function-graph: ignore times across schedule
[deliverable/linux.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
29 #define CLONE_NEWNET 0x40000000 /* New network namespace */
30 #define CLONE_IO 0x80000000 /* Clone io context */
31
32 /*
33 * Scheduling policies
34 */
35 #define SCHED_NORMAL 0
36 #define SCHED_FIFO 1
37 #define SCHED_RR 2
38 #define SCHED_BATCH 3
39 /* SCHED_ISO: reserved but not implemented yet */
40 #define SCHED_IDLE 5
41
42 #ifdef __KERNEL__
43
44 struct sched_param {
45 int sched_priority;
46 };
47
48 #include <asm/param.h> /* for HZ */
49
50 #include <linux/capability.h>
51 #include <linux/threads.h>
52 #include <linux/kernel.h>
53 #include <linux/types.h>
54 #include <linux/timex.h>
55 #include <linux/jiffies.h>
56 #include <linux/rbtree.h>
57 #include <linux/thread_info.h>
58 #include <linux/cpumask.h>
59 #include <linux/errno.h>
60 #include <linux/nodemask.h>
61 #include <linux/mm_types.h>
62
63 #include <asm/system.h>
64 #include <asm/page.h>
65 #include <asm/ptrace.h>
66 #include <asm/cputime.h>
67
68 #include <linux/smp.h>
69 #include <linux/sem.h>
70 #include <linux/signal.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compiler.h>
73 #include <linux/completion.h>
74 #include <linux/pid.h>
75 #include <linux/percpu.h>
76 #include <linux/topology.h>
77 #include <linux/proportions.h>
78 #include <linux/seccomp.h>
79 #include <linux/rcupdate.h>
80 #include <linux/rtmutex.h>
81
82 #include <linux/time.h>
83 #include <linux/param.h>
84 #include <linux/resource.h>
85 #include <linux/timer.h>
86 #include <linux/hrtimer.h>
87 #include <linux/task_io_accounting.h>
88 #include <linux/kobject.h>
89 #include <linux/latencytop.h>
90 #include <linux/cred.h>
91
92 #include <asm/processor.h>
93
94 struct mem_cgroup;
95 struct exec_domain;
96 struct futex_pi_state;
97 struct robust_list_head;
98 struct bio;
99 struct bts_tracer;
100
101 /*
102 * List of flags we want to share for kernel threads,
103 * if only because they are not used by them anyway.
104 */
105 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
106
107 /*
108 * These are the constant used to fake the fixed-point load-average
109 * counting. Some notes:
110 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
111 * a load-average precision of 10 bits integer + 11 bits fractional
112 * - if you want to count load-averages more often, you need more
113 * precision, or rounding will get you. With 2-second counting freq,
114 * the EXP_n values would be 1981, 2034 and 2043 if still using only
115 * 11 bit fractions.
116 */
117 extern unsigned long avenrun[]; /* Load averages */
118
119 #define FSHIFT 11 /* nr of bits of precision */
120 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
121 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
122 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
123 #define EXP_5 2014 /* 1/exp(5sec/5min) */
124 #define EXP_15 2037 /* 1/exp(5sec/15min) */
125
126 #define CALC_LOAD(load,exp,n) \
127 load *= exp; \
128 load += n*(FIXED_1-exp); \
129 load >>= FSHIFT;
130
131 extern unsigned long total_forks;
132 extern int nr_threads;
133 DECLARE_PER_CPU(unsigned long, process_counts);
134 extern int nr_processes(void);
135 extern unsigned long nr_running(void);
136 extern unsigned long nr_uninterruptible(void);
137 extern unsigned long nr_active(void);
138 extern unsigned long nr_iowait(void);
139
140 extern unsigned long get_parent_ip(unsigned long addr);
141
142 struct seq_file;
143 struct cfs_rq;
144 struct task_group;
145 #ifdef CONFIG_SCHED_DEBUG
146 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
147 extern void proc_sched_set_task(struct task_struct *p);
148 extern void
149 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
150 #else
151 static inline void
152 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
153 {
154 }
155 static inline void proc_sched_set_task(struct task_struct *p)
156 {
157 }
158 static inline void
159 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
160 {
161 }
162 #endif
163
164 extern unsigned long long time_sync_thresh;
165
166 /*
167 * Task state bitmask. NOTE! These bits are also
168 * encoded in fs/proc/array.c: get_task_state().
169 *
170 * We have two separate sets of flags: task->state
171 * is about runnability, while task->exit_state are
172 * about the task exiting. Confusing, but this way
173 * modifying one set can't modify the other one by
174 * mistake.
175 */
176 #define TASK_RUNNING 0
177 #define TASK_INTERRUPTIBLE 1
178 #define TASK_UNINTERRUPTIBLE 2
179 #define __TASK_STOPPED 4
180 #define __TASK_TRACED 8
181 /* in tsk->exit_state */
182 #define EXIT_ZOMBIE 16
183 #define EXIT_DEAD 32
184 /* in tsk->state again */
185 #define TASK_DEAD 64
186 #define TASK_WAKEKILL 128
187
188 /* Convenience macros for the sake of set_task_state */
189 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
190 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
191 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
192
193 /* Convenience macros for the sake of wake_up */
194 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
195 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
196
197 /* get_task_state() */
198 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
199 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
200 __TASK_TRACED)
201
202 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
203 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
204 #define task_is_stopped_or_traced(task) \
205 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
206 #define task_contributes_to_load(task) \
207 ((task->state & TASK_UNINTERRUPTIBLE) != 0)
208
209 #define __set_task_state(tsk, state_value) \
210 do { (tsk)->state = (state_value); } while (0)
211 #define set_task_state(tsk, state_value) \
212 set_mb((tsk)->state, (state_value))
213
214 /*
215 * set_current_state() includes a barrier so that the write of current->state
216 * is correctly serialised wrt the caller's subsequent test of whether to
217 * actually sleep:
218 *
219 * set_current_state(TASK_UNINTERRUPTIBLE);
220 * if (do_i_need_to_sleep())
221 * schedule();
222 *
223 * If the caller does not need such serialisation then use __set_current_state()
224 */
225 #define __set_current_state(state_value) \
226 do { current->state = (state_value); } while (0)
227 #define set_current_state(state_value) \
228 set_mb(current->state, (state_value))
229
230 /* Task command name length */
231 #define TASK_COMM_LEN 16
232
233 #include <linux/spinlock.h>
234
235 /*
236 * This serializes "schedule()" and also protects
237 * the run-queue from deletions/modifications (but
238 * _adding_ to the beginning of the run-queue has
239 * a separate lock).
240 */
241 extern rwlock_t tasklist_lock;
242 extern spinlock_t mmlist_lock;
243
244 struct task_struct;
245
246 extern void sched_init(void);
247 extern void sched_init_smp(void);
248 extern asmlinkage void schedule_tail(struct task_struct *prev);
249 extern void init_idle(struct task_struct *idle, int cpu);
250 extern void init_idle_bootup_task(struct task_struct *idle);
251
252 extern int runqueue_is_locked(void);
253 extern void task_rq_unlock_wait(struct task_struct *p);
254
255 extern cpumask_var_t nohz_cpu_mask;
256 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
257 extern int select_nohz_load_balancer(int cpu);
258 #else
259 static inline int select_nohz_load_balancer(int cpu)
260 {
261 return 0;
262 }
263 #endif
264
265 /*
266 * Only dump TASK_* tasks. (0 for all tasks)
267 */
268 extern void show_state_filter(unsigned long state_filter);
269
270 static inline void show_state(void)
271 {
272 show_state_filter(0);
273 }
274
275 extern void show_regs(struct pt_regs *);
276
277 /*
278 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
279 * task), SP is the stack pointer of the first frame that should be shown in the back
280 * trace (or NULL if the entire call-chain of the task should be shown).
281 */
282 extern void show_stack(struct task_struct *task, unsigned long *sp);
283
284 void io_schedule(void);
285 long io_schedule_timeout(long timeout);
286
287 extern void cpu_init (void);
288 extern void trap_init(void);
289 extern void update_process_times(int user);
290 extern void scheduler_tick(void);
291
292 extern void sched_show_task(struct task_struct *p);
293
294 #ifdef CONFIG_DETECT_SOFTLOCKUP
295 extern void softlockup_tick(void);
296 extern void touch_softlockup_watchdog(void);
297 extern void touch_all_softlockup_watchdogs(void);
298 extern int proc_dosoftlockup_thresh(struct ctl_table *table, int write,
299 struct file *filp, void __user *buffer,
300 size_t *lenp, loff_t *ppos);
301 extern unsigned int softlockup_panic;
302 extern unsigned long sysctl_hung_task_check_count;
303 extern unsigned long sysctl_hung_task_timeout_secs;
304 extern unsigned long sysctl_hung_task_warnings;
305 extern int softlockup_thresh;
306 #else
307 static inline void softlockup_tick(void)
308 {
309 }
310 static inline void spawn_softlockup_task(void)
311 {
312 }
313 static inline void touch_softlockup_watchdog(void)
314 {
315 }
316 static inline void touch_all_softlockup_watchdogs(void)
317 {
318 }
319 #endif
320
321
322 /* Attach to any functions which should be ignored in wchan output. */
323 #define __sched __attribute__((__section__(".sched.text")))
324
325 /* Linker adds these: start and end of __sched functions */
326 extern char __sched_text_start[], __sched_text_end[];
327
328 /* Is this address in the __sched functions? */
329 extern int in_sched_functions(unsigned long addr);
330
331 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
332 extern signed long schedule_timeout(signed long timeout);
333 extern signed long schedule_timeout_interruptible(signed long timeout);
334 extern signed long schedule_timeout_killable(signed long timeout);
335 extern signed long schedule_timeout_uninterruptible(signed long timeout);
336 asmlinkage void __schedule(void);
337 asmlinkage void schedule(void);
338 extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner);
339
340 struct nsproxy;
341 struct user_namespace;
342
343 /* Maximum number of active map areas.. This is a random (large) number */
344 #define DEFAULT_MAX_MAP_COUNT 65536
345
346 extern int sysctl_max_map_count;
347
348 #include <linux/aio.h>
349
350 extern unsigned long
351 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
352 unsigned long, unsigned long);
353 extern unsigned long
354 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
355 unsigned long len, unsigned long pgoff,
356 unsigned long flags);
357 extern void arch_unmap_area(struct mm_struct *, unsigned long);
358 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
359
360 #if USE_SPLIT_PTLOCKS
361 /*
362 * The mm counters are not protected by its page_table_lock,
363 * so must be incremented atomically.
