introduce for_each_thread() to replace the buggy while_each_thread()
[deliverable/linux.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <uapi/linux/sched.h>
5
6
7 struct sched_param {
8 int sched_priority;
9 };
10
11 #include <asm/param.h> /* for HZ */
12
13 #include <linux/capability.h>
14 #include <linux/threads.h>
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/timex.h>
18 #include <linux/jiffies.h>
19 #include <linux/plist.h>
20 #include <linux/rbtree.h>
21 #include <linux/thread_info.h>
22 #include <linux/cpumask.h>
23 #include <linux/errno.h>
24 #include <linux/nodemask.h>
25 #include <linux/mm_types.h>
26 #include <linux/preempt_mask.h>
27
28 #include <asm/page.h>
29 #include <asm/ptrace.h>
30 #include <asm/cputime.h>
31
32 #include <linux/smp.h>
33 #include <linux/sem.h>
34 #include <linux/signal.h>
35 #include <linux/compiler.h>
36 #include <linux/completion.h>
37 #include <linux/pid.h>
38 #include <linux/percpu.h>
39 #include <linux/topology.h>
40 #include <linux/proportions.h>
41 #include <linux/seccomp.h>
42 #include <linux/rcupdate.h>
43 #include <linux/rculist.h>
44 #include <linux/rtmutex.h>
45
46 #include <linux/time.h>
47 #include <linux/param.h>
48 #include <linux/resource.h>
49 #include <linux/timer.h>
50 #include <linux/hrtimer.h>
51 #include <linux/task_io_accounting.h>
52 #include <linux/latencytop.h>
53 #include <linux/cred.h>
54 #include <linux/llist.h>
55 #include <linux/uidgid.h>
56 #include <linux/gfp.h>
57
58 #include <asm/processor.h>
59
60 #define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */
61
62 /*
63 * Extended scheduling parameters data structure.
64 *
65 * This is needed because the original struct sched_param can not be
66 * altered without introducing ABI issues with legacy applications
67 * (e.g., in sched_getparam()).
68 *
69 * However, the possibility of specifying more than just a priority for
70 * the tasks may be useful for a wide variety of application fields, e.g.,
71 * multimedia, streaming, automation and control, and many others.
72 *
73 * This variant (sched_attr) is meant at describing a so-called
74 * sporadic time-constrained task. In such model a task is specified by:
75 * - the activation period or minimum instance inter-arrival time;
76 * - the maximum (or average, depending on the actual scheduling
77 * discipline) computation time of all instances, a.k.a. runtime;
78 * - the deadline (relative to the actual activation time) of each
79 * instance.
80 * Very briefly, a periodic (sporadic) task asks for the execution of
81 * some specific computation --which is typically called an instance--
82 * (at most) every period. Moreover, each instance typically lasts no more
83 * than the runtime and must be completed by time instant t equal to
84 * the instance activation time + the deadline.
85 *
86 * This is reflected by the actual fields of the sched_attr structure:
87 *
88 * @size size of the structure, for fwd/bwd compat.
89 *
90 * @sched_policy task's scheduling policy
91 * @sched_flags for customizing the scheduler behaviour
92 * @sched_nice task's nice value (SCHED_NORMAL/BATCH)
93 * @sched_priority task's static priority (SCHED_FIFO/RR)
94 * @sched_deadline representative of the task's deadline
95 * @sched_runtime representative of the task's runtime
96 * @sched_period representative of the task's period
97 *
98 * Given this task model, there are a multiplicity of scheduling algorithms
99 * and policies, that can be used to ensure all the tasks will make their
100 * timing constraints.
101 *
102 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
103 * only user of this new interface. More information about the algorithm
104 * available in the scheduling class file or in Documentation/.
105 */
106 struct sched_attr {
107 u32 size;
108
109 u32 sched_policy;
110 u64 sched_flags;
111
112 /* SCHED_NORMAL, SCHED_BATCH */
113 s32 sched_nice;
114
115 /* SCHED_FIFO, SCHED_RR */
116 u32 sched_priority;
117
118 /* SCHED_DEADLINE */
119 u64 sched_runtime;
120 u64 sched_deadline;
121 u64 sched_period;
122 };
123
124 struct exec_domain;
125 struct futex_pi_state;
126 struct robust_list_head;
127 struct bio_list;
128 struct fs_struct;
129 struct perf_event_context;
130 struct blk_plug;
131
132 /*
133 * List of flags we want to share for kernel threads,
134 * if only because they are not used by them anyway.
135 */
136 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
137
138 /*
139 * These are the constant used to fake the fixed-point load-average
140 * counting. Some notes:
141 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
142 * a load-average precision of 10 bits integer + 11 bits fractional
143 * - if you want to count load-averages more often, you need more
144 * precision, or rounding will get you. With 2-second counting freq,
145 * the EXP_n values would be 1981, 2034 and 2043 if still using only
146 * 11 bit fractions.
147 */
148 extern unsigned long avenrun[]; /* Load averages */
149 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
150
151 #define FSHIFT 11 /* nr of bits of precision */
152 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
153 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
154 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
155 #define EXP_5 2014 /* 1/exp(5sec/5min) */
156 #define EXP_15 2037 /* 1/exp(5sec/15min) */
157
158 #define CALC_LOAD(load,exp,n) \
159 load *= exp; \
160 load += n*(FIXED_1-exp); \
161 load >>= FSHIFT;
162
163 extern unsigned long total_forks;
164 extern int nr_threads;
165 DECLARE_PER_CPU(unsigned long, process_counts);
166 extern int nr_processes(void);
167 extern unsigned long nr_running(void);
168 extern unsigned long nr_iowait(void);
169 extern unsigned long nr_iowait_cpu(int cpu);
170 extern unsigned long this_cpu_load(void);
171
172
173 extern void calc_global_load(unsigned long ticks);
174 extern void update_cpu_load_nohz(void);
175
176 extern unsigned long get_parent_ip(unsigned long addr);
177
178 extern void dump_cpu_task(int cpu);
179
180 struct seq_file;
181 struct cfs_rq;
182 struct task_group;
183 #ifdef CONFIG_SCHED_DEBUG
184 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
185 extern void proc_sched_set_task(struct task_struct *p);
186 extern void
187 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
188 #endif
189
190 /*
191 * Task state bitmask. NOTE! These bits are also
192 * encoded in fs/proc/array.c: get_task_state().
193 *
194 * We have two separate sets of flags: task->state
195 * is about runnability, while task->exit_state are
196 * about the task exiting. Confusing, but this way
197 * modifying one set can't modify the other one by
198 * mistake.
199 */
200 #define TASK_RUNNING 0
201 #define TASK_INTERRUPTIBLE 1
202 #define TASK_UNINTERRUPTIBLE 2
203 #define __TASK_STOPPED 4
204 #define __TASK_TRACED 8
205 /* in tsk->exit_state */
206 #define EXIT_ZOMBIE 16
207 #define EXIT_DEAD 32
208 /* in tsk->state again */
209 #define TASK_DEAD 64
210 #define TASK_WAKEKILL 128
211 #define TASK_WAKING 256
212 #define TASK_PARKED 512
213 #define TASK_STATE_MAX 1024
214
215 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
216
217 extern char ___assert_task_state[1 - 2*!!(
218 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
219
220 /* Convenience macros for the sake of set_task_state */
221 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
222 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
223 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
224
225 /* Convenience macros for the sake of wake_up */
226 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
227 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
228
229 /* get_task_state() */
230 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
231 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
232 __TASK_TRACED)
233
234 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
235 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
236 #define task_is_stopped_or_traced(task) \
237 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
238 #define task_contributes_to_load(task) \
239 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
240 (task->flags & PF_FROZEN) == 0)
241
242 #define __set_task_state(tsk, state_value) \
243 do { (tsk)->state = (state_value); } while (0)
244 #define set_task_state(tsk, state_value) \
245 set_mb((tsk)->state, (state_value))
246
247 /*
248 * set_current_state() includes a barrier so that the write of current->state
249 * is correctly serialised wrt the caller's subsequent test of whether to
250 * actually sleep:
251 *
252 * set_current_state(TASK_UNINTERRUPTIBLE);
253 * if (do_i_need_to_sleep())
254 * schedule();
255 *
256 * If the caller does not need such serialisation then use __set_current_state()
257 */
258 #define __set_current_state(state_value) \
259 do { current->state = (state_value); } while (0)
260 #define set_current_state(state_value) \
261 set_mb(current->state, (state_value))
262
263 /* Task command name length */
264 #define TASK_COMM_LEN 16
265
266 #include <linux/spinlock.h>
267
268 /*
269 * This serializes "schedule()" and also protects
270 * the run-queue from deletions/modifications (but
271 * _adding_ to the beginning of the run-queue has
272 * a separate lock).
273 */
274 extern rwlock_t tasklist_lock;
275 extern spinlock_t mmlist_lock;
276
277 struct task_struct;
278
279 #ifdef CONFIG_PROVE_RCU
280 extern int lockdep_tasklist_lock_is_held(void);
281 #endif /* #ifdef CONFIG_PROVE_RCU */
282
283 extern void sched_init(void);
284 extern void sched_init_smp(void);
285 extern asmlinkage void schedule_tail(struct task_struct *prev);
286 extern void init_idle(struct task_struct *idle, int cpu);
287 extern void init_idle_bootup_task(struct task_struct *idle);
288
289 extern int runqueue_is_locked(int cpu);
290
291 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
292 extern void nohz_balance_enter_idle(int cpu);
293 extern void set_cpu_sd_state_idle(void);
294 extern int get_nohz_timer_target(void);
295 #else
296 static inline void nohz_balance_enter_idle(int cpu) { }
297 static inline void set_cpu_sd_state_idle(void) { }
298 #endif
299
300 /*
301 * Only dump TASK_* tasks. (0 for all tasks)
302 */
303 extern void show_state_filter(unsigned long state_filter);
304
305 static inline void show_state(void)
306 {
307 show_state_filter(0);
308 }
309
310 extern void show_regs(struct pt_regs *);
311
312 /*
313 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
314 * task), SP is the stack pointer of the first frame that should be shown in the back
315 * trace (or NULL if the entire call-chain of the task should be shown).
