Merge branch 'tracing/ftrace'; commit 'v2.6.29-rc7' into tracing/core
[deliverable/linux.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
29 #define CLONE_NEWNET 0x40000000 /* New network namespace */
30 #define CLONE_IO 0x80000000 /* Clone io context */
31
32 /*
33 * Scheduling policies
34 */
35 #define SCHED_NORMAL 0
36 #define SCHED_FIFO 1
37 #define SCHED_RR 2
38 #define SCHED_BATCH 3
39 /* SCHED_ISO: reserved but not implemented yet */
40 #define SCHED_IDLE 5
41
42 #ifdef __KERNEL__
43
44 struct sched_param {
45 int sched_priority;
46 };
47
48 #include <asm/param.h> /* for HZ */
49
50 #include <linux/capability.h>
51 #include <linux/threads.h>
52 #include <linux/kernel.h>
53 #include <linux/types.h>
54 #include <linux/timex.h>
55 #include <linux/jiffies.h>
56 #include <linux/rbtree.h>
57 #include <linux/thread_info.h>
58 #include <linux/cpumask.h>
59 #include <linux/errno.h>
60 #include <linux/nodemask.h>
61 #include <linux/mm_types.h>
62
63 #include <asm/system.h>
64 #include <asm/page.h>
65 #include <asm/ptrace.h>
66 #include <asm/cputime.h>
67
68 #include <linux/smp.h>
69 #include <linux/sem.h>
70 #include <linux/signal.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compiler.h>
73 #include <linux/completion.h>
74 #include <linux/pid.h>
75 #include <linux/percpu.h>
76 #include <linux/topology.h>
77 #include <linux/proportions.h>
78 #include <linux/seccomp.h>
79 #include <linux/rcupdate.h>
80 #include <linux/rtmutex.h>
81
82 #include <linux/time.h>
83 #include <linux/param.h>
84 #include <linux/resource.h>
85 #include <linux/timer.h>
86 #include <linux/hrtimer.h>
87 #include <linux/task_io_accounting.h>
88 #include <linux/kobject.h>
89 #include <linux/latencytop.h>
90 #include <linux/cred.h>
91
92 #include <asm/processor.h>
93
94 struct mem_cgroup;
95 struct exec_domain;
96 struct futex_pi_state;
97 struct robust_list_head;
98 struct bio;
99 struct bts_tracer;
100
101 /*
102 * List of flags we want to share for kernel threads,
103 * if only because they are not used by them anyway.
104 */
105 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
106
107 /*
108 * These are the constant used to fake the fixed-point load-average
109 * counting. Some notes:
110 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
111 * a load-average precision of 10 bits integer + 11 bits fractional
112 * - if you want to count load-averages more often, you need more
113 * precision, or rounding will get you. With 2-second counting freq,
114 * the EXP_n values would be 1981, 2034 and 2043 if still using only
115 * 11 bit fractions.
116 */
117 extern unsigned long avenrun[]; /* Load averages */
118
119 #define FSHIFT 11 /* nr of bits of precision */
120 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
121 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
122 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
123 #define EXP_5 2014 /* 1/exp(5sec/5min) */
124 #define EXP_15 2037 /* 1/exp(5sec/15min) */
125
126 #define CALC_LOAD(load,exp,n) \
127 load *= exp; \
128 load += n*(FIXED_1-exp); \
129 load >>= FSHIFT;
130
131 extern unsigned long total_forks;
132 extern int nr_threads;
133 DECLARE_PER_CPU(unsigned long, process_counts);
134 extern int nr_processes(void);
135 extern unsigned long nr_running(void);
136 extern unsigned long nr_uninterruptible(void);
137 extern unsigned long nr_active(void);
138 extern unsigned long nr_iowait(void);
139
140 extern unsigned long get_parent_ip(unsigned long addr);
141
142 struct seq_file;
143 struct cfs_rq;
144 struct task_group;
145 #ifdef CONFIG_SCHED_DEBUG
146 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
147 extern void proc_sched_set_task(struct task_struct *p);
148 extern void
149 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
150 #else
151 static inline void
152 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
153 {
154 }
155 static inline void proc_sched_set_task(struct task_struct *p)
156 {
157 }
158 static inline void
159 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
160 {
161 }
162 #endif
163
164 extern unsigned long long time_sync_thresh;
165
166 /*
167 * Task state bitmask. NOTE! These bits are also
168 * encoded in fs/proc/array.c: get_task_state().
169 *
170 * We have two separate sets of flags: task->state
171 * is about runnability, while task->exit_state are
172 * about the task exiting. Confusing, but this way
173 * modifying one set can't modify the other one by
174 * mistake.
175 */
176 #define TASK_RUNNING 0
177 #define TASK_INTERRUPTIBLE 1
178 #define TASK_UNINTERRUPTIBLE 2
179 #define __TASK_STOPPED 4
180 #define __TASK_TRACED 8
181 /* in tsk->exit_state */
182 #define EXIT_ZOMBIE 16
183 #define EXIT_DEAD 32
184 /* in tsk->state again */
185 #define TASK_DEAD 64
186 #define TASK_WAKEKILL 128
187
188 /* Convenience macros for the sake of set_task_state */
189 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
190 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
191 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
192
193 /* Convenience macros for the sake of wake_up */
194 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
195 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
196
197 /* get_task_state() */
198 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
199 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
200 __TASK_TRACED)
201
202 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
203 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
204 #define task_is_stopped_or_traced(task) \
205 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
206 #define task_contributes_to_load(task) \
207 ((task->state & TASK_UNINTERRUPTIBLE) != 0)
208
209 #define __set_task_state(tsk, state_value) \
210 do { (tsk)->state = (state_value); } while (0)
211 #define set_task_state(tsk, state_value) \
212 set_mb((tsk)->state, (state_value))
213
214 /*
215 * set_current_state() includes a barrier so that the write of current->state
216 * is correctly serialised wrt the caller's subsequent test of whether to
217 * actually sleep:
218 *
219 * set_current_state(TASK_UNINTERRUPTIBLE);
220 * if (do_i_need_to_sleep())
221 * schedule();
222 *
223 * If the caller does not need such serialisation then use __set_current_state()
224 */
225 #define __set_current_state(state_value) \
226 do { current->state = (state_value); } while (0)
227 #define set_current_state(state_value) \
228 set_mb(current->state, (state_value))
229
230 /* Task command name length */
231 #define TASK_COMM_LEN 16
232
233 #include <linux/spinlock.h>
234
235 /*
236 * This serializes "schedule()" and also protects
237 * the run-queue from deletions/modifications (but
238 * _adding_ to the beginning of the run-queue has
239 * a separate lock).
240 */
241 extern rwlock_t tasklist_lock;
242 extern spinlock_t mmlist_lock;
243
244 struct task_struct;
245
246 extern void sched_init(void);
247 extern void sched_init_smp(void);
248 extern asmlinkage void schedule_tail(struct task_struct *prev);
249 extern void init_idle(struct task_struct *idle, int cpu);
250 extern void init_idle_bootup_task(struct task_struct *idle);
251
252 extern int runqueue_is_locked(void);
253 extern void task_rq_unlock_wait(struct task_struct *p);
254
255 extern cpumask_var_t nohz_cpu_mask;
256 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
257 extern int select_nohz_load_balancer(int cpu);
258 #else
259 static inline int select_nohz_load_balancer(int cpu)
260 {
261 return 0;
262 }
263 #endif
264
265 /*
266 * Only dump TASK_* tasks. (0 for all tasks)
267 */
268 extern void show_state_filter(unsigned long state_filter);
269
270 static inline void show_state(void)
271 {
272 show_state_filter(0);
273 }
274
275 extern void show_regs(struct pt_regs *);
276
277 /*
278 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
279 * task), SP is the stack pointer of the first frame that should be shown in the back
280 * trace (or NULL if the entire call-chain of the task should be shown).
