[S390] cputime: add sparse checking and cleanup
[deliverable/linux.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 /* 0x02000000 was previously the unused CLONE_STOPPED (Start in stopped state)
25 and is now available for re-use. */
26 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
27 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
28 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
29 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
30 #define CLONE_NEWNET 0x40000000 /* New network namespace */
31 #define CLONE_IO 0x80000000 /* Clone io context */
32
33 /*
34 * Scheduling policies
35 */
36 #define SCHED_NORMAL 0
37 #define SCHED_FIFO 1
38 #define SCHED_RR 2
39 #define SCHED_BATCH 3
40 /* SCHED_ISO: reserved but not implemented yet */
41 #define SCHED_IDLE 5
42 /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
43 #define SCHED_RESET_ON_FORK 0x40000000
44
45 #ifdef __KERNEL__
46
47 struct sched_param {
48 int sched_priority;
49 };
50
51 #include <asm/param.h> /* for HZ */
52
53 #include <linux/capability.h>
54 #include <linux/threads.h>
55 #include <linux/kernel.h>
56 #include <linux/types.h>
57 #include <linux/timex.h>
58 #include <linux/jiffies.h>
59 #include <linux/rbtree.h>
60 #include <linux/thread_info.h>
61 #include <linux/cpumask.h>
62 #include <linux/errno.h>
63 #include <linux/nodemask.h>
64 #include <linux/mm_types.h>
65
66 #include <asm/system.h>
67 #include <asm/page.h>
68 #include <asm/ptrace.h>
69 #include <asm/cputime.h>
70
71 #include <linux/smp.h>
72 #include <linux/sem.h>
73 #include <linux/signal.h>
74 #include <linux/compiler.h>
75 #include <linux/completion.h>
76 #include <linux/pid.h>
77 #include <linux/percpu.h>
78 #include <linux/topology.h>
79 #include <linux/proportions.h>
80 #include <linux/seccomp.h>
81 #include <linux/rcupdate.h>
82 #include <linux/rculist.h>
83 #include <linux/rtmutex.h>
84
85 #include <linux/time.h>
86 #include <linux/param.h>
87 #include <linux/resource.h>
88 #include <linux/timer.h>
89 #include <linux/hrtimer.h>
90 #include <linux/task_io_accounting.h>
91 #include <linux/latencytop.h>
92 #include <linux/cred.h>
93 #include <linux/llist.h>
94
95 #include <asm/processor.h>
96
97 struct exec_domain;
98 struct futex_pi_state;
99 struct robust_list_head;
100 struct bio_list;
101 struct fs_struct;
102 struct perf_event_context;
103 struct blk_plug;
104
105 /*
106 * List of flags we want to share for kernel threads,
107 * if only because they are not used by them anyway.
108 */
109 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
110
111 /*
112 * These are the constant used to fake the fixed-point load-average
113 * counting. Some notes:
114 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
115 * a load-average precision of 10 bits integer + 11 bits fractional
116 * - if you want to count load-averages more often, you need more
117 * precision, or rounding will get you. With 2-second counting freq,
118 * the EXP_n values would be 1981, 2034 and 2043 if still using only
119 * 11 bit fractions.
120 */
121 extern unsigned long avenrun[]; /* Load averages */
122 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
123
124 #define FSHIFT 11 /* nr of bits of precision */
125 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
126 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
127 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
128 #define EXP_5 2014 /* 1/exp(5sec/5min) */
129 #define EXP_15 2037 /* 1/exp(5sec/15min) */
130
131 #define CALC_LOAD(load,exp,n) \
132 load *= exp; \
133 load += n*(FIXED_1-exp); \
134 load >>= FSHIFT;
135
136 extern unsigned long total_forks;
137 extern int nr_threads;
138 DECLARE_PER_CPU(unsigned long, process_counts);
139 extern int nr_processes(void);
140 extern unsigned long nr_running(void);
141 extern unsigned long nr_uninterruptible(void);
142 extern unsigned long nr_iowait(void);
143 extern unsigned long nr_iowait_cpu(int cpu);
144 extern unsigned long this_cpu_load(void);
145
146
147 extern void calc_global_load(unsigned long ticks);
148
149 extern unsigned long get_parent_ip(unsigned long addr);
150
151 struct seq_file;
152 struct cfs_rq;
153 struct task_group;
154 #ifdef CONFIG_SCHED_DEBUG
155 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
156 extern void proc_sched_set_task(struct task_struct *p);
157 extern void
158 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
159 #else
160 static inline void
161 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
162 {
163 }
164 static inline void proc_sched_set_task(struct task_struct *p)
165 {
166 }
167 static inline void
168 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
169 {
170 }
171 #endif
172
173 /*
174 * Task state bitmask. NOTE! These bits are also
175 * encoded in fs/proc/array.c: get_task_state().
176 *
177 * We have two separate sets of flags: task->state
178 * is about runnability, while task->exit_state are
179 * about the task exiting. Confusing, but this way
180 * modifying one set can't modify the other one by
181 * mistake.
182 */
183 #define TASK_RUNNING 0
184 #define TASK_INTERRUPTIBLE 1
185 #define TASK_UNINTERRUPTIBLE 2
186 #define __TASK_STOPPED 4
187 #define __TASK_TRACED 8
188 /* in tsk->exit_state */
189 #define EXIT_ZOMBIE 16
190 #define EXIT_DEAD 32
191 /* in tsk->state again */
192 #define TASK_DEAD 64
193 #define TASK_WAKEKILL 128
194 #define TASK_WAKING 256
195 #define TASK_STATE_MAX 512
196
197 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW"
198
199 extern char ___assert_task_state[1 - 2*!!(
200 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
201
202 /* Convenience macros for the sake of set_task_state */
203 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
204 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
205 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
206
207 /* Convenience macros for the sake of wake_up */
208 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
209 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
210
211 /* get_task_state() */
212 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
213 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
214 __TASK_TRACED)
215
216 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
217 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
218 #define task_is_dead(task) ((task)->exit_state != 0)
219 #define task_is_stopped_or_traced(task) \
220 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
221 #define task_contributes_to_load(task) \
222 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
223 (task->flags & PF_FREEZING) == 0)
224
225 #define __set_task_state(tsk, state_value) \
226 do { (tsk)->state = (state_value); } while (0)
227 #define set_task_state(tsk, state_value) \
228 set_mb((tsk)->state, (state_value))
229
230 /*
231 * set_current_state() includes a barrier so that the write of current->state
232 * is correctly serialised wrt the caller's subsequent test of whether to
233 * actually sleep:
234 *
235 * set_current_state(TASK_UNINTERRUPTIBLE);
236 * if (do_i_need_to_sleep())
237 * schedule();
238 *
239 * If the caller does not need such serialisation then use __set_current_state()
240 */
241 #define __set_current_state(state_value) \
242 do { current->state = (state_value); } while (0)
243 #define set_current_state(state_value) \
244 set_mb(current->state, (state_value))
245
246 /* Task command name length */
247 #define TASK_COMM_LEN 16
248
249 #include <linux/spinlock.h>
250
251 /*
252 * This serializes "schedule()" and also protects
253 * the run-queue from deletions/modifications (but
254 * _adding_ to the beginning of the run-queue has
255 * a separate lock).
256 */
257 extern rwlock_t tasklist_lock;
258 extern spinlock_t mmlist_lock;
259
260 struct task_struct;
261
262 #ifdef CONFIG_PROVE_RCU
263 extern int lockdep_tasklist_lock_is_held(void);
264 #endif /* #ifdef CONFIG_PROVE_RCU */
265
266 extern void sched_init(void);
267 extern void sched_init_smp(void);
268 extern asmlinkage void schedule_tail(struct task_struct *prev);
269 extern void init_idle(struct task_struct *idle, int cpu);
270 extern void init_idle_bootup_task(struct task_struct *idle);
271
272 extern int runqueue_is_locked(int cpu);
273
274 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
275 extern void select_nohz_load_balancer(int stop_tick);
276 extern int get_nohz_timer_target(void);
277 #else
278 static inline void select_nohz_load_balancer(int stop_tick) { }
279 #endif
280
281 /*
282 * Only dump TASK_* tasks. (0 for all tasks)
283 */
284 extern void show_state_filter(unsigned long state_filter);
285
286 static inline void show_state(void)
287 {
288 show_state_filter(0);
289 }
290
291 extern void show_regs(struct pt_regs *);
292
293 /*
294 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
295 * task), SP is the stack pointer of the first frame that should be shown in the back
296 * trace (or NULL if the entire call-chain of the task should be shown).
297 */
298 extern void show_stack(struct task_struct *task, unsigned long *sp);
299
300 void io_schedule(void);
301 long io_schedule_timeout(long timeout);
302
303 extern void cpu_init (void);
304 extern void trap_init(void);
305 extern void update_process_times(int user);
306 extern void scheduler_tick(void);
307
308 extern void sched_show_task(struct task_struct *p);
309
310 #ifdef CONFIG_LOCKUP_DETECTOR
311 extern void touch_softlockup_watchdog(void);
312 extern void touch_softlockup_watchdog_sync(void);
313 extern void touch_all_softlockup_watchdogs(void);
314 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
315 void __user *buffer,
316 size_t *lenp, loff_t *ppos);
317 extern unsigned int softlockup_panic;
318 void lockup_detector_init(void);
319 #else
320 static inline void touch_softlockup_watchdog(void)
321 {
322 }
323 static inline void touch_softlockup_watchdog_sync(void)
324 {
325 }
326 static inline void touch_all_softlockup_watchdogs(void)
327 {
328 }
329 static inline void lockup_detector_init(void)
330 {
331 }
332 #endif
333
334 #ifdef CONFIG_DETECT_HUNG_TASK
335 extern unsigned int sysctl_hung_task_panic;
336 extern unsigned long sysctl_hung_task_check_count;
337 extern unsigned long sysctl_hung_task_timeout_secs;
338 extern unsigned long sysctl_hung_task_warnings;
339 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
340 void __user *buffer,
341 size_t *lenp, loff_t *ppos);
342 #else
343 /* Avoid need for ifdefs elsewhere in the code */
344 enum { sysctl_hung_task_timeout_secs = 0 };
345 #endif
346
347 /* Attach to any functions which should be ignored in wchan output. */
348 #define __sched __attribute__((__section__(".sched.text")))
349
350 /* Linker adds these: start and end of __sched functions */
351 extern char __sched_text_start[], __sched_text_end[];
352
353 /* Is this address in the __sched functions? */
354 extern int in_sched_functions(unsigned long addr);
355
356 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
357 extern signed long schedule_timeout(signed long timeout);
358 extern signed long schedule_timeout_interruptible(signed long timeout);
359 extern signed long schedule_timeout_killable(signed long timeout);
360 extern signed long schedule_timeout_uninterruptible(signed long timeout);
361 asmlinkage void schedule(void);
362 extern int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner);
363
364 struct nsproxy;
365 struct user_namespace;
366
367 /*
368 * Default maximum number of active map areas, this limits the number of vmas
369 * per mm struct. Users can overwrite this number by sysctl but there is a
370 * problem.