316 */
317 extern void show_stack(struct task_struct *task, unsigned long *sp);
318
319 void io_schedule(void);
320 long io_schedule_timeout(long timeout);
321
322 extern void cpu_init (void);
323 extern void trap_init(void);
324 extern void update_process_times(int user);
325 extern void scheduler_tick(void);
326
327 extern void sched_show_task(struct task_struct *p);
328
329 #ifdef CONFIG_LOCKUP_DETECTOR
330 extern void touch_softlockup_watchdog(void);
331 extern void touch_softlockup_watchdog_sync(void);
332 extern void touch_all_softlockup_watchdogs(void);
333 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
334 void __user *buffer,
335 size_t *lenp, loff_t *ppos);
336 extern unsigned int softlockup_panic;
337 void lockup_detector_init(void);
338 #else
339 static inline void touch_softlockup_watchdog(void)
340 {
341 }
342 static inline void touch_softlockup_watchdog_sync(void)
343 {
344 }
345 static inline void touch_all_softlockup_watchdogs(void)
346 {
347 }
348 static inline void lockup_detector_init(void)
349 {
350 }
351 #endif
352
353 #ifdef CONFIG_DETECT_HUNG_TASK
354 void reset_hung_task_detector(void);
355 #else
356 static inline void reset_hung_task_detector(void)
357 {
358 }
359 #endif
360
361 /* Attach to any functions which should be ignored in wchan output. */
362 #define __sched __attribute__((__section__(".sched.text")))
363
364 /* Linker adds these: start and end of __sched functions */
365 extern char __sched_text_start[], __sched_text_end[];
366
367 /* Is this address in the __sched functions? */
368 extern int in_sched_functions(unsigned long addr);
369
370 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
371 extern signed long schedule_timeout(signed long timeout);
372 extern signed long schedule_timeout_interruptible(signed long timeout);
373 extern signed long schedule_timeout_killable(signed long timeout);
374 extern signed long schedule_timeout_uninterruptible(signed long timeout);
375 asmlinkage void schedule(void);
376 extern void schedule_preempt_disabled(void);
377
378 struct nsproxy;
379 struct user_namespace;
380
381 #ifdef CONFIG_MMU
382 extern void arch_pick_mmap_layout(struct mm_struct *mm);
383 extern unsigned long
384 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
385 unsigned long, unsigned long);
386 extern unsigned long
387 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
388 unsigned long len, unsigned long pgoff,
389 unsigned long flags);
390 #else
391 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
392 #endif
393
394
395 extern void set_dumpable(struct mm_struct *mm, int value);
396 extern int get_dumpable(struct mm_struct *mm);
397
398 #define SUID_DUMP_DISABLE 0 /* No setuid dumping */
399 #define SUID_DUMP_USER 1 /* Dump as user of process */
400 #define SUID_DUMP_ROOT 2 /* Dump as root */
401
402 /* mm flags */
403 /* dumpable bits */
404 #define MMF_DUMPABLE 0 /* core dump is permitted */
405 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
406
407 #define MMF_DUMPABLE_BITS 2
408 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
409
410 /* coredump filter bits */
411 #define MMF_DUMP_ANON_PRIVATE 2
412 #define MMF_DUMP_ANON_SHARED 3
413 #define MMF_DUMP_MAPPED_PRIVATE 4
414 #define MMF_DUMP_MAPPED_SHARED 5
415 #define MMF_DUMP_ELF_HEADERS 6
416 #define MMF_DUMP_HUGETLB_PRIVATE 7
417 #define MMF_DUMP_HUGETLB_SHARED 8
418
419 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
420 #define MMF_DUMP_FILTER_BITS 7
421 #define MMF_DUMP_FILTER_MASK \
422 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
423 #define MMF_DUMP_FILTER_DEFAULT \
424 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
425 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
426
427 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
428 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
429 #else
430 # define MMF_DUMP_MASK_DEFAULT_ELF 0
431 #endif
432 /* leave room for more dump flags */
433 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
434 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
435 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
436
437 #define MMF_HAS_UPROBES 19 /* has uprobes */
438 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
439
440 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
441
442 struct sighand_struct {
443 atomic_t count;
444 struct k_sigaction action[_NSIG];
445 spinlock_t siglock;
446 wait_queue_head_t signalfd_wqh;
447 };
448
449 struct pacct_struct {
450 int ac_flag;
451 long ac_exitcode;
452 unsigned long ac_mem;
453 cputime_t ac_utime, ac_stime;
454 unsigned long ac_minflt, ac_majflt;
455 };
456
457 struct cpu_itimer {
458 cputime_t expires;
459 cputime_t incr;
460 u32 error;
461 u32 incr_error;
462 };
463
464 /**
465 * struct cputime - snaphsot of system and user cputime
466 * @utime: time spent in user mode
467 * @stime: time spent in system mode
468 *
469 * Gathers a generic snapshot of user and system time.
470 */
471 struct cputime {
472 cputime_t utime;
473 cputime_t stime;
474 };
475
476 /**
477 * struct task_cputime - collected CPU time counts
478 * @utime: time spent in user mode, in &cputime_t units
479 * @stime: time spent in kernel mode, in &cputime_t units
480 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
481 *
482 * This is an extension of struct cputime that includes the total runtime
483 * spent by the task from the scheduler point of view.
484 *
485 * As a result, this structure groups together three kinds of CPU time
486 * that are tracked for threads and thread groups. Most things considering
487 * CPU time want to group these counts together and treat all three
488 * of them in parallel.
489 */
490 struct task_cputime {
491 cputime_t utime;
492 cputime_t stime;
493 unsigned long long sum_exec_runtime;
494 };
495 /* Alternate field names when used to cache expirations. */
496 #define prof_exp stime
497 #define virt_exp utime
498 #define sched_exp sum_exec_runtime
499
500 #define INIT_CPUTIME \
501 (struct task_cputime) { \
502 .utime = 0, \
503 .stime = 0, \
504 .sum_exec_runtime = 0, \
505 }
506
507 #ifdef CONFIG_PREEMPT_COUNT
508 #define PREEMPT_DISABLED (1 + PREEMPT_ENABLED)
509 #else
510 #define PREEMPT_DISABLED PREEMPT_ENABLED
511 #endif
512
513 /*
514 * Disable preemption until the scheduler is running.
515 * Reset by start_kernel()->sched_init()->init_idle().
516 *
517 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
518 * before the scheduler is active -- see should_resched().
519 */
520 #define INIT_PREEMPT_COUNT (PREEMPT_DISABLED + PREEMPT_ACTIVE)
521
522 /**
523 * struct thread_group_cputimer - thread group interval timer counts
524 * @cputime: thread group interval timers.
525 * @running: non-zero when there are timers running and
526 * @cputime receives updates.
527 * @lock: lock for fields in this struct.
528 *
529 * This structure contains the version of task_cputime, above, that is
530 * used for thread group CPU timer calculations.
531 */
532 struct thread_group_cputimer {
533 struct task_cputime cputime;
534 int running;
535 raw_spinlock_t lock;
536 };
537
538 #include <linux/rwsem.h>
539 struct autogroup;
540
541 /*
542 * NOTE! "signal_struct" does not have its own
543 * locking, because a shared signal_struct always
544 * implies a shared sighand_struct, so locking
545 * sighand_struct is always a proper superset of
546 * the locking of signal_struct.
547 */
548 struct signal_struct {
549 atomic_t sigcnt;
550 atomic_t live;
551 int nr_threads;
552 struct list_head thread_head;
553
554 wait_queue_head_t wait_chldexit; /* for wait4() */
555
556 /* current thread group signal load-balancing target: */
557 struct task_struct *curr_target;
558
559 /* shared signal handling: */
560 struct sigpending shared_pending;
561
562 /* thread group exit support */
563 int group_exit_code;
564 /* overloaded:
565 * - notify group_exit_task when ->count is equal to notify_count
566 * - everyone except group_exit_task is stopped during signal delivery
567 * of fatal signals, group_exit_task processes the signal.
568 */
569 int notify_count;
570 struct task_struct *group_exit_task;
571
572 /* thread group stop support, overloads group_exit_code too */
573 int group_stop_count;
574 unsigned int flags; /* see SIGNAL_* flags below */
575
576 /*
577 * PR_SET_CHILD_SUBREAPER marks a process, like a service
578 * manager, to re-parent orphan (double-forking) child processes
579 * to this process instead of 'init'. The service manager is
580 * able to receive SIGCHLD signals and is able to investigate
581 * the process until it calls wait(). All children of this
582 * process will inherit a flag if they should look for a
583 * child_subreaper process at exit.
584 */
585 unsigned int is_child_subreaper:1;
586 unsigned int has_child_subreaper:1;
587
588 /* POSIX.1b Interval Timers */
589 int posix_timer_id;
590 struct list_head posix_timers;
591
592 /* ITIMER_REAL timer for the process */
593 struct hrtimer real_timer;
594 struct pid *leader_pid;
595 ktime_t it_real_incr;
596
597 /*
598 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
599 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
600 * values are defined to 0 and 1 respectively
601 */
602 struct cpu_itimer it[2];
603
604 /*
605 * Thread group totals for process CPU timers.
606 * See thread_group_cputimer(), et al, for details.
607 */
608 struct thread_group_cputimer cputimer;
609
610 /* Earliest-expiration cache. */
611 struct task_cputime cputime_expires;
612
613 struct list_head cpu_timers[3];
614
615 struct pid *tty_old_pgrp;
616
617 /* boolean value for session group leader */
618 int leader;
619
620 struct tty_struct *tty; /* NULL if no tty */
621
622 #ifdef CONFIG_SCHED_AUTOGROUP
623 struct autogroup *autogroup;
624 #endif
625 /*
626 * Cumulative resource counters for dead threads in the group,
627 * and for reaped dead child processes forked by this group.
628 * Live threads maintain their own counters and add to these
629 * in __exit_signal, except for the group leader.
630 */
631 cputime_t utime, stime, cutime, cstime;
632 cputime_t gtime;
633 cputime_t cgtime;
634 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
635 struct cputime prev_cputime;
636 #endif
637 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
638 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
639 unsigned long inblock, oublock, cinblock, coublock;
640 unsigned long maxrss, cmaxrss;
641 struct task_io_accounting ioac;
642
643 /*
644 * Cumulative ns of schedule CPU time fo dead threads in the
645 * group, not including a zombie group leader, (This only differs
646 * from jiffies_to_ns(utime + stime) if sched_clock uses something
647 * other than jiffies.)
648 */
649 unsigned long long sum_sched_runtime;
650
651 /*
652 * We don't bother to synchronize most readers of this at all,
653 * because there is no reader checking a limit that actually needs
654 * to get both rlim_cur and rlim_max atomically, and either one
655 * alone is a single word that can safely be read normally.
656 * getrlimit/setrlimit use task_lock(current->group_leader) to
657 * protect this instead of the siglock, because they really
658 * have no need to disable irqs.
659 */
660 struct rlimit rlim[RLIM_NLIMITS];
661
662 #ifdef CONFIG_BSD_PROCESS_ACCT
663 struct pacct_struct pacct; /* per-process accounting information */
664 #endif
665 #ifdef CONFIG_TASKSTATS
666 struct taskstats *stats;
667 #endif
668 #ifdef CONFIG_AUDIT
669 unsigned audit_tty;
670 unsigned audit_tty_log_passwd;
671 struct tty_audit_buf *tty_audit_buf;
672 #endif
673 #ifdef CONFIG_CGROUPS
674 /*
675 * group_rwsem prevents new tasks from entering the threadgroup and
676 * member tasks from exiting,a more specifically, setting of
677 * PF_EXITING. fork and exit paths are protected with this rwsem
678 * using threadgroup_change_begin/end(). Users which require
679 * threadgroup to remain stable should use threadgroup_[un]lock()
680 * which also takes care of exec path. Currently, cgroup is the
681 * only user.
682 */
683 struct rw_semaphore group_rwsem;
684 #endif
685
686 oom_flags_t oom_flags;
687 short oom_score_adj; /* OOM kill score adjustment */
688 short oom_score_adj_min; /* OOM kill score adjustment min value.
689 * Only settable by CAP_SYS_RESOURCE. */
690
691 struct mutex cred_guard_mutex; /* guard against foreign influences on
692 * credential calculations
693 * (notably. ptrace) */
694 };
695
696 /*
697 * Bits in flags field of signal_struct.
698 */
699 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
700 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
701 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
702 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
703 /*
704 * Pending notifications to parent.