281 */
282 extern void show_stack(struct task_struct *task, unsigned long *sp);
283
284 void io_schedule(void);
285 long io_schedule_timeout(long timeout);
286
287 extern void cpu_init (void);
288 extern void trap_init(void);
289 extern void update_process_times(int user);
290 extern void scheduler_tick(void);
291
292 extern void sched_show_task(struct task_struct *p);
293
294 #ifdef CONFIG_DETECT_SOFTLOCKUP
295 extern void softlockup_tick(void);
296 extern void touch_softlockup_watchdog(void);
297 extern void touch_all_softlockup_watchdogs(void);
298 extern int proc_dosoftlockup_thresh(struct ctl_table *table, int write,
299 struct file *filp, void __user *buffer,
300 size_t *lenp, loff_t *ppos);
301 extern unsigned int softlockup_panic;
302 extern unsigned long sysctl_hung_task_check_count;
303 extern unsigned long sysctl_hung_task_timeout_secs;
304 extern unsigned long sysctl_hung_task_warnings;
305 extern int softlockup_thresh;
306 #else
307 static inline void softlockup_tick(void)
308 {
309 }
310 static inline void spawn_softlockup_task(void)
311 {
312 }
313 static inline void touch_softlockup_watchdog(void)
314 {
315 }
316 static inline void touch_all_softlockup_watchdogs(void)
317 {
318 }
319 #endif
320
321
322 /* Attach to any functions which should be ignored in wchan output. */
323 #define __sched __attribute__((__section__(".sched.text")))
324
325 /* Linker adds these: start and end of __sched functions */
326 extern char __sched_text_start[], __sched_text_end[];
327
328 /* Is this address in the __sched functions? */
329 extern int in_sched_functions(unsigned long addr);
330
331 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
332 extern signed long schedule_timeout(signed long timeout);
333 extern signed long schedule_timeout_interruptible(signed long timeout);
334 extern signed long schedule_timeout_killable(signed long timeout);
335 extern signed long schedule_timeout_uninterruptible(signed long timeout);
336 asmlinkage void schedule(void);
337
338 struct nsproxy;
339 struct user_namespace;
340
341 /* Maximum number of active map areas.. This is a random (large) number */
342 #define DEFAULT_MAX_MAP_COUNT 65536
343
344 extern int sysctl_max_map_count;
345
346 #include <linux/aio.h>
347
348 extern unsigned long
349 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
350 unsigned long, unsigned long);
351 extern unsigned long
352 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
353 unsigned long len, unsigned long pgoff,
354 unsigned long flags);
355 extern void arch_unmap_area(struct mm_struct *, unsigned long);
356 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
357
358 #if USE_SPLIT_PTLOCKS
359 /*
360 * The mm counters are not protected by its page_table_lock,
361 * so must be incremented atomically.
362 */
363 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
364 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
365 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
366 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
367 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
368
369 #else /* !USE_SPLIT_PTLOCKS */
370 /*
371 * The mm counters are protected by its page_table_lock,
372 * so can be incremented directly.
373 */
374 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
375 #define get_mm_counter(mm, member) ((mm)->_##member)
376 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
377 #define inc_mm_counter(mm, member) (mm)->_##member++
378 #define dec_mm_counter(mm, member) (mm)->_##member--
379
380 #endif /* !USE_SPLIT_PTLOCKS */
381
382 #define get_mm_rss(mm) \
383 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
384 #define update_hiwater_rss(mm) do { \
385 unsigned long _rss = get_mm_rss(mm); \
386 if ((mm)->hiwater_rss < _rss) \
387 (mm)->hiwater_rss = _rss; \
388 } while (0)
389 #define update_hiwater_vm(mm) do { \
390 if ((mm)->hiwater_vm < (mm)->total_vm) \
391 (mm)->hiwater_vm = (mm)->total_vm; \
392 } while (0)
393
394 #define get_mm_hiwater_rss(mm) max((mm)->hiwater_rss, get_mm_rss(mm))
395 #define get_mm_hiwater_vm(mm) max((mm)->hiwater_vm, (mm)->total_vm)
396
397 extern void set_dumpable(struct mm_struct *mm, int value);
398 extern int get_dumpable(struct mm_struct *mm);
399
400 /* mm flags */
401 /* dumpable bits */
402 #define MMF_DUMPABLE 0 /* core dump is permitted */
403 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
404 #define MMF_DUMPABLE_BITS 2
405
406 /* coredump filter bits */
407 #define MMF_DUMP_ANON_PRIVATE 2
408 #define MMF_DUMP_ANON_SHARED 3
409 #define MMF_DUMP_MAPPED_PRIVATE 4
410 #define MMF_DUMP_MAPPED_SHARED 5
411 #define MMF_DUMP_ELF_HEADERS 6
412 #define MMF_DUMP_HUGETLB_PRIVATE 7
413 #define MMF_DUMP_HUGETLB_SHARED 8
414 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
415 #define MMF_DUMP_FILTER_BITS 7
416 #define MMF_DUMP_FILTER_MASK \
417 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
418 #define MMF_DUMP_FILTER_DEFAULT \
419 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
420 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
421
422 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
423 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
424 #else
425 # define MMF_DUMP_MASK_DEFAULT_ELF 0
426 #endif
427
428 struct sighand_struct {
429 atomic_t count;
430 struct k_sigaction action[_NSIG];
431 spinlock_t siglock;
432 wait_queue_head_t signalfd_wqh;
433 };
434
435 struct pacct_struct {
436 int ac_flag;
437 long ac_exitcode;
438 unsigned long ac_mem;
439 cputime_t ac_utime, ac_stime;
440 unsigned long ac_minflt, ac_majflt;
441 };
442
443 /**
444 * struct task_cputime - collected CPU time counts
445 * @utime: time spent in user mode, in &cputime_t units
446 * @stime: time spent in kernel mode, in &cputime_t units
447 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
448 *
449 * This structure groups together three kinds of CPU time that are
450 * tracked for threads and thread groups. Most things considering
451 * CPU time want to group these counts together and treat all three
452 * of them in parallel.
453 */
454 struct task_cputime {
455 cputime_t utime;
456 cputime_t stime;
457 unsigned long long sum_exec_runtime;
458 };
459 /* Alternate field names when used to cache expirations. */
460 #define prof_exp stime
461 #define virt_exp utime
462 #define sched_exp sum_exec_runtime
463
464 #define INIT_CPUTIME \
465 (struct task_cputime) { \
466 .utime = cputime_zero, \
467 .stime = cputime_zero, \
468 .sum_exec_runtime = 0, \
469 }
470
471 /**
472 * struct thread_group_cputimer - thread group interval timer counts
473 * @cputime: thread group interval timers.
474 * @running: non-zero when there are timers running and
475 * @cputime receives updates.
476 * @lock: lock for fields in this struct.
477 *
478 * This structure contains the version of task_cputime, above, that is
479 * used for thread group CPU timer calculations.
480 */
481 struct thread_group_cputimer {
482 struct task_cputime cputime;
483 int running;
484 spinlock_t lock;
485 };
486
487 /*
488 * NOTE! "signal_struct" does not have it's own
489 * locking, because a shared signal_struct always
490 * implies a shared sighand_struct, so locking
491 * sighand_struct is always a proper superset of
492 * the locking of signal_struct.
493 */
494 struct signal_struct {
495 atomic_t count;
496 atomic_t live;
497
498 wait_queue_head_t wait_chldexit; /* for wait4() */
499
500 /* current thread group signal load-balancing target: */
501 struct task_struct *curr_target;
502
503 /* shared signal handling: */
504 struct sigpending shared_pending;
505
506 /* thread group exit support */
507 int group_exit_code;
508 /* overloaded:
509 * - notify group_exit_task when ->count is equal to notify_count
510 * - everyone except group_exit_task is stopped during signal delivery
511 * of fatal signals, group_exit_task processes the signal.
512 */
513 int notify_count;
514 struct task_struct *group_exit_task;
515
516 /* thread group stop support, overloads group_exit_code too */
517 int group_stop_count;
518 unsigned int flags; /* see SIGNAL_* flags below */
519
520 /* POSIX.1b Interval Timers */
521 struct list_head posix_timers;
522
523 /* ITIMER_REAL timer for the process */
524 struct hrtimer real_timer;
525 struct pid *leader_pid;
526 ktime_t it_real_incr;
527
528 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
529 cputime_t it_prof_expires, it_virt_expires;
530 cputime_t it_prof_incr, it_virt_incr;
531
532 /*
533 * Thread group totals for process CPU timers.
534 * See thread_group_cputimer(), et al, for details.
535 */
536 struct thread_group_cputimer cputimer;
537
538 /* Earliest-expiration cache. */
539 struct task_cputime cputime_expires;
540
541 struct list_head cpu_timers[3];
542
543 /* job control IDs */
544
545 /*
546 * pgrp and session fields are deprecated.
547 * use the task_session_Xnr and task_pgrp_Xnr routines below
548 */
549
550 union {
551 pid_t pgrp __deprecated;
552 pid_t __pgrp;
553 };
554
555 struct pid *tty_old_pgrp;
556
557 union {
558 pid_t session __deprecated;
559 pid_t __session;
560 };
561
562 /* boolean value for session group leader */
563 int leader;
564
565 struct tty_struct *tty; /* NULL if no tty */
566
567 /*
568 * Cumulative resource counters for dead threads in the group,
569 * and for reaped dead child processes forked by this group.
570 * Live threads maintain their own counters and add to these
571 * in __exit_signal, except for the group leader.
572 */
573 cputime_t utime, stime, cutime, cstime;
574 cputime_t gtime;
575 cputime_t cgtime;
576 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
577 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
578 unsigned long inblock, oublock, cinblock, coublock;
579 struct task_io_accounting ioac;
580
581 /*
582 * Cumulative ns of schedule CPU time fo dead threads in the
583 * group, not including a zombie group leader, (This only differs
584 * from jiffies_to_ns(utime + stime) if sched_clock uses something
585 * other than jiffies.)
