 #ifdef CONFIG_SCHEDSTATS
833 return 1;
834 #elif defined(CONFIG_TASK_DELAY_ACCT)
835 extern int delayacct_on;
836 return delayacct_on;
837 #else
838 return 0;
839 #endif
840 }
841
842 enum cpu_idle_type {
843 CPU_IDLE,
844 CPU_NOT_IDLE,
845 CPU_NEWLY_IDLE,
846 CPU_MAX_IDLE_TYPES
847 };
848
849 /*
850 * Increase resolution of cpu_capacity calculations
851 */
852 #define SCHED_CAPACITY_SHIFT 10
853 #define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
854
855 /*
856 * sched-domains (multiprocessor balancing) declarations:
857 */
858 #ifdef CONFIG_SMP
859 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
860 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
861 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
862 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
863 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
864 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
865 #define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu power */
866 #define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */
867 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
868 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
869 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
870 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
871 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
872 #define SD_NUMA 0x4000 /* cross-node balancing */
873
874 #ifdef CONFIG_SCHED_SMT
875 static inline const int cpu_smt_flags(void)
876 {
877 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
878 }
879 #endif
880
881 #ifdef CONFIG_SCHED_MC
882 static inline const int cpu_core_flags(void)
883 {
884 return SD_SHARE_PKG_RESOURCES;
885 }
886 #endif
887
888 #ifdef CONFIG_NUMA
889 static inline const int cpu_numa_flags(void)
890 {
891 return SD_NUMA;
892 }
893 #endif
894
895 struct sched_domain_attr {
896 int relax_domain_level;
897 };
898
899 #define SD_ATTR_INIT (struct sched_domain_attr) { \
900 .relax_domain_level = -1, \
901 }
902
903 extern int sched_domain_level_max;
904
905 struct sched_group;
906
907 struct sched_domain {
908 /* These fields must be setup */
909 struct sched_domain *parent; /* top domain must be null terminated */
910 struct sched_domain *child; /* bottom domain must be null terminated */
911 struct sched_group *groups; /* the balancing groups of the domain */
912 unsigned long min_interval; /* Minimum balance interval ms */
913 unsigned long max_interval; /* Maximum balance interval ms */
914 unsigned int busy_factor; /* less balancing by factor if busy */
915 unsigned int imbalance_pct; /* No balance until over watermark */
916 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
917 unsigned int busy_idx;
918 unsigned int idle_idx;
919 unsigned int newidle_idx;
920 unsigned int wake_idx;
921 unsigned int forkexec_idx;
922 unsigned int smt_gain;
923
924 int nohz_idle; /* NOHZ IDLE status */
925 int flags; /* See SD_* */
926 int level;
927
928 /* Runtime fields. */
929 unsigned long last_balance; /* init to jiffies. units in jiffies */
930 unsigned int balance_interval; /* initialise to 1. units in ms. */
931 unsigned int nr_balance_failed; /* initialise to 0 */
932
933 /* idle_balance() stats */
934 u64 max_newidle_lb_cost;
935 unsigned long next_decay_max_lb_cost;
936
937 #ifdef CONFIG_SCHEDSTATS
938 /* load_balance() stats */
939 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
940 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
941 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
942 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
943 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
944 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
945 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
946 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
947
948 /* Active load balancing */
949 unsigned int alb_count;
950 unsigned int alb_failed;
951 unsigned int alb_pushed;
952
953 /* SD_BALANCE_EXEC stats */
954 unsigned int sbe_count;
955 unsigned int sbe_balanced;
956 unsigned int sbe_pushed;
957
958 /* SD_BALANCE_FORK stats */
959 unsigned int sbf_count;
960 unsigned int sbf_balanced;
961 unsigned int sbf_pushed;
962
963 /* try_to_wake_up() stats */
964 unsigned int ttwu_wake_remote;
965 unsigned int ttwu_move_affine;
966 unsigned int ttwu_move_balance;
967 #endif
968 #ifdef CONFIG_SCHED_DEBUG
969 char *name;
970 #endif
971 union {
972 void *private; /* used during construction */
973 struct rcu_head rcu; /* used during destruction */
974 };
975
976 unsigned int span_weight;
977 /*
978 * Span of all CPUs in this domain.
979 *
980 * NOTE: this field is variable length. (Allocated dynamically
981 * by attaching extra space to the end of the structure,
982 * depending on how many CPUs the kernel has booted up with)
983 */
984 unsigned long span[0];
985 };
986
987 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
988 {
989 return to_cpumask(sd->span);
990 }
991
992 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
993 struct sched_domain_attr *dattr_new);
994
995 /* Allocate an array of sched domains, for partition_sched_domains(). */
996 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
997 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
998
999 bool cpus_share_cache(int this_cpu, int that_cpu);
1000
1001 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
1002 typedef const int (*sched_domain_flags_f)(void);
1003
1004 #define SDTL_OVERLAP 0x01
1005
1006 struct sd_data {
1007 struct sched_domain **__percpu sd;
1008 struct sched_group **__percpu sg;
1009 struct sched_group_capacity **__percpu sgc;
1010 };
1011
1012 struct sched_domain_topology_level {
1013 sched_domain_mask_f mask;
1014 sched_domain_flags_f sd_flags;
1015 int flags;
1016 int numa_level;
1017 struct sd_data data;
1018 #ifdef CONFIG_SCHED_DEBUG
1019 char *name;
1020 #endif
1021 };
1022
1023 extern struct sched_domain_topology_level *sched_domain_topology;
1024
1025 extern void set_sched_topology(struct sched_domain_topology_level *tl);
1026
1027 #ifdef CONFIG_SCHED_DEBUG
1028 # define SD_INIT_NAME(type) .name = #type
1029 #else
1030 # define SD_INIT_NAME(type)
1031 #endif
1032
1033 #else /* CONFIG_SMP */
1034
1035 struct sched_domain_attr;
1036
1037 static inline void
1038 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1039 struct sched_domain_attr *dattr_new)
1040 {
1041 }
1042
1043 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1044 {
1045 return true;
1046 }
1047
1048 #endif /* !CONFIG_SMP */
1049
1050
1051 struct io_context; /* See blkdev.h */
1052
1053
1054 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1055 extern void prefetch_stack(struct task_struct *t);
1056 #else
1057 static inline void prefetch_stack(struct task_struct *t) { }
1058 #endif
1059
1060 struct audit_context; /* See audit.c */
1061 struct mempolicy;
1062 struct pipe_inode_info;
1063 struct uts_namespace;
1064
1065 struct load_weight {
1066 unsigned long weight;
1067 u32 inv_weight;
1068 };
1069
1070 struct sched_avg {
1071 /*
1072 * These sums represent an infinite geometric series and so are bound
1073 * above by 1024/(1-y). Thus we only need a u32 to store them for all
1074 * choices of y < 1-2^(-32)*1024.