705 */
706 #define SIGNAL_CLD_STOPPED 0x00000010
707 #define SIGNAL_CLD_CONTINUED 0x00000020
708 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
709
710 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
711
712 /* If true, all threads except ->group_exit_task have pending SIGKILL */
713 static inline int signal_group_exit(const struct signal_struct *sig)
714 {
715 return (sig->flags & SIGNAL_GROUP_EXIT) ||
716 (sig->group_exit_task != NULL);
717 }
718
719 /*
720 * Some day this will be a full-fledged user tracking system..
721 */
722 struct user_struct {
723 atomic_t __count; /* reference count */
724 atomic_t processes; /* How many processes does this user have? */
725 atomic_t files; /* How many open files does this user have? */
726 atomic_t sigpending; /* How many pending signals does this user have? */
727 #ifdef CONFIG_INOTIFY_USER
728 atomic_t inotify_watches; /* How many inotify watches does this user have? */
729 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
730 #endif
731 #ifdef CONFIG_FANOTIFY
732 atomic_t fanotify_listeners;
733 #endif
734 #ifdef CONFIG_EPOLL
735 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
736 #endif
737 #ifdef CONFIG_POSIX_MQUEUE
738 /* protected by mq_lock */
739 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
740 #endif
741 unsigned long locked_shm; /* How many pages of mlocked shm ? */
742
743 #ifdef CONFIG_KEYS
744 struct key *uid_keyring; /* UID specific keyring */
745 struct key *session_keyring; /* UID's default session keyring */
746 #endif
747
748 /* Hash table maintenance information */
749 struct hlist_node uidhash_node;
750 kuid_t uid;
751
752 #ifdef CONFIG_PERF_EVENTS
753 atomic_long_t locked_vm;
754 #endif
755 };
756
757 extern int uids_sysfs_init(void);
758
759 extern struct user_struct *find_user(kuid_t);
760
761 extern struct user_struct root_user;
762 #define INIT_USER (&root_user)
763
764
765 struct backing_dev_info;
766 struct reclaim_state;
767
768 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
769 struct sched_info {
770 /* cumulative counters */
771 unsigned long pcount; /* # of times run on this cpu */
772 unsigned long long run_delay; /* time spent waiting on a runqueue */
773
774 /* timestamps */
775 unsigned long long last_arrival,/* when we last ran on a cpu */
776 last_queued; /* when we were last queued to run */
777 };
778 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
779
780 #ifdef CONFIG_TASK_DELAY_ACCT
781 struct task_delay_info {
782 spinlock_t lock;
783 unsigned int flags; /* Private per-task flags */
784
785 /* For each stat XXX, add following, aligned appropriately
786 *
787 * struct timespec XXX_start, XXX_end;
788 * u64 XXX_delay;
789 * u32 XXX_count;
790 *
791 * Atomicity of updates to XXX_delay, XXX_count protected by
792 * single lock above (split into XXX_lock if contention is an issue).
793 */
794
795 /*
796 * XXX_count is incremented on every XXX operation, the delay
797 * associated with the operation is added to XXX_delay.
798 * XXX_delay contains the accumulated delay time in nanoseconds.
799 */
800 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
801 u64 blkio_delay; /* wait for sync block io completion */
802 u64 swapin_delay; /* wait for swapin block io completion */
803 u32 blkio_count; /* total count of the number of sync block */
804 /* io operations performed */
805 u32 swapin_count; /* total count of the number of swapin block */
806 /* io operations performed */
807
808 struct timespec freepages_start, freepages_end;
809 u64 freepages_delay; /* wait for memory reclaim */
810 u32 freepages_count; /* total count of memory reclaim */
811 };
812 #endif /* CONFIG_TASK_DELAY_ACCT */
813
814 static inline int sched_info_on(void)
815 {
816 #ifdef CONFIG_SCHEDSTATS
817 return 1;
818 #elif defined(CONFIG_TASK_DELAY_ACCT)
819 extern int delayacct_on;
820 return delayacct_on;
821 #else
822 return 0;
823 #endif
824 }
825
826 enum cpu_idle_type {
827 CPU_IDLE,
828 CPU_NOT_IDLE,
829 CPU_NEWLY_IDLE,
830 CPU_MAX_IDLE_TYPES
831 };
832
833 /*
834 * Increase resolution of cpu_power calculations
835 */
836 #define SCHED_POWER_SHIFT 10
837 #define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT)
838
839 /*
840 * sched-domains (multiprocessor balancing) declarations:
841 */
842 #ifdef CONFIG_SMP
843 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
844 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
845 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
846 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
847 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
848 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
849 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
850 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
851 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
852 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
853 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
854 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
855 #define SD_NUMA 0x4000 /* cross-node balancing */
856
857 extern int __weak arch_sd_sibiling_asym_packing(void);
858
859 struct sched_domain_attr {
860 int relax_domain_level;
861 };
862
863 #define SD_ATTR_INIT (struct sched_domain_attr) { \
864 .relax_domain_level = -1, \
865 }
866
867 extern int sched_domain_level_max;
868
869 struct sched_group;
870
871 struct sched_domain {
872 /* These fields must be setup */
873 struct sched_domain *parent; /* top domain must be null terminated */
874 struct sched_domain *child; /* bottom domain must be null terminated */
875 struct sched_group *groups; /* the balancing groups of the domain */
876 unsigned long min_interval; /* Minimum balance interval ms */
877 unsigned long max_interval; /* Maximum balance interval ms */
878 unsigned int busy_factor; /* less balancing by factor if busy */
879 unsigned int imbalance_pct; /* No balance until over watermark */
880 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
881 unsigned int busy_idx;
882 unsigned int idle_idx;
883 unsigned int newidle_idx;
884 unsigned int wake_idx;
885 unsigned int forkexec_idx;
886 unsigned int smt_gain;
887
888 int nohz_idle; /* NOHZ IDLE status */
889 int flags; /* See SD_* */
890 int level;
891
892 /* Runtime fields. */
893 unsigned long last_balance; /* init to jiffies. units in jiffies */
894 unsigned int balance_interval; /* initialise to 1. units in ms. */
895 unsigned int nr_balance_failed; /* initialise to 0 */
896
897 /* idle_balance() stats */
898 u64 max_newidle_lb_cost;
899 unsigned long next_decay_max_lb_cost;
900
901 #ifdef CONFIG_SCHEDSTATS
902 /* load_balance() stats */
903 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
904 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
905 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
906 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
907 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
908 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
909 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
910 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
911
912 /* Active load balancing */
913 unsigned int alb_count;
914 unsigned int alb_failed;
915 unsigned int alb_pushed;
916
917 /* SD_BALANCE_EXEC stats */
918 unsigned int sbe_count;
919 unsigned int sbe_balanced;
920 unsigned int sbe_pushed;
921
922 /* SD_BALANCE_FORK stats */
923 unsigned int sbf_count;
924 unsigned int sbf_balanced;
925 unsigned int sbf_pushed;
926
927 /* try_to_wake_up() stats */
928 unsigned int ttwu_wake_remote;
929 unsigned int ttwu_move_affine;
930 unsigned int ttwu_move_balance;
931 #endif
932 #ifdef CONFIG_SCHED_DEBUG
933 char *name;
934 #endif
935 union {
936 void *private; /* used during construction */
937 struct rcu_head rcu; /* used during destruction */
938 };
939
940 unsigned int span_weight;
941 /*
942 * Span of all CPUs in this domain.
943 *
944 * NOTE: this field is variable length. (Allocated dynamically
945 * by attaching extra space to the end of the structure,
946 * depending on how many CPUs the kernel has booted up with)
947 */
948 unsigned long span[0];
949 };
950
951 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
952 {
953 return to_cpumask(sd->span);
954 }
955
956 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
957 struct sched_domain_attr *dattr_new);
958
959 /* Allocate an array of sched domains, for partition_sched_domains(). */
960 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
961 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
962
963 bool cpus_share_cache(int this_cpu, int that_cpu);
964
965 #else /* CONFIG_SMP */
966
967 struct sched_domain_attr;
968
969 static inline void
970 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
971 struct sched_domain_attr *dattr_new)
972 {
973 }
974
975 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
976 {
977 return true;
978 }
979
980 #endif /* !CONFIG_SMP */
981
982
983 struct io_context; /* See blkdev.h */
984
985
986 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
987 extern void prefetch_stack(struct task_struct *t);
988 #else
989 static inline void prefetch_stack(struct task_struct *t) { }
990 #endif
991
992 struct audit_context; /* See audit.c */
993 struct mempolicy;
994 struct pipe_inode_info;
995 struct uts_namespace;
996
997 struct load_weight {
998 unsigned long weight;
999 u32 inv_weight;
1000 };
1001
1002 struct sched_avg {
1003 /*
1004 * These sums represent an infinite geometric series and so are bound
1005 * above by 1024/(1-y). Thus we only need a u32 to store them for all
1006 * choices of y < 1-2^(-32)*1024.
1007 */
1008 u32 runnable_avg_sum, runnable_avg_period;
1009 u64 last_runnable_update;
1010 s64 decay_count;
1011 unsigned long load_avg_contrib;
1012 };
1013
1014 #ifdef CONFIG_SCHEDSTATS
1015 struct sched_statistics {
1016 u64 wait_start;
1017 u64 wait_max;
1018 u64 wait_count;
1019 u64 wait_sum;
1020 u64 iowait_count;
1021 u64 iowait_sum;
1022
1023 u64 sleep_start;
1024 u64 sleep_max;
1025 s64 sum_sleep_runtime;
1026
1027 u64 block_start;
1028 u64 block_max;
1029 u64 exec_max;
1030 u64 slice_max;
1031
1032 u64 nr_migrations_cold;
1033 u64 nr_failed_migrations_affine;
1034 u64 nr_failed_migrations_running;
1035 u64 nr_failed_migrations_hot;
1036 u64 nr_forced_migrations;
1037
1038 u64 nr_wakeups;
1039 u64 nr_wakeups_sync;
1040 u64 nr_wakeups_migrate;
1041 u64 nr_wakeups_local;
1042 u64 nr_wakeups_remote;
1043 u64 nr_wakeups_affine;
1044 u64 nr_wakeups_affine_attempts;
1045 u64 nr_wakeups_passive;
1046 u64 nr_wakeups_idle;
1047 };
1048 #endif
1049
1050 struct sched_entity {
1051 struct load_weight load; /* for load-balancing */
1052 struct rb_node run_node;
1053 struct list_head group_node;
1054 unsigned int on_rq;
1055
1056 u64 exec_start;
1057 u64 sum_exec_runtime;
1058 u64 vruntime;
1059 u64 prev_sum_exec_runtime;
1060
1061 u64 nr_migrations;
1062
1063 #ifdef CONFIG_SCHEDSTATS
1064 struct sched_statistics statistics;
1065 #endif
1066
1067 #ifdef CONFIG_FAIR_GROUP_SCHED
1068 struct sched_entity *parent;
1069 /* rq on which this entity is (to be) queued: */
1070 struct cfs_rq *cfs_rq;
1071 /* rq "owned" by this entity/group: */
1072 struct cfs_rq *my_q;
1073 #endif
1074
1075 #ifdef CONFIG_SMP
1076 /* Per-entity load-tracking */
1077 struct sched_avg avg;
1078 #endif
1079 };
1080
1081 struct sched_rt_entity {
1082 struct list_head run_list;
1083 unsigned long timeout;
1084 unsigned long watchdog_stamp;
1085 unsigned int time_slice;
1086
1087 struct sched_rt_entity *back;
1088 #ifdef CONFIG_RT_GROUP_SCHED
1089 struct sched_rt_entity *parent;
1090 /* rq on which this entity is (to be) queued: */
1091 struct rt_rq *rt_rq;
1092 /* rq "owned" by this entity/group: */
1093 struct rt_rq *my_q;
1094 #endif
1095 };
1096
1097 struct sched_dl_entity {
1098 struct rb_node rb_node;
1099
1100 /*
1101 * Original scheduling parameters. Copied here from sched_attr
1102 * during sched_setscheduler2(), they will remain the same until
1103 * the next sched_setscheduler2().