364 */
365 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
366 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
367 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
368 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
369 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
370
371 #else /* !USE_SPLIT_PTLOCKS */
372 /*
373 * The mm counters are protected by its page_table_lock,
374 * so can be incremented directly.
375 */
376 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
377 #define get_mm_counter(mm, member) ((mm)->_##member)
378 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
379 #define inc_mm_counter(mm, member) (mm)->_##member++
380 #define dec_mm_counter(mm, member) (mm)->_##member--
381
382 #endif /* !USE_SPLIT_PTLOCKS */
383
384 #define get_mm_rss(mm) \
385 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
386 #define update_hiwater_rss(mm) do { \
387 unsigned long _rss = get_mm_rss(mm); \
388 if ((mm)->hiwater_rss < _rss) \
389 (mm)->hiwater_rss = _rss; \
390 } while (0)
391 #define update_hiwater_vm(mm) do { \
392 if ((mm)->hiwater_vm < (mm)->total_vm) \
393 (mm)->hiwater_vm = (mm)->total_vm; \
394 } while (0)
395
396 #define get_mm_hiwater_rss(mm) max((mm)->hiwater_rss, get_mm_rss(mm))
397 #define get_mm_hiwater_vm(mm) max((mm)->hiwater_vm, (mm)->total_vm)
398
399 extern void set_dumpable(struct mm_struct *mm, int value);
400 extern int get_dumpable(struct mm_struct *mm);
401
402 /* mm flags */
403 /* dumpable bits */
404 #define MMF_DUMPABLE 0 /* core dump is permitted */
405 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
406 #define MMF_DUMPABLE_BITS 2
407
408 /* coredump filter bits */
409 #define MMF_DUMP_ANON_PRIVATE 2
410 #define MMF_DUMP_ANON_SHARED 3
411 #define MMF_DUMP_MAPPED_PRIVATE 4
412 #define MMF_DUMP_MAPPED_SHARED 5
413 #define MMF_DUMP_ELF_HEADERS 6
414 #define MMF_DUMP_HUGETLB_PRIVATE 7
415 #define MMF_DUMP_HUGETLB_SHARED 8
416 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
417 #define MMF_DUMP_FILTER_BITS 7
418 #define MMF_DUMP_FILTER_MASK \
419 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
420 #define MMF_DUMP_FILTER_DEFAULT \
421 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
422 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
423
424 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
425 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
426 #else
427 # define MMF_DUMP_MASK_DEFAULT_ELF 0
428 #endif
429
430 struct sighand_struct {
431 atomic_t count;
432 struct k_sigaction action[_NSIG];
433 spinlock_t siglock;
434 wait_queue_head_t signalfd_wqh;
435 };
436
437 struct pacct_struct {
438 int ac_flag;
439 long ac_exitcode;
440 unsigned long ac_mem;
441 cputime_t ac_utime, ac_stime;
442 unsigned long ac_minflt, ac_majflt;
443 };
444
445 /**
446 * struct task_cputime - collected CPU time counts
447 * @utime: time spent in user mode, in &cputime_t units
448 * @stime: time spent in kernel mode, in &cputime_t units
449 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
450 *
451 * This structure groups together three kinds of CPU time that are
452 * tracked for threads and thread groups. Most things considering
453 * CPU time want to group these counts together and treat all three
454 * of them in parallel.
455 */
456 struct task_cputime {
457 cputime_t utime;
458 cputime_t stime;
459 unsigned long long sum_exec_runtime;
460 };
461 /* Alternate field names when used to cache expirations. */
462 #define prof_exp stime
463 #define virt_exp utime
464 #define sched_exp sum_exec_runtime
465
466 #define INIT_CPUTIME \
467 (struct task_cputime) { \
468 .utime = cputime_zero, \
469 .stime = cputime_zero, \
470 .sum_exec_runtime = 0, \
471 }
472
473 /**
474 * struct thread_group_cputimer - thread group interval timer counts
475 * @cputime: thread group interval timers.
476 * @running: non-zero when there are timers running and
477 * @cputime receives updates.
478 * @lock: lock for fields in this struct.
479 *
480 * This structure contains the version of task_cputime, above, that is
481 * used for thread group CPU timer calculations.
482 */
483 struct thread_group_cputimer {
484 struct task_cputime cputime;
485 int running;
486 spinlock_t lock;
487 };
488
489 /*
490 * NOTE! "signal_struct" does not have it's own
491 * locking, because a shared signal_struct always
492 * implies a shared sighand_struct, so locking
493 * sighand_struct is always a proper superset of
494 * the locking of signal_struct.
495 */
496 struct signal_struct {
497 atomic_t count;
498 atomic_t live;
499
500 wait_queue_head_t wait_chldexit; /* for wait4() */
501
502 /* current thread group signal load-balancing target: */
503 struct task_struct *curr_target;
504
505 /* shared signal handling: */
506 struct sigpending shared_pending;
507
508 /* thread group exit support */
509 int group_exit_code;
510 /* overloaded:
511 * - notify group_exit_task when ->count is equal to notify_count
512 * - everyone except group_exit_task is stopped during signal delivery
513 * of fatal signals, group_exit_task processes the signal.
514 */
515 int notify_count;
516 struct task_struct *group_exit_task;
517
518 /* thread group stop support, overloads group_exit_code too */
519 int group_stop_count;
520 unsigned int flags; /* see SIGNAL_* flags below */
521
522 /* POSIX.1b Interval Timers */
523 struct list_head posix_timers;
524
525 /* ITIMER_REAL timer for the process */
526 struct hrtimer real_timer;
527 struct pid *leader_pid;
528 ktime_t it_real_incr;
529
530 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
531 cputime_t it_prof_expires, it_virt_expires;
532 cputime_t it_prof_incr, it_virt_incr;
533
534 /*
535 * Thread group totals for process CPU timers.
536 * See thread_group_cputimer(), et al, for details.
537 */
538 struct thread_group_cputimer cputimer;
539
540 /* Earliest-expiration cache. */
541 struct task_cputime cputime_expires;
542
543 struct list_head cpu_timers[3];
544
545 /* job control IDs */
546
547 /*
548 * pgrp and session fields are deprecated.
549 * use the task_session_Xnr and task_pgrp_Xnr routines below
550 */
551
552 union {
553 pid_t pgrp __deprecated;
554 pid_t __pgrp;
555 };
556
557 struct pid *tty_old_pgrp;
558
559 union {
560 pid_t session __deprecated;
561 pid_t __session;
562 };
563
564 /* boolean value for session group leader */
565 int leader;
566
567 struct tty_struct *tty; /* NULL if no tty */
568
569 /*
570 * Cumulative resource counters for dead threads in the group,
571 * and for reaped dead child processes forked by this group.
572 * Live threads maintain their own counters and add to these
573 * in __exit_signal, except for the group leader.
574 */
575 cputime_t utime, stime, cutime, cstime;
576 cputime_t gtime;
577 cputime_t cgtime;
578 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
579 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
580 unsigned long inblock, oublock, cinblock, coublock;
581 struct task_io_accounting ioac;
582
583 /*
584 * Cumulative ns of schedule CPU time fo dead threads in the
585 * group, not including a zombie group leader, (This only differs
586 * from jiffies_to_ns(utime + stime) if sched_clock uses something
587 * other than jiffies.)
588 */
589 unsigned long long sum_sched_runtime;
590
591 /*
592 * We don't bother to synchronize most readers of this at all,
593 * because there is no reader checking a limit that actually needs
594 * to get both rlim_cur and rlim_max atomically, and either one
595 * alone is a single word that can safely be read normally.
596 * getrlimit/setrlimit use task_lock(current->group_leader) to
597 * protect this instead of the siglock, because they really
598 * have no need to disable irqs.