1075 */
1076 u32 runnable_avg_sum, runnable_avg_period;
1077 u64 last_runnable_update;
1078 s64 decay_count;
1079 unsigned long load_avg_contrib;
1080 };
1081
1082 #ifdef CONFIG_SCHEDSTATS
1083 struct sched_statistics {
1084 u64 wait_start;
1085 u64 wait_max;
1086 u64 wait_count;
1087 u64 wait_sum;
1088 u64 iowait_count;
1089 u64 iowait_sum;
1090
1091 u64 sleep_start;
1092 u64 sleep_max;
1093 s64 sum_sleep_runtime;
1094
1095 u64 block_start;
1096 u64 block_max;
1097 u64 exec_max;
1098 u64 slice_max;
1099
1100 u64 nr_migrations_cold;
1101 u64 nr_failed_migrations_affine;
1102 u64 nr_failed_migrations_running;
1103 u64 nr_failed_migrations_hot;
1104 u64 nr_forced_migrations;
1105
1106 u64 nr_wakeups;
1107 u64 nr_wakeups_sync;
1108 u64 nr_wakeups_migrate;
1109 u64 nr_wakeups_local;
1110 u64 nr_wakeups_remote;
1111 u64 nr_wakeups_affine;
1112 u64 nr_wakeups_affine_attempts;
1113 u64 nr_wakeups_passive;
1114 u64 nr_wakeups_idle;
1115 };
1116 #endif
1117
1118 struct sched_entity {
1119 struct load_weight load; /* for load-balancing */
1120 struct rb_node run_node;
1121 struct list_head group_node;
1122 unsigned int on_rq;
1123
1124 u64 exec_start;
1125 u64 sum_exec_runtime;
1126 u64 vruntime;
1127 u64 prev_sum_exec_runtime;
1128
1129 u64 nr_migrations;
1130
1131 #ifdef CONFIG_SCHEDSTATS
1132 struct sched_statistics statistics;
1133 #endif
1134
1135 #ifdef CONFIG_FAIR_GROUP_SCHED
1136 int depth;
1137 struct sched_entity *parent;
1138 /* rq on which this entity is (to be) queued: */
1139 struct cfs_rq *cfs_rq;
1140 /* rq "owned" by this entity/group: */
1141 struct cfs_rq *my_q;
1142 #endif
1143
1144 #ifdef CONFIG_SMP
1145 /* Per-entity load-tracking */
1146 struct sched_avg avg;
1147 #endif
1148 };
1149
1150 struct sched_rt_entity {
1151 struct list_head run_list;
1152 unsigned long timeout;
1153 unsigned long watchdog_stamp;
1154 unsigned int time_slice;
1155
1156 struct sched_rt_entity *back;
1157 #ifdef CONFIG_RT_GROUP_SCHED
1158 struct sched_rt_entity *parent;
1159 /* rq on which this entity is (to be) queued: */
1160 struct rt_rq *rt_rq;
1161 /* rq "owned" by this entity/group: */
1162 struct rt_rq *my_q;
1163 #endif
1164 };
1165
1166 struct sched_dl_entity {
1167 struct rb_node rb_node;
1168
1169 /*
1170 * Original scheduling parameters. Copied here from sched_attr
1171 * during sched_setattr(), they will remain the same until
1172 * the next sched_setattr().
1173 */
1174 u64 dl_runtime; /* maximum runtime for each instance */
1175 u64 dl_deadline; /* relative deadline of each instance */
1176 u64 dl_period; /* separation of two instances (period) */
1177 u64 dl_bw; /* dl_runtime / dl_deadline */
1178
1179 /*
1180 * Actual scheduling parameters. Initialized with the values above,
1181 * they are continously updated during task execution. Note that
1182 * the remaining runtime could be < 0 in case we are in overrun.
1183 */
1184 s64 runtime; /* remaining runtime for this instance */
1185 u64 deadline; /* absolute deadline for this instance */
1186 unsigned int flags; /* specifying the scheduler behaviour */
1187
1188 /*
1189 * Some bool flags:
1190 *
1191 * @dl_throttled tells if we exhausted the runtime. If so, the
1192 * task has to wait for a replenishment to be performed at the
1193 * next firing of dl_timer.
1194 *
1195 * @dl_new tells if a new instance arrived. If so we must
1196 * start executing it with full runtime and reset its absolute
1197 * deadline;
1198 *
1199 * @dl_boosted tells if we are boosted due to DI. If so we are
1200 * outside bandwidth enforcement mechanism (but only until we
1201 * exit the critical section);
1202 *
1203 * @dl_yielded tells if task gave up the cpu before consuming
1204 * all its available runtime during the last job.
1205 */
1206 int dl_throttled, dl_new, dl_boosted, dl_yielded;
1207
1208 /*
1209 * Bandwidth enforcement timer. Each -deadline task has its
1210 * own bandwidth to be enforced, thus we need one timer per task.
1211 */
1212 struct hrtimer dl_timer;
1213 };
1214
1215 struct rcu_node;
1216
1217 enum perf_event_task_context {
1218 perf_invalid_context = -1,
1219 perf_hw_context = 0,
1220 perf_sw_context,
1221 perf_nr_task_contexts,
1222 };
1223
1224 struct task_struct {
1225 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1226 void *stack;
1227 atomic_t usage;
1228 unsigned int flags; /* per process flags, defined below */
1229 unsigned int ptrace;
1230
1231 #ifdef CONFIG_SMP
1232 struct llist_node wake_entry;
1233 int on_cpu;
1234 struct task_struct *last_wakee;
1235 unsigned long wakee_flips;
1236 unsigned long wakee_flip_decay_ts;
1237
1238 int wake_cpu;
1239 #endif
1240 int on_rq;
1241
1242 int prio, static_prio, normal_prio;
1243 unsigned int rt_priority;
1244 const struct sched_class *sched_class;
1245 struct sched_entity se;
1246 struct sched_rt_entity rt;
1247 #ifdef CONFIG_CGROUP_SCHED
1248 struct task_group *sched_task_group;
1249 #endif
1250 struct sched_dl_entity dl;
1251
1252 #ifdef CONFIG_PREEMPT_NOTIFIERS
1253 /* list of struct preempt_notifier: */
1254 struct hlist_head preempt_notifiers;
1255 #endif
1256
1257 #ifdef CONFIG_BLK_DEV_IO_TRACE
1258 unsigned int btrace_seq;
1259 #endif
1260
1261 unsigned int policy;
1262 int nr_cpus_allowed;
1263 cpumask_t cpus_allowed;
1264
1265 #ifdef CONFIG_PREEMPT_RCU
1266 int rcu_read_lock_nesting;
1267 char rcu_read_unlock_special;
1268 struct list_head rcu_node_entry;
1269 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1270 #ifdef CONFIG_TREE_PREEMPT_RCU
1271 struct rcu_node *rcu_blocked_node;
1272 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1273 #ifdef CONFIG_RCU_BOOST
1274 struct rt_mutex *rcu_boost_mutex;
1275 #endif /* #ifdef CONFIG_RCU_BOOST */
1276
1277 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1278 struct sched_info sched_info;
1279 #endif
1280
1281 struct list_head tasks;
1282 #ifdef CONFIG_SMP
1283 struct plist_node pushable_tasks;
1284 struct rb_node pushable_dl_tasks;
1285 #endif
1286
1287 struct mm_struct *mm, *active_mm;
1288 #ifdef CONFIG_COMPAT_BRK
1289 unsigned brk_randomized:1;
1290 #endif
1291 /* per-thread vma caching */
1292 u32 vmacache_seqnum;
1293 struct vm_area_struct *vmacache[VMACACHE_SIZE];
1294 #if defined(SPLIT_RSS_COUNTING)
1295 struct task_rss_stat rss_stat;
1296 #endif
1297 /* task state */
1298 int exit_state;
1299 int exit_code, exit_signal;
1300 int pdeath_signal; /* The signal sent when the parent dies */
1301 unsigned int jobctl; /* JOBCTL_*, siglock protected */
1302
1303 /* Used for emulating ABI behavior of previous Linux versions */
1304 unsigned int personality;
1305
1306 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1307 * execve */
1308 unsigned in_iowait:1;
1309
1310 /* task may not gain privileges */
1311 unsigned no_new_privs:1;
1312
1313 /* Revert to default priority/policy when forking */
1314 unsigned sched_reset_on_fork:1;
1315 unsigned sched_contributes_to_load:1;
1316
1317 pid_t pid;
1318 pid_t tgid;
1319
1320 #ifdef CONFIG_CC_STACKPROTECTOR
1321 /* Canary value for the -fstack-protector gcc feature */
1322 unsigned long stack_canary;
1323 #endif
1324 /*
1325 * pointers to (original) parent process, youngest child, younger sibling,
1326 * older sibling, respectively. (p->father can be replaced with
1327 * p->real_parent->pid)
1328 */
1329 struct task_struct __rcu *real_parent; /* real parent process */
1330 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1331 /*
1332 * children/sibling forms the list of my natural children
1333 */
1334 struct list_head children; /* list of my children */
1335 struct list_head sibling; /* linkage in my parent's children list */
1336 struct task_struct *group_leader; /* threadgroup leader */
1337
1338 /*
1339 * ptraced is the list of tasks this task is using ptrace on.
1340 * This includes both natural children and PTRACE_ATTACH targets.