371 *
372 * When a program's coredump is generated as ELF format, a section is created
373 * per a vma. In ELF, the number of sections is represented in unsigned short.
374 * This means the number of sections should be smaller than 65535 at coredump.
375 * Because the kernel adds some informative sections to a image of program at
376 * generating coredump, we need some margin. The number of extra sections is
377 * 1-3 now and depends on arch. We use "5" as safe margin, here.
378 */
379 #define MAPCOUNT_ELF_CORE_MARGIN (5)
380 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
381
382 extern int sysctl_max_map_count;
383
384 #include <linux/aio.h>
385
386 #ifdef CONFIG_MMU
387 extern void arch_pick_mmap_layout(struct mm_struct *mm);
388 extern unsigned long
389 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
390 unsigned long, unsigned long);
391 extern unsigned long
392 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
393 unsigned long len, unsigned long pgoff,
394 unsigned long flags);
395 extern void arch_unmap_area(struct mm_struct *, unsigned long);
396 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
397 #else
398 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
399 #endif
400
401
402 extern void set_dumpable(struct mm_struct *mm, int value);
403 extern int get_dumpable(struct mm_struct *mm);
404
405 /* mm flags */
406 /* dumpable bits */
407 #define MMF_DUMPABLE 0 /* core dump is permitted */
408 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
409
410 #define MMF_DUMPABLE_BITS 2
411 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
412
413 /* coredump filter bits */
414 #define MMF_DUMP_ANON_PRIVATE 2
415 #define MMF_DUMP_ANON_SHARED 3
416 #define MMF_DUMP_MAPPED_PRIVATE 4
417 #define MMF_DUMP_MAPPED_SHARED 5
418 #define MMF_DUMP_ELF_HEADERS 6
419 #define MMF_DUMP_HUGETLB_PRIVATE 7
420 #define MMF_DUMP_HUGETLB_SHARED 8
421
422 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
423 #define MMF_DUMP_FILTER_BITS 7
424 #define MMF_DUMP_FILTER_MASK \
425 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
426 #define MMF_DUMP_FILTER_DEFAULT \
427 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
428 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
429
430 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
431 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
432 #else
433 # define MMF_DUMP_MASK_DEFAULT_ELF 0
434 #endif
435 /* leave room for more dump flags */
436 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
437 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
438
439 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
440
441 struct sighand_struct {
442 atomic_t count;
443 struct k_sigaction action[_NSIG];
444 spinlock_t siglock;
445 wait_queue_head_t signalfd_wqh;
446 };
447
448 struct pacct_struct {
449 int ac_flag;
450 long ac_exitcode;
451 unsigned long ac_mem;
452 cputime_t ac_utime, ac_stime;
453 unsigned long ac_minflt, ac_majflt;
454 };
455
456 struct cpu_itimer {
457 cputime_t expires;
458 cputime_t incr;
459 u32 error;
460 u32 incr_error;
461 };
462
463 /**
464 * struct task_cputime - collected CPU time counts
465 * @utime: time spent in user mode, in &cputime_t units
466 * @stime: time spent in kernel mode, in &cputime_t units
467 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
468 *
469 * This structure groups together three kinds of CPU time that are
470 * tracked for threads and thread groups. Most things considering
471 * CPU time want to group these counts together and treat all three
472 * of them in parallel.
473 */
474 struct task_cputime {
475 cputime_t utime;
476 cputime_t stime;
477 unsigned long long sum_exec_runtime;
478 };
479 /* Alternate field names when used to cache expirations. */
480 #define prof_exp stime
481 #define virt_exp utime
482 #define sched_exp sum_exec_runtime
483
484 #define INIT_CPUTIME \
485 (struct task_cputime) { \
486 .utime = 0, \
487 .stime = 0, \
488 .sum_exec_runtime = 0, \
489 }
490
491 /*
492 * Disable preemption until the scheduler is running.
493 * Reset by start_kernel()->sched_init()->init_idle().
494 *
495 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
496 * before the scheduler is active -- see should_resched().
497 */
498 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
499
500 /**
501 * struct thread_group_cputimer - thread group interval timer counts
502 * @cputime: thread group interval timers.
503 * @running: non-zero when there are timers running and
504 * @cputime receives updates.
505 * @lock: lock for fields in this struct.
506 *
507 * This structure contains the version of task_cputime, above, that is
508 * used for thread group CPU timer calculations.
509 */
510 struct thread_group_cputimer {
511 struct task_cputime cputime;
512 int running;
513 raw_spinlock_t lock;
514 };
515
516 #include <linux/rwsem.h>
517 struct autogroup;
518
519 /*
520 * NOTE! "signal_struct" does not have its own
521 * locking, because a shared signal_struct always
522 * implies a shared sighand_struct, so locking
523 * sighand_struct is always a proper superset of
524 * the locking of signal_struct.
525 */
526 struct signal_struct {
527 atomic_t sigcnt;
528 atomic_t live;
529 int nr_threads;
530
531 wait_queue_head_t wait_chldexit; /* for wait4() */
532
533 /* current thread group signal load-balancing target: */
534 struct task_struct *curr_target;
535
536 /* shared signal handling: */
537 struct sigpending shared_pending;
538
539 /* thread group exit support */
540 int group_exit_code;
541 /* overloaded:
542 * - notify group_exit_task when ->count is equal to notify_count
543 * - everyone except group_exit_task is stopped during signal delivery
544 * of fatal signals, group_exit_task processes the signal.
545 */
546 int notify_count;
547 struct task_struct *group_exit_task;
548
549 /* thread group stop support, overloads group_exit_code too */
550 int group_stop_count;
551 unsigned int flags; /* see SIGNAL_* flags below */
552
553 /* POSIX.1b Interval Timers */
554 struct list_head posix_timers;
555
556 /* ITIMER_REAL timer for the process */
557 struct hrtimer real_timer;
558 struct pid *leader_pid;
559 ktime_t it_real_incr;
560
561 /*
562 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
563 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
564 * values are defined to 0 and 1 respectively
565 */
566 struct cpu_itimer it[2];
567
568 /*
569 * Thread group totals for process CPU timers.
570 * See thread_group_cputimer(), et al, for details.
571 */
572 struct thread_group_cputimer cputimer;
573
574 /* Earliest-expiration cache. */
575 struct task_cputime cputime_expires;
576
577 struct list_head cpu_timers[3];
578
579 struct pid *tty_old_pgrp;
580
581 /* boolean value for session group leader */
582 int leader;
583
584 struct tty_struct *tty; /* NULL if no tty */
585
586 #ifdef CONFIG_SCHED_AUTOGROUP
587 struct autogroup *autogroup;
588 #endif
589 /*
590 * Cumulative resource counters for dead threads in the group,
591 * and for reaped dead child processes forked by this group.
592 * Live threads maintain their own counters and add to these
593 * in __exit_signal, except for the group leader.
594 */
595 cputime_t utime, stime, cutime, cstime;
596 cputime_t gtime;
597 cputime_t cgtime;
598 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
599 cputime_t prev_utime, prev_stime;
600 #endif
601 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
602 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
603 unsigned long inblock, oublock, cinblock, coublock;
604 unsigned long maxrss, cmaxrss;
605 struct task_io_accounting ioac;
606
607 /*
608 * Cumulative ns of schedule CPU time fo dead threads in the
609 * group, not including a zombie group leader, (This only differs
610 * from jiffies_to_ns(utime + stime) if sched_clock uses something
611 * other than jiffies.)
612 */
613 unsigned long long sum_sched_runtime;
614
615 /*
616 * We don't bother to synchronize most readers of this at all,
617 * because there is no reader checking a limit that actually needs
618 * to get both rlim_cur and rlim_max atomically, and either one
619 * alone is a single word that can safely be read normally.
620 * getrlimit/setrlimit use task_lock(current->group_leader) to
621 * protect this instead of the siglock, because they really
622 * have no need to disable irqs.
623 */
624 struct rlimit rlim[RLIM_NLIMITS];
625
626 #ifdef CONFIG_BSD_PROCESS_ACCT
627 struct pacct_struct pacct; /* per-process accounting information */
628 #endif
629 #ifdef CONFIG_TASKSTATS
630 struct taskstats *stats;
631 #endif
632 #ifdef CONFIG_AUDIT
633 unsigned audit_tty;
634 struct tty_audit_buf *tty_audit_buf;
635 #endif
636 #ifdef CONFIG_CGROUPS
637 /*
638 * The threadgroup_fork_lock prevents threads from forking with
639 * CLONE_THREAD while held for writing. Use this for fork-sensitive
640 * threadgroup-wide operations. It's taken for reading in fork.c in
641 * copy_process().
642 * Currently only needed write-side by cgroups.
643 */
644 struct rw_semaphore threadgroup_fork_lock;
645 #endif
646
647 int oom_adj; /* OOM kill score adjustment (bit shift) */
648 int oom_score_adj; /* OOM kill score adjustment */
649 int oom_score_adj_min; /* OOM kill score adjustment minimum value.
650 * Only settable by CAP_SYS_RESOURCE. */
651
652 struct mutex cred_guard_mutex; /* guard against foreign influences on
653 * credential calculations
654 * (notably. ptrace) */
655 };
656
657 /* Context switch must be unlocked if interrupts are to be enabled */
658 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
659 # define __ARCH_WANT_UNLOCKED_CTXSW
660 #endif
661
662 /*
663 * Bits in flags field of signal_struct.
664 */
665 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
666 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
667 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
668 /*
669 * Pending notifications to parent.
670 */
671 #define SIGNAL_CLD_STOPPED 0x00000010
672 #define SIGNAL_CLD_CONTINUED 0x00000020
673 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
674
675 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
676
677 /* If true, all threads except ->group_exit_task have pending SIGKILL */
678 static inline int signal_group_exit(const struct signal_struct *sig)
679 {
680 return (sig->flags & SIGNAL_GROUP_EXIT) ||
681 (sig->group_exit_task != NULL);
682 }
683
684 /*
685 * Some day this will be a full-fledged user tracking system..