1104 */
1105 u64 dl_runtime; /* maximum runtime for each instance */
1106 u64 dl_deadline; /* relative deadline of each instance */
1107 u64 dl_period; /* separation of two instances (period) */
1108 u64 dl_bw; /* dl_runtime / dl_deadline */
1109
1110 /*
1111 * Actual scheduling parameters. Initialized with the values above,
1112 * they are continously updated during task execution. Note that
1113 * the remaining runtime could be < 0 in case we are in overrun.
1114 */
1115 s64 runtime; /* remaining runtime for this instance */
1116 u64 deadline; /* absolute deadline for this instance */
1117 unsigned int flags; /* specifying the scheduler behaviour */
1118
1119 /*
1120 * Some bool flags:
1121 *
1122 * @dl_throttled tells if we exhausted the runtime. If so, the
1123 * task has to wait for a replenishment to be performed at the
1124 * next firing of dl_timer.
1125 *
1126 * @dl_new tells if a new instance arrived. If so we must
1127 * start executing it with full runtime and reset its absolute
1128 * deadline;
1129 *
1130 * @dl_boosted tells if we are boosted due to DI. If so we are
1131 * outside bandwidth enforcement mechanism (but only until we
1132 * exit the critical section).
1133 */
1134 int dl_throttled, dl_new, dl_boosted;
1135
1136 /*
1137 * Bandwidth enforcement timer. Each -deadline task has its
1138 * own bandwidth to be enforced, thus we need one timer per task.
1139 */
1140 struct hrtimer dl_timer;
1141 };
1142
1143 struct rcu_node;
1144
1145 enum perf_event_task_context {
1146 perf_invalid_context = -1,
1147 perf_hw_context = 0,
1148 perf_sw_context,
1149 perf_nr_task_contexts,
1150 };
1151
1152 struct task_struct {
1153 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1154 void *stack;
1155 atomic_t usage;
1156 unsigned int flags; /* per process flags, defined below */
1157 unsigned int ptrace;
1158
1159 #ifdef CONFIG_SMP
1160 struct llist_node wake_entry;
1161 int on_cpu;
1162 struct task_struct *last_wakee;
1163 unsigned long wakee_flips;
1164 unsigned long wakee_flip_decay_ts;
1165
1166 int wake_cpu;
1167 #endif
1168 int on_rq;
1169
1170 int prio, static_prio, normal_prio;
1171 unsigned int rt_priority;
1172 const struct sched_class *sched_class;
1173 struct sched_entity se;
1174 struct sched_rt_entity rt;
1175 #ifdef CONFIG_CGROUP_SCHED
1176 struct task_group *sched_task_group;
1177 #endif
1178 struct sched_dl_entity dl;
1179
1180 #ifdef CONFIG_PREEMPT_NOTIFIERS
1181 /* list of struct preempt_notifier: */
1182 struct hlist_head preempt_notifiers;
1183 #endif
1184
1185 #ifdef CONFIG_BLK_DEV_IO_TRACE
1186 unsigned int btrace_seq;
1187 #endif
1188
1189 unsigned int policy;
1190 int nr_cpus_allowed;
1191 cpumask_t cpus_allowed;
1192
1193 #ifdef CONFIG_PREEMPT_RCU
1194 int rcu_read_lock_nesting;
1195 char rcu_read_unlock_special;
1196 struct list_head rcu_node_entry;
1197 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1198 #ifdef CONFIG_TREE_PREEMPT_RCU
1199 struct rcu_node *rcu_blocked_node;
1200 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1201 #ifdef CONFIG_RCU_BOOST
1202 struct rt_mutex *rcu_boost_mutex;
1203 #endif /* #ifdef CONFIG_RCU_BOOST */
1204
1205 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1206 struct sched_info sched_info;
1207 #endif
1208
1209 struct list_head tasks;
1210 #ifdef CONFIG_SMP
1211 struct plist_node pushable_tasks;
1212 struct rb_node pushable_dl_tasks;
1213 #endif
1214
1215 struct mm_struct *mm, *active_mm;
1216 #ifdef CONFIG_COMPAT_BRK
1217 unsigned brk_randomized:1;
1218 #endif
1219 #if defined(SPLIT_RSS_COUNTING)
1220 struct task_rss_stat rss_stat;
1221 #endif
1222 /* task state */
1223 int exit_state;
1224 int exit_code, exit_signal;
1225 int pdeath_signal; /* The signal sent when the parent dies */
1226 unsigned int jobctl; /* JOBCTL_*, siglock protected */
1227
1228 /* Used for emulating ABI behavior of previous Linux versions */
1229 unsigned int personality;
1230
1231 unsigned did_exec:1;
1232 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1233 * execve */
1234 unsigned in_iowait:1;
1235
1236 /* task may not gain privileges */
1237 unsigned no_new_privs:1;
1238
1239 /* Revert to default priority/policy when forking */
1240 unsigned sched_reset_on_fork:1;
1241 unsigned sched_contributes_to_load:1;
1242
1243 pid_t pid;
1244 pid_t tgid;
1245
1246 #ifdef CONFIG_CC_STACKPROTECTOR
1247 /* Canary value for the -fstack-protector gcc feature */
1248 unsigned long stack_canary;
1249 #endif
1250 /*
1251 * pointers to (original) parent process, youngest child, younger sibling,
1252 * older sibling, respectively. (p->father can be replaced with
1253 * p->real_parent->pid)
1254 */
1255 struct task_struct __rcu *real_parent; /* real parent process */
1256 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1257 /*
1258 * children/sibling forms the list of my natural children
1259 */
1260 struct list_head children; /* list of my children */
1261 struct list_head sibling; /* linkage in my parent's children list */
1262 struct task_struct *group_leader; /* threadgroup leader */
1263
1264 /*
1265 * ptraced is the list of tasks this task is using ptrace on.
1266 * This includes both natural children and PTRACE_ATTACH targets.
1267 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1268 */
1269 struct list_head ptraced;
1270 struct list_head ptrace_entry;
1271
1272 /* PID/PID hash table linkage. */
1273 struct pid_link pids[PIDTYPE_MAX];
1274 struct list_head thread_group;
1275 struct list_head thread_node;
1276
1277 struct completion *vfork_done; /* for vfork() */
1278 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1279 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1280
1281 cputime_t utime, stime, utimescaled, stimescaled;
1282 cputime_t gtime;
1283 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1284 struct cputime prev_cputime;
1285 #endif
1286 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1287 seqlock_t vtime_seqlock;
1288 unsigned long long vtime_snap;
1289 enum {
1290 VTIME_SLEEPING = 0,
1291 VTIME_USER,
1292 VTIME_SYS,
1293 } vtime_snap_whence;
1294 #endif
1295 unsigned long nvcsw, nivcsw; /* context switch counts */
1296 struct timespec start_time; /* monotonic time */
1297 struct timespec real_start_time; /* boot based time */
1298 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1299 unsigned long min_flt, maj_flt;
1300
1301 struct task_cputime cputime_expires;
1302 struct list_head cpu_timers[3];
1303
1304 /* process credentials */
1305 const struct cred __rcu *real_cred; /* objective and real subjective task
1306 * credentials (COW) */
1307 const struct cred __rcu *cred; /* effective (overridable) subjective task
1308 * credentials (COW) */
1309 char comm[TASK_COMM_LEN]; /* executable name excluding path
1310 - access with [gs]et_task_comm (which lock
1311 it with task_lock())
1312 - initialized normally by setup_new_exec */
1313 /* file system info */
1314 int link_count, total_link_count;
1315 #ifdef CONFIG_SYSVIPC
1316 /* ipc stuff */
1317 struct sysv_sem sysvsem;
1318 #endif
1319 #ifdef CONFIG_DETECT_HUNG_TASK
1320 /* hung task detection */
1321 unsigned long last_switch_count;
1322 #endif
1323 /* CPU-specific state of this task */
1324 struct thread_struct thread;
1325 /* filesystem information */
1326 struct fs_struct *fs;
1327 /* open file information */
1328 struct files_struct *files;
1329 /* namespaces */
1330 struct nsproxy *nsproxy;
1331 /* signal handlers */
1332 struct signal_struct *signal;
1333 struct sighand_struct *sighand;
1334
1335 sigset_t blocked, real_blocked;
1336 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1337 struct sigpending pending;
1338
1339 unsigned long sas_ss_sp;
1340 size_t sas_ss_size;
1341 int (*notifier)(void *priv);
1342 void *notifier_data;
1343 sigset_t *notifier_mask;
1344 struct callback_head *task_works;
1345
1346 struct audit_context *audit_context;
1347 #ifdef CONFIG_AUDITSYSCALL
1348 kuid_t loginuid;
1349 unsigned int sessionid;
1350 #endif
1351 struct seccomp seccomp;
1352
1353 /* Thread group tracking */
1354 u32 parent_exec_id;
1355 u32 self_exec_id;
1356 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1357 * mempolicy */
1358 spinlock_t alloc_lock;
1359
1360 /* Protection of the PI data structures: */
1361 raw_spinlock_t pi_lock;
1362
1363 #ifdef CONFIG_RT_MUTEXES
1364 /* PI waiters blocked on a rt_mutex held by this task */
1365 struct rb_root pi_waiters;
1366 struct rb_node *pi_waiters_leftmost;
1367 /* Deadlock detection and priority inheritance handling */
1368 struct rt_mutex_waiter *pi_blocked_on;
1369 /* Top pi_waiters task */
1370 struct task_struct *pi_top_task;
1371 #endif
1372
1373 #ifdef CONFIG_DEBUG_MUTEXES
1374 /* mutex deadlock detection */
1375 struct mutex_waiter *blocked_on;
1376 #endif
1377 #ifdef CONFIG_TRACE_IRQFLAGS
1378 unsigned int irq_events;
1379 unsigned long hardirq_enable_ip;
1380 unsigned long hardirq_disable_ip;
1381 unsigned int hardirq_enable_event;
1382 unsigned int hardirq_disable_event;
1383 int hardirqs_enabled;
1384 int hardirq_context;
1385 unsigned long softirq_disable_ip;
1386 unsigned long softirq_enable_ip;
1387 unsigned int softirq_disable_event;
1388 unsigned int softirq_enable_event;
1389 int softirqs_enabled;
1390 int softirq_context;
1391 #endif
1392 #ifdef CONFIG_LOCKDEP
1393 # define MAX_LOCK_DEPTH 48UL
1394 u64 curr_chain_key;
1395 int lockdep_depth;
1396 unsigned int lockdep_recursion;
1397 struct held_lock held_locks[MAX_LOCK_DEPTH];
1398 gfp_t lockdep_reclaim_gfp;
1399 #endif
1400
1401 /* journalling filesystem info */
1402 void *journal_info;
1403
1404 /* stacked block device info */
1405 struct bio_list *bio_list;
1406
1407 #ifdef CONFIG_BLOCK
1408 /* stack plugging */
1409 struct blk_plug *plug;
1410 #endif
1411
1412 /* VM state */
1413 struct reclaim_state *reclaim_state;
1414
1415 struct backing_dev_info *backing_dev_info;
1416
1417 struct io_context *io_context;
1418
1419 unsigned long ptrace_message;
1420 siginfo_t *last_siginfo; /* For ptrace use. */
1421 struct task_io_accounting ioac;
1422 #if defined(CONFIG_TASK_XACCT)
1423 u64 acct_rss_mem1; /* accumulated rss usage */
1424 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1425 cputime_t acct_timexpd; /* stime + utime since last update */
1426 #endif
1427 #ifdef CONFIG_CPUSETS
1428 nodemask_t mems_allowed; /* Protected by alloc_lock */
1429 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
1430 int cpuset_mem_spread_rotor;
1431 int cpuset_slab_spread_rotor;
1432 #endif
1433 #ifdef CONFIG_CGROUPS
1434 /* Control Group info protected by css_set_lock */
1435 struct css_set __rcu *cgroups;
1436 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1437 struct list_head cg_list;
1438 #endif
1439 #ifdef CONFIG_FUTEX
1440 struct robust_list_head __user *robust_list;
1441 #ifdef CONFIG_COMPAT
1442 struct compat_robust_list_head __user *compat_robust_list;
1443 #endif
1444 struct list_head pi_state_list;
1445 struct futex_pi_state *pi_state_cache;
1446 #endif
1447 #ifdef CONFIG_PERF_EVENTS
1448 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1449 struct mutex perf_event_mutex;
1450 struct list_head perf_event_list;
1451 #endif
1452 #ifdef CONFIG_NUMA
1453 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1454 short il_next;
1455 short pref_node_fork;
1456 #endif
1457 #ifdef CONFIG_NUMA_BALANCING
1458 int numa_scan_seq;
1459 unsigned int numa_scan_period;
1460 unsigned int numa_scan_period_max;
1461 int numa_preferred_nid;
1462 int numa_migrate_deferred;
1463 unsigned long numa_migrate_retry;
1464 u64 node_stamp; /* migration stamp */
1465 struct callback_head numa_work;
1466
1467 struct list_head numa_entry;
1468 struct numa_group *numa_group;
1469
1470 /*
1471 * Exponential decaying average of faults on a per-node basis.