586 */
587 unsigned long long sum_sched_runtime;
588
589 /*
590 * We don't bother to synchronize most readers of this at all,
591 * because there is no reader checking a limit that actually needs
592 * to get both rlim_cur and rlim_max atomically, and either one
593 * alone is a single word that can safely be read normally.
594 * getrlimit/setrlimit use task_lock(current->group_leader) to
595 * protect this instead of the siglock, because they really
596 * have no need to disable irqs.
597 */
598 struct rlimit rlim[RLIM_NLIMITS];
599
600 #ifdef CONFIG_BSD_PROCESS_ACCT
601 struct pacct_struct pacct; /* per-process accounting information */
602 #endif
603 #ifdef CONFIG_TASKSTATS
604 struct taskstats *stats;
605 #endif
606 #ifdef CONFIG_AUDIT
607 unsigned audit_tty;
608 struct tty_audit_buf *tty_audit_buf;
609 #endif
610 };
611
612 /* Context switch must be unlocked if interrupts are to be enabled */
613 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
614 # define __ARCH_WANT_UNLOCKED_CTXSW
615 #endif
616
617 /*
618 * Bits in flags field of signal_struct.
619 */
620 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
621 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
622 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
623 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
624 /*
625 * Pending notifications to parent.
626 */
627 #define SIGNAL_CLD_STOPPED 0x00000010
628 #define SIGNAL_CLD_CONTINUED 0x00000020
629 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
630
631 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
632
633 /* If true, all threads except ->group_exit_task have pending SIGKILL */
634 static inline int signal_group_exit(const struct signal_struct *sig)
635 {
636 return (sig->flags & SIGNAL_GROUP_EXIT) ||
637 (sig->group_exit_task != NULL);
638 }
639
640 /*
641 * Some day this will be a full-fledged user tracking system..
642 */
643 struct user_struct {
644 atomic_t __count; /* reference count */
645 atomic_t processes; /* How many processes does this user have? */
646 atomic_t files; /* How many open files does this user have? */
647 atomic_t sigpending; /* How many pending signals does this user have? */
648 #ifdef CONFIG_INOTIFY_USER
649 atomic_t inotify_watches; /* How many inotify watches does this user have? */
650 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
651 #endif
652 #ifdef CONFIG_EPOLL
653 atomic_t epoll_watches; /* The number of file descriptors currently watched */
654 #endif
655 #ifdef CONFIG_POSIX_MQUEUE
656 /* protected by mq_lock */
657 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
658 #endif
659 unsigned long locked_shm; /* How many pages of mlocked shm ? */
660
661 #ifdef CONFIG_KEYS
662 struct key *uid_keyring; /* UID specific keyring */
663 struct key *session_keyring; /* UID's default session keyring */
664 #endif
665
666 /* Hash table maintenance information */
667 struct hlist_node uidhash_node;
668 uid_t uid;
669 struct user_namespace *user_ns;
670
671 #ifdef CONFIG_USER_SCHED
672 struct task_group *tg;
673 #ifdef CONFIG_SYSFS
674 struct kobject kobj;
675 struct work_struct work;
676 #endif
677 #endif
678 };
679
680 extern int uids_sysfs_init(void);
681
682 extern struct user_struct *find_user(uid_t);
683
684 extern struct user_struct root_user;
685 #define INIT_USER (&root_user)
686
687
688 struct backing_dev_info;
689 struct reclaim_state;
690
691 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
692 struct sched_info {
693 /* cumulative counters */
694 unsigned long pcount; /* # of times run on this cpu */
695 unsigned long long run_delay; /* time spent waiting on a runqueue */
696
697 /* timestamps */
698 unsigned long long last_arrival,/* when we last ran on a cpu */
699 last_queued; /* when we were last queued to run */
700 #ifdef CONFIG_SCHEDSTATS
701 /* BKL stats */
702 unsigned int bkl_count;
703 #endif
704 };
705 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
706
707 #ifdef CONFIG_TASK_DELAY_ACCT
708 struct task_delay_info {
709 spinlock_t lock;
710 unsigned int flags; /* Private per-task flags */
711
712 /* For each stat XXX, add following, aligned appropriately
713 *
714 * struct timespec XXX_start, XXX_end;
715 * u64 XXX_delay;
716 * u32 XXX_count;
717 *
718 * Atomicity of updates to XXX_delay, XXX_count protected by
719 * single lock above (split into XXX_lock if contention is an issue).
720 */
721
722 /*
723 * XXX_count is incremented on every XXX operation, the delay
724 * associated with the operation is added to XXX_delay.
725 * XXX_delay contains the accumulated delay time in nanoseconds.
726 */
727 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
728 u64 blkio_delay; /* wait for sync block io completion */
729 u64 swapin_delay; /* wait for swapin block io completion */
730 u32 blkio_count; /* total count of the number of sync block */
731 /* io operations performed */
732 u32 swapin_count; /* total count of the number of swapin block */
733 /* io operations performed */
734
735 struct timespec freepages_start, freepages_end;
736 u64 freepages_delay; /* wait for memory reclaim */
737 u32 freepages_count; /* total count of memory reclaim */
738 };
739 #endif /* CONFIG_TASK_DELAY_ACCT */
740
741 static inline int sched_info_on(void)
742 {
743 #ifdef CONFIG_SCHEDSTATS
744 return 1;
745 #elif defined(CONFIG_TASK_DELAY_ACCT)
746 extern int delayacct_on;
747 return delayacct_on;
748 #else
749 return 0;
750 #endif
751 }
752
753 enum cpu_idle_type {
754 CPU_IDLE,
755 CPU_NOT_IDLE,
756 CPU_NEWLY_IDLE,
757 CPU_MAX_IDLE_TYPES
758 };
759
760 /*
761 * sched-domains (multiprocessor balancing) declarations:
762 */
763
764 /*
765 * Increase resolution of nice-level calculations:
766 */
767 #define SCHED_LOAD_SHIFT 10
768 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
769
770 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
771
772 #ifdef CONFIG_SMP
773 #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */
774 #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */
775 #define SD_BALANCE_EXEC 4 /* Balance on exec */
776 #define SD_BALANCE_FORK 8 /* Balance on fork, clone */
777 #define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */
778 #define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */
779 #define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */
780 #define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */
781 #define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */
782 #define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */
783 #define SD_SERIALIZE 1024 /* Only a single load balancing instance */
784 #define SD_WAKE_IDLE_FAR 2048 /* Gain latency sacrificing cache hit */
785
786 enum powersavings_balance_level {
787 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */
788 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package
789 * first for long running threads
790 */
791 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle
792 * cpu package for power savings
793 */
794 MAX_POWERSAVINGS_BALANCE_LEVELS
795 };
796
797 extern int sched_mc_power_savings, sched_smt_power_savings;
798
799 static inline int sd_balance_for_mc_power(void)
800 {
801 if (sched_smt_power_savings)
802 return SD_POWERSAVINGS_BALANCE;
803
804 return 0;
805 }
806
807 static inline int sd_balance_for_package_power(void)
808 {
809 if (sched_mc_power_savings | sched_smt_power_savings)
810 return SD_POWERSAVINGS_BALANCE;
811
812 return 0;
813 }
814
815 /*
816 * Optimise SD flags for power savings:
817 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings.
818 * Keep default SD flags if sched_{smt,mc}_power_saving=0
819 */
820
821 static inline int sd_power_saving_flags(void)
822 {
823 if (sched_mc_power_savings | sched_smt_power_savings)
824 return SD_BALANCE_NEWIDLE;
825
826 return 0;
827 }
828
829 struct sched_group {
830 struct sched_group *next; /* Must be a circular list */
831
832 /*
833 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
834 * single CPU. This is read only (except for setup, hotplug CPU).