686 */
687 struct user_struct {
688 atomic_t __count; /* reference count */
689 atomic_t processes; /* How many processes does this user have? */
690 atomic_t files; /* How many open files does this user have? */
691 atomic_t sigpending; /* How many pending signals does this user have? */
692 #ifdef CONFIG_INOTIFY_USER
693 atomic_t inotify_watches; /* How many inotify watches does this user have? */
694 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
695 #endif
696 #ifdef CONFIG_FANOTIFY
697 atomic_t fanotify_listeners;
698 #endif
699 #ifdef CONFIG_EPOLL
700 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
701 #endif
702 #ifdef CONFIG_POSIX_MQUEUE
703 /* protected by mq_lock */
704 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
705 #endif
706 unsigned long locked_shm; /* How many pages of mlocked shm ? */
707
708 #ifdef CONFIG_KEYS
709 struct key *uid_keyring; /* UID specific keyring */
710 struct key *session_keyring; /* UID's default session keyring */
711 #endif
712
713 /* Hash table maintenance information */
714 struct hlist_node uidhash_node;
715 uid_t uid;
716 struct user_namespace *user_ns;
717
718 #ifdef CONFIG_PERF_EVENTS
719 atomic_long_t locked_vm;
720 #endif
721 };
722
723 extern int uids_sysfs_init(void);
724
725 extern struct user_struct *find_user(uid_t);
726
727 extern struct user_struct root_user;
728 #define INIT_USER (&root_user)
729
730
731 struct backing_dev_info;
732 struct reclaim_state;
733
734 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
735 struct sched_info {
736 /* cumulative counters */
737 unsigned long pcount; /* # of times run on this cpu */
738 unsigned long long run_delay; /* time spent waiting on a runqueue */
739
740 /* timestamps */
741 unsigned long long last_arrival,/* when we last ran on a cpu */
742 last_queued; /* when we were last queued to run */
743 };
744 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
745
746 #ifdef CONFIG_TASK_DELAY_ACCT
747 struct task_delay_info {
748 spinlock_t lock;
749 unsigned int flags; /* Private per-task flags */
750
751 /* For each stat XXX, add following, aligned appropriately
752 *
753 * struct timespec XXX_start, XXX_end;
754 * u64 XXX_delay;
755 * u32 XXX_count;
756 *
757 * Atomicity of updates to XXX_delay, XXX_count protected by
758 * single lock above (split into XXX_lock if contention is an issue).
759 */
760
761 /*
762 * XXX_count is incremented on every XXX operation, the delay
763 * associated with the operation is added to XXX_delay.
764 * XXX_delay contains the accumulated delay time in nanoseconds.
765 */
766 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
767 u64 blkio_delay; /* wait for sync block io completion */
768 u64 swapin_delay; /* wait for swapin block io completion */
769 u32 blkio_count; /* total count of the number of sync block */
770 /* io operations performed */
771 u32 swapin_count; /* total count of the number of swapin block */
772 /* io operations performed */
773
774 struct timespec freepages_start, freepages_end;
775 u64 freepages_delay; /* wait for memory reclaim */
776 u32 freepages_count; /* total count of memory reclaim */
777 };
778 #endif /* CONFIG_TASK_DELAY_ACCT */
779
780 static inline int sched_info_on(void)
781 {
782 #ifdef CONFIG_SCHEDSTATS
783 return 1;
784 #elif defined(CONFIG_TASK_DELAY_ACCT)
785 extern int delayacct_on;
786 return delayacct_on;
787 #else
788 return 0;
789 #endif
790 }
791
792 enum cpu_idle_type {
793 CPU_IDLE,
794 CPU_NOT_IDLE,
795 CPU_NEWLY_IDLE,
796 CPU_MAX_IDLE_TYPES
797 };
798
799 /*
800 * Increase resolution of nice-level calculations for 64-bit architectures.
801 * The extra resolution improves shares distribution and load balancing of
802 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
803 * hierarchies, especially on larger systems. This is not a user-visible change
804 * and does not change the user-interface for setting shares/weights.
805 *
806 * We increase resolution only if we have enough bits to allow this increased
807 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
808 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
809 * increased costs.
810 */
811 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
812 # define SCHED_LOAD_RESOLUTION 10
813 # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
814 # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
815 #else
816 # define SCHED_LOAD_RESOLUTION 0
817 # define scale_load(w) (w)
818 # define scale_load_down(w) (w)
819 #endif
820
821 #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
822 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
823
824 /*
825 * Increase resolution of cpu_power calculations
826 */
827 #define SCHED_POWER_SHIFT 10
828 #define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT)
829
830 /*
831 * sched-domains (multiprocessor balancing) declarations:
832 */
833 #ifdef CONFIG_SMP
834 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
835 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
836 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
837 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
838 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
839 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
840 #define SD_PREFER_LOCAL 0x0040 /* Prefer to keep tasks local to this domain */
841 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
842 #define SD_POWERSAVINGS_BALANCE 0x0100 /* Balance for power savings */
843 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
844 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
845 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
846 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
847 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
848
849 enum powersavings_balance_level {
850 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */
851 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package
852 * first for long running threads
853 */
854 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle
855 * cpu package for power savings
856 */
857 MAX_POWERSAVINGS_BALANCE_LEVELS
858 };
859
860 extern int sched_mc_power_savings, sched_smt_power_savings;
861
862 static inline int sd_balance_for_mc_power(void)
863 {
864 if (sched_smt_power_savings)
865 return SD_POWERSAVINGS_BALANCE;
866
867 if (!sched_mc_power_savings)
868 return SD_PREFER_SIBLING;
869
870 return 0;
871 }
872
873 static inline int sd_balance_for_package_power(void)
874 {
875 if (sched_mc_power_savings | sched_smt_power_savings)
876 return SD_POWERSAVINGS_BALANCE;
877
878 return SD_PREFER_SIBLING;
879 }
880
881 extern int __weak arch_sd_sibiling_asym_packing(void);
882
883 /*
884 * Optimise SD flags for power savings:
885 * SD_BALANCE_NEWIDLE helps aggressive task consolidation and power savings.
886 * Keep default SD flags if sched_{smt,mc}_power_saving=0
887 */
888
889 static inline int sd_power_saving_flags(void)
890 {
891 if (sched_mc_power_savings | sched_smt_power_savings)
892 return SD_BALANCE_NEWIDLE;
893
894 return 0;
895 }
896
897 struct sched_group_power {
898 atomic_t ref;
899 /*
900 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
901 * single CPU.
902 */
903 unsigned int power, power_orig;
904 };
905
906 struct sched_group {
907 struct sched_group *next; /* Must be a circular list */
908 atomic_t ref;
909
910 unsigned int group_weight;
911 struct sched_group_power *sgp;
912
913 /*
914 * The CPUs this group covers.
915 *
916 * NOTE: this field is variable length. (Allocated dynamically
917 * by attaching extra space to the end of the structure,
918 * depending on how many CPUs the kernel has booted up with)
919 */
920 unsigned long cpumask[0];
921 };
922
923 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
924 {
925 return to_cpumask(sg->cpumask);
926 }
927
928 struct sched_domain_attr {
929 int relax_domain_level;
930 };
931
932 #define SD_ATTR_INIT (struct sched_domain_attr) { \
933 .relax_domain_level = -1, \
934 }
935
936 extern int sched_domain_level_max;
937
938 struct sched_domain {
939 /* These fields must be setup */
940 struct sched_domain *parent; /* top domain must be null terminated */
941 struct sched_domain *child; /* bottom domain must be null terminated */
942 struct sched_group *groups; /* the balancing groups of the domain */
943 unsigned long min_interval; /* Minimum balance interval ms */
944 unsigned long max_interval; /* Maximum balance interval ms */
945 unsigned int busy_factor; /* less balancing by factor if busy */
946 unsigned int imbalance_pct; /* No balance until over watermark */
947 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
948 unsigned int busy_idx;
949 unsigned int idle_idx;
950 unsigned int newidle_idx;
951 unsigned int wake_idx;
952 unsigned int forkexec_idx;
953 unsigned int smt_gain;
954 int flags; /* See SD_* */
955 int level;
956
957 /* Runtime fields. */
958 unsigned long last_balance; /* init to jiffies. units in jiffies */
959 unsigned int balance_interval; /* initialise to 1. units in ms. */
960 unsigned int nr_balance_failed; /* initialise to 0 */
961
962 u64 last_update;
963
964 #ifdef CONFIG_SCHEDSTATS
965 /* load_balance() stats */
966 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
967 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
968 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
969 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
970 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
971 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
972 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
973 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
974
975 /* Active load balancing */
976 unsigned int alb_count;
977 unsigned int alb_failed;
978 unsigned int alb_pushed;
979
980 /* SD_BALANCE_EXEC stats */
981 unsigned int sbe_count;
982 unsigned int sbe_balanced;
983 unsigned int sbe_pushed;
984
985 /* SD_BALANCE_FORK stats */
986 unsigned int sbf_count;
987 unsigned int sbf_balanced;
988 unsigned int sbf_pushed;
989
990 /* try_to_wake_up() stats */
991 unsigned int ttwu_wake_remote;
992 unsigned int ttwu_move_affine;
993 unsigned int ttwu_move_balance;
994 #endif
995 #ifdef CONFIG_SCHED_DEBUG
996 char *name;
997 #endif
998 union {
999 void *private; /* used during construction */
1000 struct rcu_head rcu; /* used during destruction */
1001 };
1002
1003 unsigned int span_weight;
1004 /*
1005 * Span of all CPUs in this domain.