1472 * Scheduling placement decisions are made based on the these counts.
1473 * The values remain static for the duration of a PTE scan
1474 */
1475 unsigned long *numa_faults;
1476 unsigned long total_numa_faults;
1477
1478 /*
1479 * numa_faults_buffer records faults per node during the current
1480 * scan window. When the scan completes, the counts in numa_faults
1481 * decay and these values are copied.
1482 */
1483 unsigned long *numa_faults_buffer;
1484
1485 /*
1486 * numa_faults_locality tracks if faults recorded during the last
1487 * scan window were remote/local. The task scan period is adapted
1488 * based on the locality of the faults with different weights
1489 * depending on whether they were shared or private faults
1490 */
1491 unsigned long numa_faults_locality[2];
1492
1493 unsigned long numa_pages_migrated;
1494 #endif /* CONFIG_NUMA_BALANCING */
1495
1496 struct rcu_head rcu;
1497
1498 /*
1499 * cache last used pipe for splice
1500 */
1501 struct pipe_inode_info *splice_pipe;
1502
1503 struct page_frag task_frag;
1504
1505 #ifdef CONFIG_TASK_DELAY_ACCT
1506 struct task_delay_info *delays;
1507 #endif
1508 #ifdef CONFIG_FAULT_INJECTION
1509 int make_it_fail;
1510 #endif
1511 /*
1512 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1513 * balance_dirty_pages() for some dirty throttling pause
1514 */
1515 int nr_dirtied;
1516 int nr_dirtied_pause;
1517 unsigned long dirty_paused_when; /* start of a write-and-pause period */
1518
1519 #ifdef CONFIG_LATENCYTOP
1520 int latency_record_count;
1521 struct latency_record latency_record[LT_SAVECOUNT];
1522 #endif
1523 /*
1524 * time slack values; these are used to round up poll() and
1525 * select() etc timeout values. These are in nanoseconds.
1526 */
1527 unsigned long timer_slack_ns;
1528 unsigned long default_timer_slack_ns;
1529
1530 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1531 /* Index of current stored address in ret_stack */
1532 int curr_ret_stack;
1533 /* Stack of return addresses for return function tracing */
1534 struct ftrace_ret_stack *ret_stack;
1535 /* time stamp for last schedule */
1536 unsigned long long ftrace_timestamp;
1537 /*
1538 * Number of functions that haven't been traced
1539 * because of depth overrun.
1540 */
1541 atomic_t trace_overrun;
1542 /* Pause for the tracing */
1543 atomic_t tracing_graph_pause;
1544 #endif
1545 #ifdef CONFIG_TRACING
1546 /* state flags for use by tracers */
1547 unsigned long trace;
1548 /* bitmask and counter of trace recursion */
1549 unsigned long trace_recursion;
1550 #endif /* CONFIG_TRACING */
1551 #ifdef CONFIG_MEMCG /* memcg uses this to do batch job */
1552 struct memcg_batch_info {
1553 int do_batch; /* incremented when batch uncharge started */
1554 struct mem_cgroup *memcg; /* target memcg of uncharge */
1555 unsigned long nr_pages; /* uncharged usage */
1556 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1557 } memcg_batch;
1558 unsigned int memcg_kmem_skip_account;
1559 struct memcg_oom_info {
1560 struct mem_cgroup *memcg;
1561 gfp_t gfp_mask;
1562 int order;
1563 unsigned int may_oom:1;
1564 } memcg_oom;
1565 #endif
1566 #ifdef CONFIG_UPROBES
1567 struct uprobe_task *utask;
1568 #endif
1569 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1570 unsigned int sequential_io;
1571 unsigned int sequential_io_avg;
1572 #endif
1573 };
1574
1575 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1576 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1577
1578 #define TNF_MIGRATED 0x01
1579 #define TNF_NO_GROUP 0x02
1580 #define TNF_SHARED 0x04
1581 #define TNF_FAULT_LOCAL 0x08
1582
1583 #ifdef CONFIG_NUMA_BALANCING
1584 extern void task_numa_fault(int last_node, int node, int pages, int flags);
1585 extern pid_t task_numa_group_id(struct task_struct *p);
1586 extern void set_numabalancing_state(bool enabled);
1587 extern void task_numa_free(struct task_struct *p);
1588
1589 extern unsigned int sysctl_numa_balancing_migrate_deferred;
1590 #else
1591 static inline void task_numa_fault(int last_node, int node, int pages,
1592 int flags)
1593 {
1594 }
1595 static inline pid_t task_numa_group_id(struct task_struct *p)
1596 {
1597 return 0;
1598 }
1599 static inline void set_numabalancing_state(bool enabled)
1600 {
1601 }
1602 static inline void task_numa_free(struct task_struct *p)
1603 {
1604 }
1605 #endif
1606
1607 static inline struct pid *task_pid(struct task_struct *task)
1608 {
1609 return task->pids[PIDTYPE_PID].pid;
1610 }
1611
1612 static inline struct pid *task_tgid(struct task_struct *task)
1613 {
1614 return task->group_leader->pids[PIDTYPE_PID].pid;
1615 }
1616
1617 /*
1618 * Without tasklist or rcu lock it is not safe to dereference
1619 * the result of task_pgrp/task_session even if task == current,
1620 * we can race with another thread doing sys_setsid/sys_setpgid.
1621 */
1622 static inline struct pid *task_pgrp(struct task_struct *task)
1623 {
1624 return task->group_leader->pids[PIDTYPE_PGID].pid;
1625 }
1626
1627 static inline struct pid *task_session(struct task_struct *task)
1628 {
1629 return task->group_leader->pids[PIDTYPE_SID].pid;
1630 }
1631
1632 struct pid_namespace;
1633
1634 /*
1635 * the helpers to get the task's different pids as they are seen
1636 * from various namespaces
1637 *
1638 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1639 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1640 * current.
1641 * task_xid_nr_ns() : id seen from the ns specified;
1642 *
1643 * set_task_vxid() : assigns a virtual id to a task;
1644 *
1645 * see also pid_nr() etc in include/linux/pid.h
1646 */
1647 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1648 struct pid_namespace *ns);
1649
1650 static inline pid_t task_pid_nr(struct task_struct *tsk)
1651 {
1652 return tsk->pid;
1653 }
1654
1655 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1656 struct pid_namespace *ns)
1657 {
1658 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1659 }
1660
1661 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1662 {
1663 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1664 }
1665
1666
1667 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1668 {
1669 return tsk->tgid;
1670 }
1671
1672 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1673
1674 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1675 {
1676 return pid_vnr(task_tgid(tsk));
1677 }
1678
1679
1680 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1681 struct pid_namespace *ns)
1682 {
1683 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1684 }
1685
1686 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1687 {
1688 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1689 }
1690
1691
1692 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1693 struct pid_namespace *ns)
1694 {
1695 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1696 }
1697
1698 static inline pid_t task_session_vnr(struct task_struct *tsk)
1699 {
1700 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1701 }
1702
1703 /* obsolete, do not use */
1704 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1705 {
1706 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1707 }
1708
1709 /**
1710 * pid_alive - check that a task structure is not stale
1711 * @p: Task structure to be checked.
1712 *
1713 * Test if a process is not yet dead (at most zombie state)
1714 * If pid_alive fails, then pointers within the task structure
1715 * can be stale and must not be dereferenced.
1716 *
1717 * Return: 1 if the process is alive. 0 otherwise.
1718 */
1719 static inline int pid_alive(struct task_struct *p)
1720 {
1721 return p->pids[PIDTYPE_PID].pid != NULL;
1722 }
1723
1724 /**
1725 * is_global_init - check if a task structure is init
1726 * @tsk: Task structure to be checked.
1727 *
1728 * Check if a task structure is the first user space task the kernel created.
1729 *
1730 * Return: 1 if the task structure is init. 0 otherwise.