835 * Note : Never change cpu_power without recompute its reciprocal
836 */
837 unsigned int __cpu_power;
838 /*
839 * reciprocal value of cpu_power to avoid expensive divides
840 * (see include/linux/reciprocal_div.h)
841 */
842 u32 reciprocal_cpu_power;
843
844 unsigned long cpumask[];
845 };
846
847 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
848 {
849 return to_cpumask(sg->cpumask);
850 }
851
852 enum sched_domain_level {
853 SD_LV_NONE = 0,
854 SD_LV_SIBLING,
855 SD_LV_MC,
856 SD_LV_CPU,
857 SD_LV_NODE,
858 SD_LV_ALLNODES,
859 SD_LV_MAX
860 };
861
862 struct sched_domain_attr {
863 int relax_domain_level;
864 };
865
866 #define SD_ATTR_INIT (struct sched_domain_attr) { \
867 .relax_domain_level = -1, \
868 }
869
870 struct sched_domain {
871 /* These fields must be setup */
872 struct sched_domain *parent; /* top domain must be null terminated */
873 struct sched_domain *child; /* bottom domain must be null terminated */
874 struct sched_group *groups; /* the balancing groups of the domain */
875 unsigned long min_interval; /* Minimum balance interval ms */
876 unsigned long max_interval; /* Maximum balance interval ms */
877 unsigned int busy_factor; /* less balancing by factor if busy */
878 unsigned int imbalance_pct; /* No balance until over watermark */
879 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
880 unsigned int busy_idx;
881 unsigned int idle_idx;
882 unsigned int newidle_idx;
883 unsigned int wake_idx;
884 unsigned int forkexec_idx;
885 int flags; /* See SD_* */
886 enum sched_domain_level level;
887
888 /* Runtime fields. */
889 unsigned long last_balance; /* init to jiffies. units in jiffies */
890 unsigned int balance_interval; /* initialise to 1. units in ms. */
891 unsigned int nr_balance_failed; /* initialise to 0 */
892
893 u64 last_update;
894
895 #ifdef CONFIG_SCHEDSTATS
896 /* load_balance() stats */
897 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
898 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
899 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
900 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
901 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
902 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
903 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
904 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
905
906 /* Active load balancing */
907 unsigned int alb_count;
908 unsigned int alb_failed;
909 unsigned int alb_pushed;
910
911 /* SD_BALANCE_EXEC stats */
912 unsigned int sbe_count;
913 unsigned int sbe_balanced;
914 unsigned int sbe_pushed;
915
916 /* SD_BALANCE_FORK stats */
917 unsigned int sbf_count;
918 unsigned int sbf_balanced;
919 unsigned int sbf_pushed;
920
921 /* try_to_wake_up() stats */
922 unsigned int ttwu_wake_remote;
923 unsigned int ttwu_move_affine;
924 unsigned int ttwu_move_balance;
925 #endif
926 #ifdef CONFIG_SCHED_DEBUG
927 char *name;
928 #endif
929
930 /* span of all CPUs in this domain */
931 unsigned long span[];
932 };
933
934 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
935 {
936 return to_cpumask(sd->span);
937 }
938
939 extern void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
940 struct sched_domain_attr *dattr_new);
941
942 /* Test a flag in parent sched domain */
943 static inline int test_sd_parent(struct sched_domain *sd, int flag)
944 {
945 if (sd->parent && (sd->parent->flags & flag))
946 return 1;
947
948 return 0;
949 }
950
951 #else /* CONFIG_SMP */
952
953 struct sched_domain_attr;
954
955 static inline void
956 partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
957 struct sched_domain_attr *dattr_new)
958 {
959 }
960 #endif /* !CONFIG_SMP */
961
962 struct io_context; /* See blkdev.h */
963
964
965 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
966 extern void prefetch_stack(struct task_struct *t);
967 #else
968 static inline void prefetch_stack(struct task_struct *t) { }
969 #endif
970
971 struct audit_context; /* See audit.c */
972 struct mempolicy;
973 struct pipe_inode_info;
974 struct uts_namespace;
975
976 struct rq;
977 struct sched_domain;
978
979 struct sched_class {
980 const struct sched_class *next;
981
982 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
983 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
984 void (*yield_task) (struct rq *rq);
985
986 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int sync);
987
988 struct task_struct * (*pick_next_task) (struct rq *rq);
989 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
990
991 #ifdef CONFIG_SMP
992 int (*select_task_rq)(struct task_struct *p, int sync);
993
994 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
995 struct rq *busiest, unsigned long max_load_move,
996 struct sched_domain *sd, enum cpu_idle_type idle,
997 int *all_pinned, int *this_best_prio);
998
999 int (*move_one_task) (struct rq *this_rq, int this_cpu,
1000 struct rq *busiest, struct sched_domain *sd,
1001 enum cpu_idle_type idle);
1002 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1003 void (*post_schedule) (struct rq *this_rq);
1004 void (*task_wake_up) (struct rq *this_rq, struct task_struct *task);
1005
1006 void (*set_cpus_allowed)(struct task_struct *p,
1007 const struct cpumask *newmask);
1008
1009 void (*rq_online)(struct rq *rq);
1010 void (*rq_offline)(struct rq *rq);
1011 #endif
1012
1013 void (*set_curr_task) (struct rq *rq);
1014 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1015 void (*task_new) (struct rq *rq, struct task_struct *p);
1016
1017 void (*switched_from) (struct rq *this_rq, struct task_struct *task,
1018 int running);
1019 void (*switched_to) (struct rq *this_rq, struct task_struct *task,
1020 int running);
1021 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1022 int oldprio, int running);
1023
1024 #ifdef CONFIG_FAIR_GROUP_SCHED
1025 void (*moved_group) (struct task_struct *p);
1026 #endif
1027 };
1028
1029 struct load_weight {
1030 unsigned long weight, inv_weight;
1031 };
1032
1033 /*
1034 * CFS stats for a schedulable entity (task, task-group etc)
1035 *
1036 * Current field usage histogram:
1037 *
1038 * 4 se->block_start
1039 * 4 se->run_node
1040 * 4 se->sleep_start
1041 * 6 se->load.weight
1042 */
1043 struct sched_entity {
1044 struct load_weight load; /* for load-balancing */
1045 struct rb_node run_node;
1046 struct list_head group_node;
1047 unsigned int on_rq;
1048
1049 u64 exec_start;
1050 u64 sum_exec_runtime;
1051 u64 vruntime;
1052 u64 prev_sum_exec_runtime;
1053
1054 u64 last_wakeup;
1055 u64 avg_overlap;
1056
1057 #ifdef CONFIG_SCHEDSTATS
1058 u64 wait_start;
1059 u64 wait_max;
1060 u64 wait_count;
1061 u64 wait_sum;
1062
1063 u64 sleep_start;
1064 u64 sleep_max;
1065 s64 sum_sleep_runtime;
1066
1067 u64 block_start;
1068 u64 block_max;
1069 u64 exec_max;
1070 u64 slice_max;
1071
1072 u64 nr_migrations;
1073 u64 nr_migrations_cold;
1074 u64 nr_failed_migrations_affine;
1075 u64 nr_failed_migrations_running;
1076 u64 nr_failed_migrations_hot;
1077 u64 nr_forced_migrations;
1078 u64 nr_forced2_migrations;
1079
1080 u64 nr_wakeups;
1081 u64 nr_wakeups_sync;
1082 u64 nr_wakeups_migrate;
1083 u64 nr_wakeups_local;
1084 u64 nr_wakeups_remote;
1085 u64 nr_wakeups_affine;
1086 u64 nr_wakeups_affine_attempts;
1087 u64 nr_wakeups_passive;
1088 u64 nr_wakeups_idle;
1089 #endif
1090
1091 #ifdef CONFIG_FAIR_GROUP_SCHED
1092 struct sched_entity *parent;
1093 /* rq on which this entity is (to be) queued: */
1094 struct cfs_rq *cfs_rq;
1095 /* rq "owned" by this entity/group: */
1096 struct cfs_rq *my_q;
1097 #endif
1098 };
1099
1100 struct sched_rt_entity {
1101 struct list_head run_list;
1102 unsigned long timeout;
1103 unsigned int time_slice;
1104 int nr_cpus_allowed;
1105
1106 struct sched_rt_entity *back;
1107 #ifdef CONFIG_RT_GROUP_SCHED
1108 struct sched_rt_entity *parent;
1109 /* rq on which this entity is (to be) queued: */
1110 struct rt_rq *rt_rq;
1111 /* rq "owned" by this entity/group: */
1112 struct rt_rq *my_q;
1113 #endif
1114 };
1115
1116 struct task_struct {
1117 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1118 void *stack;
1119 atomic_t usage;
1120 unsigned int flags; /* per process flags, defined below */
1121 unsigned int ptrace;
1122
1123 int lock_depth; /* BKL lock depth */
1124
1125 #ifdef CONFIG_SMP
1126 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1127 int oncpu;
1128 #endif
1129 #endif
1130
1131 int prio, static_prio, normal_prio;
1132 unsigned int rt_priority;
1133 const struct sched_class *sched_class;
1134 struct sched_entity se;
1135 struct sched_rt_entity rt;
1136
1137 #ifdef CONFIG_PREEMPT_NOTIFIERS
1138 /* list of struct preempt_notifier: */
1139 struct hlist_head preempt_notifiers;
1140 #endif
1141
1142 /*
1143 * fpu_counter contains the number of consecutive context switches
1144 * that the FPU is used. If this is over a threshold, the lazy fpu
1145 * saving becomes unlazy to save the trap. This is an unsigned char
1146 * so that after 256 times the counter wraps and the behavior turns
1147 * lazy again; this to deal with bursty apps that only use FPU for
1148 * a short time
1149 */
1150 unsigned char fpu_counter;
1151 s8 oomkilladj; /* OOM kill score adjustment (bit shift). */
1152 #ifdef CONFIG_BLK_DEV_IO_TRACE
1153 unsigned int btrace_seq;
1154 #endif
1155
1156 unsigned int policy;
1157 cpumask_t cpus_allowed;
1158
1159 #ifdef CONFIG_PREEMPT_RCU
1160 int rcu_read_lock_nesting;
1161 int rcu_flipctr_idx;
1162 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1163
1164 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1165 struct sched_info sched_info;
1166 #endif
1167
1168 struct list_head tasks;
1169
1170 struct mm_struct *mm, *active_mm;
1171
1172 /* task state */
1173 struct linux_binfmt *binfmt;
1174 int exit_state;
1175 int exit_code, exit_signal;
1176 int pdeath_signal; /* The signal sent when the parent dies */
1177 /* ??? */
1178 unsigned int personality;
1179 unsigned did_exec:1;
1180 pid_t pid;
1181 pid_t tgid;
1182
1183 #ifdef CONFIG_CC_STACKPROTECTOR
1184 /* Canary value for the -fstack-protector gcc feature */
1185 unsigned long stack_canary;
1186 #endif
1187 /*
1188 * pointers to (original) parent process, youngest child, younger sibling,
1189 * older sibling, respectively. (p->father can be replaced with
1190 * p->real_parent->pid)
1191 */
1192 struct task_struct *real_parent; /* real parent process */
1193 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1194 /*
1195 * children/sibling forms the list of my natural children
1196 */
1197 struct list_head children; /* list of my children */
1198 struct list_head sibling; /* linkage in my parent's children list */
1199 struct task_struct *group_leader; /* threadgroup leader */
1200
1201 /*
1202 * ptraced is the list of tasks this task is using ptrace on.