599 */
600 struct rlimit rlim[RLIM_NLIMITS];
601
602 #ifdef CONFIG_BSD_PROCESS_ACCT
603 struct pacct_struct pacct; /* per-process accounting information */
604 #endif
605 #ifdef CONFIG_TASKSTATS
606 struct taskstats *stats;
607 #endif
608 #ifdef CONFIG_AUDIT
609 unsigned audit_tty;
610 struct tty_audit_buf *tty_audit_buf;
611 #endif
612 };
613
614 /* Context switch must be unlocked if interrupts are to be enabled */
615 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
616 # define __ARCH_WANT_UNLOCKED_CTXSW
617 #endif
618
619 /*
620 * Bits in flags field of signal_struct.
621 */
622 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
623 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
624 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
625 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
626 /*
627 * Pending notifications to parent.
628 */
629 #define SIGNAL_CLD_STOPPED 0x00000010
630 #define SIGNAL_CLD_CONTINUED 0x00000020
631 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
632
633 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
634
635 /* If true, all threads except ->group_exit_task have pending SIGKILL */
636 static inline int signal_group_exit(const struct signal_struct *sig)
637 {
638 return (sig->flags & SIGNAL_GROUP_EXIT) ||
639 (sig->group_exit_task != NULL);
640 }
641
642 /*
643 * Some day this will be a full-fledged user tracking system..
644 */
645 struct user_struct {
646 atomic_t __count; /* reference count */
647 atomic_t processes; /* How many processes does this user have? */
648 atomic_t files; /* How many open files does this user have? */
649 atomic_t sigpending; /* How many pending signals does this user have? */
650 #ifdef CONFIG_INOTIFY_USER
651 atomic_t inotify_watches; /* How many inotify watches does this user have? */
652 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
653 #endif
654 #ifdef CONFIG_EPOLL
655 atomic_t epoll_watches; /* The number of file descriptors currently watched */
656 #endif
657 #ifdef CONFIG_POSIX_MQUEUE
658 /* protected by mq_lock */
659 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
660 #endif
661 unsigned long locked_shm; /* How many pages of mlocked shm ? */
662
663 #ifdef CONFIG_KEYS
664 struct key *uid_keyring; /* UID specific keyring */
665 struct key *session_keyring; /* UID's default session keyring */
666 #endif
667
668 /* Hash table maintenance information */
669 struct hlist_node uidhash_node;
670 uid_t uid;
671 struct user_namespace *user_ns;
672
673 #ifdef CONFIG_USER_SCHED
674 struct task_group *tg;
675 #ifdef CONFIG_SYSFS
676 struct kobject kobj;
677 struct work_struct work;
678 #endif
679 #endif
680 };
681
682 extern int uids_sysfs_init(void);
683
684 extern struct user_struct *find_user(uid_t);
685
686 extern struct user_struct root_user;
687 #define INIT_USER (&root_user)
688
689
690 struct backing_dev_info;
691 struct reclaim_state;
692
693 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
694 struct sched_info {
695 /* cumulative counters */
696 unsigned long pcount; /* # of times run on this cpu */
697 unsigned long long run_delay; /* time spent waiting on a runqueue */
698
699 /* timestamps */
700 unsigned long long last_arrival,/* when we last ran on a cpu */
701 last_queued; /* when we were last queued to run */
702 #ifdef CONFIG_SCHEDSTATS
703 /* BKL stats */
704 unsigned int bkl_count;
705 #endif
706 };
707 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
708
709 #ifdef CONFIG_TASK_DELAY_ACCT
710 struct task_delay_info {
711 spinlock_t lock;
712 unsigned int flags; /* Private per-task flags */
713
714 /* For each stat XXX, add following, aligned appropriately
715 *
716 * struct timespec XXX_start, XXX_end;
717 * u64 XXX_delay;
718 * u32 XXX_count;
719 *
720 * Atomicity of updates to XXX_delay, XXX_count protected by
721 * single lock above (split into XXX_lock if contention is an issue).
722 */
723
724 /*
725 * XXX_count is incremented on every XXX operation, the delay
726 * associated with the operation is added to XXX_delay.
727 * XXX_delay contains the accumulated delay time in nanoseconds.
728 */
729 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
730 u64 blkio_delay; /* wait for sync block io completion */
731 u64 swapin_delay; /* wait for swapin block io completion */
732 u32 blkio_count; /* total count of the number of sync block */
733 /* io operations performed */
734 u32 swapin_count; /* total count of the number of swapin block */
735 /* io operations performed */
736
737 struct timespec freepages_start, freepages_end;
738 u64 freepages_delay; /* wait for memory reclaim */
739 u32 freepages_count; /* total count of memory reclaim */
740 };
741 #endif /* CONFIG_TASK_DELAY_ACCT */
742
743 static inline int sched_info_on(void)
744 {
745 #ifdef CONFIG_SCHEDSTATS
746 return 1;
747 #elif defined(CONFIG_TASK_DELAY_ACCT)
748 extern int delayacct_on;
749 return delayacct_on;
750 #else
751 return 0;
752 #endif
753 }
754
755 enum cpu_idle_type {
756 CPU_IDLE,
757 CPU_NOT_IDLE,
758 CPU_NEWLY_IDLE,
759 CPU_MAX_IDLE_TYPES
760 };
761
762 /*
763 * sched-domains (multiprocessor balancing) declarations:
764 */
765
766 /*
767 * Increase resolution of nice-level calculations:
768 */
769 #define SCHED_LOAD_SHIFT 10
770 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
771
772 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
773
774 #ifdef CONFIG_SMP
775 #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */
776 #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */
777 #define SD_BALANCE_EXEC 4 /* Balance on exec */
778 #define SD_BALANCE_FORK 8 /* Balance on fork, clone */
779 #define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */
780 #define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */
781 #define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */
782 #define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */
783 #define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */
784 #define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */
785 #define SD_SERIALIZE 1024 /* Only a single load balancing instance */
786 #define SD_WAKE_IDLE_FAR 2048 /* Gain latency sacrificing cache hit */
787
788 enum powersavings_balance_level {
789 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */
790 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package
791 * first for long running threads
792 */
793 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle
794 * cpu package for power savings
795 */
796 MAX_POWERSAVINGS_BALANCE_LEVELS
797 };
798
799 extern int sched_mc_power_savings, sched_smt_power_savings;
800
801 static inline int sd_balance_for_mc_power(void)
802 {
803 if (sched_smt_power_savings)
804 return SD_POWERSAVINGS_BALANCE;
805
806 return 0;
807 }
808
809 static inline int sd_balance_for_package_power(void)
810 {
811 if (sched_mc_power_savings | sched_smt_power_savings)
812 return SD_POWERSAVINGS_BALANCE;
813
814 return 0;
815 }
816
817 /*
818 * Optimise SD flags for power savings:
819 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings.
820 * Keep default SD flags if sched_{smt,mc}_power_saving=0
821 */
822
823 static inline int sd_power_saving_flags(void)
824 {
825 if (sched_mc_power_savings | sched_smt_power_savings)
826 return SD_BALANCE_NEWIDLE;
827
828 return 0;
829 }
830
831 struct sched_group {
832 struct sched_group *next; /* Must be a circular list */
833
834 /*
835 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
836 * single CPU. This is read only (except for setup, hotplug CPU).