1341 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1342 */
1343 struct list_head ptraced;
1344 struct list_head ptrace_entry;
1345
1346 /* PID/PID hash table linkage. */
1347 struct pid_link pids[PIDTYPE_MAX];
1348 struct list_head thread_group;
1349 struct list_head thread_node;
1350
1351 struct completion *vfork_done; /* for vfork() */
1352 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1353 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1354
1355 cputime_t utime, stime, utimescaled, stimescaled;
1356 cputime_t gtime;
1357 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1358 struct cputime prev_cputime;
1359 #endif
1360 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1361 seqlock_t vtime_seqlock;
1362 unsigned long long vtime_snap;
1363 enum {
1364 VTIME_SLEEPING = 0,
1365 VTIME_USER,
1366 VTIME_SYS,
1367 } vtime_snap_whence;
1368 #endif
1369 unsigned long nvcsw, nivcsw; /* context switch counts */
1370 struct timespec start_time; /* monotonic time */
1371 struct timespec real_start_time; /* boot based time */
1372 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1373 unsigned long min_flt, maj_flt;
1374
1375 struct task_cputime cputime_expires;
1376 struct list_head cpu_timers[3];
1377
1378 /* process credentials */
1379 const struct cred __rcu *real_cred; /* objective and real subjective task
1380 * credentials (COW) */
1381 const struct cred __rcu *cred; /* effective (overridable) subjective task
1382 * credentials (COW) */
1383 char comm[TASK_COMM_LEN]; /* executable name excluding path
1384 - access with [gs]et_task_comm (which lock
1385 it with task_lock())
1386 - initialized normally by setup_new_exec */
1387 /* file system info */
1388 int link_count, total_link_count;
1389 #ifdef CONFIG_SYSVIPC
1390 /* ipc stuff */
1391 struct sysv_sem sysvsem;
1392 #endif
1393 #ifdef CONFIG_DETECT_HUNG_TASK
1394 /* hung task detection */
1395 unsigned long last_switch_count;
1396 #endif
1397 /* CPU-specific state of this task */
1398 struct thread_struct thread;
1399 /* filesystem information */
1400 struct fs_struct *fs;
1401 /* open file information */
1402 struct files_struct *files;
1403 /* namespaces */
1404 struct nsproxy *nsproxy;
1405 /* signal handlers */
1406 struct signal_struct *signal;
1407 struct sighand_struct *sighand;
1408
1409 sigset_t blocked, real_blocked;
1410 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1411 struct sigpending pending;
1412
1413 unsigned long sas_ss_sp;
1414 size_t sas_ss_size;
1415 int (*notifier)(void *priv);
1416 void *notifier_data;
1417 sigset_t *notifier_mask;
1418 struct callback_head *task_works;
1419
1420 struct audit_context *audit_context;
1421 #ifdef CONFIG_AUDITSYSCALL
1422 kuid_t loginuid;
1423 unsigned int sessionid;
1424 #endif
1425 struct seccomp seccomp;
1426
1427 /* Thread group tracking */
1428 u32 parent_exec_id;
1429 u32 self_exec_id;
1430 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1431 * mempolicy */
1432 spinlock_t alloc_lock;
1433
1434 /* Protection of the PI data structures: */
1435 raw_spinlock_t pi_lock;
1436
1437 #ifdef CONFIG_RT_MUTEXES
1438 /* PI waiters blocked on a rt_mutex held by this task */
1439 struct rb_root pi_waiters;
1440 struct rb_node *pi_waiters_leftmost;
1441 /* Deadlock detection and priority inheritance handling */
1442 struct rt_mutex_waiter *pi_blocked_on;
1443 #endif
1444
1445 #ifdef CONFIG_DEBUG_MUTEXES
1446 /* mutex deadlock detection */
1447 struct mutex_waiter *blocked_on;
1448 #endif
1449 #ifdef CONFIG_TRACE_IRQFLAGS
1450 unsigned int irq_events;
1451 unsigned long hardirq_enable_ip;
1452 unsigned long hardirq_disable_ip;
1453 unsigned int hardirq_enable_event;
1454 unsigned int hardirq_disable_event;
1455 int hardirqs_enabled;
1456 int hardirq_context;
1457 unsigned long softirq_disable_ip;
1458 unsigned long softirq_enable_ip;
1459 unsigned int softirq_disable_event;
1460 unsigned int softirq_enable_event;
1461 int softirqs_enabled;
1462 int softirq_context;
1463 #endif
1464 #ifdef CONFIG_LOCKDEP
1465 # define MAX_LOCK_DEPTH 48UL
1466 u64 curr_chain_key;
1467 int lockdep_depth;
1468 unsigned int lockdep_recursion;
1469 struct held_lock held_locks[MAX_LOCK_DEPTH];
1470 gfp_t lockdep_reclaim_gfp;
1471 #endif
1472
1473 /* journalling filesystem info */
1474 void *journal_info;
1475
1476 /* stacked block device info */
1477 struct bio_list *bio_list;
1478
1479 #ifdef CONFIG_BLOCK
1480 /* stack plugging */
1481 struct blk_plug *plug;
1482 #endif
1483
1484 /* VM state */
1485 struct reclaim_state *reclaim_state;
1486
1487 struct backing_dev_info *backing_dev_info;
1488
1489 struct io_context *io_context;
1490
1491 unsigned long ptrace_message;
1492 siginfo_t *last_siginfo; /* For ptrace use. */
1493 struct task_io_accounting ioac;
1494 #if defined(CONFIG_TASK_XACCT)
1495 u64 acct_rss_mem1; /* accumulated rss usage */
1496 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1497 cputime_t acct_timexpd; /* stime + utime since last update */
1498 #endif
1499 #ifdef CONFIG_CPUSETS
1500 nodemask_t mems_allowed; /* Protected by alloc_lock */
1501 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
1502 int cpuset_mem_spread_rotor;
1503 int cpuset_slab_spread_rotor;
1504 #endif
1505 #ifdef CONFIG_CGROUPS
1506 /* Control Group info protected by css_set_lock */
1507 struct css_set __rcu *cgroups;
1508 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1509 struct list_head cg_list;
1510 #endif
1511 #ifdef CONFIG_FUTEX
1512 struct robust_list_head __user *robust_list;
1513 #ifdef CONFIG_COMPAT
1514 struct compat_robust_list_head __user *compat_robust_list;
1515 #endif
1516 struct list_head pi_state_list;
1517 struct futex_pi_state *pi_state_cache;
1518 #endif
1519 #ifdef CONFIG_PERF_EVENTS
1520 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1521 struct mutex perf_event_mutex;
1522 struct list_head perf_event_list;
1523 #endif
1524 #ifdef CONFIG_DEBUG_PREEMPT
1525 unsigned long preempt_disable_ip;
1526 #endif
1527 #ifdef CONFIG_NUMA
1528 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1529 short il_next;
1530 short pref_node_fork;
1531 #endif
1532 #ifdef CONFIG_NUMA_BALANCING
1533 int numa_scan_seq;
1534 unsigned int numa_scan_period;
1535 unsigned int numa_scan_period_max;
1536 int numa_preferred_nid;
1537 unsigned long numa_migrate_retry;
1538 u64 node_stamp; /* migration stamp */
1539 u64 last_task_numa_placement;
1540 u64 last_sum_exec_runtime;
1541 struct callback_head numa_work;
1542
1543 struct list_head numa_entry;
1544 struct numa_group *numa_group;
1545
1546 /*
1547 * Exponential decaying average of faults on a per-node basis.
1548 * Scheduling placement decisions are made based on the these counts.
1549 * The values remain static for the duration of a PTE scan
1550 */
1551 unsigned long *numa_faults_memory;
1552 unsigned long total_numa_faults;
1553
1554 /*
1555 * numa_faults_buffer records faults per node during the current
1556 * scan window. When the scan completes, the counts in
1557 * numa_faults_memory decay and these values are copied.
1558 */
1559 unsigned long *numa_faults_buffer_memory;
1560
1561 /*
1562 * Track the nodes the process was running on when a NUMA hinting
1563 * fault was incurred.