1203 * This includes both natural children and PTRACE_ATTACH targets.
1204 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1205 */
1206 struct list_head ptraced;
1207 struct list_head ptrace_entry;
1208
1209 #ifdef CONFIG_X86_PTRACE_BTS
1210 /*
1211 * This is the tracer handle for the ptrace BTS extension.
1212 * This field actually belongs to the ptracer task.
1213 */
1214 struct bts_tracer *bts;
1215 /*
1216 * The buffer to hold the BTS data.
1217 */
1218 void *bts_buffer;
1219 size_t bts_size;
1220 #endif /* CONFIG_X86_PTRACE_BTS */
1221
1222 /* PID/PID hash table linkage. */
1223 struct pid_link pids[PIDTYPE_MAX];
1224 struct list_head thread_group;
1225
1226 struct completion *vfork_done; /* for vfork() */
1227 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1228 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1229
1230 cputime_t utime, stime, utimescaled, stimescaled;
1231 cputime_t gtime;
1232 cputime_t prev_utime, prev_stime;
1233 unsigned long nvcsw, nivcsw; /* context switch counts */
1234 struct timespec start_time; /* monotonic time */
1235 struct timespec real_start_time; /* boot based time */
1236 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1237 unsigned long min_flt, maj_flt;
1238
1239 struct task_cputime cputime_expires;
1240 struct list_head cpu_timers[3];
1241
1242 /* process credentials */
1243 const struct cred *real_cred; /* objective and real subjective task
1244 * credentials (COW) */
1245 const struct cred *cred; /* effective (overridable) subjective task
1246 * credentials (COW) */
1247 struct mutex cred_exec_mutex; /* execve vs ptrace cred calculation mutex */
1248
1249 char comm[TASK_COMM_LEN]; /* executable name excluding path
1250 - access with [gs]et_task_comm (which lock
1251 it with task_lock())
1252 - initialized normally by flush_old_exec */
1253 /* file system info */
1254 int link_count, total_link_count;
1255 #ifdef CONFIG_SYSVIPC
1256 /* ipc stuff */
1257 struct sysv_sem sysvsem;
1258 #endif
1259 #ifdef CONFIG_DETECT_SOFTLOCKUP
1260 /* hung task detection */
1261 unsigned long last_switch_timestamp;
1262 unsigned long last_switch_count;
1263 #endif
1264 /* CPU-specific state of this task */
1265 struct thread_struct thread;
1266 /* filesystem information */
1267 struct fs_struct *fs;
1268 /* open file information */
1269 struct files_struct *files;
1270 /* namespaces */
1271 struct nsproxy *nsproxy;
1272 /* signal handlers */
1273 struct signal_struct *signal;
1274 struct sighand_struct *sighand;
1275
1276 sigset_t blocked, real_blocked;
1277 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1278 struct sigpending pending;
1279
1280 unsigned long sas_ss_sp;
1281 size_t sas_ss_size;
1282 int (*notifier)(void *priv);
1283 void *notifier_data;
1284 sigset_t *notifier_mask;
1285 struct audit_context *audit_context;
1286 #ifdef CONFIG_AUDITSYSCALL
1287 uid_t loginuid;
1288 unsigned int sessionid;
1289 #endif
1290 seccomp_t seccomp;
1291
1292 /* Thread group tracking */
1293 u32 parent_exec_id;
1294 u32 self_exec_id;
1295 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
1296 spinlock_t alloc_lock;
1297
1298 /* Protection of the PI data structures: */
1299 spinlock_t pi_lock;
1300
1301 #ifdef CONFIG_RT_MUTEXES
1302 /* PI waiters blocked on a rt_mutex held by this task */
1303 struct plist_head pi_waiters;
1304 /* Deadlock detection and priority inheritance handling */
1305 struct rt_mutex_waiter *pi_blocked_on;
1306 #endif
1307
1308 #ifdef CONFIG_DEBUG_MUTEXES
1309 /* mutex deadlock detection */
1310 struct mutex_waiter *blocked_on;
1311 #endif
1312 #ifdef CONFIG_TRACE_IRQFLAGS
1313 unsigned int irq_events;
1314 int hardirqs_enabled;
1315 unsigned long hardirq_enable_ip;
1316 unsigned int hardirq_enable_event;
1317 unsigned long hardirq_disable_ip;
1318 unsigned int hardirq_disable_event;
1319 int softirqs_enabled;
1320 unsigned long softirq_disable_ip;
1321 unsigned int softirq_disable_event;
1322 unsigned long softirq_enable_ip;
1323 unsigned int softirq_enable_event;
1324 int hardirq_context;
1325 int softirq_context;
1326 #endif
1327 #ifdef CONFIG_LOCKDEP
1328 # define MAX_LOCK_DEPTH 48UL
1329 u64 curr_chain_key;
1330 int lockdep_depth;
1331 unsigned int lockdep_recursion;
1332 struct held_lock held_locks[MAX_LOCK_DEPTH];
1333 #endif
1334
1335 /* journalling filesystem info */
1336 void *journal_info;
1337
1338 /* stacked block device info */
1339 struct bio *bio_list, **bio_tail;
1340
1341 /* VM state */
1342 struct reclaim_state *reclaim_state;
1343
1344 struct backing_dev_info *backing_dev_info;
1345
1346 struct io_context *io_context;
1347
1348 unsigned long ptrace_message;
1349 siginfo_t *last_siginfo; /* For ptrace use. */
1350 struct task_io_accounting ioac;
1351 #if defined(CONFIG_TASK_XACCT)
1352 u64 acct_rss_mem1; /* accumulated rss usage */
1353 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1354 cputime_t acct_timexpd; /* stime + utime since last update */
1355 #endif
1356 #ifdef CONFIG_CPUSETS
1357 nodemask_t mems_allowed;
1358 int cpuset_mems_generation;
1359 int cpuset_mem_spread_rotor;
1360 #endif
1361 #ifdef CONFIG_CGROUPS
1362 /* Control Group info protected by css_set_lock */
1363 struct css_set *cgroups;
1364 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1365 struct list_head cg_list;
1366 #endif
1367 #ifdef CONFIG_FUTEX
1368 struct robust_list_head __user *robust_list;
1369 #ifdef CONFIG_COMPAT
1370 struct compat_robust_list_head __user *compat_robust_list;
1371 #endif
1372 struct list_head pi_state_list;
1373 struct futex_pi_state *pi_state_cache;
1374 #endif
1375 #ifdef CONFIG_NUMA
1376 struct mempolicy *mempolicy;
1377 short il_next;
1378 #endif
1379 atomic_t fs_excl; /* holding fs exclusive resources */
1380 struct rcu_head rcu;
1381
1382 /*
1383 * cache last used pipe for splice
1384 */
1385 struct pipe_inode_info *splice_pipe;
1386 #ifdef CONFIG_TASK_DELAY_ACCT
1387 struct task_delay_info *delays;
1388 #endif
1389 #ifdef CONFIG_FAULT_INJECTION
1390 int make_it_fail;
1391 #endif
1392 struct prop_local_single dirties;
1393 #ifdef CONFIG_LATENCYTOP
1394 int latency_record_count;
1395 struct latency_record latency_record[LT_SAVECOUNT];
1396 #endif
1397 /*
1398 * time slack values; these are used to round up poll() and
1399 * select() etc timeout values. These are in nanoseconds.