837 * Note : Never change cpu_power without recompute its reciprocal
838 */
839 unsigned int __cpu_power;
840 /*
841 * reciprocal value of cpu_power to avoid expensive divides
842 * (see include/linux/reciprocal_div.h)
843 */
844 u32 reciprocal_cpu_power;
845
846 unsigned long cpumask[];
847 };
848
849 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
850 {
851 return to_cpumask(sg->cpumask);
852 }
853
854 enum sched_domain_level {
855 SD_LV_NONE = 0,
856 SD_LV_SIBLING,
857 SD_LV_MC,
858 SD_LV_CPU,
859 SD_LV_NODE,
860 SD_LV_ALLNODES,
861 SD_LV_MAX
862 };
863
864 struct sched_domain_attr {
865 int relax_domain_level;
866 };
867
868 #define SD_ATTR_INIT (struct sched_domain_attr) { \
869 .relax_domain_level = -1, \
870 }
871
872 struct sched_domain {
873 /* These fields must be setup */
874 struct sched_domain *parent; /* top domain must be null terminated */
875 struct sched_domain *child; /* bottom domain must be null terminated */
876 struct sched_group *groups; /* the balancing groups of the domain */
877 unsigned long min_interval; /* Minimum balance interval ms */
878 unsigned long max_interval; /* Maximum balance interval ms */
879 unsigned int busy_factor; /* less balancing by factor if busy */
880 unsigned int imbalance_pct; /* No balance until over watermark */
881 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
882 unsigned int busy_idx;
883 unsigned int idle_idx;
884 unsigned int newidle_idx;
885 unsigned int wake_idx;
886 unsigned int forkexec_idx;
887 int flags; /* See SD_* */
888 enum sched_domain_level level;
889
890 /* Runtime fields. */
891 unsigned long last_balance; /* init to jiffies. units in jiffies */
892 unsigned int balance_interval; /* initialise to 1. units in ms. */
893 unsigned int nr_balance_failed; /* initialise to 0 */
894
895 u64 last_update;
896
897 #ifdef CONFIG_SCHEDSTATS
898 /* load_balance() stats */
899 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
900 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
901 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
902 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
903 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
904 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
905 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
906 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
907
908 /* Active load balancing */
909 unsigned int alb_count;
910 unsigned int alb_failed;
911 unsigned int alb_pushed;
912
913 /* SD_BALANCE_EXEC stats */
914 unsigned int sbe_count;
915 unsigned int sbe_balanced;
916 unsigned int sbe_pushed;
917
918 /* SD_BALANCE_FORK stats */
919 unsigned int sbf_count;
920 unsigned int sbf_balanced;
921 unsigned int sbf_pushed;
922
923 /* try_to_wake_up() stats */
924 unsigned int ttwu_wake_remote;
925 unsigned int ttwu_move_affine;
926 unsigned int ttwu_move_balance;
927 #endif
928 #ifdef CONFIG_SCHED_DEBUG
929 char *name;
930 #endif
931
932 /* span of all CPUs in this domain */
933 unsigned long span[];
934 };
935
936 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
937 {
938 return to_cpumask(sd->span);
939 }
940
941 extern void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
942 struct sched_domain_attr *dattr_new);
943
944 /* Test a flag in parent sched domain */
945 static inline int test_sd_parent(struct sched_domain *sd, int flag)
946 {
947 if (sd->parent && (sd->parent->flags & flag))
948 return 1;
949
950 return 0;
951 }
952
953 #else /* CONFIG_SMP */
954
955 struct sched_domain_attr;
956
957 static inline void
958 partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
959 struct sched_domain_attr *dattr_new)
960 {
961 }
962 #endif /* !CONFIG_SMP */
963
964 struct io_context; /* See blkdev.h */
965
966
967 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
968 extern void prefetch_stack(struct task_struct *t);
969 #else
970 static inline void prefetch_stack(struct task_struct *t) { }
971 #endif
972
973 struct audit_context; /* See audit.c */
974 struct mempolicy;
975 struct pipe_inode_info;
976 struct uts_namespace;
977
978 struct rq;
979 struct sched_domain;
980
981 struct sched_class {
982 const struct sched_class *next;
983
984 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
985 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
986 void (*yield_task) (struct rq *rq);
987
988 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int sync);
989
990 struct task_struct * (*pick_next_task) (struct rq *rq);
991 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
992
993 #ifdef CONFIG_SMP
994 int (*select_task_rq)(struct task_struct *p, int sync);
995
996 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
997 struct rq *busiest, unsigned long max_load_move,
998 struct sched_domain *sd, enum cpu_idle_type idle,
999 int *all_pinned, int *this_best_prio);
1000
1001 int (*move_one_task) (struct rq *this_rq, int this_cpu,
1002 struct rq *busiest, struct sched_domain *sd,
1003 enum cpu_idle_type idle);
1004 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1005 void (*post_schedule) (struct rq *this_rq);
1006 void (*task_wake_up) (struct rq *this_rq, struct task_struct *task);
1007
1008 void (*set_cpus_allowed)(struct task_struct *p,
1009 const struct cpumask *newmask);
1010
1011 void (*rq_online)(struct rq *rq);
1012 void (*rq_offline)(struct rq *rq);
1013 #endif
1014
1015 void (*set_curr_task) (struct rq *rq);
1016 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1017 void (*task_new) (struct rq *rq, struct task_struct *p);
1018
1019 void (*switched_from) (struct rq *this_rq, struct task_struct *task,
1020 int running);
1021 void (*switched_to) (struct rq *this_rq, struct task_struct *task,
1022 int running);
1023 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1024 int oldprio, int running);
1025
1026 #ifdef CONFIG_FAIR_GROUP_SCHED
1027 void (*moved_group) (struct task_struct *p);
1028 #endif
1029 };
1030
1031 struct load_weight {
1032 unsigned long weight, inv_weight;
1033 };
1034
1035 /*
1036 * CFS stats for a schedulable entity (task, task-group etc)
1037 *
1038 * Current field usage histogram:
1039 *
1040 * 4 se->block_start
1041 * 4 se->run_node
1042 * 4 se->sleep_start
1043 * 6 se->load.weight
1044 */
1045 struct sched_entity {
1046 struct load_weight load; /* for load-balancing */
1047 struct rb_node run_node;
1048 struct list_head group_node;
1049 unsigned int on_rq;
1050
1051 u64 exec_start;
1052 u64 sum_exec_runtime;
1053 u64 vruntime;
1054 u64 prev_sum_exec_runtime;
1055
1056 u64 last_wakeup;
1057 u64 avg_overlap;
1058
1059 #ifdef CONFIG_SCHEDSTATS
1060 u64 wait_start;
1061 u64 wait_max;
1062 u64 wait_count;
1063 u64 wait_sum;
1064
1065 u64 sleep_start;
1066 u64 sleep_max;
1067 s64 sum_sleep_runtime;
1068
1069 u64 block_start;
1070 u64 block_max;
1071 u64 exec_max;
1072 u64 slice_max;
1073
1074 u64 nr_migrations;
1075 u64 nr_migrations_cold;
1076 u64 nr_failed_migrations_affine;
1077 u64 nr_failed_migrations_running;
1078 u64 nr_failed_migrations_hot;
1079 u64 nr_forced_migrations;
1080 u64 nr_forced2_migrations;
1081
1082 u64 nr_wakeups;
1083 u64 nr_wakeups_sync;
1084 u64 nr_wakeups_migrate;
1085 u64 nr_wakeups_local;
1086 u64 nr_wakeups_remote;
1087 u64 nr_wakeups_affine;
1088 u64 nr_wakeups_affine_attempts;
1089 u64 nr_wakeups_passive;
1090 u64 nr_wakeups_idle;
1091 #endif
1092
1093 #ifdef CONFIG_FAIR_GROUP_SCHED
1094 struct sched_entity *parent;
1095 /* rq on which this entity is (to be) queued: */
1096 struct cfs_rq *cfs_rq;
1097 /* rq "owned" by this entity/group: */
1098 struct cfs_rq *my_q;
1099 #endif
1100 };
1101
1102 struct sched_rt_entity {
1103 struct list_head run_list;
1104 unsigned long timeout;
1105 unsigned int time_slice;
1106 int nr_cpus_allowed;
1107
1108 struct sched_rt_entity *back;
1109 #ifdef CONFIG_RT_GROUP_SCHED
1110 struct sched_rt_entity *parent;
1111 /* rq on which this entity is (to be) queued: */
1112 struct rt_rq *rt_rq;
1113 /* rq "owned" by this entity/group: */
1114 struct rt_rq *my_q;
1115 #endif
1116 };
1117
1118 struct task_struct {
1119 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1120 void *stack;
1121 atomic_t usage;
1122 unsigned int flags; /* per process flags, defined below */
1123 unsigned int ptrace;
1124
1125 int lock_depth; /* BKL lock depth */
1126
1127 #ifdef CONFIG_SMP
1128 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1129 int oncpu;
1130 #endif
1131 #endif
1132
1133 int prio, static_prio, normal_prio;
1134 unsigned int rt_priority;
1135 const struct sched_class *sched_class;
1136 struct sched_entity se;
1137 struct sched_rt_entity rt;
1138
1139 #ifdef CONFIG_PREEMPT_NOTIFIERS
1140 /* list of struct preempt_notifier: */
1141 struct hlist_head preempt_notifiers;
1142 #endif
1143
1144 /*
1145 * fpu_counter contains the number of consecutive context switches
1146 * that the FPU is used. If this is over a threshold, the lazy fpu
1147 * saving becomes unlazy to save the trap. This is an unsigned char
1148 * so that after 256 times the counter wraps and the behavior turns
1149 * lazy again; this to deal with bursty apps that only use FPU for
1150 * a short time
1151 */
1152 unsigned char fpu_counter;
1153 s8 oomkilladj; /* OOM kill score adjustment (bit shift). */
1154 #ifdef CONFIG_BLK_DEV_IO_TRACE
1155 unsigned int btrace_seq;
1156 #endif
1157
1158 unsigned int policy;
1159 cpumask_t cpus_allowed;
1160
1161 #ifdef CONFIG_PREEMPT_RCU
1162 int rcu_read_lock_nesting;
1163 int rcu_flipctr_idx;
1164 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1165
1166 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1167 struct sched_info sched_info;
1168 #endif
1169
1170 struct list_head tasks;
1171
1172 struct mm_struct *mm, *active_mm;
1173
1174 /* task state */
1175 struct linux_binfmt *binfmt;
1176 int exit_state;
1177 int exit_code, exit_signal;
1178 int pdeath_signal; /* The signal sent when the parent dies */
1179 /* ??? */
1180 unsigned int personality;
1181 unsigned did_exec:1;
1182 pid_t pid;
1183 pid_t tgid;
1184
1185 /* Canary value for the -fstack-protector gcc feature */
1186 unsigned long stack_canary;
1187
1188 /*
1189 * pointers to (original) parent process, youngest child, younger sibling,
1190 * older sibling, respectively. (p->father can be replaced with
1191 * p->real_parent->pid)
1192 */
1193 struct task_struct *real_parent; /* real parent process */
1194 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1195 /*
1196 * children/sibling forms the list of my natural children
1197 */
1198 struct list_head children; /* list of my children */
1199 struct list_head sibling; /* linkage in my parent's children list */
1200 struct task_struct *group_leader; /* threadgroup leader */
1201
1202 /*
1203 * ptraced is the list of tasks this task is using ptrace on.