1564 */
1565 unsigned long *numa_faults_cpu;
1566 unsigned long *numa_faults_buffer_cpu;
1567
1568 /*
1569 * numa_faults_locality tracks if faults recorded during the last
1570 * scan window were remote/local. The task scan period is adapted
1571 * based on the locality of the faults with different weights
1572 * depending on whether they were shared or private faults
1573 */
1574 unsigned long numa_faults_locality[2];
1575
1576 unsigned long numa_pages_migrated;
1577 #endif /* CONFIG_NUMA_BALANCING */
1578
1579 struct rcu_head rcu;
1580
1581 /*
1582 * cache last used pipe for splice
1583 */
1584 struct pipe_inode_info *splice_pipe;
1585
1586 struct page_frag task_frag;
1587
1588 #ifdef CONFIG_TASK_DELAY_ACCT
1589 struct task_delay_info *delays;
1590 #endif
1591 #ifdef CONFIG_FAULT_INJECTION
1592 int make_it_fail;
1593 #endif
1594 /*
1595 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1596 * balance_dirty_pages() for some dirty throttling pause
1597 */
1598 int nr_dirtied;
1599 int nr_dirtied_pause;
1600 unsigned long dirty_paused_when; /* start of a write-and-pause period */
1601
1602 #ifdef CONFIG_LATENCYTOP
1603 int latency_record_count;
1604 struct latency_record latency_record[LT_SAVECOUNT];
1605 #endif
1606 /*
1607 * time slack values; these are used to round up poll() and
1608 * select() etc timeout values. These are in nanoseconds.
1609 */
1610 unsigned long timer_slack_ns;
1611 unsigned long default_timer_slack_ns;
1612
1613 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1614 /* Index of current stored address in ret_stack */
1615 int curr_ret_stack;
1616 /* Stack of return addresses for return function tracing */
1617 struct ftrace_ret_stack *ret_stack;
1618 /* time stamp for last schedule */
1619 unsigned long long ftrace_timestamp;
1620 /*
1621 * Number of functions that haven't been traced
1622 * because of depth overrun.
1623 */
1624 atomic_t trace_overrun;
1625 /* Pause for the tracing */
1626 atomic_t tracing_graph_pause;
1627 #endif
1628 #ifdef CONFIG_TRACING
1629 /* state flags for use by tracers */
1630 unsigned long trace;
1631 /* bitmask and counter of trace recursion */
1632 unsigned long trace_recursion;
1633 #endif /* CONFIG_TRACING */
1634 #ifdef CONFIG_MEMCG /* memcg uses this to do batch job */
1635 struct memcg_batch_info {
1636 int do_batch; /* incremented when batch uncharge started */
1637 struct mem_cgroup *memcg; /* target memcg of uncharge */
1638 unsigned long nr_pages; /* uncharged usage */
1639 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1640 } memcg_batch;
1641 unsigned int memcg_kmem_skip_account;
1642 struct memcg_oom_info {
1643 struct mem_cgroup *memcg;
1644 gfp_t gfp_mask;
1645 int order;
1646 unsigned int may_oom:1;
1647 } memcg_oom;
1648 #endif
1649 #ifdef CONFIG_UPROBES
1650 struct uprobe_task *utask;
1651 #endif
1652 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1653 unsigned int sequential_io;
1654 unsigned int sequential_io_avg;
1655 #endif
1656 };
1657
1658 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1659 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1660
1661 #define TNF_MIGRATED 0x01
1662 #define TNF_NO_GROUP 0x02
1663 #define TNF_SHARED 0x04
1664 #define TNF_FAULT_LOCAL 0x08
1665
1666 #ifdef CONFIG_NUMA_BALANCING
1667 extern void task_numa_fault(int last_node, int node, int pages, int flags);
1668 extern pid_t task_numa_group_id(struct task_struct *p);
1669 extern void set_numabalancing_state(bool enabled);
1670 extern void task_numa_free(struct task_struct *p);
1671 extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
1672 int src_nid, int dst_cpu);
1673 #else
1674 static inline void task_numa_fault(int last_node, int node, int pages,
1675 int flags)
1676 {
1677 }
1678 static inline pid_t task_numa_group_id(struct task_struct *p)
1679 {
1680 return 0;
1681 }
1682 static inline void set_numabalancing_state(bool enabled)
1683 {
1684 }
1685 static inline void task_numa_free(struct task_struct *p)
1686 {
1687 }
1688 static inline bool should_numa_migrate_memory(struct task_struct *p,
1689 struct page *page, int src_nid, int dst_cpu)
1690 {
1691 return true;
1692 }
1693 #endif
1694
1695 static inline struct pid *task_pid(struct task_struct *task)
1696 {
1697 return task->pids[PIDTYPE_PID].pid;
1698 }
1699
1700 static inline struct pid *task_tgid(struct task_struct *task)
1701 {
1702 return task->group_leader->pids[PIDTYPE_PID].pid;
1703 }
1704
1705 /*
1706 * Without tasklist or rcu lock it is not safe to dereference
1707 * the result of task_pgrp/task_session even if task == current,
1708 * we can race with another thread doing sys_setsid/sys_setpgid.
1709 */
1710 static inline struct pid *task_pgrp(struct task_struct *task)
1711 {
1712 return task->group_leader->pids[PIDTYPE_PGID].pid;
1713 }
1714
1715 static inline struct pid *task_session(struct task_struct *task)
1716 {
1717 return task->group_leader->pids[PIDTYPE_SID].pid;
1718 }
1719
1720 struct pid_namespace;
1721
1722 /*
1723 * the helpers to get the task's different pids as they are seen
1724 * from various namespaces
1725 *
1726 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1727 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1728 * current.
1729 * task_xid_nr_ns() : id seen from the ns specified;
1730 *
1731 * set_task_vxid() : assigns a virtual id to a task;
1732 *
1733 * see also pid_nr() etc in include/linux/pid.h
1734 */
1735 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1736 struct pid_namespace *ns);
1737
1738 static inline pid_t task_pid_nr(struct task_struct *tsk)
1739 {
1740 return tsk->pid;
1741 }
1742
1743 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1744 struct pid_namespace *ns)
1745 {
1746 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1747 }
1748
1749 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1750 {
1751 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1752 }
1753
1754
1755 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1756 {
1757 return tsk->tgid;
1758 }
1759
1760 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1761
1762 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1763 {
1764 return pid_vnr(task_tgid(tsk));
1765 }
1766
1767
1768 static inline int pid_alive(const struct task_struct *p);
1769 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1770 {
1771 pid_t pid = 0;
1772
1773 rcu_read_lock();
1774 if (pid_alive(tsk))
1775 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1776 rcu_read_unlock();
1777
1778 return pid;
1779 }
1780
1781 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1782 {
1783 return task_ppid_nr_ns(tsk, &init_pid_ns);
1784 }
1785
1786 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1787 struct pid_namespace *ns)
1788 {
1789 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1790 }
1791
1792 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1793 {
1794 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1795 }
1796
1797
1798 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1799 struct pid_namespace *ns)
1800 {
1801 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1802 }
1803
1804 static inline pid_t task_session_vnr(struct task_struct *tsk)
1805 {
1806 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1807 }
1808
1809 /* obsolete, do not use */
1810 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1811 {
1812 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1813 }
1814
1815 /**
1816 * pid_alive - check that a task structure is not stale
1817 * @p: Task structure to be checked.
1818 *
1819 * Test if a process is not yet dead (at most zombie state)
1820 * If pid_alive fails, then pointers within the task structure
1821 * can be stale and must not be dereferenced.
1822 *
1823 * Return: 1 if the process is alive. 0 otherwise.
1824 */
1825 static inline int pid_alive(const struct task_struct *p)
1826 {
1827 return p->pids[PIDTYPE_PID].pid != NULL;
1828 }
1829
1830 /**
1831 * is_global_init - check if a task structure is init
1832 * @tsk: Task structure to be checked.
1833 *
1834 * Check if a task structure is the first user space task the kernel created.
1835 *
1836 * Return: 1 if the task structure is init. 0 otherwise.