1731 */
1732 static inline int is_global_init(struct task_struct *tsk)
1733 {
1734 return tsk->pid == 1;
1735 }
1736
1737 extern struct pid *cad_pid;
1738
1739 extern void free_task(struct task_struct *tsk);
1740 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1741
1742 extern void __put_task_struct(struct task_struct *t);
1743
1744 static inline void put_task_struct(struct task_struct *t)
1745 {
1746 if (atomic_dec_and_test(&t->usage))
1747 __put_task_struct(t);
1748 }
1749
1750 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1751 extern void task_cputime(struct task_struct *t,
1752 cputime_t *utime, cputime_t *stime);
1753 extern void task_cputime_scaled(struct task_struct *t,
1754 cputime_t *utimescaled, cputime_t *stimescaled);
1755 extern cputime_t task_gtime(struct task_struct *t);
1756 #else
1757 static inline void task_cputime(struct task_struct *t,
1758 cputime_t *utime, cputime_t *stime)
1759 {
1760 if (utime)
1761 *utime = t->utime;
1762 if (stime)
1763 *stime = t->stime;
1764 }
1765
1766 static inline void task_cputime_scaled(struct task_struct *t,
1767 cputime_t *utimescaled,
1768 cputime_t *stimescaled)
1769 {
1770 if (utimescaled)
1771 *utimescaled = t->utimescaled;
1772 if (stimescaled)
1773 *stimescaled = t->stimescaled;
1774 }
1775
1776 static inline cputime_t task_gtime(struct task_struct *t)
1777 {
1778 return t->gtime;
1779 }
1780 #endif
1781 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1782 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1783
1784 /*
1785 * Per process flags
1786 */
1787 #define PF_EXITING 0x00000004 /* getting shut down */
1788 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1789 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1790 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1791 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1792 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1793 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1794 #define PF_DUMPCORE 0x00000200 /* dumped core */
1795 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1796 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1797 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1798 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1799 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1800 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1801 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1802 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1803 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1804 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1805 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1806 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1807 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1808 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1809 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1810 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1811 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
1812 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1813 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1814 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1815 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1816 #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
1817
1818 /*
1819 * Only the _current_ task can read/write to tsk->flags, but other
1820 * tasks can access tsk->flags in readonly mode for example
1821 * with tsk_used_math (like during threaded core dumping).
1822 * There is however an exception to this rule during ptrace
1823 * or during fork: the ptracer task is allowed to write to the
1824 * child->flags of its traced child (same goes for fork, the parent
1825 * can write to the child->flags), because we're guaranteed the
1826 * child is not running and in turn not changing child->flags
1827 * at the same time the parent does it.
1828 */
1829 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1830 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1831 #define clear_used_math() clear_stopped_child_used_math(current)
1832 #define set_used_math() set_stopped_child_used_math(current)
1833 #define conditional_stopped_child_used_math(condition, child) \
1834 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1835 #define conditional_used_math(condition) \
1836 conditional_stopped_child_used_math(condition, current)
1837 #define copy_to_stopped_child_used_math(child) \
1838 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1839 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1840 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1841 #define used_math() tsk_used_math(current)
1842
1843 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags */
1844 static inline gfp_t memalloc_noio_flags(gfp_t flags)
1845 {
1846 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
1847 flags &= ~__GFP_IO;
1848 return flags;
1849 }
1850
1851 static inline unsigned int memalloc_noio_save(void)
1852 {
1853 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
1854 current->flags |= PF_MEMALLOC_NOIO;
1855 return flags;
1856 }
1857
1858 static inline void memalloc_noio_restore(unsigned int flags)
1859 {
1860 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
1861 }
1862
1863 /*
1864 * task->jobctl flags
1865 */
1866 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
1867
1868 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
1869 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
1870 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
1871 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
1872 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
1873 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
1874 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
1875
1876 #define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT)
1877 #define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT)
1878 #define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT)
1879 #define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT)
1880 #define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT)
1881 #define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT)
1882 #define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT)
1883
1884 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1885 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1886
1887 extern bool task_set_jobctl_pending(struct task_struct *task,
1888 unsigned int mask);
1889 extern void task_clear_jobctl_trapping(struct task_struct *task);
1890 extern void task_clear_jobctl_pending(struct task_struct *task,
1891 unsigned int mask);
1892
1893 #ifdef CONFIG_PREEMPT_RCU
1894
1895 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1896 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1897
1898 static inline void rcu_copy_process(struct task_struct *p)
1899 {
1900 p->rcu_read_lock_nesting = 0;
1901 p->rcu_read_unlock_special = 0;
1902 #ifdef CONFIG_TREE_PREEMPT_RCU
1903 p->rcu_blocked_node = NULL;
1904 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1905 #ifdef CONFIG_RCU_BOOST
1906 p->rcu_boost_mutex = NULL;
1907 #endif /* #ifdef CONFIG_RCU_BOOST */
1908 INIT_LIST_HEAD(&p->rcu_node_entry);
1909 }
1910
1911 #else
1912
1913 static inline void rcu_copy_process(struct task_struct *p)
1914 {
1915 }
1916
1917 #endif
1918
1919 static inline void tsk_restore_flags(struct task_struct *task,
1920 unsigned long orig_flags, unsigned long flags)
1921 {
1922 task->flags &= ~flags;
1923 task->flags |= orig_flags & flags;
1924 }
1925
1926 #ifdef CONFIG_SMP
1927 extern void do_set_cpus_allowed(struct task_struct *p,
1928 const struct cpumask *new_mask);
1929
1930 extern int set_cpus_allowed_ptr(struct task_struct *p,
1931 const struct cpumask *new_mask);
1932 #else
1933 static inline void do_set_cpus_allowed(struct task_struct *p,
1934 const struct cpumask *new_mask)
1935 {
1936 }
1937 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1938 const struct cpumask *new_mask)
1939 {
1940 if (!cpumask_test_cpu(0, new_mask))
1941 return -EINVAL;
1942 return 0;
1943 }
1944 #endif
1945
1946 #ifdef CONFIG_NO_HZ_COMMON
1947 void calc_load_enter_idle(void);
1948 void calc_load_exit_idle(void);
1949 #else
1950 static inline void calc_load_enter_idle(void) { }
1951 static inline void calc_load_exit_idle(void) { }
1952 #endif /* CONFIG_NO_HZ_COMMON */
1953
1954 #ifndef CONFIG_CPUMASK_OFFSTACK
1955 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1956 {
1957 return set_cpus_allowed_ptr(p, &new_mask);
1958 }
1959 #endif
1960
1961 /*
1962 * Do not use outside of architecture code which knows its limitations.
1963 *
1964 * sched_clock() has no promise of monotonicity or bounded drift between
1965 * CPUs, use (which you should not) requires disabling IRQs.
1966 *
1967 * Please use one of the three interfaces below.
1968 */
1969 extern unsigned long long notrace sched_clock(void);
1970 /*
1971 * See the comment in kernel/sched/clock.c
1972 */
1973 extern u64 cpu_clock(int cpu);
1974 extern u64 local_clock(void);
1975 extern u64 sched_clock_cpu(int cpu);
1976
1977
1978 extern void sched_clock_init(void);
1979
1980 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1981 static inline void sched_clock_tick(void)
1982 {
1983 }
1984
1985 static inline void sched_clock_idle_sleep_event(void)
1986 {
1987 }
1988
1989 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1990 {
1991 }
1992 #else
1993 /*
1994 * Architectures can set this to 1 if they have specified
1995 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1996 * but then during bootup it turns out that sched_clock()
1997 * is reliable after all:
1998 */
1999 extern int sched_clock_stable(void);
2000 extern void set_sched_clock_stable(void);
2001 extern void clear_sched_clock_stable(void);
2002
2003 extern void sched_clock_tick(void);
2004 extern void sched_clock_idle_sleep_event(void);
2005 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2006 #endif
2007
2008 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2009 /*
2010 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2011 * The reason for this explicit opt-in is not to have perf penalty with
2012 * slow sched_clocks.
2013 */
2014 extern void enable_sched_clock_irqtime(void);
2015 extern void disable_sched_clock_irqtime(void);
2016 #else
2017 static inline void enable_sched_clock_irqtime(void) {}
2018 static inline void disable_sched_clock_irqtime(void) {}
2019 #endif
2020
2021 extern unsigned long long
2022 task_sched_runtime(struct task_struct *task);
2023
2024 /* sched_exec is called by processes performing an exec */
2025 #ifdef CONFIG_SMP
2026 extern void sched_exec(void);
2027 #else
2028 #define sched_exec() {}
2029 #endif
2030
2031 extern void sched_clock_idle_sleep_event(void);
2032 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2033
2034 #ifdef CONFIG_HOTPLUG_CPU
2035 extern void idle_task_exit(void);
2036 #else
2037 static inline void idle_task_exit(void) {}
2038 #endif
2039
2040 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
2041 extern void wake_up_nohz_cpu(int cpu);
2042 #else
2043 static inline void wake_up_nohz_cpu(int cpu) { }
2044 #endif
2045
2046 #ifdef CONFIG_NO_HZ_FULL
2047 extern bool sched_can_stop_tick(void);
2048 extern u64 scheduler_tick_max_deferment(void);
2049 #else
2050 static inline bool sched_can_stop_tick(void) { return false; }
2051 #endif
2052
2053 #ifdef CONFIG_SCHED_AUTOGROUP
2054 extern void sched_autogroup_create_attach(struct task_struct *p);
2055 extern void sched_autogroup_detach(struct task_struct *p);
2056 extern void sched_autogroup_fork(struct signal_struct *sig);
2057 extern void sched_autogroup_exit(struct signal_struct *sig);
2058 #ifdef CONFIG_PROC_FS
2059 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2060 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2061 #endif
2062 #else
2063 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2064 static inline void sched_autogroup_detach(struct task_struct *p) { }
2065 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2066 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2067 #endif
2068
2069 extern bool yield_to(struct task_struct *p, bool preempt);
2070 extern void set_user_nice(struct task_struct *p, long nice);
2071 extern int task_prio(const struct task_struct *p);
2072 extern int task_nice(const struct task_struct *p);
2073 extern int can_nice(const struct task_struct *p, const int nice);
2074 extern int task_curr(const struct task_struct *p);
2075 extern int idle_cpu(int cpu);
2076 extern int sched_setscheduler(struct task_struct *, int,
2077 const struct sched_param *);
2078 extern int sched_setscheduler_nocheck(struct task_struct *, int,
2079 const struct sched_param *);
2080 extern int sched_setattr(struct task_struct *,
2081 const struct sched_attr *);
2082 extern struct task_struct *idle_task(int cpu);
2083 /**
2084 * is_idle_task - is the specified task an idle task?
2085 * @p: the task in question.
2086 *
2087 * Return: 1 if @p is an idle task. 0 otherwise.
2088 */
2089 static inline bool is_idle_task(const struct task_struct *p)
2090 {
2091 return p->pid == 0;
2092 }
2093 extern struct task_struct *curr_task(int cpu);
2094 extern void set_curr_task(int cpu, struct task_struct *p);
2095
2096 void yield(void);
2097
2098 /*
2099 * The default (Linux) execution domain.