1204 * This includes both natural children and PTRACE_ATTACH targets.
1205 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1206 */
1207 struct list_head ptraced;
1208 struct list_head ptrace_entry;
1209
1210 #ifdef CONFIG_X86_PTRACE_BTS
1211 /*
1212 * This is the tracer handle for the ptrace BTS extension.
1213 * This field actually belongs to the ptracer task.
1214 */
1215 struct bts_tracer *bts;
1216 /*
1217 * The buffer to hold the BTS data.
1218 */
1219 void *bts_buffer;
1220 size_t bts_size;
1221 #endif /* CONFIG_X86_PTRACE_BTS */
1222
1223 /* PID/PID hash table linkage. */
1224 struct pid_link pids[PIDTYPE_MAX];
1225 struct list_head thread_group;
1226
1227 struct completion *vfork_done; /* for vfork() */
1228 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1229 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1230
1231 cputime_t utime, stime, utimescaled, stimescaled;
1232 cputime_t gtime;
1233 cputime_t prev_utime, prev_stime;
1234 unsigned long nvcsw, nivcsw; /* context switch counts */
1235 struct timespec start_time; /* monotonic time */
1236 struct timespec real_start_time; /* boot based time */
1237 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1238 unsigned long min_flt, maj_flt;
1239
1240 struct task_cputime cputime_expires;
1241 struct list_head cpu_timers[3];
1242
1243 /* process credentials */
1244 const struct cred *real_cred; /* objective and real subjective task
1245 * credentials (COW) */
1246 const struct cred *cred; /* effective (overridable) subjective task
1247 * credentials (COW) */
1248 struct mutex cred_exec_mutex; /* execve vs ptrace cred calculation mutex */
1249
1250 char comm[TASK_COMM_LEN]; /* executable name excluding path
1251 - access with [gs]et_task_comm (which lock
1252 it with task_lock())
1253 - initialized normally by flush_old_exec */
1254 /* file system info */
1255 int link_count, total_link_count;
1256 #ifdef CONFIG_SYSVIPC
1257 /* ipc stuff */
1258 struct sysv_sem sysvsem;
1259 #endif
1260 #ifdef CONFIG_DETECT_SOFTLOCKUP
1261 /* hung task detection */
1262 unsigned long last_switch_timestamp;
1263 unsigned long last_switch_count;
1264 #endif
1265 /* CPU-specific state of this task */
1266 struct thread_struct thread;
1267 /* filesystem information */
1268 struct fs_struct *fs;
1269 /* open file information */
1270 struct files_struct *files;
1271 /* namespaces */
1272 struct nsproxy *nsproxy;
1273 /* signal handlers */
1274 struct signal_struct *signal;
1275 struct sighand_struct *sighand;
1276
1277 sigset_t blocked, real_blocked;
1278 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1279 struct sigpending pending;
1280
1281 unsigned long sas_ss_sp;
1282 size_t sas_ss_size;
1283 int (*notifier)(void *priv);
1284 void *notifier_data;
1285 sigset_t *notifier_mask;
1286 struct audit_context *audit_context;
1287 #ifdef CONFIG_AUDITSYSCALL
1288 uid_t loginuid;
1289 unsigned int sessionid;
1290 #endif
1291 seccomp_t seccomp;
1292
1293 /* Thread group tracking */
1294 u32 parent_exec_id;
1295 u32 self_exec_id;
1296 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
1297 spinlock_t alloc_lock;
1298
1299 /* Protection of the PI data structures: */
1300 spinlock_t pi_lock;
1301
1302 #ifdef CONFIG_RT_MUTEXES
1303 /* PI waiters blocked on a rt_mutex held by this task */
1304 struct plist_head pi_waiters;
1305 /* Deadlock detection and priority inheritance handling */
1306 struct rt_mutex_waiter *pi_blocked_on;
1307 #endif
1308
1309 #ifdef CONFIG_DEBUG_MUTEXES
1310 /* mutex deadlock detection */
1311 struct mutex_waiter *blocked_on;
1312 #endif
1313 #ifdef CONFIG_TRACE_IRQFLAGS
1314 unsigned int irq_events;
1315 int hardirqs_enabled;
1316 unsigned long hardirq_enable_ip;
1317 unsigned int hardirq_enable_event;
1318 unsigned long hardirq_disable_ip;
1319 unsigned int hardirq_disable_event;
1320 int softirqs_enabled;
1321 unsigned long softirq_disable_ip;
1322 unsigned int softirq_disable_event;
1323 unsigned long softirq_enable_ip;
1324 unsigned int softirq_enable_event;
1325 int hardirq_context;
1326 int softirq_context;
1327 #endif
1328 #ifdef CONFIG_LOCKDEP
1329 # define MAX_LOCK_DEPTH 48UL
1330 u64 curr_chain_key;
1331 int lockdep_depth;
1332 unsigned int lockdep_recursion;
1333 struct held_lock held_locks[MAX_LOCK_DEPTH];
1334 gfp_t lockdep_reclaim_gfp;
1335 #endif
1336
1337 /* journalling filesystem info */
1338 void *journal_info;
1339
1340 /* stacked block device info */
1341 struct bio *bio_list, **bio_tail;
1342
1343 /* VM state */
1344 struct reclaim_state *reclaim_state;
1345
1346 struct backing_dev_info *backing_dev_info;
1347
1348 struct io_context *io_context;
1349
1350 unsigned long ptrace_message;
1351 siginfo_t *last_siginfo; /* For ptrace use. */
1352 struct task_io_accounting ioac;
1353 #if defined(CONFIG_TASK_XACCT)
1354 u64 acct_rss_mem1; /* accumulated rss usage */
1355 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1356 cputime_t acct_timexpd; /* stime + utime since last update */
1357 #endif
1358 #ifdef CONFIG_CPUSETS
1359 nodemask_t mems_allowed;
1360 int cpuset_mems_generation;
1361 int cpuset_mem_spread_rotor;
1362 #endif
1363 #ifdef CONFIG_CGROUPS
1364 /* Control Group info protected by css_set_lock */
1365 struct css_set *cgroups;
1366 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1367 struct list_head cg_list;
1368 #endif
1369 #ifdef CONFIG_FUTEX
1370 struct robust_list_head __user *robust_list;
1371 #ifdef CONFIG_COMPAT
1372 struct compat_robust_list_head __user *compat_robust_list;
1373 #endif
1374 struct list_head pi_state_list;
1375 struct futex_pi_state *pi_state_cache;
1376 #endif
1377 #ifdef CONFIG_NUMA
1378 struct mempolicy *mempolicy;
1379 short il_next;
1380 #endif
1381 atomic_t fs_excl; /* holding fs exclusive resources */
1382 struct rcu_head rcu;
1383
1384 /*
1385 * cache last used pipe for splice
1386 */
1387 struct pipe_inode_info *splice_pipe;
1388 #ifdef CONFIG_TASK_DELAY_ACCT
1389 struct task_delay_info *delays;
1390 #endif
1391 #ifdef CONFIG_FAULT_INJECTION
1392 int make_it_fail;
1393 #endif
1394 struct prop_local_single dirties;
1395 #ifdef CONFIG_LATENCYTOP
1396 int latency_record_count;
1397 struct latency_record latency_record[LT_SAVECOUNT];
1398 #endif
1399 /*
1400 * time slack values; these are used to round up poll() and
1401 * select() etc timeout values. These are in nanoseconds.
1402 */
1403 unsigned long timer_slack_ns;
1404 unsigned long default_timer_slack_ns;
1405
1406 struct list_head *scm_work_list;
1407 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1408 /* Index of current stored adress in ret_stack */
1409 int curr_ret_stack;
1410 /* Stack of return addresses for return function tracing */
1411 struct ftrace_ret_stack *ret_stack;
1412 /* time stamp for last schedule */
1413 unsigned long long ftrace_timestamp;
1414 /*
1415 * Number of functions that haven't been traced
1416 * because of depth overrun.
1417 */
1418 atomic_t trace_overrun;
1419 /* Pause for the tracing */
1420 atomic_t tracing_graph_pause;
1421 #endif
1422 #ifdef CONFIG_TRACING
1423 /* state flags for use by tracers */
1424 unsigned long trace;
1425 #endif
1426 };
1427
1428 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1429 #define tsk_cpumask(tsk) (&(tsk)->cpus_allowed)
1430
1431 /*
1432 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1433 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1434 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1435 * values are inverted: lower p->prio value means higher priority.