1006 *
1007 * NOTE: this field is variable length. (Allocated dynamically
1008 * by attaching extra space to the end of the structure,
1009 * depending on how many CPUs the kernel has booted up with)
1010 */
1011 unsigned long span[0];
1012 };
1013
1014 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1015 {
1016 return to_cpumask(sd->span);
1017 }
1018
1019 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1020 struct sched_domain_attr *dattr_new);
1021
1022 /* Allocate an array of sched domains, for partition_sched_domains(). */
1023 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1024 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1025
1026 /* Test a flag in parent sched domain */
1027 static inline int test_sd_parent(struct sched_domain *sd, int flag)
1028 {
1029 if (sd->parent && (sd->parent->flags & flag))
1030 return 1;
1031
1032 return 0;
1033 }
1034
1035 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
1036 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
1037
1038 #else /* CONFIG_SMP */
1039
1040 struct sched_domain_attr;
1041
1042 static inline void
1043 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1044 struct sched_domain_attr *dattr_new)
1045 {
1046 }
1047 #endif /* !CONFIG_SMP */
1048
1049
1050 struct io_context; /* See blkdev.h */
1051
1052
1053 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1054 extern void prefetch_stack(struct task_struct *t);
1055 #else
1056 static inline void prefetch_stack(struct task_struct *t) { }
1057 #endif
1058
1059 struct audit_context; /* See audit.c */
1060 struct mempolicy;
1061 struct pipe_inode_info;
1062 struct uts_namespace;
1063
1064 struct rq;
1065 struct sched_domain;
1066
1067 /*
1068 * wake flags
1069 */
1070 #define WF_SYNC 0x01 /* waker goes to sleep after wakup */
1071 #define WF_FORK 0x02 /* child wakeup after fork */
1072 #define WF_MIGRATED 0x04 /* internal use, task got migrated */
1073
1074 #define ENQUEUE_WAKEUP 1
1075 #define ENQUEUE_HEAD 2
1076 #ifdef CONFIG_SMP
1077 #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
1078 #else
1079 #define ENQUEUE_WAKING 0
1080 #endif
1081
1082 #define DEQUEUE_SLEEP 1
1083
1084 struct sched_class {
1085 const struct sched_class *next;
1086
1087 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1088 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1089 void (*yield_task) (struct rq *rq);
1090 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1091
1092 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1093
1094 struct task_struct * (*pick_next_task) (struct rq *rq);
1095 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1096
1097 #ifdef CONFIG_SMP
1098 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
1099
1100 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1101 void (*post_schedule) (struct rq *this_rq);
1102 void (*task_waking) (struct task_struct *task);
1103 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1104
1105 void (*set_cpus_allowed)(struct task_struct *p,
1106 const struct cpumask *newmask);
1107
1108 void (*rq_online)(struct rq *rq);
1109 void (*rq_offline)(struct rq *rq);
1110 #endif
1111
1112 void (*set_curr_task) (struct rq *rq);
1113 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1114 void (*task_fork) (struct task_struct *p);
1115
1116 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1117 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1118 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1119 int oldprio);
1120
1121 unsigned int (*get_rr_interval) (struct rq *rq,
1122 struct task_struct *task);
1123
1124 #ifdef CONFIG_FAIR_GROUP_SCHED
1125 void (*task_move_group) (struct task_struct *p, int on_rq);
1126 #endif
1127 };
1128
1129 struct load_weight {
1130 unsigned long weight, inv_weight;
1131 };
1132
1133 #ifdef CONFIG_SCHEDSTATS
1134 struct sched_statistics {
1135 u64 wait_start;
1136 u64 wait_max;
1137 u64 wait_count;
1138 u64 wait_sum;
1139 u64 iowait_count;
1140 u64 iowait_sum;
1141
1142 u64 sleep_start;
1143 u64 sleep_max;
1144 s64 sum_sleep_runtime;
1145
1146 u64 block_start;
1147 u64 block_max;
1148 u64 exec_max;
1149 u64 slice_max;
1150
1151 u64 nr_migrations_cold;
1152 u64 nr_failed_migrations_affine;
1153 u64 nr_failed_migrations_running;
1154 u64 nr_failed_migrations_hot;
1155 u64 nr_forced_migrations;
1156
1157 u64 nr_wakeups;
1158 u64 nr_wakeups_sync;
1159 u64 nr_wakeups_migrate;
1160 u64 nr_wakeups_local;
1161 u64 nr_wakeups_remote;
1162 u64 nr_wakeups_affine;
1163 u64 nr_wakeups_affine_attempts;
1164 u64 nr_wakeups_passive;
1165 u64 nr_wakeups_idle;
1166 };
1167 #endif
1168
1169 struct sched_entity {
1170 struct load_weight load; /* for load-balancing */
1171 struct rb_node run_node;
1172 struct list_head group_node;
1173 unsigned int on_rq;
1174
1175 u64 exec_start;
1176 u64 sum_exec_runtime;
1177 u64 vruntime;
1178 u64 prev_sum_exec_runtime;
1179
1180 u64 nr_migrations;
1181
1182 #ifdef CONFIG_SCHEDSTATS
1183 struct sched_statistics statistics;
1184 #endif
1185
1186 #ifdef CONFIG_FAIR_GROUP_SCHED
1187 struct sched_entity *parent;
1188 /* rq on which this entity is (to be) queued: */
1189 struct cfs_rq *cfs_rq;
1190 /* rq "owned" by this entity/group: */
1191 struct cfs_rq *my_q;
1192 #endif
1193 };
1194
1195 struct sched_rt_entity {
1196 struct list_head run_list;
1197 unsigned long timeout;
1198 unsigned int time_slice;
1199 int nr_cpus_allowed;
1200
1201 struct sched_rt_entity *back;
1202 #ifdef CONFIG_RT_GROUP_SCHED
1203 struct sched_rt_entity *parent;
1204 /* rq on which this entity is (to be) queued: */
1205 struct rt_rq *rt_rq;
1206 /* rq "owned" by this entity/group: */
1207 struct rt_rq *my_q;
1208 #endif
1209 };
1210
1211 struct rcu_node;
1212
1213 enum perf_event_task_context {
1214 perf_invalid_context = -1,
1215 perf_hw_context = 0,
1216 perf_sw_context,
1217 perf_nr_task_contexts,
1218 };
1219
1220 struct task_struct {
1221 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1222 void *stack;
1223 atomic_t usage;
1224 unsigned int flags; /* per process flags, defined below */
1225 unsigned int ptrace;
1226
1227 #ifdef CONFIG_SMP
1228 struct llist_node wake_entry;
1229 int on_cpu;
1230 #endif
1231 int on_rq;
1232
1233 int prio, static_prio, normal_prio;
1234 unsigned int rt_priority;
1235 const struct sched_class *sched_class;
1236 struct sched_entity se;
1237 struct sched_rt_entity rt;
1238
1239 #ifdef CONFIG_PREEMPT_NOTIFIERS
1240 /* list of struct preempt_notifier: */
1241 struct hlist_head preempt_notifiers;
1242 #endif
1243
1244 /*
1245 * fpu_counter contains the number of consecutive context switches
1246 * that the FPU is used. If this is over a threshold, the lazy fpu
1247 * saving becomes unlazy to save the trap. This is an unsigned char
1248 * so that after 256 times the counter wraps and the behavior turns
1249 * lazy again; this to deal with bursty apps that only use FPU for
1250 * a short time
1251 */
1252 unsigned char fpu_counter;
1253 #ifdef CONFIG_BLK_DEV_IO_TRACE
1254 unsigned int btrace_seq;
1255 #endif
1256
1257 unsigned int policy;
1258 cpumask_t cpus_allowed;
1259
1260 #ifdef CONFIG_PREEMPT_RCU
1261 int rcu_read_lock_nesting;
1262 char rcu_read_unlock_special;
1263 struct list_head rcu_node_entry;
1264 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1265 #ifdef CONFIG_TREE_PREEMPT_RCU
1266 struct rcu_node *rcu_blocked_node;
1267 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1268 #ifdef CONFIG_RCU_BOOST
1269 struct rt_mutex *rcu_boost_mutex;
1270 #endif /* #ifdef CONFIG_RCU_BOOST */
1271
1272 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1273 struct sched_info sched_info;
1274 #endif
1275
1276 struct list_head tasks;
1277 #ifdef CONFIG_SMP
1278 struct plist_node pushable_tasks;
1279 #endif
1280
1281 struct mm_struct *mm, *active_mm;
1282 #ifdef CONFIG_COMPAT_BRK
1283 unsigned brk_randomized:1;
1284 #endif
1285 #if defined(SPLIT_RSS_COUNTING)
1286 struct task_rss_stat rss_stat;
1287 #endif
1288 /* task state */
1289 int exit_state;
1290 int exit_code, exit_signal;
1291 int pdeath_signal; /* The signal sent when the parent dies */
1292 unsigned int jobctl; /* JOBCTL_*, siglock protected */
1293 /* ??? */
1294 unsigned int personality;
1295 unsigned did_exec:1;
1296 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1297 * execve */
1298 unsigned in_iowait:1;
1299
1300
1301 /* Revert to default priority/policy when forking */
1302 unsigned sched_reset_on_fork:1;
1303 unsigned sched_contributes_to_load:1;
1304
1305 pid_t pid;
1306 pid_t tgid;
1307
1308 #ifdef CONFIG_CC_STACKPROTECTOR
1309 /* Canary value for the -fstack-protector gcc feature */
1310 unsigned long stack_canary;
1311 #endif
1312
1313 /*
1314 * pointers to (original) parent process, youngest child, younger sibling,
1315 * older sibling, respectively. (p->father can be replaced with
1316 * p->real_parent->pid)
1317 */
1318 struct task_struct *real_parent; /* real parent process */
1319 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1320 /*
1321 * children/sibling forms the list of my natural children
1322 */
1323 struct list_head children; /* list of my children */
1324 struct list_head sibling; /* linkage in my parent's children list */
1325 struct task_struct *group_leader; /* threadgroup leader */
1326
1327 /*
1328 * ptraced is the list of tasks this task is using ptrace on.
1329 * This includes both natural children and PTRACE_ATTACH targets.