1400 */
1401 unsigned long timer_slack_ns;
1402 unsigned long default_timer_slack_ns;
1403
1404 struct list_head *scm_work_list;
1405 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1406 /* Index of current stored adress in ret_stack */
1407 int curr_ret_stack;
1408 /* Stack of return addresses for return function tracing */
1409 struct ftrace_ret_stack *ret_stack;
1410 /*
1411 * Number of functions that haven't been traced
1412 * because of depth overrun.
1413 */
1414 atomic_t trace_overrun;
1415 /* Pause for the tracing */
1416 atomic_t tracing_graph_pause;
1417 #endif
1418 #ifdef CONFIG_TRACING
1419 /* state flags for use by tracers */
1420 unsigned long trace;
1421 #endif
1422 };
1423
1424 /*
1425 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1426 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1427 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1428 * values are inverted: lower p->prio value means higher priority.
1429 *
1430 * The MAX_USER_RT_PRIO value allows the actual maximum
1431 * RT priority to be separate from the value exported to
1432 * user-space. This allows kernel threads to set their
1433 * priority to a value higher than any user task. Note:
1434 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1435 */
1436
1437 #define MAX_USER_RT_PRIO 100
1438 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1439
1440 #define MAX_PRIO (MAX_RT_PRIO + 40)
1441 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1442
1443 static inline int rt_prio(int prio)
1444 {
1445 if (unlikely(prio < MAX_RT_PRIO))
1446 return 1;
1447 return 0;
1448 }
1449
1450 static inline int rt_task(struct task_struct *p)
1451 {
1452 return rt_prio(p->prio);
1453 }
1454
1455 static inline void set_task_session(struct task_struct *tsk, pid_t session)
1456 {
1457 tsk->signal->__session = session;
1458 }
1459
1460 static inline void set_task_pgrp(struct task_struct *tsk, pid_t pgrp)
1461 {
1462 tsk->signal->__pgrp = pgrp;
1463 }
1464
1465 static inline struct pid *task_pid(struct task_struct *task)
1466 {
1467 return task->pids[PIDTYPE_PID].pid;
1468 }
1469
1470 static inline struct pid *task_tgid(struct task_struct *task)
1471 {
1472 return task->group_leader->pids[PIDTYPE_PID].pid;
1473 }
1474
1475 static inline struct pid *task_pgrp(struct task_struct *task)
1476 {
1477 return task->group_leader->pids[PIDTYPE_PGID].pid;
1478 }
1479
1480 static inline struct pid *task_session(struct task_struct *task)
1481 {
1482 return task->group_leader->pids[PIDTYPE_SID].pid;
1483 }
1484
1485 struct pid_namespace;
1486
1487 /*
1488 * the helpers to get the task's different pids as they are seen
1489 * from various namespaces
1490 *
1491 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1492 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1493 * current.
1494 * task_xid_nr_ns() : id seen from the ns specified;
1495 *
1496 * set_task_vxid() : assigns a virtual id to a task;
1497 *
1498 * see also pid_nr() etc in include/linux/pid.h
1499 */
1500
1501 static inline pid_t task_pid_nr(struct task_struct *tsk)
1502 {
1503 return tsk->pid;
1504 }
1505
1506 pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1507
1508 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1509 {
1510 return pid_vnr(task_pid(tsk));
1511 }
1512
1513
1514 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1515 {
1516 return tsk->tgid;
1517 }
1518
1519 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1520
1521 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1522 {
1523 return pid_vnr(task_tgid(tsk));
1524 }
1525
1526
1527 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1528 {
1529 return tsk->signal->__pgrp;
1530 }
1531
1532 pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1533
1534 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1535 {
1536 return pid_vnr(task_pgrp(tsk));
1537 }
1538
1539
1540 static inline pid_t task_session_nr(struct task_struct *tsk)
1541 {
1542 return tsk->signal->__session;
1543 }
1544
1545 pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1546
1547 static inline pid_t task_session_vnr(struct task_struct *tsk)
1548 {
1549 return pid_vnr(task_session(tsk));
1550 }
1551
1552
1553 /**
1554 * pid_alive - check that a task structure is not stale
1555 * @p: Task structure to be checked.
1556 *
1557 * Test if a process is not yet dead (at most zombie state)
1558 * If pid_alive fails, then pointers within the task structure
1559 * can be stale and must not be dereferenced.
1560 */
1561 static inline int pid_alive(struct task_struct *p)
1562 {
1563 return p->pids[PIDTYPE_PID].pid != NULL;
1564 }
1565
1566 /**
1567 * is_global_init - check if a task structure is init
1568 * @tsk: Task structure to be checked.
1569 *
1570 * Check if a task structure is the first user space task the kernel created.
1571 */
1572 static inline int is_global_init(struct task_struct *tsk)
1573 {
1574 return tsk->pid == 1;
1575 }
1576
1577 /*
1578 * is_container_init:
1579 * check whether in the task is init in its own pid namespace.
1580 */
1581 extern int is_container_init(struct task_struct *tsk);
1582
1583 extern struct pid *cad_pid;
1584
1585 extern void free_task(struct task_struct *tsk);
1586 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1587
1588 extern void __put_task_struct(struct task_struct *t);
1589
1590 static inline void put_task_struct(struct task_struct *t)
1591 {
1592 if (atomic_dec_and_test(&t->usage))
1593 __put_task_struct(t);
1594 }
1595
1596 extern cputime_t task_utime(struct task_struct *p);
1597 extern cputime_t task_stime(struct task_struct *p);
1598 extern cputime_t task_gtime(struct task_struct *p);
1599
1600 /*
1601 * Per process flags
1602 */
1603 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1604 /* Not implemented yet, only for 486*/
1605 #define PF_STARTING 0x00000002 /* being created */
1606 #define PF_EXITING 0x00000004 /* getting shut down */
1607 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1608 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1609 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1610 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1611 #define PF_DUMPCORE 0x00000200 /* dumped core */
1612 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1613 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1614 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1615 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1616 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1617 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1618 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1619 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1620 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */
1621 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1622 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1623 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1624 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1625 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1626 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1627 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1628 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1629 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1630 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1631 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */
1632
1633 /*
1634 * Only the _current_ task can read/write to tsk->flags, but other
1635 * tasks can access tsk->flags in readonly mode for example
1636 * with tsk_used_math (like during threaded core dumping).
1637 * There is however an exception to this rule during ptrace
1638 * or during fork: the ptracer task is allowed to write to the
1639 * child->flags of its traced child (same goes for fork, the parent
1640 * can write to the child->flags), because we're guaranteed the
1641 * child is not running and in turn not changing child->flags
1642 * at the same time the parent does it.