1436 *
1437 * The MAX_USER_RT_PRIO value allows the actual maximum
1438 * RT priority to be separate from the value exported to
1439 * user-space. This allows kernel threads to set their
1440 * priority to a value higher than any user task. Note:
1441 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1442 */
1443
1444 #define MAX_USER_RT_PRIO 100
1445 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1446
1447 #define MAX_PRIO (MAX_RT_PRIO + 40)
1448 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1449
1450 static inline int rt_prio(int prio)
1451 {
1452 if (unlikely(prio < MAX_RT_PRIO))
1453 return 1;
1454 return 0;
1455 }
1456
1457 static inline int rt_task(struct task_struct *p)
1458 {
1459 return rt_prio(p->prio);
1460 }
1461
1462 static inline void set_task_session(struct task_struct *tsk, pid_t session)
1463 {
1464 tsk->signal->__session = session;
1465 }
1466
1467 static inline void set_task_pgrp(struct task_struct *tsk, pid_t pgrp)
1468 {
1469 tsk->signal->__pgrp = pgrp;
1470 }
1471
1472 static inline struct pid *task_pid(struct task_struct *task)
1473 {
1474 return task->pids[PIDTYPE_PID].pid;
1475 }
1476
1477 static inline struct pid *task_tgid(struct task_struct *task)
1478 {
1479 return task->group_leader->pids[PIDTYPE_PID].pid;
1480 }
1481
1482 static inline struct pid *task_pgrp(struct task_struct *task)
1483 {
1484 return task->group_leader->pids[PIDTYPE_PGID].pid;
1485 }
1486
1487 static inline struct pid *task_session(struct task_struct *task)
1488 {
1489 return task->group_leader->pids[PIDTYPE_SID].pid;
1490 }
1491
1492 struct pid_namespace;
1493
1494 /*
1495 * the helpers to get the task's different pids as they are seen
1496 * from various namespaces
1497 *
1498 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1499 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1500 * current.
1501 * task_xid_nr_ns() : id seen from the ns specified;
1502 *
1503 * set_task_vxid() : assigns a virtual id to a task;
1504 *
1505 * see also pid_nr() etc in include/linux/pid.h
1506 */
1507
1508 static inline pid_t task_pid_nr(struct task_struct *tsk)
1509 {
1510 return tsk->pid;
1511 }
1512
1513 pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1514
1515 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1516 {
1517 return pid_vnr(task_pid(tsk));
1518 }
1519
1520
1521 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1522 {
1523 return tsk->tgid;
1524 }
1525
1526 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1527
1528 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1529 {
1530 return pid_vnr(task_tgid(tsk));
1531 }
1532
1533
1534 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1535 {
1536 return tsk->signal->__pgrp;
1537 }
1538
1539 pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1540
1541 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1542 {
1543 return pid_vnr(task_pgrp(tsk));
1544 }
1545
1546
1547 static inline pid_t task_session_nr(struct task_struct *tsk)
1548 {
1549 return tsk->signal->__session;
1550 }
1551
1552 pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1553
1554 static inline pid_t task_session_vnr(struct task_struct *tsk)
1555 {
1556 return pid_vnr(task_session(tsk));
1557 }
1558
1559
1560 /**
1561 * pid_alive - check that a task structure is not stale
1562 * @p: Task structure to be checked.
1563 *
1564 * Test if a process is not yet dead (at most zombie state)
1565 * If pid_alive fails, then pointers within the task structure
1566 * can be stale and must not be dereferenced.
1567 */
1568 static inline int pid_alive(struct task_struct *p)
1569 {
1570 return p->pids[PIDTYPE_PID].pid != NULL;
1571 }
1572
1573 /**
1574 * is_global_init - check if a task structure is init
1575 * @tsk: Task structure to be checked.
1576 *
1577 * Check if a task structure is the first user space task the kernel created.
1578 */
1579 static inline int is_global_init(struct task_struct *tsk)
1580 {
1581 return tsk->pid == 1;
1582 }
1583
1584 /*
1585 * is_container_init:
1586 * check whether in the task is init in its own pid namespace.
1587 */
1588 extern int is_container_init(struct task_struct *tsk);
1589
1590 extern struct pid *cad_pid;
1591
1592 extern void free_task(struct task_struct *tsk);
1593 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1594
1595 extern void __put_task_struct(struct task_struct *t);
1596
1597 static inline void put_task_struct(struct task_struct *t)
1598 {
1599 if (atomic_dec_and_test(&t->usage))
1600 __put_task_struct(t);
1601 }
1602
1603 extern cputime_t task_utime(struct task_struct *p);
1604 extern cputime_t task_stime(struct task_struct *p);
1605 extern cputime_t task_gtime(struct task_struct *p);
1606
1607 /*
1608 * Per process flags
1609 */
1610 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1611 /* Not implemented yet, only for 486*/
1612 #define PF_STARTING 0x00000002 /* being created */
1613 #define PF_EXITING 0x00000004 /* getting shut down */
1614 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1615 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1616 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1617 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1618 #define PF_DUMPCORE 0x00000200 /* dumped core */
1619 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1620 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1621 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1622 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1623 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1624 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1625 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1626 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1627 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */
1628 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1629 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1630 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1631 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1632 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1633 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1634 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1635 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1636 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1637 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1638 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */
1639
1640 /*
1641 * Only the _current_ task can read/write to tsk->flags, but other
1642 * tasks can access tsk->flags in readonly mode for example
1643 * with tsk_used_math (like during threaded core dumping).
1644 * There is however an exception to this rule during ptrace
1645 * or during fork: the ptracer task is allowed to write to the
1646 * child->flags of its traced child (same goes for fork, the parent
1647 * can write to the child->flags), because we're guaranteed the
1648 * child is not running and in turn not changing child->flags
1649 * at the same time the parent does it.
1650 */
1651 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1652 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1653 #define clear_used_math() clear_stopped_child_used_math(current)
1654 #define set_used_math() set_stopped_child_used_math(current)
1655 #define conditional_stopped_child_used_math(condition, child) \
1656 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1657 #define conditional_used_math(condition) \
1658 conditional_stopped_child_used_math(condition, current)
1659 #define copy_to_stopped_child_used_math(child) \
1660 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1661 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1662 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1663 #define used_math() tsk_used_math(current)
1664
1665 #ifdef CONFIG_SMP
1666 extern int set_cpus_allowed_ptr(struct task_struct *p,
1667 const struct cpumask *new_mask);
1668 #else
1669 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1670 const struct cpumask *new_mask)
1671 {
1672 if (!cpumask_test_cpu(0, new_mask))
1673 return -EINVAL;
1674 return 0;
1675 }
1676 #endif
1677 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1678 {
1679 return set_cpus_allowed_ptr(p, &new_mask);
1680 }
1681
1682 /*
1683 * Architectures can set this to 1 if they have specified
1684 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1685 * but then during bootup it turns out that sched_clock()
1686 * is reliable after all:
1687 */
1688 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1689 extern int sched_clock_stable;
1690 #endif
1691
1692 extern unsigned long long sched_clock(void);
1693
1694 extern void sched_clock_init(void);
1695 extern u64 sched_clock_cpu(int cpu);
1696
1697 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1698 static inline void sched_clock_tick(void)
1699 {
1700 }
1701
1702 static inline void sched_clock_idle_sleep_event(void)
1703 {
1704 }
1705
1706 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1707 {
1708 }
1709 #else
1710 extern void sched_clock_tick(void);
1711 extern void sched_clock_idle_sleep_event(void);
1712 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1713 #endif
1714
1715 /*
1716 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1717 * clock constructed from sched_clock():
1718 */
1719 extern unsigned long long cpu_clock(int cpu);
1720
1721 extern unsigned long long
1722 task_sched_runtime(struct task_struct *task);
1723 extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1724
1725 /* sched_exec is called by processes performing an exec */
1726 #ifdef CONFIG_SMP
1727 extern void sched_exec(void);
1728 #else
1729 #define sched_exec() {}
1730 #endif
1731
1732 extern void sched_clock_idle_sleep_event(void);
1733 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1734
1735 #ifdef CONFIG_HOTPLUG_CPU
1736 extern void idle_task_exit(void);
1737 #else
1738 static inline void idle_task_exit(void) {}
1739 #endif
1740
1741 extern void sched_idle_next(void);
1742
1743 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1744 extern void wake_up_idle_cpu(int cpu);
1745 #else
1746 static inline void wake_up_idle_cpu(int cpu) { }
1747 #endif
1748
1749 extern unsigned int sysctl_sched_latency;
1750 extern unsigned int sysctl_sched_min_granularity;
1751 extern unsigned int sysctl_sched_wakeup_granularity;
1752 extern unsigned int sysctl_sched_shares_ratelimit;
1753 extern unsigned int sysctl_sched_shares_thresh;
1754 #ifdef CONFIG_SCHED_DEBUG
1755 extern unsigned int sysctl_sched_child_runs_first;
1756 extern unsigned int sysctl_sched_features;
1757 extern unsigned int sysctl_sched_migration_cost;
1758 extern unsigned int sysctl_sched_nr_migrate;
1759
1760 int sched_nr_latency_handler(struct ctl_table *table, int write,
1761 struct file *file, void __user *buffer, size_t *length,
1762 loff_t *ppos);
1763 #endif
1764 extern unsigned int sysctl_sched_rt_period;
1765 extern int sysctl_sched_rt_runtime;
1766
1767 int sched_rt_handler(struct ctl_table *table, int write,
1768 struct file *filp, void __user *buffer, size_t *lenp,
1769 loff_t *ppos);
1770
1771 extern unsigned int sysctl_sched_compat_yield;
1772
1773 #ifdef CONFIG_RT_MUTEXES
1774 extern int rt_mutex_getprio(struct task_struct *p);
1775 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1776 extern void rt_mutex_adjust_pi(struct task_struct *p);
1777 #else
1778 static inline int rt_mutex_getprio(struct task_struct *p)
1779 {
1780 return p->normal_prio;
1781 }
1782 # define rt_mutex_adjust_pi(p) do { } while (0)
1783 #endif
1784
1785 extern void set_user_nice(struct task_struct *p, long nice);
1786 extern int task_prio(const struct task_struct *p);
1787 extern int task_nice(const struct task_struct *p);
1788 extern int can_nice(const struct task_struct *p, const int nice);
1789 extern int task_curr(const struct task_struct *p);
1790 extern int idle_cpu(int cpu);
1791 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1792 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1793 struct sched_param *);
1794 extern struct task_struct *idle_task(int cpu);
1795 extern struct task_struct *curr_task(int cpu);
1796 extern void set_curr_task(int cpu, struct task_struct *p);
1797
1798 void yield(void);
1799
1800 /*
1801 * The default (Linux) execution domain.