1330 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1331 */
1332 struct list_head ptraced;
1333 struct list_head ptrace_entry;
1334
1335 /* PID/PID hash table linkage. */
1336 struct pid_link pids[PIDTYPE_MAX];
1337 struct list_head thread_group;
1338
1339 struct completion *vfork_done; /* for vfork() */
1340 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1341 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1342
1343 cputime_t utime, stime, utimescaled, stimescaled;
1344 cputime_t gtime;
1345 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1346 cputime_t prev_utime, prev_stime;
1347 #endif
1348 unsigned long nvcsw, nivcsw; /* context switch counts */
1349 struct timespec start_time; /* monotonic time */
1350 struct timespec real_start_time; /* boot based time */
1351 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1352 unsigned long min_flt, maj_flt;
1353
1354 struct task_cputime cputime_expires;
1355 struct list_head cpu_timers[3];
1356
1357 /* process credentials */
1358 const struct cred __rcu *real_cred; /* objective and real subjective task
1359 * credentials (COW) */
1360 const struct cred __rcu *cred; /* effective (overridable) subjective task
1361 * credentials (COW) */
1362 struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */
1363
1364 char comm[TASK_COMM_LEN]; /* executable name excluding path
1365 - access with [gs]et_task_comm (which lock
1366 it with task_lock())
1367 - initialized normally by setup_new_exec */
1368 /* file system info */
1369 int link_count, total_link_count;
1370 #ifdef CONFIG_SYSVIPC
1371 /* ipc stuff */
1372 struct sysv_sem sysvsem;
1373 #endif
1374 #ifdef CONFIG_DETECT_HUNG_TASK
1375 /* hung task detection */
1376 unsigned long last_switch_count;
1377 #endif
1378 /* CPU-specific state of this task */
1379 struct thread_struct thread;
1380 /* filesystem information */
1381 struct fs_struct *fs;
1382 /* open file information */
1383 struct files_struct *files;
1384 /* namespaces */
1385 struct nsproxy *nsproxy;
1386 /* signal handlers */
1387 struct signal_struct *signal;
1388 struct sighand_struct *sighand;
1389
1390 sigset_t blocked, real_blocked;
1391 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1392 struct sigpending pending;
1393
1394 unsigned long sas_ss_sp;
1395 size_t sas_ss_size;
1396 int (*notifier)(void *priv);
1397 void *notifier_data;
1398 sigset_t *notifier_mask;
1399 struct audit_context *audit_context;
1400 #ifdef CONFIG_AUDITSYSCALL
1401 uid_t loginuid;
1402 unsigned int sessionid;
1403 #endif
1404 seccomp_t seccomp;
1405
1406 /* Thread group tracking */
1407 u32 parent_exec_id;
1408 u32 self_exec_id;
1409 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1410 * mempolicy */
1411 spinlock_t alloc_lock;
1412
1413 #ifdef CONFIG_GENERIC_HARDIRQS
1414 /* IRQ handler threads */
1415 struct irqaction *irqaction;
1416 #endif
1417
1418 /* Protection of the PI data structures: */
1419 raw_spinlock_t pi_lock;
1420
1421 #ifdef CONFIG_RT_MUTEXES
1422 /* PI waiters blocked on a rt_mutex held by this task */
1423 struct plist_head pi_waiters;
1424 /* Deadlock detection and priority inheritance handling */
1425 struct rt_mutex_waiter *pi_blocked_on;
1426 #endif
1427
1428 #ifdef CONFIG_DEBUG_MUTEXES
1429 /* mutex deadlock detection */
1430 struct mutex_waiter *blocked_on;
1431 #endif
1432 #ifdef CONFIG_TRACE_IRQFLAGS
1433 unsigned int irq_events;
1434 unsigned long hardirq_enable_ip;
1435 unsigned long hardirq_disable_ip;
1436 unsigned int hardirq_enable_event;
1437 unsigned int hardirq_disable_event;
1438 int hardirqs_enabled;
1439 int hardirq_context;
1440 unsigned long softirq_disable_ip;
1441 unsigned long softirq_enable_ip;
1442 unsigned int softirq_disable_event;
1443 unsigned int softirq_enable_event;
1444 int softirqs_enabled;
1445 int softirq_context;
1446 #endif
1447 #ifdef CONFIG_LOCKDEP
1448 # define MAX_LOCK_DEPTH 48UL
1449 u64 curr_chain_key;
1450 int lockdep_depth;
1451 unsigned int lockdep_recursion;
1452 struct held_lock held_locks[MAX_LOCK_DEPTH];
1453 gfp_t lockdep_reclaim_gfp;
1454 #endif
1455
1456 /* journalling filesystem info */
1457 void *journal_info;
1458
1459 /* stacked block device info */
1460 struct bio_list *bio_list;
1461
1462 #ifdef CONFIG_BLOCK
1463 /* stack plugging */
1464 struct blk_plug *plug;
1465 #endif
1466
1467 /* VM state */
1468 struct reclaim_state *reclaim_state;
1469
1470 struct backing_dev_info *backing_dev_info;
1471
1472 struct io_context *io_context;
1473
1474 unsigned long ptrace_message;
1475 siginfo_t *last_siginfo; /* For ptrace use. */
1476 struct task_io_accounting ioac;
1477 #if defined(CONFIG_TASK_XACCT)
1478 u64 acct_rss_mem1; /* accumulated rss usage */
1479 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1480 cputime_t acct_timexpd; /* stime + utime since last update */
1481 #endif
1482 #ifdef CONFIG_CPUSETS
1483 nodemask_t mems_allowed; /* Protected by alloc_lock */
1484 int mems_allowed_change_disable;
1485 int cpuset_mem_spread_rotor;
1486 int cpuset_slab_spread_rotor;
1487 #endif
1488 #ifdef CONFIG_CGROUPS
1489 /* Control Group info protected by css_set_lock */
1490 struct css_set __rcu *cgroups;
1491 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1492 struct list_head cg_list;
1493 #endif
1494 #ifdef CONFIG_FUTEX
1495 struct robust_list_head __user *robust_list;
1496 #ifdef CONFIG_COMPAT
1497 struct compat_robust_list_head __user *compat_robust_list;
1498 #endif
1499 struct list_head pi_state_list;
1500 struct futex_pi_state *pi_state_cache;
1501 #endif
1502 #ifdef CONFIG_PERF_EVENTS
1503 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1504 struct mutex perf_event_mutex;
1505 struct list_head perf_event_list;
1506 #endif
1507 #ifdef CONFIG_NUMA
1508 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1509 short il_next;
1510 short pref_node_fork;
1511 #endif
1512 struct rcu_head rcu;
1513
1514 /*
1515 * cache last used pipe for splice
1516 */
1517 struct pipe_inode_info *splice_pipe;
1518 #ifdef CONFIG_TASK_DELAY_ACCT
1519 struct task_delay_info *delays;
1520 #endif
1521 #ifdef CONFIG_FAULT_INJECTION
1522 int make_it_fail;
1523 #endif
1524 /*
1525 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1526 * balance_dirty_pages() for some dirty throttling pause
1527 */
1528 int nr_dirtied;
1529 int nr_dirtied_pause;
1530
1531 #ifdef CONFIG_LATENCYTOP
1532 int latency_record_count;
1533 struct latency_record latency_record[LT_SAVECOUNT];
1534 #endif
1535 /*
1536 * time slack values; these are used to round up poll() and
1537 * select() etc timeout values. These are in nanoseconds.
1538 */
1539 unsigned long timer_slack_ns;
1540 unsigned long default_timer_slack_ns;
1541
1542 struct list_head *scm_work_list;
1543 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1544 /* Index of current stored address in ret_stack */
1545 int curr_ret_stack;
1546 /* Stack of return addresses for return function tracing */
1547 struct ftrace_ret_stack *ret_stack;
1548 /* time stamp for last schedule */
1549 unsigned long long ftrace_timestamp;
1550 /*
1551 * Number of functions that haven't been traced
1552 * because of depth overrun.
1553 */
1554 atomic_t trace_overrun;
1555 /* Pause for the tracing */
1556 atomic_t tracing_graph_pause;
1557 #endif
1558 #ifdef CONFIG_TRACING
1559 /* state flags for use by tracers */
1560 unsigned long trace;
1561 /* bitmask and counter of trace recursion */
1562 unsigned long trace_recursion;
1563 #endif /* CONFIG_TRACING */
1564 #ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */
1565 struct memcg_batch_info {
1566 int do_batch; /* incremented when batch uncharge started */
1567 struct mem_cgroup *memcg; /* target memcg of uncharge */
1568 unsigned long nr_pages; /* uncharged usage */
1569 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1570 } memcg_batch;
1571 #endif
1572 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1573 atomic_t ptrace_bp_refcnt;
1574 #endif
1575 };
1576
1577 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1578 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1579
1580 /*
1581 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1582 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1583 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1584 * values are inverted: lower p->prio value means higher priority.
1585 *
1586 * The MAX_USER_RT_PRIO value allows the actual maximum
1587 * RT priority to be separate from the value exported to
1588 * user-space. This allows kernel threads to set their
1589 * priority to a value higher than any user task. Note:
1590 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1591 */
1592
1593 #define MAX_USER_RT_PRIO 100
1594 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1595
1596 #define MAX_PRIO (MAX_RT_PRIO + 40)
1597 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1598
1599 static inline int rt_prio(int prio)
1600 {
1601 if (unlikely(prio < MAX_RT_PRIO))
1602 return 1;
1603 return 0;
1604 }
1605
1606 static inline int rt_task(struct task_struct *p)
1607 {
1608 return rt_prio(p->prio);
1609 }
1610
1611 static inline struct pid *task_pid(struct task_struct *task)
1612 {
1613 return task->pids[PIDTYPE_PID].pid;
1614 }
1615
1616 static inline struct pid *task_tgid(struct task_struct *task)
1617 {
1618 return task->group_leader->pids[PIDTYPE_PID].pid;
1619 }
1620
1621 /*
1622 * Without tasklist or rcu lock it is not safe to dereference
1623 * the result of task_pgrp/task_session even if task == current,
1624 * we can race with another thread doing sys_setsid/sys_setpgid.
1625 */
1626 static inline struct pid *task_pgrp(struct task_struct *task)
1627 {
1628 return task->group_leader->pids[PIDTYPE_PGID].pid;
1629 }
1630
1631 static inline struct pid *task_session(struct task_struct *task)
1632 {
1633 return task->group_leader->pids[PIDTYPE_SID].pid;
1634 }
1635
1636 struct pid_namespace;
1637
1638 /*
1639 * the helpers to get the task's different pids as they are seen
1640 * from various namespaces
1641 *
1642 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1643 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1644 * current.
1645 * task_xid_nr_ns() : id seen from the ns specified;
1646 *
1647 * set_task_vxid() : assigns a virtual id to a task;
1648 *
1649 * see also pid_nr() etc in include/linux/pid.h
1650 */
1651 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1652 struct pid_namespace *ns);
1653
1654 static inline pid_t task_pid_nr(struct task_struct *tsk)
1655 {
1656 return tsk->pid;
1657 }
1658
1659 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1660 struct pid_namespace *ns)
1661 {
1662 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1663 }
1664
1665 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1666 {
1667 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1668 }
1669
1670
1671 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1672 {
1673 return tsk->tgid;
1674 }
1675
1676 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1677
1678 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1679 {
1680 return pid_vnr(task_tgid(tsk));
1681 }
1682
1683
1684 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1685 struct pid_namespace *ns)
1686 {
1687 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1688 }
1689
1690 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1691 {
1692 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1693 }
1694
1695
1696 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1697 struct pid_namespace *ns)
1698 {
1699 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1700 }
1701
1702 static inline pid_t task_session_vnr(struct task_struct *tsk)
1703 {
1704 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1705 }
1706
1707 /* obsolete, do not use */
1708 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1709 {
1710 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1711 }
1712
1713 /**
1714 * pid_alive - check that a task structure is not stale
1715 * @p: Task structure to be checked.