1643 */
1644 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1645 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1646 #define clear_used_math() clear_stopped_child_used_math(current)
1647 #define set_used_math() set_stopped_child_used_math(current)
1648 #define conditional_stopped_child_used_math(condition, child) \
1649 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1650 #define conditional_used_math(condition) \
1651 conditional_stopped_child_used_math(condition, current)
1652 #define copy_to_stopped_child_used_math(child) \
1653 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1654 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1655 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1656 #define used_math() tsk_used_math(current)
1657
1658 #ifdef CONFIG_SMP
1659 extern int set_cpus_allowed_ptr(struct task_struct *p,
1660 const struct cpumask *new_mask);
1661 #else
1662 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1663 const struct cpumask *new_mask)
1664 {
1665 if (!cpumask_test_cpu(0, new_mask))
1666 return -EINVAL;
1667 return 0;
1668 }
1669 #endif
1670 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1671 {
1672 return set_cpus_allowed_ptr(p, &new_mask);
1673 }
1674
1675 /*
1676 * Architectures can set this to 1 if they have specified
1677 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1678 * but then during bootup it turns out that sched_clock()
1679 * is reliable after all:
1680 */
1681 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1682 extern int sched_clock_stable;
1683 #endif
1684
1685 extern unsigned long long sched_clock(void);
1686
1687 extern void sched_clock_init(void);
1688 extern u64 sched_clock_cpu(int cpu);
1689
1690 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1691 static inline void sched_clock_tick(void)
1692 {
1693 }
1694
1695 static inline void sched_clock_idle_sleep_event(void)
1696 {
1697 }
1698
1699 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1700 {
1701 }
1702 #else
1703 extern void sched_clock_tick(void);
1704 extern void sched_clock_idle_sleep_event(void);
1705 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1706 #endif
1707
1708 /*
1709 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1710 * clock constructed from sched_clock():
1711 */
1712 extern unsigned long long cpu_clock(int cpu);
1713
1714 extern unsigned long long
1715 task_sched_runtime(struct task_struct *task);
1716 extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1717
1718 /* sched_exec is called by processes performing an exec */
1719 #ifdef CONFIG_SMP
1720 extern void sched_exec(void);
1721 #else
1722 #define sched_exec() {}
1723 #endif
1724
1725 extern void sched_clock_idle_sleep_event(void);
1726 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1727
1728 #ifdef CONFIG_HOTPLUG_CPU
1729 extern void idle_task_exit(void);
1730 #else
1731 static inline void idle_task_exit(void) {}
1732 #endif
1733
1734 extern void sched_idle_next(void);
1735
1736 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1737 extern void wake_up_idle_cpu(int cpu);
1738 #else
1739 static inline void wake_up_idle_cpu(int cpu) { }
1740 #endif
1741
1742 extern unsigned int sysctl_sched_latency;
1743 extern unsigned int sysctl_sched_min_granularity;
1744 extern unsigned int sysctl_sched_wakeup_granularity;
1745 extern unsigned int sysctl_sched_shares_ratelimit;
1746 extern unsigned int sysctl_sched_shares_thresh;
1747 #ifdef CONFIG_SCHED_DEBUG
1748 extern unsigned int sysctl_sched_child_runs_first;
1749 extern unsigned int sysctl_sched_features;
1750 extern unsigned int sysctl_sched_migration_cost;
1751 extern unsigned int sysctl_sched_nr_migrate;
1752
1753 int sched_nr_latency_handler(struct ctl_table *table, int write,
1754 struct file *file, void __user *buffer, size_t *length,
1755 loff_t *ppos);
1756 #endif
1757 extern unsigned int sysctl_sched_rt_period;
1758 extern int sysctl_sched_rt_runtime;
1759
1760 int sched_rt_handler(struct ctl_table *table, int write,
1761 struct file *filp, void __user *buffer, size_t *lenp,
1762 loff_t *ppos);
1763
1764 extern unsigned int sysctl_sched_compat_yield;
1765
1766 #ifdef CONFIG_RT_MUTEXES
1767 extern int rt_mutex_getprio(struct task_struct *p);
1768 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1769 extern void rt_mutex_adjust_pi(struct task_struct *p);
1770 #else
1771 static inline int rt_mutex_getprio(struct task_struct *p)
1772 {
1773 return p->normal_prio;
1774 }
1775 # define rt_mutex_adjust_pi(p) do { } while (0)
1776 #endif
1777
1778 extern void set_user_nice(struct task_struct *p, long nice);
1779 extern int task_prio(const struct task_struct *p);
1780 extern int task_nice(const struct task_struct *p);
1781 extern int can_nice(const struct task_struct *p, const int nice);
1782 extern int task_curr(const struct task_struct *p);
1783 extern int idle_cpu(int cpu);
1784 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1785 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1786 struct sched_param *);
1787 extern struct task_struct *idle_task(int cpu);
1788 extern struct task_struct *curr_task(int cpu);
1789 extern void set_curr_task(int cpu, struct task_struct *p);
1790
1791 void yield(void);
1792
1793 /*
1794 * The default (Linux) execution domain.
1795 */
1796 extern struct exec_domain default_exec_domain;
1797
1798 union thread_union {
1799 struct thread_info thread_info;
1800 unsigned long stack[THREAD_SIZE/sizeof(long)];
1801 };
1802
1803 #ifndef __HAVE_ARCH_KSTACK_END
1804 static inline int kstack_end(void *addr)
1805 {
1806 /* Reliable end of stack detection:
1807 * Some APM bios versions misalign the stack
1808 */
1809 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1810 }
1811 #endif
1812
1813 extern union thread_union init_thread_union;
1814 extern struct task_struct init_task;
1815
1816 extern struct mm_struct init_mm;
1817
1818 extern struct pid_namespace init_pid_ns;
1819
1820 /*
1821 * find a task by one of its numerical ids
1822 *
1823 * find_task_by_pid_type_ns():
1824 * it is the most generic call - it finds a task by all id,
1825 * type and namespace specified
1826 * find_task_by_pid_ns():
1827 * finds a task by its pid in the specified namespace
1828 * find_task_by_vpid():
1829 * finds a task by its virtual pid
1830 *
1831 * see also find_vpid() etc in include/linux/pid.h
1832 */
1833
1834 extern struct task_struct *find_task_by_pid_type_ns(int type, int pid,
1835 struct pid_namespace *ns);
1836
1837 extern struct task_struct *find_task_by_vpid(pid_t nr);
1838 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1839 struct pid_namespace *ns);
1840
1841 extern void __set_special_pids(struct pid *pid);
1842
1843 /* per-UID process charging. */
1844 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1845 static inline struct user_struct *get_uid(struct user_struct *u)
1846 {
1847 atomic_inc(&u->__count);
1848 return u;
1849 }
1850 extern void free_uid(struct user_struct *);
1851 extern void release_uids(struct user_namespace *ns);
1852
1853 #include <asm/current.h>
1854
1855 extern void do_timer(unsigned long ticks);
1856
1857 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1858 extern int wake_up_process(struct task_struct *tsk);
1859 extern void wake_up_new_task(struct task_struct *tsk,
1860 unsigned long clone_flags);
1861 #ifdef CONFIG_SMP
1862 extern void kick_process(struct task_struct *tsk);
1863 #else
1864 static inline void kick_process(struct task_struct *tsk) { }
1865 #endif
1866 extern void sched_fork(struct task_struct *p, int clone_flags);
1867 extern void sched_dead(struct task_struct *p);
1868
1869 extern void proc_caches_init(void);
1870 extern void flush_signals(struct task_struct *);
1871 extern void ignore_signals(struct task_struct *);
1872 extern void flush_signal_handlers(struct task_struct *, int force_default);
1873 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1874
1875 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1876 {
1877 unsigned long flags;
1878 int ret;
1879
1880 spin_lock_irqsave(&tsk->sighand->siglock, flags);
1881 ret = dequeue_signal(tsk, mask, info);
1882 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1883
1884 return ret;
1885 }
1886
1887 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1888 sigset_t *mask);
1889 extern void unblock_all_signals(void);
1890 extern void release_task(struct task_struct * p);
1891 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1892 extern int force_sigsegv(int, struct task_struct *);
1893 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1894 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1895 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
1896 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
1897 extern int kill_pgrp(struct pid *pid, int sig, int priv);
1898 extern int kill_pid(struct pid *pid, int sig, int priv);
1899 extern int kill_proc_info(int, struct siginfo *, pid_t);
1900 extern int do_notify_parent(struct task_struct *, int);
1901 extern void force_sig(int, struct task_struct *);
1902 extern void force_sig_specific(int, struct task_struct *);
1903 extern int send_sig(int, struct task_struct *, int);
1904 extern void zap_other_threads(struct task_struct *p);
1905 extern struct sigqueue *sigqueue_alloc(void);
1906 extern void sigqueue_free(struct sigqueue *);
1907 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
1908 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1909 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1910
1911 static inline int kill_cad_pid(int sig, int priv)
1912 {
1913 return kill_pid(cad_pid, sig, priv);
1914 }
1915
1916 /* These can be the second arg to send_sig_info/send_group_sig_info. */
1917 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
1918 #define SEND_SIG_PRIV ((struct siginfo *) 1)
1919 #define SEND_SIG_FORCED ((struct siginfo *) 2)
1920
1921 static inline int is_si_special(const struct siginfo *info)
1922 {
1923 return info <= SEND_SIG_FORCED;
1924 }
1925
1926 /* True if we are on the alternate signal stack. */
1927
1928 static inline int on_sig_stack(unsigned long sp)
1929 {
1930 return (sp - current->sas_ss_sp < current->sas_ss_size);
1931 }
1932
1933 static inline int sas_ss_flags(unsigned long sp)
1934 {
1935 return (current->sas_ss_size == 0 ? SS_DISABLE
1936 : on_sig_stack(sp) ? SS_ONSTACK : 0);
1937 }
1938
1939 /*
1940 * Routines for handling mm_structs
1941 */
1942 extern struct mm_struct * mm_alloc(void);
1943
1944 /* mmdrop drops the mm and the page tables */
1945 extern void __mmdrop(struct mm_struct *);
1946 static inline void mmdrop(struct mm_struct * mm)
1947 {
1948 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1949 __mmdrop(mm);
1950 }
1951
1952 /* mmput gets rid of the mappings and all user-space */
1953 extern void mmput(struct mm_struct *);
1954 /* Grab a reference to a task's mm, if it is not already going away */
1955 extern struct mm_struct *get_task_mm(struct task_struct *task);
1956 /* Remove the current tasks stale references to the old mm_struct */
1957 extern void mm_release(struct task_struct *, struct mm_struct *);
1958 /* Allocate a new mm structure and copy contents from tsk->mm */
1959 extern struct mm_struct *dup_mm(struct task_struct *tsk);
1960
1961 extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
1962 extern void flush_thread(void);
1963 extern void exit_thread(void);
1964
1965 extern void exit_files(struct task_struct *);
1966 extern void __cleanup_signal(struct signal_struct *);
1967 extern void __cleanup_sighand(struct sighand_struct *);
1968
1969 extern void exit_itimers(struct signal_struct *);
1970 extern void flush_itimer_signals(void);
1971
1972 extern NORET_TYPE void do_group_exit(int);
1973
1974 extern void daemonize(const char *, ...);
1975 extern int allow_signal(int);
1976 extern int disallow_signal(int);
1977
1978 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
1979 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
1980 struct task_struct *fork_idle(int);
1981
1982 extern void set_task_comm(struct task_struct *tsk, char *from);
1983 extern char *get_task_comm(char *to, struct task_struct *tsk);
1984
1985 #ifdef CONFIG_SMP
1986 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1987 #else
1988 static inline unsigned long wait_task_inactive(struct task_struct *p,
1989 long match_state)
1990 {
1991 return 1;
1992 }
1993 #endif
1994
1995 #define next_task(p) list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks)
1996
1997 #define for_each_process(p) \
1998 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
1999
2000 extern bool is_single_threaded(struct task_struct *);
2001
2002 /*
2003 * Careful: do_each_thread/while_each_thread is a double loop so
2004 * 'break' will not work as expected - use goto instead.