1837 */
1838 static inline int is_global_init(struct task_struct *tsk)
1839 {
1840 return tsk->pid == 1;
1841 }
1842
1843 extern struct pid *cad_pid;
1844
1845 extern void free_task(struct task_struct *tsk);
1846 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1847
1848 extern void __put_task_struct(struct task_struct *t);
1849
1850 static inline void put_task_struct(struct task_struct *t)
1851 {
1852 if (atomic_dec_and_test(&t->usage))
1853 __put_task_struct(t);
1854 }
1855
1856 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1857 extern void task_cputime(struct task_struct *t,
1858 cputime_t *utime, cputime_t *stime);
1859 extern void task_cputime_scaled(struct task_struct *t,
1860 cputime_t *utimescaled, cputime_t *stimescaled);
1861 extern cputime_t task_gtime(struct task_struct *t);
1862 #else
1863 static inline void task_cputime(struct task_struct *t,
1864 cputime_t *utime, cputime_t *stime)
1865 {
1866 if (utime)
1867 *utime = t->utime;
1868 if (stime)
1869 *stime = t->stime;
1870 }
1871
1872 static inline void task_cputime_scaled(struct task_struct *t,
1873 cputime_t *utimescaled,
1874 cputime_t *stimescaled)
1875 {
1876 if (utimescaled)
1877 *utimescaled = t->utimescaled;
1878 if (stimescaled)
1879 *stimescaled = t->stimescaled;
1880 }
1881
1882 static inline cputime_t task_gtime(struct task_struct *t)
1883 {
1884 return t->gtime;
1885 }
1886 #endif
1887 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1888 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1889
1890 /*
1891 * Per process flags
1892 */
1893 #define PF_EXITING 0x00000004 /* getting shut down */
1894 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1895 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1896 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1897 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1898 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1899 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1900 #define PF_DUMPCORE 0x00000200 /* dumped core */
1901 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1902 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1903 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1904 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1905 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1906 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1907 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1908 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1909 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1910 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1911 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1912 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1913 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1914 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1915 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1916 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1917 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
1918 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1919 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1920 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1921 #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
1922
1923 /*
1924 * Only the _current_ task can read/write to tsk->flags, but other
1925 * tasks can access tsk->flags in readonly mode for example
1926 * with tsk_used_math (like during threaded core dumping).
1927 * There is however an exception to this rule during ptrace
1928 * or during fork: the ptracer task is allowed to write to the
1929 * child->flags of its traced child (same goes for fork, the parent
1930 * can write to the child->flags), because we're guaranteed the
1931 * child is not running and in turn not changing child->flags
1932 * at the same time the parent does it.
1933 */
1934 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1935 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1936 #define clear_used_math() clear_stopped_child_used_math(current)
1937 #define set_used_math() set_stopped_child_used_math(current)
1938 #define conditional_stopped_child_used_math(condition, child) \
1939 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1940 #define conditional_used_math(condition) \
1941 conditional_stopped_child_used_math(condition, current)
1942 #define copy_to_stopped_child_used_math(child) \
1943 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1944 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1945 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1946 #define used_math() tsk_used_math(current)
1947
1948 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags */
1949 static inline gfp_t memalloc_noio_flags(gfp_t flags)
1950 {
1951 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
1952 flags &= ~__GFP_IO;
1953 return flags;
1954 }
1955
1956 static inline unsigned int memalloc_noio_save(void)
1957 {
1958 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
1959 current->flags |= PF_MEMALLOC_NOIO;
1960 return flags;
1961 }
1962
1963 static inline void memalloc_noio_restore(unsigned int flags)
1964 {
1965 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
1966 }
1967
1968 /*
1969 * task->jobctl flags
1970 */
1971 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
1972
1973 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
1974 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
1975 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
1976 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
1977 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
1978 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
1979 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
1980
1981 #define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT)
1982 #define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT)
1983 #define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT)
1984 #define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT)
1985 #define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT)
1986 #define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT)
1987 #define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT)
1988
1989 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1990 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1991
1992 extern bool task_set_jobctl_pending(struct task_struct *task,
1993 unsigned int mask);
1994 extern void task_clear_jobctl_trapping(struct task_struct *task);
1995 extern void task_clear_jobctl_pending(struct task_struct *task,
1996 unsigned int mask);
1997
1998 #ifdef CONFIG_PREEMPT_RCU
1999
2000 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
2001 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
2002
2003 static inline void rcu_copy_process(struct task_struct *p)
2004 {
2005 p->rcu_read_lock_nesting = 0;
2006 p->rcu_read_unlock_special = 0;
2007 #ifdef CONFIG_TREE_PREEMPT_RCU
2008 p->rcu_blocked_node = NULL;
2009 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
2010 #ifdef CONFIG_RCU_BOOST
2011 p->rcu_boost_mutex = NULL;
2012 #endif /* #ifdef CONFIG_RCU_BOOST */
2013 INIT_LIST_HEAD(&p->rcu_node_entry);
2014 }
2015
2016 #else
2017
2018 static inline void rcu_copy_process(struct task_struct *p)
2019 {
2020 }
2021
2022 #endif
2023
2024 static inline void tsk_restore_flags(struct task_struct *task,
2025 unsigned long orig_flags, unsigned long flags)
2026 {
2027 task->flags &= ~flags;
2028 task->flags |= orig_flags & flags;
2029 }
2030
2031 #ifdef CONFIG_SMP
2032 extern void do_set_cpus_allowed(struct task_struct *p,
2033 const struct cpumask *new_mask);
2034
2035 extern int set_cpus_allowed_ptr(struct task_struct *p,
2036 const struct cpumask *new_mask);
2037 #else
2038 static inline void do_set_cpus_allowed(struct task_struct *p,
2039 const struct cpumask *new_mask)
2040 {
2041 }
2042 static inline int set_cpus_allowed_ptr(struct task_struct *p,
2043 const struct cpumask *new_mask)
2044 {
2045 if (!cpumask_test_cpu(0, new_mask))
2046 return -EINVAL;
2047 return 0;
2048 }
2049 #endif
2050
2051 #ifdef CONFIG_NO_HZ_COMMON
2052 void calc_load_enter_idle(void);
2053 void calc_load_exit_idle(void);
2054 #else
2055 static inline void calc_load_enter_idle(void) { }
2056 static inline void calc_load_exit_idle(void) { }
2057 #endif /* CONFIG_NO_HZ_COMMON */
2058
2059 #ifndef CONFIG_CPUMASK_OFFSTACK
2060 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
2061 {
2062 return set_cpus_allowed_ptr(p, &new_mask);
2063 }
2064 #endif
2065
2066 /*
2067 * Do not use outside of architecture code which knows its limitations.
2068 *
2069 * sched_clock() has no promise of monotonicity or bounded drift between
2070 * CPUs, use (which you should not) requires disabling IRQs.
2071 *
2072 * Please use one of the three interfaces below.
2073 */
2074 extern unsigned long long notrace sched_clock(void);
2075 /*
2076 * See the comment in kernel/sched/clock.c
2077 */
2078 extern u64 cpu_clock(int cpu);
2079 extern u64 local_clock(void);
2080 extern u64 sched_clock_cpu(int cpu);
2081
2082
2083 extern void sched_clock_init(void);
2084
2085 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2086 static inline void sched_clock_tick(void)
2087 {
2088 }
2089
2090 static inline void sched_clock_idle_sleep_event(void)
2091 {
2092 }
2093
2094 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2095 {
2096 }
2097 #else
2098 /*
2099 * Architectures can set this to 1 if they have specified
2100 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2101 * but then during bootup it turns out that sched_clock()
2102 * is reliable after all:
2103 */
2104 extern int sched_clock_stable(void);
2105 extern void set_sched_clock_stable(void);
2106 extern void clear_sched_clock_stable(void);
2107
2108 extern void sched_clock_tick(void);
2109 extern void sched_clock_idle_sleep_event(void);
2110 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2111 #endif
2112
2113 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2114 /*
2115 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2116 * The reason for this explicit opt-in is not to have perf penalty with
2117 * slow sched_clocks.