2100 */
2101 extern struct exec_domain default_exec_domain;
2102
2103 union thread_union {
2104 struct thread_info thread_info;
2105 unsigned long stack[THREAD_SIZE/sizeof(long)];
2106 };
2107
2108 #ifndef __HAVE_ARCH_KSTACK_END
2109 static inline int kstack_end(void *addr)
2110 {
2111 /* Reliable end of stack detection:
2112 * Some APM bios versions misalign the stack
2113 */
2114 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2115 }
2116 #endif
2117
2118 extern union thread_union init_thread_union;
2119 extern struct task_struct init_task;
2120
2121 extern struct mm_struct init_mm;
2122
2123 extern struct pid_namespace init_pid_ns;
2124
2125 /*
2126 * find a task by one of its numerical ids
2127 *
2128 * find_task_by_pid_ns():
2129 * finds a task by its pid in the specified namespace
2130 * find_task_by_vpid():
2131 * finds a task by its virtual pid
2132 *
2133 * see also find_vpid() etc in include/linux/pid.h
2134 */
2135
2136 extern struct task_struct *find_task_by_vpid(pid_t nr);
2137 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2138 struct pid_namespace *ns);
2139
2140 /* per-UID process charging. */
2141 extern struct user_struct * alloc_uid(kuid_t);
2142 static inline struct user_struct *get_uid(struct user_struct *u)
2143 {
2144 atomic_inc(&u->__count);
2145 return u;
2146 }
2147 extern void free_uid(struct user_struct *);
2148
2149 #include <asm/current.h>
2150
2151 extern void xtime_update(unsigned long ticks);
2152
2153 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2154 extern int wake_up_process(struct task_struct *tsk);
2155 extern void wake_up_new_task(struct task_struct *tsk);
2156 #ifdef CONFIG_SMP
2157 extern void kick_process(struct task_struct *tsk);
2158 #else
2159 static inline void kick_process(struct task_struct *tsk) { }
2160 #endif
2161 extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
2162 extern void sched_dead(struct task_struct *p);
2163
2164 extern void proc_caches_init(void);
2165 extern void flush_signals(struct task_struct *);
2166 extern void __flush_signals(struct task_struct *);
2167 extern void ignore_signals(struct task_struct *);
2168 extern void flush_signal_handlers(struct task_struct *, int force_default);
2169 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2170
2171 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2172 {
2173 unsigned long flags;
2174 int ret;
2175
2176 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2177 ret = dequeue_signal(tsk, mask, info);
2178 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2179
2180 return ret;
2181 }
2182
2183 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2184 sigset_t *mask);
2185 extern void unblock_all_signals(void);
2186 extern void release_task(struct task_struct * p);
2187 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2188 extern int force_sigsegv(int, struct task_struct *);
2189 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2190 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2191 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2192 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2193 const struct cred *, u32);
2194 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2195 extern int kill_pid(struct pid *pid, int sig, int priv);
2196 extern int kill_proc_info(int, struct siginfo *, pid_t);
2197 extern __must_check bool do_notify_parent(struct task_struct *, int);
2198 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2199 extern void force_sig(int, struct task_struct *);
2200 extern int send_sig(int, struct task_struct *, int);
2201 extern int zap_other_threads(struct task_struct *p);
2202 extern struct sigqueue *sigqueue_alloc(void);
2203 extern void sigqueue_free(struct sigqueue *);
2204 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2205 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2206
2207 static inline void restore_saved_sigmask(void)
2208 {
2209 if (test_and_clear_restore_sigmask())
2210 __set_current_blocked(&current->saved_sigmask);
2211 }
2212
2213 static inline sigset_t *sigmask_to_save(void)
2214 {
2215 sigset_t *res = &current->blocked;
2216 if (unlikely(test_restore_sigmask()))
2217 res = &current->saved_sigmask;
2218 return res;
2219 }
2220
2221 static inline int kill_cad_pid(int sig, int priv)
2222 {
2223 return kill_pid(cad_pid, sig, priv);
2224 }
2225
2226 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2227 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2228 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2229 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2230
2231 /*
2232 * True if we are on the alternate signal stack.
2233 */
2234 static inline int on_sig_stack(unsigned long sp)
2235 {
2236 #ifdef CONFIG_STACK_GROWSUP
2237 return sp >= current->sas_ss_sp &&
2238 sp - current->sas_ss_sp < current->sas_ss_size;
2239 #else
2240 return sp > current->sas_ss_sp &&
2241 sp - current->sas_ss_sp <= current->sas_ss_size;
2242 #endif
2243 }
2244
2245 static inline int sas_ss_flags(unsigned long sp)
2246 {
2247 return (current->sas_ss_size == 0 ? SS_DISABLE
2248 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2249 }
2250
2251 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2252 {
2253 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2254 #ifdef CONFIG_STACK_GROWSUP
2255 return current->sas_ss_sp;
2256 #else
2257 return current->sas_ss_sp + current->sas_ss_size;
2258 #endif
2259 return sp;
2260 }
2261
2262 /*
2263 * Routines for handling mm_structs
2264 */
2265 extern struct mm_struct * mm_alloc(void);
2266
2267 /* mmdrop drops the mm and the page tables */
2268 extern void __mmdrop(struct mm_struct *);
2269 static inline void mmdrop(struct mm_struct * mm)
2270 {
2271 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2272 __mmdrop(mm);
2273 }
2274
2275 /* mmput gets rid of the mappings and all user-space */
2276 extern void mmput(struct mm_struct *);
2277 /* Grab a reference to a task's mm, if it is not already going away */
2278 extern struct mm_struct *get_task_mm(struct task_struct *task);
2279 /*
2280 * Grab a reference to a task's mm, if it is not already going away
2281 * and ptrace_may_access with the mode parameter passed to it
2282 * succeeds.
2283 */
2284 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2285 /* Remove the current tasks stale references to the old mm_struct */
2286 extern void mm_release(struct task_struct *, struct mm_struct *);
2287 /* Allocate a new mm structure and copy contents from tsk->mm */
2288 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2289
2290 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2291 struct task_struct *);
2292 extern void flush_thread(void);
2293 extern void exit_thread(void);
2294
2295 extern void exit_files(struct task_struct *);
2296 extern void __cleanup_sighand(struct sighand_struct *);
2297
2298 extern void exit_itimers(struct signal_struct *);
2299 extern void flush_itimer_signals(void);
2300
2301 extern void do_group_exit(int);
2302
2303 extern int allow_signal(int);
2304 extern int disallow_signal(int);
2305
2306 extern int do_execve(const char *,
2307 const char __user * const __user *,
2308 const char __user * const __user *);
2309 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2310 struct task_struct *fork_idle(int);
2311 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2312
2313 extern void set_task_comm(struct task_struct *tsk, char *from);
2314 extern char *get_task_comm(char *to, struct task_struct *tsk);
2315
2316 #ifdef CONFIG_SMP
2317 void scheduler_ipi(void);
2318 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2319 #else
2320 static inline void scheduler_ipi(void) { }
2321 static inline unsigned long wait_task_inactive(struct task_struct *p,
2322 long match_state)
2323 {
2324 return 1;
2325 }
2326 #endif
2327
2328 #define next_task(p) \
2329 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2330
2331 #define for_each_process(p) \
2332 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2333
2334 extern bool current_is_single_threaded(void);
2335
2336 /*
2337 * Careful: do_each_thread/while_each_thread is a double loop so
2338 * 'break' will not work as expected - use goto instead.
2339 */
2340 #define do_each_thread(g, t) \
2341 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2342
2343 #define while_each_thread(g, t) \
2344 while ((t = next_thread(t)) != g)
2345
2346 #define __for_each_thread(signal, t) \
2347 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2348
2349 #define for_each_thread(p, t) \
2350 __for_each_thread((p)->signal, t)
2351
2352 /* Careful: this is a double loop, 'break' won't work as expected. */
2353 #define for_each_process_thread(p, t) \
2354 for_each_process(p) for_each_thread(p, t)
2355
2356 static inline int get_nr_threads(struct task_struct *tsk)
2357 {
2358 return tsk->signal->nr_threads;
2359 }
2360
2361 static inline bool thread_group_leader(struct task_struct *p)
2362 {
2363 return p->exit_signal >= 0;
2364 }
2365
2366 /* Do to the insanities of de_thread it is possible for a process
2367 * to have the pid of the thread group leader without actually being
2368 * the thread group leader. For iteration through the pids in proc
2369 * all we care about is that we have a task with the appropriate
2370 * pid, we don't actually care if we have the right task.
2371 */
2372 static inline bool has_group_leader_pid(struct task_struct *p)
2373 {
2374 return task_pid(p) == p->signal->leader_pid;
2375 }
2376
2377 static inline
2378 bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
2379 {
2380 return p1->signal == p2->signal;
2381 }
2382
2383 static inline struct task_struct *next_thread(const struct task_struct *p)
2384 {
2385 return list_entry_rcu(p->thread_group.next,
2386 struct task_struct, thread_group);
2387 }
2388
2389 static inline int thread_group_empty(struct task_struct *p)
2390 {
2391 return list_empty(&p->thread_group);
2392 }
2393
2394 #define delay_group_leader(p) \
2395 (thread_group_leader(p) && !thread_group_empty(p))
2396
2397 /*
2398 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2399 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2400 * pins the final release of task.io_context. Also protects ->cpuset and
2401 * ->cgroup.subsys[]. And ->vfork_done.
2402 *
2403 * Nests both inside and outside of read_lock(&tasklist_lock).
2404 * It must not be nested with write_lock_irq(&tasklist_lock),
2405 * neither inside nor outside.
2406 */
2407 static inline void task_lock(struct task_struct *p)
2408 {
2409 spin_lock(&p->alloc_lock);
2410 }
2411
2412 static inline void task_unlock(struct task_struct *p)
2413 {
2414 spin_unlock(&p->alloc_lock);
2415 }
2416
2417 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2418 unsigned long *flags);
2419
2420 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2421 unsigned long *flags)
2422 {
2423 struct sighand_struct *ret;
2424
2425 ret = __lock_task_sighand(tsk, flags);
2426 (void)__cond_lock(&tsk->sighand->siglock, ret);
2427 return ret;
2428 }
2429
2430 static inline void unlock_task_sighand(struct task_struct *tsk,
2431 unsigned long *flags)
2432 {
2433 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2434 }
2435
2436 #ifdef CONFIG_CGROUPS
2437 static inline void threadgroup_change_begin(struct task_struct *tsk)
2438 {
2439 down_read(&tsk->signal->group_rwsem);
2440 }
2441 static inline void threadgroup_change_end(struct task_struct *tsk)
2442 {
2443 up_read(&tsk->signal->group_rwsem);
2444 }
2445
2446 /**
2447 * threadgroup_lock - lock threadgroup
2448 * @tsk: member task of the threadgroup to lock
2449 *
2450 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter
2451 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2452 * change ->group_leader/pid. This is useful for cases where the threadgroup
2453 * needs to stay stable across blockable operations.
2454 *
2455 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2456 * synchronization. While held, no new task will be added to threadgroup
2457 * and no existing live task will have its PF_EXITING set.
2458 *
2459 * de_thread() does threadgroup_change_{begin|end}() when a non-leader
2460 * sub-thread becomes a new leader.
2461 */
2462 static inline void threadgroup_lock(struct task_struct *tsk)
2463 {
2464 down_write(&tsk->signal->group_rwsem);
2465 }
2466
2467 /**
2468 * threadgroup_unlock - unlock threadgroup
2469 * @tsk: member task of the threadgroup to unlock
2470 *
2471 * Reverse threadgroup_lock().