1716 *
1717 * Test if a process is not yet dead (at most zombie state)
1718 * If pid_alive fails, then pointers within the task structure
1719 * can be stale and must not be dereferenced.
1720 */
1721 static inline int pid_alive(struct task_struct *p)
1722 {
1723 return p->pids[PIDTYPE_PID].pid != NULL;
1724 }
1725
1726 /**
1727 * is_global_init - check if a task structure is init
1728 * @tsk: Task structure to be checked.
1729 *
1730 * Check if a task structure is the first user space task the kernel created.
1731 */
1732 static inline int is_global_init(struct task_struct *tsk)
1733 {
1734 return tsk->pid == 1;
1735 }
1736
1737 /*
1738 * is_container_init:
1739 * check whether in the task is init in its own pid namespace.
1740 */
1741 extern int is_container_init(struct task_struct *tsk);
1742
1743 extern struct pid *cad_pid;
1744
1745 extern void free_task(struct task_struct *tsk);
1746 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1747
1748 extern void __put_task_struct(struct task_struct *t);
1749
1750 static inline void put_task_struct(struct task_struct *t)
1751 {
1752 if (atomic_dec_and_test(&t->usage))
1753 __put_task_struct(t);
1754 }
1755
1756 extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1757 extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1758
1759 /*
1760 * Per process flags
1761 */
1762 #define PF_STARTING 0x00000002 /* being created */
1763 #define PF_EXITING 0x00000004 /* getting shut down */
1764 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1765 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1766 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1767 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1768 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1769 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1770 #define PF_DUMPCORE 0x00000200 /* dumped core */
1771 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1772 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1773 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1774 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1775 #define PF_FREEZING 0x00004000 /* freeze in progress. do not account to load */
1776 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1777 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1778 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1779 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1780 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1781 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1782 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1783 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1784 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1785 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1786 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1787 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1788 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1789 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1790 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1791 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */
1792
1793 /*
1794 * Only the _current_ task can read/write to tsk->flags, but other
1795 * tasks can access tsk->flags in readonly mode for example
1796 * with tsk_used_math (like during threaded core dumping).
1797 * There is however an exception to this rule during ptrace
1798 * or during fork: the ptracer task is allowed to write to the
1799 * child->flags of its traced child (same goes for fork, the parent
1800 * can write to the child->flags), because we're guaranteed the
1801 * child is not running and in turn not changing child->flags
1802 * at the same time the parent does it.
1803 */
1804 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1805 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1806 #define clear_used_math() clear_stopped_child_used_math(current)
1807 #define set_used_math() set_stopped_child_used_math(current)
1808 #define conditional_stopped_child_used_math(condition, child) \
1809 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1810 #define conditional_used_math(condition) \
1811 conditional_stopped_child_used_math(condition, current)
1812 #define copy_to_stopped_child_used_math(child) \
1813 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1814 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1815 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1816 #define used_math() tsk_used_math(current)
1817
1818 /*
1819 * task->jobctl flags
1820 */
1821 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
1822
1823 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
1824 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
1825 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
1826 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
1827 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
1828 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
1829 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
1830
1831 #define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT)
1832 #define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT)
1833 #define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT)
1834 #define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT)
1835 #define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT)
1836 #define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT)
1837 #define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT)
1838
1839 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1840 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1841
1842 extern bool task_set_jobctl_pending(struct task_struct *task,
1843 unsigned int mask);
1844 extern void task_clear_jobctl_trapping(struct task_struct *task);
1845 extern void task_clear_jobctl_pending(struct task_struct *task,
1846 unsigned int mask);
1847
1848 #ifdef CONFIG_PREEMPT_RCU
1849
1850 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1851 #define RCU_READ_UNLOCK_BOOSTED (1 << 1) /* boosted while in RCU read-side. */
1852 #define RCU_READ_UNLOCK_NEED_QS (1 << 2) /* RCU core needs CPU response. */
1853
1854 static inline void rcu_copy_process(struct task_struct *p)
1855 {
1856 p->rcu_read_lock_nesting = 0;
1857 p->rcu_read_unlock_special = 0;
1858 #ifdef CONFIG_TREE_PREEMPT_RCU
1859 p->rcu_blocked_node = NULL;
1860 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1861 #ifdef CONFIG_RCU_BOOST
1862 p->rcu_boost_mutex = NULL;
1863 #endif /* #ifdef CONFIG_RCU_BOOST */
1864 INIT_LIST_HEAD(&p->rcu_node_entry);
1865 }
1866
1867 #else
1868
1869 static inline void rcu_copy_process(struct task_struct *p)
1870 {
1871 }
1872
1873 #endif
1874
1875 #ifdef CONFIG_SMP
1876 extern void do_set_cpus_allowed(struct task_struct *p,
1877 const struct cpumask *new_mask);
1878
1879 extern int set_cpus_allowed_ptr(struct task_struct *p,
1880 const struct cpumask *new_mask);
1881 #else
1882 static inline void do_set_cpus_allowed(struct task_struct *p,
1883 const struct cpumask *new_mask)
1884 {
1885 }
1886 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1887 const struct cpumask *new_mask)
1888 {
1889 if (!cpumask_test_cpu(0, new_mask))
1890 return -EINVAL;
1891 return 0;
1892 }
1893 #endif
1894
1895 #ifndef CONFIG_CPUMASK_OFFSTACK
1896 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1897 {
1898 return set_cpus_allowed_ptr(p, &new_mask);
1899 }
1900 #endif
1901
1902 /*
1903 * Do not use outside of architecture code which knows its limitations.
1904 *
1905 * sched_clock() has no promise of monotonicity or bounded drift between
1906 * CPUs, use (which you should not) requires disabling IRQs.
1907 *
1908 * Please use one of the three interfaces below.
1909 */
1910 extern unsigned long long notrace sched_clock(void);
1911 /*
1912 * See the comment in kernel/sched_clock.c
1913 */
1914 extern u64 cpu_clock(int cpu);
1915 extern u64 local_clock(void);
1916 extern u64 sched_clock_cpu(int cpu);
1917
1918
1919 extern void sched_clock_init(void);
1920
1921 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1922 static inline void sched_clock_tick(void)
1923 {
1924 }
1925
1926 static inline void sched_clock_idle_sleep_event(void)
1927 {
1928 }
1929
1930 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1931 {
1932 }
1933 #else
1934 /*
1935 * Architectures can set this to 1 if they have specified
1936 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1937 * but then during bootup it turns out that sched_clock()
1938 * is reliable after all:
1939 */
1940 extern int sched_clock_stable;
1941
1942 extern void sched_clock_tick(void);
1943 extern void sched_clock_idle_sleep_event(void);
1944 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1945 #endif
1946
1947 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1948 /*
1949 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1950 * The reason for this explicit opt-in is not to have perf penalty with
1951 * slow sched_clocks.
1952 */
1953 extern void enable_sched_clock_irqtime(void);
1954 extern void disable_sched_clock_irqtime(void);
1955 #else
1956 static inline void enable_sched_clock_irqtime(void) {}
1957 static inline void disable_sched_clock_irqtime(void) {}
1958 #endif
1959
1960 extern unsigned long long
1961 task_sched_runtime(struct task_struct *task);
1962
1963 /* sched_exec is called by processes performing an exec */
1964 #ifdef CONFIG_SMP
1965 extern void sched_exec(void);
1966 #else
1967 #define sched_exec() {}
1968 #endif
1969
1970 extern void sched_clock_idle_sleep_event(void);
1971 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1972
1973 #ifdef CONFIG_HOTPLUG_CPU
1974 extern void idle_task_exit(void);
1975 #else
1976 static inline void idle_task_exit(void) {}
1977 #endif
1978
1979 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1980 extern void wake_up_idle_cpu(int cpu);
1981 #else
1982 static inline void wake_up_idle_cpu(int cpu) { }
1983 #endif
1984
1985 extern unsigned int sysctl_sched_latency;
1986 extern unsigned int sysctl_sched_min_granularity;
1987 extern unsigned int sysctl_sched_wakeup_granularity;
1988 extern unsigned int sysctl_sched_child_runs_first;
1989
1990 enum sched_tunable_scaling {
1991 SCHED_TUNABLESCALING_NONE,
1992 SCHED_TUNABLESCALING_LOG,
1993 SCHED_TUNABLESCALING_LINEAR,
1994 SCHED_TUNABLESCALING_END,
1995 };
1996 extern enum sched_tunable_scaling sysctl_sched_tunable_scaling;
1997
1998 #ifdef CONFIG_SCHED_DEBUG
1999 extern unsigned int sysctl_sched_migration_cost;
2000 extern unsigned int sysctl_sched_nr_migrate;
2001 extern unsigned int sysctl_sched_time_avg;
2002 extern unsigned int sysctl_timer_migration;
2003 extern unsigned int sysctl_sched_shares_window;
2004
2005 int sched_proc_update_handler(struct ctl_table *table, int write,
2006 void __user *buffer, size_t *length,
2007 loff_t *ppos);
2008 #endif
2009 #ifdef CONFIG_SCHED_DEBUG
2010 static inline unsigned int get_sysctl_timer_migration(void)
2011 {
2012 return sysctl_timer_migration;
2013 }
2014 #else
2015 static inline unsigned int get_sysctl_timer_migration(void)
2016 {
2017 return 1;
2018 }
2019 #endif
2020 extern unsigned int sysctl_sched_rt_period;
2021 extern int sysctl_sched_rt_runtime;
2022
2023 int sched_rt_handler(struct ctl_table *table, int write,
2024 void __user *buffer, size_t *lenp,
2025 loff_t *ppos);
2026
2027 #ifdef CONFIG_SCHED_AUTOGROUP
2028 extern unsigned int sysctl_sched_autogroup_enabled;
2029
2030 extern void sched_autogroup_create_attach(struct task_struct *p);
2031 extern void sched_autogroup_detach(struct task_struct *p);
2032 extern void sched_autogroup_fork(struct signal_struct *sig);
2033 extern void sched_autogroup_exit(struct signal_struct *sig);
2034 #ifdef CONFIG_PROC_FS
2035 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2036 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int *nice);
2037 #endif
2038 #else
2039 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2040 static inline void sched_autogroup_detach(struct task_struct *p) { }
2041 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2042 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2043 #endif
2044
2045 #ifdef CONFIG_CFS_BANDWIDTH
2046 extern unsigned int sysctl_sched_cfs_bandwidth_slice;
2047 #endif
2048
2049 #ifdef CONFIG_RT_MUTEXES
2050 extern int rt_mutex_getprio(struct task_struct *p);
2051 extern void rt_mutex_setprio(struct task_struct *p, int prio);
2052 extern void rt_mutex_adjust_pi(struct task_struct *p);
2053 #else
2054 static inline int rt_mutex_getprio(struct task_struct *p)
2055 {
2056 return p->normal_prio;
2057 }
2058 # define rt_mutex_adjust_pi(p) do { } while (0)
2059 #endif
2060
2061 extern bool yield_to(struct task_struct *p, bool preempt);
2062 extern void set_user_nice(struct task_struct *p, long nice);
2063 extern int task_prio(const struct task_struct *p);
2064 extern int task_nice(const struct task_struct *p);
2065 extern int can_nice(const struct task_struct *p, const int nice);
2066 extern int task_curr(const struct task_struct *p);
2067 extern int idle_cpu(int cpu);
2068 extern int sched_setscheduler(struct task_struct *, int,
2069 const struct sched_param *);
2070 extern int sched_setscheduler_nocheck(struct task_struct *, int,
2071 const struct sched_param *);
2072 extern struct task_struct *idle_task(int cpu);
2073 extern struct task_struct *curr_task(int cpu);
2074 extern void set_curr_task(int cpu, struct task_struct *p);
2075
2076 void yield(void);
2077
2078 /*
2079 * The default (Linux) execution domain.