2118 */
2119 extern void enable_sched_clock_irqtime(void);
2120 extern void disable_sched_clock_irqtime(void);
2121 #else
2122 static inline void enable_sched_clock_irqtime(void) {}
2123 static inline void disable_sched_clock_irqtime(void) {}
2124 #endif
2125
2126 extern unsigned long long
2127 task_sched_runtime(struct task_struct *task);
2128
2129 /* sched_exec is called by processes performing an exec */
2130 #ifdef CONFIG_SMP
2131 extern void sched_exec(void);
2132 #else
2133 #define sched_exec() {}
2134 #endif
2135
2136 extern void sched_clock_idle_sleep_event(void);
2137 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2138
2139 #ifdef CONFIG_HOTPLUG_CPU
2140 extern void idle_task_exit(void);
2141 #else
2142 static inline void idle_task_exit(void) {}
2143 #endif
2144
2145 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
2146 extern void wake_up_nohz_cpu(int cpu);
2147 #else
2148 static inline void wake_up_nohz_cpu(int cpu) { }
2149 #endif
2150
2151 #ifdef CONFIG_NO_HZ_FULL
2152 extern bool sched_can_stop_tick(void);
2153 extern u64 scheduler_tick_max_deferment(void);
2154 #else
2155 static inline bool sched_can_stop_tick(void) { return false; }
2156 #endif
2157
2158 #ifdef CONFIG_SCHED_AUTOGROUP
2159 extern void sched_autogroup_create_attach(struct task_struct *p);
2160 extern void sched_autogroup_detach(struct task_struct *p);
2161 extern void sched_autogroup_fork(struct signal_struct *sig);
2162 extern void sched_autogroup_exit(struct signal_struct *sig);
2163 #ifdef CONFIG_PROC_FS
2164 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2165 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2166 #endif
2167 #else
2168 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2169 static inline void sched_autogroup_detach(struct task_struct *p) { }
2170 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2171 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2172 #endif
2173
2174 extern int yield_to(struct task_struct *p, bool preempt);
2175 extern void set_user_nice(struct task_struct *p, long nice);
2176 extern int task_prio(const struct task_struct *p);
2177 /**
2178 * task_nice - return the nice value of a given task.
2179 * @p: the task in question.
2180 *
2181 * Return: The nice value [ -20 ... 0 ... 19 ].
2182 */
2183 static inline int task_nice(const struct task_struct *p)
2184 {
2185 return PRIO_TO_NICE((p)->static_prio);
2186 }
2187 extern int can_nice(const struct task_struct *p, const int nice);
2188 extern int task_curr(const struct task_struct *p);
2189 extern int idle_cpu(int cpu);
2190 extern int sched_setscheduler(struct task_struct *, int,
2191 const struct sched_param *);
2192 extern int sched_setscheduler_nocheck(struct task_struct *, int,
2193 const struct sched_param *);
2194 extern int sched_setattr(struct task_struct *,
2195 const struct sched_attr *);
2196 extern struct task_struct *idle_task(int cpu);
2197 /**
2198 * is_idle_task - is the specified task an idle task?
2199 * @p: the task in question.
2200 *
2201 * Return: 1 if @p is an idle task. 0 otherwise.
2202 */
2203 static inline bool is_idle_task(const struct task_struct *p)
2204 {
2205 return p->pid == 0;
2206 }
2207 extern struct task_struct *curr_task(int cpu);
2208 extern void set_curr_task(int cpu, struct task_struct *p);
2209
2210 void yield(void);
2211
2212 /*
2213 * The default (Linux) execution domain.
2214 */
2215 extern struct exec_domain default_exec_domain;
2216
2217 union thread_union {
2218 struct thread_info thread_info;
2219 unsigned long stack[THREAD_SIZE/sizeof(long)];
2220 };
2221
2222 #ifndef __HAVE_ARCH_KSTACK_END
2223 static inline int kstack_end(void *addr)
2224 {
2225 /* Reliable end of stack detection:
2226 * Some APM bios versions misalign the stack
2227 */
2228 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2229 }
2230 #endif
2231
2232 extern union thread_union init_thread_union;
2233 extern struct task_struct init_task;
2234
2235 extern struct mm_struct init_mm;
2236
2237 extern struct pid_namespace init_pid_ns;
2238
2239 /*
2240 * find a task by one of its numerical ids
2241 *
2242 * find_task_by_pid_ns():
2243 * finds a task by its pid in the specified namespace
2244 * find_task_by_vpid():
2245 * finds a task by its virtual pid
2246 *
2247 * see also find_vpid() etc in include/linux/pid.h
2248 */
2249
2250 extern struct task_struct *find_task_by_vpid(pid_t nr);
2251 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2252 struct pid_namespace *ns);
2253
2254 /* per-UID process charging. */
2255 extern struct user_struct * alloc_uid(kuid_t);
2256 static inline struct user_struct *get_uid(struct user_struct *u)
2257 {
2258 atomic_inc(&u->__count);
2259 return u;
2260 }
2261 extern void free_uid(struct user_struct *);
2262
2263 #include <asm/current.h>
2264
2265 extern void xtime_update(unsigned long ticks);
2266
2267 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2268 extern int wake_up_process(struct task_struct *tsk);
2269 extern void wake_up_new_task(struct task_struct *tsk);
2270 #ifdef CONFIG_SMP
2271 extern void kick_process(struct task_struct *tsk);
2272 #else
2273 static inline void kick_process(struct task_struct *tsk) { }
2274 #endif
2275 extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
2276 extern void sched_dead(struct task_struct *p);
2277
2278 extern void proc_caches_init(void);
2279 extern void flush_signals(struct task_struct *);
2280 extern void __flush_signals(struct task_struct *);
2281 extern void ignore_signals(struct task_struct *);
2282 extern void flush_signal_handlers(struct task_struct *, int force_default);
2283 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2284
2285 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2286 {
2287 unsigned long flags;
2288 int ret;
2289
2290 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2291 ret = dequeue_signal(tsk, mask, info);
2292 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2293
2294 return ret;
2295 }
2296
2297 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2298 sigset_t *mask);
2299 extern void unblock_all_signals(void);
2300 extern void release_task(struct task_struct * p);
2301 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2302 extern int force_sigsegv(int, struct task_struct *);
2303 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2304 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2305 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2306 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2307 const struct cred *, u32);
2308 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2309 extern int kill_pid(struct pid *pid, int sig, int priv);
2310 extern int kill_proc_info(int, struct siginfo *, pid_t);
2311 extern __must_check bool do_notify_parent(struct task_struct *, int);
2312 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2313 extern void force_sig(int, struct task_struct *);
2314 extern int send_sig(int, struct task_struct *, int);
2315 extern int zap_other_threads(struct task_struct *p);
2316 extern struct sigqueue *sigqueue_alloc(void);
2317 extern void sigqueue_free(struct sigqueue *);
2318 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2319 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2320
2321 static inline void restore_saved_sigmask(void)
2322 {
2323 if (test_and_clear_restore_sigmask())
2324 __set_current_blocked(&current->saved_sigmask);
2325 }
2326
2327 static inline sigset_t *sigmask_to_save(void)
2328 {
2329 sigset_t *res = &current->blocked;
2330 if (unlikely(test_restore_sigmask()))
2331 res = &current->saved_sigmask;
2332 return res;
2333 }
2334
2335 static inline int kill_cad_pid(int sig, int priv)
2336 {
2337 return kill_pid(cad_pid, sig, priv);
2338 }
2339
2340 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2341 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2342 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2343 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2344
2345 /*
2346 * True if we are on the alternate signal stack.
2347 */
2348 static inline int on_sig_stack(unsigned long sp)
2349 {
2350 #ifdef CONFIG_STACK_GROWSUP
2351 return sp >= current->sas_ss_sp &&
2352 sp - current->sas_ss_sp < current->sas_ss_size;
2353 #else
2354 return sp > current->sas_ss_sp &&
2355 sp - current->sas_ss_sp <= current->sas_ss_size;
2356 #endif
2357 }
2358
2359 static inline int sas_ss_flags(unsigned long sp)
2360 {
2361 return (current->sas_ss_size == 0 ? SS_DISABLE
2362 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2363 }
2364
2365 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2366 {
2367 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2368 #ifdef CONFIG_STACK_GROWSUP
2369 return current->sas_ss_sp;
2370 #else
2371 return current->sas_ss_sp + current->sas_ss_size;
2372 #endif
2373 return sp;
2374 }
2375
2376 /*
2377 * Routines for handling mm_structs
2378 */
2379 extern struct mm_struct * mm_alloc(void);
2380
2381 /* mmdrop drops the mm and the page tables */
2382 extern void __mmdrop(struct mm_struct *);
2383 static inline void mmdrop(struct mm_struct * mm)
2384 {
2385 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2386 __mmdrop(mm);
2387 }
2388
2389 /* mmput gets rid of the mappings and all user-space */
2390 extern void mmput(struct mm_struct *);
2391 /* Grab a reference to a task's mm, if it is not already going away */
2392 extern struct mm_struct *get_task_mm(struct task_struct *task);
2393 /*
2394 * Grab a reference to a task's mm, if it is not already going away
2395 * and ptrace_may_access with the mode parameter passed to it
2396 * succeeds.