2472 */
2473 static inline void threadgroup_unlock(struct task_struct *tsk)
2474 {
2475 up_write(&tsk->signal->group_rwsem);
2476 }
2477 #else
2478 static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2479 static inline void threadgroup_change_end(struct task_struct *tsk) {}
2480 static inline void threadgroup_lock(struct task_struct *tsk) {}
2481 static inline void threadgroup_unlock(struct task_struct *tsk) {}
2482 #endif
2483
2484 #ifndef __HAVE_THREAD_FUNCTIONS
2485
2486 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2487 #define task_stack_page(task) ((task)->stack)
2488
2489 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2490 {
2491 *task_thread_info(p) = *task_thread_info(org);
2492 task_thread_info(p)->task = p;
2493 }
2494
2495 static inline unsigned long *end_of_stack(struct task_struct *p)
2496 {
2497 return (unsigned long *)(task_thread_info(p) + 1);
2498 }
2499
2500 #endif
2501
2502 static inline int object_is_on_stack(void *obj)
2503 {
2504 void *stack = task_stack_page(current);
2505
2506 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2507 }
2508
2509 extern void thread_info_cache_init(void);
2510
2511 #ifdef CONFIG_DEBUG_STACK_USAGE
2512 static inline unsigned long stack_not_used(struct task_struct *p)
2513 {
2514 unsigned long *n = end_of_stack(p);
2515
2516 do { /* Skip over canary */
2517 n++;
2518 } while (!*n);
2519
2520 return (unsigned long)n - (unsigned long)end_of_stack(p);
2521 }
2522 #endif
2523
2524 /* set thread flags in other task's structures
2525 * - see asm/thread_info.h for TIF_xxxx flags available
2526 */
2527 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2528 {
2529 set_ti_thread_flag(task_thread_info(tsk), flag);
2530 }
2531
2532 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2533 {
2534 clear_ti_thread_flag(task_thread_info(tsk), flag);
2535 }
2536
2537 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2538 {
2539 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2540 }
2541
2542 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2543 {
2544 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2545 }
2546
2547 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2548 {
2549 return test_ti_thread_flag(task_thread_info(tsk), flag);
2550 }
2551
2552 static inline void set_tsk_need_resched(struct task_struct *tsk)
2553 {
2554 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2555 }
2556
2557 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2558 {
2559 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2560 }
2561
2562 static inline int test_tsk_need_resched(struct task_struct *tsk)
2563 {
2564 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2565 }
2566
2567 static inline int restart_syscall(void)
2568 {
2569 set_tsk_thread_flag(current, TIF_SIGPENDING);
2570 return -ERESTARTNOINTR;
2571 }
2572
2573 static inline int signal_pending(struct task_struct *p)
2574 {
2575 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2576 }
2577
2578 static inline int __fatal_signal_pending(struct task_struct *p)
2579 {
2580 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2581 }
2582
2583 static inline int fatal_signal_pending(struct task_struct *p)
2584 {
2585 return signal_pending(p) && __fatal_signal_pending(p);
2586 }
2587
2588 static inline int signal_pending_state(long state, struct task_struct *p)
2589 {
2590 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2591 return 0;
2592 if (!signal_pending(p))
2593 return 0;
2594
2595 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2596 }
2597
2598 /*
2599 * cond_resched() and cond_resched_lock(): latency reduction via
2600 * explicit rescheduling in places that are safe. The return
2601 * value indicates whether a reschedule was done in fact.
2602 * cond_resched_lock() will drop the spinlock before scheduling,
2603 * cond_resched_softirq() will enable bhs before scheduling.
2604 */
2605 extern int _cond_resched(void);
2606
2607 #define cond_resched() ({ \
2608 __might_sleep(__FILE__, __LINE__, 0); \
2609 _cond_resched(); \
2610 })
2611
2612 extern int __cond_resched_lock(spinlock_t *lock);
2613
2614 #ifdef CONFIG_PREEMPT_COUNT
2615 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2616 #else
2617 #define PREEMPT_LOCK_OFFSET 0
2618 #endif
2619
2620 #define cond_resched_lock(lock) ({ \
2621 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2622 __cond_resched_lock(lock); \
2623 })
2624
2625 extern int __cond_resched_softirq(void);
2626
2627 #define cond_resched_softirq() ({ \
2628 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2629 __cond_resched_softirq(); \
2630 })
2631
2632 static inline void cond_resched_rcu(void)
2633 {
2634 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2635 rcu_read_unlock();
2636 cond_resched();
2637 rcu_read_lock();
2638 #endif
2639 }
2640
2641 /*
2642 * Does a critical section need to be broken due to another
2643 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2644 * but a general need for low latency)
2645 */
2646 static inline int spin_needbreak(spinlock_t *lock)
2647 {
2648 #ifdef CONFIG_PREEMPT
2649 return spin_is_contended(lock);
2650 #else
2651 return 0;
2652 #endif
2653 }
2654
2655 /*
2656 * Idle thread specific functions to determine the need_resched
2657 * polling state. We have two versions, one based on TS_POLLING in
2658 * thread_info.status and one based on TIF_POLLING_NRFLAG in
2659 * thread_info.flags
2660 */
2661 #ifdef TS_POLLING
2662 static inline int tsk_is_polling(struct task_struct *p)
2663 {
2664 return task_thread_info(p)->status & TS_POLLING;
2665 }
2666 static inline void __current_set_polling(void)
2667 {
2668 current_thread_info()->status |= TS_POLLING;
2669 }
2670
2671 static inline bool __must_check current_set_polling_and_test(void)
2672 {
2673 __current_set_polling();
2674
2675 /*
2676 * Polling state must be visible before we test NEED_RESCHED,
2677 * paired by resched_task()
2678 */
2679 smp_mb();
2680
2681 return unlikely(tif_need_resched());
2682 }
2683
2684 static inline void __current_clr_polling(void)
2685 {
2686 current_thread_info()->status &= ~TS_POLLING;
2687 }
2688
2689 static inline bool __must_check current_clr_polling_and_test(void)
2690 {
2691 __current_clr_polling();
2692
2693 /*
2694 * Polling state must be visible before we test NEED_RESCHED,
2695 * paired by resched_task()
2696 */
2697 smp_mb();
2698
2699 return unlikely(tif_need_resched());
2700 }
2701 #elif defined(TIF_POLLING_NRFLAG)
2702 static inline int tsk_is_polling(struct task_struct *p)
2703 {
2704 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2705 }
2706
2707 static inline void __current_set_polling(void)
2708 {
2709 set_thread_flag(TIF_POLLING_NRFLAG);
2710 }
2711
2712 static inline bool __must_check current_set_polling_and_test(void)
2713 {
2714 __current_set_polling();
2715
2716 /*
2717 * Polling state must be visible before we test NEED_RESCHED,
2718 * paired by resched_task()
2719 *
2720 * XXX: assumes set/clear bit are identical barrier wise.
2721 */
2722 smp_mb__after_clear_bit();
2723
2724 return unlikely(tif_need_resched());
2725 }
2726
2727 static inline void __current_clr_polling(void)
2728 {
2729 clear_thread_flag(TIF_POLLING_NRFLAG);
2730 }
2731
2732 static inline bool __must_check current_clr_polling_and_test(void)
2733 {
2734 __current_clr_polling();
2735
2736 /*
2737 * Polling state must be visible before we test NEED_RESCHED,
2738 * paired by resched_task()
2739 */
2740 smp_mb__after_clear_bit();
2741
2742 return unlikely(tif_need_resched());
2743 }
2744
2745 #else
2746 static inline int tsk_is_polling(struct task_struct *p) { return 0; }
2747 static inline void __current_set_polling(void) { }
2748 static inline void __current_clr_polling(void) { }
2749
2750 static inline bool __must_check current_set_polling_and_test(void)
2751 {
2752 return unlikely(tif_need_resched());
2753 }
2754 static inline bool __must_check current_clr_polling_and_test(void)
2755 {
2756 return unlikely(tif_need_resched());
2757 }
2758 #endif
2759
2760 static inline void current_clr_polling(void)
2761 {
2762 __current_clr_polling();
2763
2764 /*
2765 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
2766 * Once the bit is cleared, we'll get IPIs with every new
2767 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
2768 * fold.
2769 */
2770 smp_mb(); /* paired with resched_task() */
2771
2772 preempt_fold_need_resched();
2773 }
2774
2775 static __always_inline bool need_resched(void)
2776 {
2777 return unlikely(tif_need_resched());
2778 }
2779
2780 /*
2781 * Thread group CPU time accounting.
2782 */
2783 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2784 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2785
2786 static inline void thread_group_cputime_init(struct signal_struct *sig)
2787 {
2788 raw_spin_lock_init(&sig->cputimer.lock);
2789 }
2790
2791 /*
2792 * Reevaluate whether the task has signals pending delivery.
2793 * Wake the task if so.
2794 * This is required every time the blocked sigset_t changes.
2795 * callers must hold sighand->siglock.
2796 */
2797 extern void recalc_sigpending_and_wake(struct task_struct *t);
2798 extern void recalc_sigpending(void);
2799
2800 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
2801
2802 static inline void signal_wake_up(struct task_struct *t, bool resume)
2803 {
2804 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
2805 }
2806 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
2807 {
2808 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
2809 }
2810
2811 /*
2812 * Wrappers for p->thread_info->cpu access. No-op on UP.
2813 */
2814 #ifdef CONFIG_SMP
2815
2816 static inline unsigned int task_cpu(const struct task_struct *p)
2817 {
2818 return task_thread_info(p)->cpu;
2819 }
2820
2821 static inline int task_node(const struct task_struct *p)
2822 {
2823 return cpu_to_node(task_cpu(p));
2824 }
2825
2826 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2827
2828 #else
2829
2830 static inline unsigned int task_cpu(const struct task_struct *p)
2831 {
2832 return 0;
2833 }
2834
2835 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2836 {
2837 }
2838
2839 #endif /* CONFIG_SMP */
2840
2841 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2842 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2843
2844 #ifdef CONFIG_CGROUP_SCHED
2845 extern struct task_group root_task_group;
2846 #endif /* CONFIG_CGROUP_SCHED */
2847
2848 extern int task_can_switch_user(struct user_struct *up,
2849 struct task_struct *tsk);
2850
2851 #ifdef CONFIG_TASK_XACCT
2852 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2853 {
2854 tsk->ioac.rchar += amt;
2855 }
2856
2857 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2858 {
2859 tsk->ioac.wchar += amt;
2860 }
2861
2862 static inline void inc_syscr(struct task_struct *tsk)
2863 {
2864 tsk->ioac.syscr++;
2865 }
2866
2867 static inline void inc_syscw(struct task_struct *tsk)
2868 {
2869 tsk->ioac.syscw++;
2870 }
2871 #else
2872 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2873 {
2874 }
2875
2876 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2877 {
2878 }
2879
2880 static inline void inc_syscr(struct task_struct *tsk)
2881 {
2882 }
2883
2884 static inline void inc_syscw(struct task_struct *tsk)
2885 {
2886 }
2887 #endif
2888
2889 #ifndef TASK_SIZE_OF
2890 #define TASK_SIZE_OF(tsk) TASK_SIZE
2891 #endif
2892
2893 #ifdef CONFIG_MM_OWNER
2894 extern void mm_update_next_owner(struct mm_struct *mm);
2895 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2896 #else
2897 static inline void mm_update_next_owner(struct mm_struct *mm)
2898 {
2899 }
2900
2901 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2902 {
2903 }
2904 #endif /* CONFIG_MM_OWNER */
2905
2906 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2907 unsigned int limit)
2908 {
2909 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2910 }
2911
2912 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2913 unsigned int limit)
2914 {
2915 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2916 }
2917
2918 static inline unsigned long rlimit(unsigned int limit)
2919 {
2920 return task_rlimit(current, limit);
2921 }
2922
2923 static inline unsigned long rlimit_max(unsigned int limit)
2924 {
2925 return task_rlimit_max(current, limit);
2926 }
2927
2928 #endif
This page took 0.090404 seconds and 5 git commands to generate.