1802 */
1803 extern struct exec_domain default_exec_domain;
1804
1805 union thread_union {
1806 struct thread_info thread_info;
1807 unsigned long stack[THREAD_SIZE/sizeof(long)];
1808 };
1809
1810 #ifndef __HAVE_ARCH_KSTACK_END
1811 static inline int kstack_end(void *addr)
1812 {
1813 /* Reliable end of stack detection:
1814 * Some APM bios versions misalign the stack
1815 */
1816 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1817 }
1818 #endif
1819
1820 extern union thread_union init_thread_union;
1821 extern struct task_struct init_task;
1822
1823 extern struct mm_struct init_mm;
1824
1825 extern struct pid_namespace init_pid_ns;
1826
1827 /*
1828 * find a task by one of its numerical ids
1829 *
1830 * find_task_by_pid_type_ns():
1831 * it is the most generic call - it finds a task by all id,
1832 * type and namespace specified
1833 * find_task_by_pid_ns():
1834 * finds a task by its pid in the specified namespace
1835 * find_task_by_vpid():
1836 * finds a task by its virtual pid
1837 *
1838 * see also find_vpid() etc in include/linux/pid.h
1839 */
1840
1841 extern struct task_struct *find_task_by_pid_type_ns(int type, int pid,
1842 struct pid_namespace *ns);
1843
1844 extern struct task_struct *find_task_by_vpid(pid_t nr);
1845 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1846 struct pid_namespace *ns);
1847
1848 extern void __set_special_pids(struct pid *pid);
1849
1850 /* per-UID process charging. */
1851 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1852 static inline struct user_struct *get_uid(struct user_struct *u)
1853 {
1854 atomic_inc(&u->__count);
1855 return u;
1856 }
1857 extern void free_uid(struct user_struct *);
1858 extern void release_uids(struct user_namespace *ns);
1859
1860 #include <asm/current.h>
1861
1862 extern void do_timer(unsigned long ticks);
1863
1864 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1865 extern int wake_up_process(struct task_struct *tsk);
1866 extern void wake_up_new_task(struct task_struct *tsk,
1867 unsigned long clone_flags);
1868 #ifdef CONFIG_SMP
1869 extern void kick_process(struct task_struct *tsk);
1870 #else
1871 static inline void kick_process(struct task_struct *tsk) { }
1872 #endif
1873 extern void sched_fork(struct task_struct *p, int clone_flags);
1874 extern void sched_dead(struct task_struct *p);
1875
1876 extern void proc_caches_init(void);
1877 extern void flush_signals(struct task_struct *);
1878 extern void ignore_signals(struct task_struct *);
1879 extern void flush_signal_handlers(struct task_struct *, int force_default);
1880 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1881
1882 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1883 {
1884 unsigned long flags;
1885 int ret;
1886
1887 spin_lock_irqsave(&tsk->sighand->siglock, flags);
1888 ret = dequeue_signal(tsk, mask, info);
1889 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1890
1891 return ret;
1892 }
1893
1894 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1895 sigset_t *mask);
1896 extern void unblock_all_signals(void);
1897 extern void release_task(struct task_struct * p);
1898 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1899 extern int force_sigsegv(int, struct task_struct *);
1900 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1901 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1902 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
1903 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
1904 extern int kill_pgrp(struct pid *pid, int sig, int priv);
1905 extern int kill_pid(struct pid *pid, int sig, int priv);
1906 extern int kill_proc_info(int, struct siginfo *, pid_t);
1907 extern int do_notify_parent(struct task_struct *, int);
1908 extern void force_sig(int, struct task_struct *);
1909 extern void force_sig_specific(int, struct task_struct *);
1910 extern int send_sig(int, struct task_struct *, int);
1911 extern void zap_other_threads(struct task_struct *p);
1912 extern struct sigqueue *sigqueue_alloc(void);
1913 extern void sigqueue_free(struct sigqueue *);
1914 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
1915 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1916 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1917
1918 static inline int kill_cad_pid(int sig, int priv)
1919 {
1920 return kill_pid(cad_pid, sig, priv);
1921 }
1922
1923 /* These can be the second arg to send_sig_info/send_group_sig_info. */
1924 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
1925 #define SEND_SIG_PRIV ((struct siginfo *) 1)
1926 #define SEND_SIG_FORCED ((struct siginfo *) 2)
1927
1928 static inline int is_si_special(const struct siginfo *info)
1929 {
1930 return info <= SEND_SIG_FORCED;
1931 }
1932
1933 /* True if we are on the alternate signal stack. */
1934
1935 static inline int on_sig_stack(unsigned long sp)
1936 {
1937 return (sp - current->sas_ss_sp < current->sas_ss_size);
1938 }
1939
1940 static inline int sas_ss_flags(unsigned long sp)
1941 {
1942 return (current->sas_ss_size == 0 ? SS_DISABLE
1943 : on_sig_stack(sp) ? SS_ONSTACK : 0);
1944 }
1945
1946 /*
1947 * Routines for handling mm_structs
1948 */
1949 extern struct mm_struct * mm_alloc(void);
1950
1951 /* mmdrop drops the mm and the page tables */
1952 extern void __mmdrop(struct mm_struct *);
1953 static inline void mmdrop(struct mm_struct * mm)
1954 {
1955 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1956 __mmdrop(mm);
1957 }
1958
1959 /* mmput gets rid of the mappings and all user-space */
1960 extern void mmput(struct mm_struct *);
1961 /* Grab a reference to a task's mm, if it is not already going away */
1962 extern struct mm_struct *get_task_mm(struct task_struct *task);
1963 /* Remove the current tasks stale references to the old mm_struct */
1964 extern void mm_release(struct task_struct *, struct mm_struct *);
1965 /* Allocate a new mm structure and copy contents from tsk->mm */
1966 extern struct mm_struct *dup_mm(struct task_struct *tsk);
1967
1968 extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
1969 extern void flush_thread(void);
1970 extern void exit_thread(void);
1971
1972 extern void exit_files(struct task_struct *);
1973 extern void __cleanup_signal(struct signal_struct *);
1974 extern void __cleanup_sighand(struct sighand_struct *);
1975
1976 extern void exit_itimers(struct signal_struct *);
1977 extern void flush_itimer_signals(void);
1978
1979 extern NORET_TYPE void do_group_exit(int);
1980
1981 extern void daemonize(const char *, ...);
1982 extern int allow_signal(int);
1983 extern int disallow_signal(int);
1984
1985 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
1986 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
1987 struct task_struct *fork_idle(int);
1988
1989 extern void set_task_comm(struct task_struct *tsk, char *from);
1990 extern char *get_task_comm(char *to, struct task_struct *tsk);
1991
1992 #ifdef CONFIG_SMP
1993 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1994 #else
1995 static inline unsigned long wait_task_inactive(struct task_struct *p,
1996 long match_state)
1997 {
1998 return 1;
1999 }
2000 #endif
2001
2002 #define next_task(p) list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks)
2003
2004 #define for_each_process(p) \
2005 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2006
2007 extern bool is_single_threaded(struct task_struct *);
2008
2009 /*
2010 * Careful: do_each_thread/while_each_thread is a double loop so
2011 * 'break' will not work as expected - use goto instead.
2012 */
2013 #define do_each_thread(g, t) \
2014 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2015
2016 #define while_each_thread(g, t) \
2017 while ((t = next_thread(t)) != g)
2018
2019 /* de_thread depends on thread_group_leader not being a pid based check */
2020 #define thread_group_leader(p) (p == p->group_leader)
2021
2022 /* Do to the insanities of de_thread it is possible for a process
2023 * to have the pid of the thread group leader without actually being
2024 * the thread group leader. For iteration through the pids in proc
2025 * all we care about is that we have a task with the appropriate
2026 * pid, we don't actually care if we have the right task.
2027 */
2028 static inline int has_group_leader_pid(struct task_struct *p)
2029 {
2030 return p->pid == p->tgid;
2031 }
2032
2033 static inline
2034 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2035 {
2036 return p1->tgid == p2->tgid;
2037 }
2038
2039 static inline struct task_struct *next_thread(const struct task_struct *p)
2040 {
2041 return list_entry(rcu_dereference(p->thread_group.next),
2042 struct task_struct, thread_group);
2043 }
2044
2045 static inline int thread_group_empty(struct task_struct *p)
2046 {
2047 return list_empty(&p->thread_group);
2048 }
2049
2050 #define delay_group_leader(p) \
2051 (thread_group_leader(p) && !thread_group_empty(p))
2052
2053 /*
2054 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2055 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2056 * pins the final release of task.io_context. Also protects ->cpuset and
2057 * ->cgroup.subsys[].