2397 */
2398 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2399 /* Remove the current tasks stale references to the old mm_struct */
2400 extern void mm_release(struct task_struct *, struct mm_struct *);
2401
2402 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2403 struct task_struct *);
2404 extern void flush_thread(void);
2405 extern void exit_thread(void);
2406
2407 extern void exit_files(struct task_struct *);
2408 extern void __cleanup_sighand(struct sighand_struct *);
2409
2410 extern void exit_itimers(struct signal_struct *);
2411 extern void flush_itimer_signals(void);
2412
2413 extern void do_group_exit(int);
2414
2415 extern int do_execve(struct filename *,
2416 const char __user * const __user *,
2417 const char __user * const __user *);
2418 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2419 struct task_struct *fork_idle(int);
2420 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2421
2422 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2423 static inline void set_task_comm(struct task_struct *tsk, const char *from)
2424 {
2425 __set_task_comm(tsk, from, false);
2426 }
2427 extern char *get_task_comm(char *to, struct task_struct *tsk);
2428
2429 #ifdef CONFIG_SMP
2430 void scheduler_ipi(void);
2431 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2432 #else
2433 static inline void scheduler_ipi(void) { }
2434 static inline unsigned long wait_task_inactive(struct task_struct *p,
2435 long match_state)
2436 {
2437 return 1;
2438 }
2439 #endif
2440
2441 #define next_task(p) \
2442 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2443
2444 #define for_each_process(p) \
2445 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2446
2447 extern bool current_is_single_threaded(void);
2448
2449 /*
2450 * Careful: do_each_thread/while_each_thread is a double loop so
2451 * 'break' will not work as expected - use goto instead.
2452 */
2453 #define do_each_thread(g, t) \
2454 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2455
2456 #define while_each_thread(g, t) \
2457 while ((t = next_thread(t)) != g)
2458
2459 #define __for_each_thread(signal, t) \
2460 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2461
2462 #define for_each_thread(p, t) \
2463 __for_each_thread((p)->signal, t)
2464
2465 /* Careful: this is a double loop, 'break' won't work as expected. */
2466 #define for_each_process_thread(p, t) \
2467 for_each_process(p) for_each_thread(p, t)
2468
2469 static inline int get_nr_threads(struct task_struct *tsk)
2470 {
2471 return tsk->signal->nr_threads;
2472 }
2473
2474 static inline bool thread_group_leader(struct task_struct *p)
2475 {
2476 return p->exit_signal >= 0;
2477 }
2478
2479 /* Do to the insanities of de_thread it is possible for a process
2480 * to have the pid of the thread group leader without actually being
2481 * the thread group leader. For iteration through the pids in proc
2482 * all we care about is that we have a task with the appropriate
2483 * pid, we don't actually care if we have the right task.
2484 */
2485 static inline bool has_group_leader_pid(struct task_struct *p)
2486 {
2487 return task_pid(p) == p->signal->leader_pid;
2488 }
2489
2490 static inline
2491 bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
2492 {
2493 return p1->signal == p2->signal;
2494 }
2495
2496 static inline struct task_struct *next_thread(const struct task_struct *p)
2497 {
2498 return list_entry_rcu(p->thread_group.next,
2499 struct task_struct, thread_group);
2500 }
2501
2502 static inline int thread_group_empty(struct task_struct *p)
2503 {
2504 return list_empty(&p->thread_group);
2505 }
2506
2507 #define delay_group_leader(p) \
2508 (thread_group_leader(p) && !thread_group_empty(p))
2509
2510 /*
2511 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2512 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2513 * pins the final release of task.io_context. Also protects ->cpuset and
2514 * ->cgroup.subsys[]. And ->vfork_done.
2515 *
2516 * Nests both inside and outside of read_lock(&tasklist_lock).
2517 * It must not be nested with write_lock_irq(&tasklist_lock),
2518 * neither inside nor outside.
2519 */
2520 static inline void task_lock(struct task_struct *p)
2521 {
2522 spin_lock(&p->alloc_lock);
2523 }
2524
2525 static inline void task_unlock(struct task_struct *p)
2526 {
2527 spin_unlock(&p->alloc_lock);
2528 }
2529
2530 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2531 unsigned long *flags);
2532
2533 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2534 unsigned long *flags)
2535 {
2536 struct sighand_struct *ret;
2537
2538 ret = __lock_task_sighand(tsk, flags);
2539 (void)__cond_lock(&tsk->sighand->siglock, ret);
2540 return ret;
2541 }
2542
2543 static inline void unlock_task_sighand(struct task_struct *tsk,
2544 unsigned long *flags)
2545 {
2546 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2547 }
2548
2549 #ifdef CONFIG_CGROUPS
2550 static inline void threadgroup_change_begin(struct task_struct *tsk)
2551 {
2552 down_read(&tsk->signal->group_rwsem);
2553 }
2554 static inline void threadgroup_change_end(struct task_struct *tsk)
2555 {
2556 up_read(&tsk->signal->group_rwsem);
2557 }
2558
2559 /**
2560 * threadgroup_lock - lock threadgroup
2561 * @tsk: member task of the threadgroup to lock
2562 *
2563 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter
2564 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2565 * change ->group_leader/pid. This is useful for cases where the threadgroup
2566 * needs to stay stable across blockable operations.
2567 *
2568 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2569 * synchronization. While held, no new task will be added to threadgroup
2570 * and no existing live task will have its PF_EXITING set.
2571 *
2572 * de_thread() does threadgroup_change_{begin|end}() when a non-leader
2573 * sub-thread becomes a new leader.
2574 */
2575 static inline void threadgroup_lock(struct task_struct *tsk)
2576 {
2577 down_write(&tsk->signal->group_rwsem);
2578 }
2579
2580 /**
2581 * threadgroup_unlock - unlock threadgroup
2582 * @tsk: member task of the threadgroup to unlock
2583 *
2584 * Reverse threadgroup_lock().
2585 */
2586 static inline void threadgroup_unlock(struct task_struct *tsk)
2587 {
2588 up_write(&tsk->signal->group_rwsem);
2589 }
2590 #else
2591 static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2592 static inline void threadgroup_change_end(struct task_struct *tsk) {}
2593 static inline void threadgroup_lock(struct task_struct *tsk) {}
2594 static inline void threadgroup_unlock(struct task_struct *tsk) {}
2595 #endif
2596
2597 #ifndef __HAVE_THREAD_FUNCTIONS
2598
2599 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2600 #define task_stack_page(task) ((task)->stack)
2601
2602 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2603 {
2604 *task_thread_info(p) = *task_thread_info(org);
2605 task_thread_info(p)->task = p;
2606 }
2607
2608 static inline unsigned long *end_of_stack(struct task_struct *p)
2609 {
2610 return (unsigned long *)(task_thread_info(p) + 1);
2611 }
2612
2613 #endif
2614
2615 static inline int object_is_on_stack(void *obj)
2616 {
2617 void *stack = task_stack_page(current);
2618
2619 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2620 }
2621
2622 extern void thread_info_cache_init(void);
2623
2624 #ifdef CONFIG_DEBUG_STACK_USAGE
2625 static inline unsigned long stack_not_used(struct task_struct *p)
2626 {
2627 unsigned long *n = end_of_stack(p);
2628
2629 do { /* Skip over canary */
2630 n++;
2631 } while (!*n);
2632
2633 return (unsigned long)n - (unsigned long)end_of_stack(p);
2634 }
2635 #endif
2636
2637 /* set thread flags in other task's structures
2638 * - see asm/thread_info.h for TIF_xxxx flags available
2639 */
2640 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2641 {
2642 set_ti_thread_flag(task_thread_info(tsk), flag);
2643 }
2644
2645 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2646 {
2647 clear_ti_thread_flag(task_thread_info(tsk), flag);
2648 }
2649
2650 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2651 {
2652 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2653 }
2654
2655 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2656 {
2657 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2658 }
2659
2660 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2661 {
2662 return test_ti_thread_flag(task_thread_info(tsk), flag);
2663 }
2664
2665 static inline void set_tsk_need_resched(struct task_struct *tsk)
2666 {
2667 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2668 }
2669
2670 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2671 {
2672 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2673 }
2674
2675 static inline int test_tsk_need_resched(struct task_struct *tsk)
2676 {
2677 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2678 }
2679
2680 static inline int restart_syscall(void)
2681 {
2682 set_tsk_thread_flag(current, TIF_SIGPENDING);
2683 return -ERESTARTNOINTR;
2684 }
2685
2686 static inline int signal_pending(struct task_struct *p)
2687 {
2688 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2689 }
2690
2691 static inline int __fatal_signal_pending(struct task_struct *p)
2692 {
2693 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2694 }
2695
2696 static inline int fatal_signal_pending(struct task_struct *p)
2697 {
2698 return signal_pending(p) && __fatal_signal_pending(p);
2699 }
2700
2701 static inline int signal_pending_state(long state, struct task_struct *p)
2702 {
2703 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2704 return 0;
2705 if (!signal_pending(p))
2706 return 0;
2707
2708 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2709 }
2710
2711 /*
2712 * cond_resched() and cond_resched_lock(): latency reduction via
2713 * explicit rescheduling in places that are safe. The return
2714 * value indicates whether a reschedule was done in fact.