2080 */
2081 extern struct exec_domain default_exec_domain;
2082
2083 union thread_union {
2084 struct thread_info thread_info;
2085 unsigned long stack[THREAD_SIZE/sizeof(long)];
2086 };
2087
2088 #ifndef __HAVE_ARCH_KSTACK_END
2089 static inline int kstack_end(void *addr)
2090 {
2091 /* Reliable end of stack detection:
2092 * Some APM bios versions misalign the stack
2093 */
2094 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2095 }
2096 #endif
2097
2098 extern union thread_union init_thread_union;
2099 extern struct task_struct init_task;
2100
2101 extern struct mm_struct init_mm;
2102
2103 extern struct pid_namespace init_pid_ns;
2104
2105 /*
2106 * find a task by one of its numerical ids
2107 *
2108 * find_task_by_pid_ns():
2109 * finds a task by its pid in the specified namespace
2110 * find_task_by_vpid():
2111 * finds a task by its virtual pid
2112 *
2113 * see also find_vpid() etc in include/linux/pid.h
2114 */
2115
2116 extern struct task_struct *find_task_by_vpid(pid_t nr);
2117 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2118 struct pid_namespace *ns);
2119
2120 extern void __set_special_pids(struct pid *pid);
2121
2122 /* per-UID process charging. */
2123 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
2124 static inline struct user_struct *get_uid(struct user_struct *u)
2125 {
2126 atomic_inc(&u->__count);
2127 return u;
2128 }
2129 extern void free_uid(struct user_struct *);
2130 extern void release_uids(struct user_namespace *ns);
2131
2132 #include <asm/current.h>
2133
2134 extern void xtime_update(unsigned long ticks);
2135
2136 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2137 extern int wake_up_process(struct task_struct *tsk);
2138 extern void wake_up_new_task(struct task_struct *tsk);
2139 #ifdef CONFIG_SMP
2140 extern void kick_process(struct task_struct *tsk);
2141 #else
2142 static inline void kick_process(struct task_struct *tsk) { }
2143 #endif
2144 extern void sched_fork(struct task_struct *p);
2145 extern void sched_dead(struct task_struct *p);
2146
2147 extern void proc_caches_init(void);
2148 extern void flush_signals(struct task_struct *);
2149 extern void __flush_signals(struct task_struct *);
2150 extern void ignore_signals(struct task_struct *);
2151 extern void flush_signal_handlers(struct task_struct *, int force_default);
2152 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2153
2154 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2155 {
2156 unsigned long flags;
2157 int ret;
2158
2159 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2160 ret = dequeue_signal(tsk, mask, info);
2161 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2162
2163 return ret;
2164 }
2165
2166 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2167 sigset_t *mask);
2168 extern void unblock_all_signals(void);
2169 extern void release_task(struct task_struct * p);
2170 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2171 extern int force_sigsegv(int, struct task_struct *);
2172 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2173 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2174 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2175 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2176 const struct cred *, u32);
2177 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2178 extern int kill_pid(struct pid *pid, int sig, int priv);
2179 extern int kill_proc_info(int, struct siginfo *, pid_t);
2180 extern __must_check bool do_notify_parent(struct task_struct *, int);
2181 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2182 extern void force_sig(int, struct task_struct *);
2183 extern int send_sig(int, struct task_struct *, int);
2184 extern int zap_other_threads(struct task_struct *p);
2185 extern struct sigqueue *sigqueue_alloc(void);
2186 extern void sigqueue_free(struct sigqueue *);
2187 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2188 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2189 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2190
2191 static inline int kill_cad_pid(int sig, int priv)
2192 {
2193 return kill_pid(cad_pid, sig, priv);
2194 }
2195
2196 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2197 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2198 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2199 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2200
2201 /*
2202 * True if we are on the alternate signal stack.
2203 */
2204 static inline int on_sig_stack(unsigned long sp)
2205 {
2206 #ifdef CONFIG_STACK_GROWSUP
2207 return sp >= current->sas_ss_sp &&
2208 sp - current->sas_ss_sp < current->sas_ss_size;
2209 #else
2210 return sp > current->sas_ss_sp &&
2211 sp - current->sas_ss_sp <= current->sas_ss_size;
2212 #endif
2213 }
2214
2215 static inline int sas_ss_flags(unsigned long sp)
2216 {
2217 return (current->sas_ss_size == 0 ? SS_DISABLE
2218 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2219 }
2220
2221 /*
2222 * Routines for handling mm_structs
2223 */
2224 extern struct mm_struct * mm_alloc(void);
2225
2226 /* mmdrop drops the mm and the page tables */
2227 extern void __mmdrop(struct mm_struct *);
2228 static inline void mmdrop(struct mm_struct * mm)
2229 {
2230 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2231 __mmdrop(mm);
2232 }
2233
2234 /* mmput gets rid of the mappings and all user-space */
2235 extern void mmput(struct mm_struct *);
2236 /* Grab a reference to a task's mm, if it is not already going away */
2237 extern struct mm_struct *get_task_mm(struct task_struct *task);
2238 /* Remove the current tasks stale references to the old mm_struct */
2239 extern void mm_release(struct task_struct *, struct mm_struct *);
2240 /* Allocate a new mm structure and copy contents from tsk->mm */
2241 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2242
2243 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2244 struct task_struct *, struct pt_regs *);
2245 extern void flush_thread(void);
2246 extern void exit_thread(void);
2247
2248 extern void exit_files(struct task_struct *);
2249 extern void __cleanup_sighand(struct sighand_struct *);
2250
2251 extern void exit_itimers(struct signal_struct *);
2252 extern void flush_itimer_signals(void);
2253
2254 extern NORET_TYPE void do_group_exit(int);
2255
2256 extern void daemonize(const char *, ...);
2257 extern int allow_signal(int);
2258 extern int disallow_signal(int);
2259
2260 extern int do_execve(const char *,
2261 const char __user * const __user *,
2262 const char __user * const __user *, struct pt_regs *);
2263 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2264 struct task_struct *fork_idle(int);
2265
2266 extern void set_task_comm(struct task_struct *tsk, char *from);
2267 extern char *get_task_comm(char *to, struct task_struct *tsk);
2268
2269 #ifdef CONFIG_SMP
2270 void scheduler_ipi(void);
2271 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2272 #else
2273 static inline void scheduler_ipi(void) { }
2274 static inline unsigned long wait_task_inactive(struct task_struct *p,
2275 long match_state)
2276 {
2277 return 1;
2278 }
2279 #endif
2280
2281 #define next_task(p) \
2282 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2283
2284 #define for_each_process(p) \
2285 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2286
2287 extern bool current_is_single_threaded(void);
2288
2289 /*
2290 * Careful: do_each_thread/while_each_thread is a double loop so
2291 * 'break' will not work as expected - use goto instead.
2292 */
2293 #define do_each_thread(g, t) \
2294 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2295
2296 #define while_each_thread(g, t) \
2297 while ((t = next_thread(t)) != g)
2298
2299 static inline int get_nr_threads(struct task_struct *tsk)
2300 {
2301 return tsk->signal->nr_threads;
2302 }
2303
2304 static inline bool thread_group_leader(struct task_struct *p)
2305 {
2306 return p->exit_signal >= 0;
2307 }
2308
2309 /* Do to the insanities of de_thread it is possible for a process
2310 * to have the pid of the thread group leader without actually being
2311 * the thread group leader. For iteration through the pids in proc
2312 * all we care about is that we have a task with the appropriate
2313 * pid, we don't actually care if we have the right task.
2314 */
2315 static inline int has_group_leader_pid(struct task_struct *p)
2316 {
2317 return p->pid == p->tgid;
2318 }
2319
2320 static inline
2321 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2322 {
2323 return p1->tgid == p2->tgid;
2324 }
2325
2326 static inline struct task_struct *next_thread(const struct task_struct *p)
2327 {
2328 return list_entry_rcu(p->thread_group.next,
2329 struct task_struct, thread_group);
2330 }
2331
2332 static inline int thread_group_empty(struct task_struct *p)
2333 {
2334 return list_empty(&p->thread_group);
2335 }
2336
2337 #define delay_group_leader(p) \
2338 (thread_group_leader(p) && !thread_group_empty(p))
2339
2340 /*
2341 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2342 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2343 * pins the final release of task.io_context. Also protects ->cpuset and
2344 * ->cgroup.subsys[].
2345 *
2346 * Nests both inside and outside of read_lock(&tasklist_lock).
2347 * It must not be nested with write_lock_irq(&tasklist_lock),
2348 * neither inside nor outside.