2058 *
2059 * Nests both inside and outside of read_lock(&tasklist_lock).
2060 * It must not be nested with write_lock_irq(&tasklist_lock),
2061 * neither inside nor outside.
2062 */
2063 static inline void task_lock(struct task_struct *p)
2064 {
2065 spin_lock(&p->alloc_lock);
2066 }
2067
2068 static inline void task_unlock(struct task_struct *p)
2069 {
2070 spin_unlock(&p->alloc_lock);
2071 }
2072
2073 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2074 unsigned long *flags);
2075
2076 static inline void unlock_task_sighand(struct task_struct *tsk,
2077 unsigned long *flags)
2078 {
2079 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2080 }
2081
2082 #ifndef __HAVE_THREAD_FUNCTIONS
2083
2084 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2085 #define task_stack_page(task) ((task)->stack)
2086
2087 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2088 {
2089 *task_thread_info(p) = *task_thread_info(org);
2090 task_thread_info(p)->task = p;
2091 }
2092
2093 static inline unsigned long *end_of_stack(struct task_struct *p)
2094 {
2095 return (unsigned long *)(task_thread_info(p) + 1);
2096 }
2097
2098 #endif
2099
2100 static inline int object_is_on_stack(void *obj)
2101 {
2102 void *stack = task_stack_page(current);
2103
2104 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2105 }
2106
2107 extern void thread_info_cache_init(void);
2108
2109 #ifdef CONFIG_DEBUG_STACK_USAGE
2110 static inline unsigned long stack_not_used(struct task_struct *p)
2111 {
2112 unsigned long *n = end_of_stack(p);
2113
2114 do { /* Skip over canary */
2115 n++;
2116 } while (!*n);
2117
2118 return (unsigned long)n - (unsigned long)end_of_stack(p);
2119 }
2120 #endif
2121
2122 /* set thread flags in other task's structures
2123 * - see asm/thread_info.h for TIF_xxxx flags available
2124 */
2125 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2126 {
2127 set_ti_thread_flag(task_thread_info(tsk), flag);
2128 }
2129
2130 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2131 {
2132 clear_ti_thread_flag(task_thread_info(tsk), flag);
2133 }
2134
2135 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2136 {
2137 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2138 }
2139
2140 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2141 {
2142 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2143 }
2144
2145 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2146 {
2147 return test_ti_thread_flag(task_thread_info(tsk), flag);
2148 }
2149
2150 static inline void set_tsk_need_resched(struct task_struct *tsk)
2151 {
2152 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2153 }
2154
2155 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2156 {
2157 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2158 }
2159
2160 static inline int test_tsk_need_resched(struct task_struct *tsk)
2161 {
2162 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2163 }
2164
2165 static inline int signal_pending(struct task_struct *p)
2166 {
2167 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2168 }
2169
2170 extern int __fatal_signal_pending(struct task_struct *p);
2171
2172 static inline int fatal_signal_pending(struct task_struct *p)
2173 {
2174 return signal_pending(p) && __fatal_signal_pending(p);
2175 }
2176
2177 static inline int signal_pending_state(long state, struct task_struct *p)
2178 {
2179 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2180 return 0;
2181 if (!signal_pending(p))
2182 return 0;
2183
2184 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2185 }
2186
2187 static inline int need_resched(void)
2188 {
2189 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2190 }
2191
2192 /*
2193 * cond_resched() and cond_resched_lock(): latency reduction via
2194 * explicit rescheduling in places that are safe. The return
2195 * value indicates whether a reschedule was done in fact.
2196 * cond_resched_lock() will drop the spinlock before scheduling,
2197 * cond_resched_softirq() will enable bhs before scheduling.
2198 */
2199 extern int _cond_resched(void);
2200 #ifdef CONFIG_PREEMPT_BKL
2201 static inline int cond_resched(void)
2202 {
2203 return 0;
2204 }
2205 #else
2206 static inline int cond_resched(void)
2207 {
2208 return _cond_resched();
2209 }
2210 #endif
2211 extern int cond_resched_lock(spinlock_t * lock);
2212 extern int cond_resched_softirq(void);
2213 static inline int cond_resched_bkl(void)
2214 {
2215 return _cond_resched();
2216 }
2217
2218 /*
2219 * Does a critical section need to be broken due to another
2220 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2221 * but a general need for low latency)
2222 */
2223 static inline int spin_needbreak(spinlock_t *lock)
2224 {
2225 #ifdef CONFIG_PREEMPT
2226 return spin_is_contended(lock);
2227 #else
2228 return 0;
2229 #endif
2230 }
2231
2232 /*
2233 * Thread group CPU time accounting.
2234 */
2235 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2236 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2237
2238 static inline void thread_group_cputime_init(struct signal_struct *sig)
2239 {
2240 sig->cputimer.cputime = INIT_CPUTIME;
2241 spin_lock_init(&sig->cputimer.lock);
2242 sig->cputimer.running = 0;
2243 }
2244
2245 static inline void thread_group_cputime_free(struct signal_struct *sig)
2246 {
2247 }
2248
2249 /*
2250 * Reevaluate whether the task has signals pending delivery.
2251 * Wake the task if so.
2252 * This is required every time the blocked sigset_t changes.
2253 * callers must hold sighand->siglock.
2254 */
2255 extern void recalc_sigpending_and_wake(struct task_struct *t);
2256 extern void recalc_sigpending(void);
2257
2258 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2259
2260 /*
2261 * Wrappers for p->thread_info->cpu access. No-op on UP.
2262 */
2263 #ifdef CONFIG_SMP
2264
2265 static inline unsigned int task_cpu(const struct task_struct *p)
2266 {
2267 return task_thread_info(p)->cpu;
2268 }
2269
2270 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2271
2272 #else
2273
2274 static inline unsigned int task_cpu(const struct task_struct *p)
2275 {
2276 return 0;
2277 }
2278
2279 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2280 {
2281 }
2282
2283 #endif /* CONFIG_SMP */
2284
2285 extern void arch_pick_mmap_layout(struct mm_struct *mm);
2286
2287 #ifdef CONFIG_TRACING
2288 extern void
2289 __trace_special(void *__tr, void *__data,
2290 unsigned long arg1, unsigned long arg2, unsigned long arg3);
2291 #else
2292 static inline void
2293 __trace_special(void *__tr, void *__data,
2294 unsigned long arg1, unsigned long arg2, unsigned long arg3)
2295 {
2296 }
2297 #endif
2298
2299 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2300 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2301
2302 extern void normalize_rt_tasks(void);
2303
2304 #ifdef CONFIG_GROUP_SCHED
2305
2306 extern struct task_group init_task_group;
2307 #ifdef CONFIG_USER_SCHED
2308 extern struct task_group root_task_group;
2309 extern void set_tg_uid(struct user_struct *user);
2310 #endif
2311
2312 extern struct task_group *sched_create_group(struct task_group *parent);
2313 extern void sched_destroy_group(struct task_group *tg);
2314 extern void sched_move_task(struct task_struct *tsk);
2315 #ifdef CONFIG_FAIR_GROUP_SCHED
2316 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2317 extern unsigned long sched_group_shares(struct task_group *tg);
2318 #endif
2319 #ifdef CONFIG_RT_GROUP_SCHED
2320 extern int sched_group_set_rt_runtime(struct task_group *tg,
2321 long rt_runtime_us);
2322 extern long sched_group_rt_runtime(struct task_group *tg);
2323 extern int sched_group_set_rt_period(struct task_group *tg,
2324 long rt_period_us);
2325 extern long sched_group_rt_period(struct task_group *tg);
2326 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2327 #endif
2328 #endif
2329
2330 extern int task_can_switch_user(struct user_struct *up,
2331 struct task_struct *tsk);
2332
2333 #ifdef CONFIG_TASK_XACCT
2334 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2335 {
2336 tsk->ioac.rchar += amt;
2337 }
2338
2339 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2340 {
2341 tsk->ioac.wchar += amt;
2342 }
2343
2344 static inline void inc_syscr(struct task_struct *tsk)
2345 {
2346 tsk->ioac.syscr++;
2347 }
2348
2349 static inline void inc_syscw(struct task_struct *tsk)
2350 {
2351 tsk->ioac.syscw++;
2352 }
2353 #else
2354 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2355 {
2356 }
2357
2358 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2359 {
2360 }
2361
2362 static inline void inc_syscr(struct task_struct *tsk)
2363 {
2364 }
2365
2366 static inline void inc_syscw(struct task_struct *tsk)
2367 {
2368 }
2369 #endif
2370
2371 #ifndef TASK_SIZE_OF
2372 #define TASK_SIZE_OF(tsk) TASK_SIZE
2373 #endif
2374
2375 #ifdef CONFIG_MM_OWNER
2376 extern void mm_update_next_owner(struct mm_struct *mm);
2377 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2378 #else
2379 static inline void mm_update_next_owner(struct mm_struct *mm)
2380 {
2381 }
2382
2383 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2384 {
2385 }
2386 #endif /* CONFIG_MM_OWNER */
2387
2388 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
2389
2390 #endif /* __KERNEL__ */
2391
2392 #endif
This page took 0.119936 seconds and 5 git commands to generate.