2715 * cond_resched_lock() will drop the spinlock before scheduling,
2716 * cond_resched_softirq() will enable bhs before scheduling.
2717 */
2718 extern int _cond_resched(void);
2719
2720 #define cond_resched() ({ \
2721 __might_sleep(__FILE__, __LINE__, 0); \
2722 _cond_resched(); \
2723 })
2724
2725 extern int __cond_resched_lock(spinlock_t *lock);
2726
2727 #ifdef CONFIG_PREEMPT_COUNT
2728 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2729 #else
2730 #define PREEMPT_LOCK_OFFSET 0
2731 #endif
2732
2733 #define cond_resched_lock(lock) ({ \
2734 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2735 __cond_resched_lock(lock); \
2736 })
2737
2738 extern int __cond_resched_softirq(void);
2739
2740 #define cond_resched_softirq() ({ \
2741 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2742 __cond_resched_softirq(); \
2743 })
2744
2745 static inline void cond_resched_rcu(void)
2746 {
2747 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2748 rcu_read_unlock();
2749 cond_resched();
2750 rcu_read_lock();
2751 #endif
2752 }
2753
2754 /*
2755 * Does a critical section need to be broken due to another
2756 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2757 * but a general need for low latency)
2758 */
2759 static inline int spin_needbreak(spinlock_t *lock)
2760 {
2761 #ifdef CONFIG_PREEMPT
2762 return spin_is_contended(lock);
2763 #else
2764 return 0;
2765 #endif
2766 }
2767
2768 /*
2769 * Idle thread specific functions to determine the need_resched
2770 * polling state.
2771 */
2772 #ifdef TIF_POLLING_NRFLAG
2773 static inline int tsk_is_polling(struct task_struct *p)
2774 {
2775 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2776 }
2777
2778 static inline void __current_set_polling(void)
2779 {
2780 set_thread_flag(TIF_POLLING_NRFLAG);
2781 }
2782
2783 static inline bool __must_check current_set_polling_and_test(void)
2784 {
2785 __current_set_polling();
2786
2787 /*
2788 * Polling state must be visible before we test NEED_RESCHED,
2789 * paired by resched_curr()
2790 */
2791 smp_mb__after_atomic();
2792
2793 return unlikely(tif_need_resched());
2794 }
2795
2796 static inline void __current_clr_polling(void)
2797 {
2798 clear_thread_flag(TIF_POLLING_NRFLAG);
2799 }
2800
2801 static inline bool __must_check current_clr_polling_and_test(void)
2802 {
2803 __current_clr_polling();
2804
2805 /*
2806 * Polling state must be visible before we test NEED_RESCHED,
2807 * paired by resched_curr()
2808 */
2809 smp_mb__after_atomic();
2810
2811 return unlikely(tif_need_resched());
2812 }
2813
2814 #else
2815 static inline int tsk_is_polling(struct task_struct *p) { return 0; }
2816 static inline void __current_set_polling(void) { }
2817 static inline void __current_clr_polling(void) { }
2818
2819 static inline bool __must_check current_set_polling_and_test(void)
2820 {
2821 return unlikely(tif_need_resched());
2822 }
2823 static inline bool __must_check current_clr_polling_and_test(void)
2824 {
2825 return unlikely(tif_need_resched());
2826 }
2827 #endif
2828
2829 static inline void current_clr_polling(void)
2830 {
2831 __current_clr_polling();
2832
2833 /*
2834 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
2835 * Once the bit is cleared, we'll get IPIs with every new
2836 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
2837 * fold.
2838 */
2839 smp_mb(); /* paired with resched_curr() */
2840
2841 preempt_fold_need_resched();
2842 }
2843
2844 static __always_inline bool need_resched(void)
2845 {
2846 return unlikely(tif_need_resched());
2847 }
2848
2849 /*
2850 * Thread group CPU time accounting.
2851 */
2852 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2853 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2854
2855 static inline void thread_group_cputime_init(struct signal_struct *sig)
2856 {
2857 raw_spin_lock_init(&sig->cputimer.lock);
2858 }
2859
2860 /*
2861 * Reevaluate whether the task has signals pending delivery.
2862 * Wake the task if so.
2863 * This is required every time the blocked sigset_t changes.
2864 * callers must hold sighand->siglock.
2865 */
2866 extern void recalc_sigpending_and_wake(struct task_struct *t);
2867 extern void recalc_sigpending(void);
2868
2869 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
2870
2871 static inline void signal_wake_up(struct task_struct *t, bool resume)
2872 {
2873 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
2874 }
2875 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
2876 {
2877 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
2878 }
2879
2880 /*
2881 * Wrappers for p->thread_info->cpu access. No-op on UP.
2882 */
2883 #ifdef CONFIG_SMP
2884
2885 static inline unsigned int task_cpu(const struct task_struct *p)
2886 {
2887 return task_thread_info(p)->cpu;
2888 }
2889
2890 static inline int task_node(const struct task_struct *p)
2891 {
2892 return cpu_to_node(task_cpu(p));
2893 }
2894
2895 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2896
2897 #else
2898
2899 static inline unsigned int task_cpu(const struct task_struct *p)
2900 {
2901 return 0;
2902 }
2903
2904 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2905 {
2906 }
2907
2908 #endif /* CONFIG_SMP */
2909
2910 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2911 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2912
2913 #ifdef CONFIG_CGROUP_SCHED
2914 extern struct task_group root_task_group;
2915 #endif /* CONFIG_CGROUP_SCHED */
2916
2917 extern int task_can_switch_user(struct user_struct *up,
2918 struct task_struct *tsk);
2919
2920 #ifdef CONFIG_TASK_XACCT
2921 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2922 {
2923 tsk->ioac.rchar += amt;
2924 }
2925
2926 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2927 {
2928 tsk->ioac.wchar += amt;
2929 }
2930
2931 static inline void inc_syscr(struct task_struct *tsk)
2932 {
2933 tsk->ioac.syscr++;
2934 }
2935
2936 static inline void inc_syscw(struct task_struct *tsk)
2937 {
2938 tsk->ioac.syscw++;
2939 }
2940 #else
2941 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2942 {
2943 }
2944
2945 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2946 {
2947 }
2948
2949 static inline void inc_syscr(struct task_struct *tsk)
2950 {
2951 }
2952
2953 static inline void inc_syscw(struct task_struct *tsk)
2954 {
2955 }
2956 #endif
2957
2958 #ifndef TASK_SIZE_OF
2959 #define TASK_SIZE_OF(tsk) TASK_SIZE
2960 #endif
2961
2962 #ifdef CONFIG_MEMCG
2963 extern void mm_update_next_owner(struct mm_struct *mm);
2964 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2965 #else
2966 static inline void mm_update_next_owner(struct mm_struct *mm)
2967 {
2968 }
2969
2970 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2971 {
2972 }
2973 #endif /* CONFIG_MEMCG */
2974
2975 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2976 unsigned int limit)
2977 {
2978 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2979 }
2980
2981 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2982 unsigned int limit)
2983 {
2984 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2985 }
2986
2987 static inline unsigned long rlimit(unsigned int limit)
2988 {
2989 return task_rlimit(current, limit);
2990 }
2991
2992 static inline unsigned long rlimit_max(unsigned int limit)
2993 {
2994 return task_rlimit_max(current, limit);
2995 }
2996
2997 #endif
This page took 0.10884 seconds and 5 git commands to generate.