2349 */
2350 static inline void task_lock(struct task_struct *p)
2351 {
2352 spin_lock(&p->alloc_lock);
2353 }
2354
2355 static inline void task_unlock(struct task_struct *p)
2356 {
2357 spin_unlock(&p->alloc_lock);
2358 }
2359
2360 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2361 unsigned long *flags);
2362
2363 #define lock_task_sighand(tsk, flags) \
2364 ({ struct sighand_struct *__ss; \
2365 __cond_lock(&(tsk)->sighand->siglock, \
2366 (__ss = __lock_task_sighand(tsk, flags))); \
2367 __ss; \
2368 }) \
2369
2370 static inline void unlock_task_sighand(struct task_struct *tsk,
2371 unsigned long *flags)
2372 {
2373 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2374 }
2375
2376 /* See the declaration of threadgroup_fork_lock in signal_struct. */
2377 #ifdef CONFIG_CGROUPS
2378 static inline void threadgroup_fork_read_lock(struct task_struct *tsk)
2379 {
2380 down_read(&tsk->signal->threadgroup_fork_lock);
2381 }
2382 static inline void threadgroup_fork_read_unlock(struct task_struct *tsk)
2383 {
2384 up_read(&tsk->signal->threadgroup_fork_lock);
2385 }
2386 static inline void threadgroup_fork_write_lock(struct task_struct *tsk)
2387 {
2388 down_write(&tsk->signal->threadgroup_fork_lock);
2389 }
2390 static inline void threadgroup_fork_write_unlock(struct task_struct *tsk)
2391 {
2392 up_write(&tsk->signal->threadgroup_fork_lock);
2393 }
2394 #else
2395 static inline void threadgroup_fork_read_lock(struct task_struct *tsk) {}
2396 static inline void threadgroup_fork_read_unlock(struct task_struct *tsk) {}
2397 static inline void threadgroup_fork_write_lock(struct task_struct *tsk) {}
2398 static inline void threadgroup_fork_write_unlock(struct task_struct *tsk) {}
2399 #endif
2400
2401 #ifndef __HAVE_THREAD_FUNCTIONS
2402
2403 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2404 #define task_stack_page(task) ((task)->stack)
2405
2406 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2407 {
2408 *task_thread_info(p) = *task_thread_info(org);
2409 task_thread_info(p)->task = p;
2410 }
2411
2412 static inline unsigned long *end_of_stack(struct task_struct *p)
2413 {
2414 return (unsigned long *)(task_thread_info(p) + 1);
2415 }
2416
2417 #endif
2418
2419 static inline int object_is_on_stack(void *obj)
2420 {
2421 void *stack = task_stack_page(current);
2422
2423 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2424 }
2425
2426 extern void thread_info_cache_init(void);
2427
2428 #ifdef CONFIG_DEBUG_STACK_USAGE
2429 static inline unsigned long stack_not_used(struct task_struct *p)
2430 {
2431 unsigned long *n = end_of_stack(p);
2432
2433 do { /* Skip over canary */
2434 n++;
2435 } while (!*n);
2436
2437 return (unsigned long)n - (unsigned long)end_of_stack(p);
2438 }
2439 #endif
2440
2441 /* set thread flags in other task's structures
2442 * - see asm/thread_info.h for TIF_xxxx flags available
2443 */
2444 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2445 {
2446 set_ti_thread_flag(task_thread_info(tsk), flag);
2447 }
2448
2449 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2450 {
2451 clear_ti_thread_flag(task_thread_info(tsk), flag);
2452 }
2453
2454 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2455 {
2456 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2457 }
2458
2459 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2460 {
2461 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2462 }
2463
2464 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2465 {
2466 return test_ti_thread_flag(task_thread_info(tsk), flag);
2467 }
2468
2469 static inline void set_tsk_need_resched(struct task_struct *tsk)
2470 {
2471 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2472 }
2473
2474 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2475 {
2476 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2477 }
2478
2479 static inline int test_tsk_need_resched(struct task_struct *tsk)
2480 {
2481 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2482 }
2483
2484 static inline int restart_syscall(void)
2485 {
2486 set_tsk_thread_flag(current, TIF_SIGPENDING);
2487 return -ERESTARTNOINTR;
2488 }
2489
2490 static inline int signal_pending(struct task_struct *p)
2491 {
2492 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2493 }
2494
2495 static inline int __fatal_signal_pending(struct task_struct *p)
2496 {
2497 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2498 }
2499
2500 static inline int fatal_signal_pending(struct task_struct *p)
2501 {
2502 return signal_pending(p) && __fatal_signal_pending(p);
2503 }
2504
2505 static inline int signal_pending_state(long state, struct task_struct *p)
2506 {
2507 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2508 return 0;
2509 if (!signal_pending(p))
2510 return 0;
2511
2512 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2513 }
2514
2515 static inline int need_resched(void)
2516 {
2517 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2518 }
2519
2520 /*
2521 * cond_resched() and cond_resched_lock(): latency reduction via
2522 * explicit rescheduling in places that are safe. The return
2523 * value indicates whether a reschedule was done in fact.
2524 * cond_resched_lock() will drop the spinlock before scheduling,
2525 * cond_resched_softirq() will enable bhs before scheduling.
2526 */
2527 extern int _cond_resched(void);
2528
2529 #define cond_resched() ({ \
2530 __might_sleep(__FILE__, __LINE__, 0); \
2531 _cond_resched(); \
2532 })
2533
2534 extern int __cond_resched_lock(spinlock_t *lock);
2535
2536 #ifdef CONFIG_PREEMPT_COUNT
2537 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2538 #else
2539 #define PREEMPT_LOCK_OFFSET 0
2540 #endif
2541
2542 #define cond_resched_lock(lock) ({ \
2543 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2544 __cond_resched_lock(lock); \
2545 })
2546
2547 extern int __cond_resched_softirq(void);
2548
2549 #define cond_resched_softirq() ({ \
2550 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2551 __cond_resched_softirq(); \
2552 })
2553
2554 /*
2555 * Does a critical section need to be broken due to another
2556 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2557 * but a general need for low latency)
2558 */
2559 static inline int spin_needbreak(spinlock_t *lock)
2560 {
2561 #ifdef CONFIG_PREEMPT
2562 return spin_is_contended(lock);
2563 #else
2564 return 0;
2565 #endif
2566 }
2567
2568 /*
2569 * Thread group CPU time accounting.
2570 */
2571 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2572 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2573
2574 static inline void thread_group_cputime_init(struct signal_struct *sig)
2575 {
2576 raw_spin_lock_init(&sig->cputimer.lock);
2577 }
2578
2579 /*
2580 * Reevaluate whether the task has signals pending delivery.
2581 * Wake the task if so.
2582 * This is required every time the blocked sigset_t changes.
2583 * callers must hold sighand->siglock.
2584 */
2585 extern void recalc_sigpending_and_wake(struct task_struct *t);
2586 extern void recalc_sigpending(void);
2587
2588 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2589
2590 /*
2591 * Wrappers for p->thread_info->cpu access. No-op on UP.
2592 */
2593 #ifdef CONFIG_SMP
2594
2595 static inline unsigned int task_cpu(const struct task_struct *p)
2596 {
2597 return task_thread_info(p)->cpu;
2598 }
2599
2600 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2601
2602 #else
2603
2604 static inline unsigned int task_cpu(const struct task_struct *p)
2605 {
2606 return 0;
2607 }
2608
2609 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2610 {
2611 }
2612
2613 #endif /* CONFIG_SMP */
2614
2615 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2616 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2617
2618 extern void normalize_rt_tasks(void);
2619
2620 #ifdef CONFIG_CGROUP_SCHED
2621
2622 extern struct task_group root_task_group;
2623
2624 extern struct task_group *sched_create_group(struct task_group *parent);
2625 extern void sched_destroy_group(struct task_group *tg);
2626 extern void sched_move_task(struct task_struct *tsk);
2627 #ifdef CONFIG_FAIR_GROUP_SCHED
2628 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2629 extern unsigned long sched_group_shares(struct task_group *tg);
2630 #endif
2631 #ifdef CONFIG_RT_GROUP_SCHED
2632 extern int sched_group_set_rt_runtime(struct task_group *tg,
2633 long rt_runtime_us);
2634 extern long sched_group_rt_runtime(struct task_group *tg);
2635 extern int sched_group_set_rt_period(struct task_group *tg,
2636 long rt_period_us);
2637 extern long sched_group_rt_period(struct task_group *tg);
2638 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2639 #endif
2640 #endif
2641
2642 extern int task_can_switch_user(struct user_struct *up,
2643 struct task_struct *tsk);
2644
2645 #ifdef CONFIG_TASK_XACCT
2646 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2647 {
2648 tsk->ioac.rchar += amt;
2649 }
2650
2651 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2652 {
2653 tsk->ioac.wchar += amt;
2654 }
2655
2656 static inline void inc_syscr(struct task_struct *tsk)
2657 {
2658 tsk->ioac.syscr++;
2659 }
2660
2661 static inline void inc_syscw(struct task_struct *tsk)
2662 {
2663 tsk->ioac.syscw++;
2664 }
2665 #else
2666 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2667 {
2668 }
2669
2670 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2671 {
2672 }
2673
2674 static inline void inc_syscr(struct task_struct *tsk)
2675 {
2676 }
2677
2678 static inline void inc_syscw(struct task_struct *tsk)
2679 {
2680 }
2681 #endif
2682
2683 #ifndef TASK_SIZE_OF
2684 #define TASK_SIZE_OF(tsk) TASK_SIZE
2685 #endif
2686
2687 #ifdef CONFIG_MM_OWNER
2688 extern void mm_update_next_owner(struct mm_struct *mm);
2689 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2690 #else
2691 static inline void mm_update_next_owner(struct mm_struct *mm)
2692 {
2693 }
2694
2695 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2696 {
2697 }
2698 #endif /* CONFIG_MM_OWNER */
2699
2700 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2701 unsigned int limit)
2702 {
2703 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2704 }
2705
2706 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2707 unsigned int limit)
2708 {
2709 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2710 }
2711
2712 static inline unsigned long rlimit(unsigned int limit)
2713 {
2714 return task_rlimit(current, limit);
2715 }
2716
2717 static inline unsigned long rlimit_max(unsigned int limit)
2718 {
2719 return task_rlimit_max(current, limit);
2720 }
2721
2722 #endif /* __KERNEL__ */
2723
2724 #endif
This page took 0.093713 seconds and 5 git commands to generate.