2005 */
2006 #define do_each_thread(g, t) \
2007 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2008
2009 #define while_each_thread(g, t) \
2010 while ((t = next_thread(t)) != g)
2011
2012 /* de_thread depends on thread_group_leader not being a pid based check */
2013 #define thread_group_leader(p) (p == p->group_leader)
2014
2015 /* Do to the insanities of de_thread it is possible for a process
2016 * to have the pid of the thread group leader without actually being
2017 * the thread group leader. For iteration through the pids in proc
2018 * all we care about is that we have a task with the appropriate
2019 * pid, we don't actually care if we have the right task.
2020 */
2021 static inline int has_group_leader_pid(struct task_struct *p)
2022 {
2023 return p->pid == p->tgid;
2024 }
2025
2026 static inline
2027 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2028 {
2029 return p1->tgid == p2->tgid;
2030 }
2031
2032 static inline struct task_struct *next_thread(const struct task_struct *p)
2033 {
2034 return list_entry(rcu_dereference(p->thread_group.next),
2035 struct task_struct, thread_group);
2036 }
2037
2038 static inline int thread_group_empty(struct task_struct *p)
2039 {
2040 return list_empty(&p->thread_group);
2041 }
2042
2043 #define delay_group_leader(p) \
2044 (thread_group_leader(p) && !thread_group_empty(p))
2045
2046 /*
2047 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2048 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2049 * pins the final release of task.io_context. Also protects ->cpuset and
2050 * ->cgroup.subsys[].
2051 *
2052 * Nests both inside and outside of read_lock(&tasklist_lock).
2053 * It must not be nested with write_lock_irq(&tasklist_lock),
2054 * neither inside nor outside.
2055 */
2056 static inline void task_lock(struct task_struct *p)
2057 {
2058 spin_lock(&p->alloc_lock);
2059 }
2060
2061 static inline void task_unlock(struct task_struct *p)
2062 {
2063 spin_unlock(&p->alloc_lock);
2064 }
2065
2066 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2067 unsigned long *flags);
2068
2069 static inline void unlock_task_sighand(struct task_struct *tsk,
2070 unsigned long *flags)
2071 {
2072 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2073 }
2074
2075 #ifndef __HAVE_THREAD_FUNCTIONS
2076
2077 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2078 #define task_stack_page(task) ((task)->stack)
2079
2080 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2081 {
2082 *task_thread_info(p) = *task_thread_info(org);
2083 task_thread_info(p)->task = p;
2084 }
2085
2086 static inline unsigned long *end_of_stack(struct task_struct *p)
2087 {
2088 return (unsigned long *)(task_thread_info(p) + 1);
2089 }
2090
2091 #endif
2092
2093 static inline int object_is_on_stack(void *obj)
2094 {
2095 void *stack = task_stack_page(current);
2096
2097 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2098 }
2099
2100 extern void thread_info_cache_init(void);
2101
2102 /* set thread flags in other task's structures
2103 * - see asm/thread_info.h for TIF_xxxx flags available
2104 */
2105 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2106 {
2107 set_ti_thread_flag(task_thread_info(tsk), flag);
2108 }
2109
2110 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2111 {
2112 clear_ti_thread_flag(task_thread_info(tsk), flag);
2113 }
2114
2115 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2116 {
2117 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2118 }
2119
2120 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2121 {
2122 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2123 }
2124
2125 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2126 {
2127 return test_ti_thread_flag(task_thread_info(tsk), flag);
2128 }
2129
2130 static inline void set_tsk_need_resched(struct task_struct *tsk)
2131 {
2132 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2133 }
2134
2135 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2136 {
2137 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2138 }
2139
2140 static inline int test_tsk_need_resched(struct task_struct *tsk)
2141 {
2142 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2143 }
2144
2145 static inline int signal_pending(struct task_struct *p)
2146 {
2147 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2148 }
2149
2150 extern int __fatal_signal_pending(struct task_struct *p);
2151
2152 static inline int fatal_signal_pending(struct task_struct *p)
2153 {
2154 return signal_pending(p) && __fatal_signal_pending(p);
2155 }
2156
2157 static inline int signal_pending_state(long state, struct task_struct *p)
2158 {
2159 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2160 return 0;
2161 if (!signal_pending(p))
2162 return 0;
2163
2164 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2165 }
2166
2167 static inline int need_resched(void)
2168 {
2169 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2170 }
2171
2172 /*
2173 * cond_resched() and cond_resched_lock(): latency reduction via
2174 * explicit rescheduling in places that are safe. The return
2175 * value indicates whether a reschedule was done in fact.
2176 * cond_resched_lock() will drop the spinlock before scheduling,
2177 * cond_resched_softirq() will enable bhs before scheduling.
2178 */
2179 extern int _cond_resched(void);
2180 #ifdef CONFIG_PREEMPT_BKL
2181 static inline int cond_resched(void)
2182 {
2183 return 0;
2184 }
2185 #else
2186 static inline int cond_resched(void)
2187 {
2188 return _cond_resched();
2189 }
2190 #endif
2191 extern int cond_resched_lock(spinlock_t * lock);
2192 extern int cond_resched_softirq(void);
2193 static inline int cond_resched_bkl(void)
2194 {
2195 return _cond_resched();
2196 }
2197
2198 /*
2199 * Does a critical section need to be broken due to another
2200 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2201 * but a general need for low latency)
2202 */
2203 static inline int spin_needbreak(spinlock_t *lock)
2204 {
2205 #ifdef CONFIG_PREEMPT
2206 return spin_is_contended(lock);
2207 #else
2208 return 0;
2209 #endif
2210 }
2211
2212 /*
2213 * Thread group CPU time accounting.
2214 */
2215 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2216 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2217
2218 static inline void thread_group_cputime_init(struct signal_struct *sig)
2219 {
2220 sig->cputimer.cputime = INIT_CPUTIME;
2221 spin_lock_init(&sig->cputimer.lock);
2222 sig->cputimer.running = 0;
2223 }
2224
2225 static inline void thread_group_cputime_free(struct signal_struct *sig)
2226 {
2227 }
2228
2229 /*
2230 * Reevaluate whether the task has signals pending delivery.
2231 * Wake the task if so.
2232 * This is required every time the blocked sigset_t changes.
2233 * callers must hold sighand->siglock.
2234 */
2235 extern void recalc_sigpending_and_wake(struct task_struct *t);
2236 extern void recalc_sigpending(void);
2237
2238 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2239
2240 /*
2241 * Wrappers for p->thread_info->cpu access. No-op on UP.
2242 */
2243 #ifdef CONFIG_SMP
2244
2245 static inline unsigned int task_cpu(const struct task_struct *p)
2246 {
2247 return task_thread_info(p)->cpu;
2248 }
2249
2250 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2251
2252 #else
2253
2254 static inline unsigned int task_cpu(const struct task_struct *p)
2255 {
2256 return 0;
2257 }
2258
2259 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2260 {
2261 }
2262
2263 #endif /* CONFIG_SMP */
2264
2265 extern void arch_pick_mmap_layout(struct mm_struct *mm);
2266
2267 #ifdef CONFIG_TRACING
2268 extern void
2269 __trace_special(void *__tr, void *__data,
2270 unsigned long arg1, unsigned long arg2, unsigned long arg3);
2271 #else
2272 static inline void
2273 __trace_special(void *__tr, void *__data,
2274 unsigned long arg1, unsigned long arg2, unsigned long arg3)
2275 {
2276 }
2277 #endif
2278
2279 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2280 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2281
2282 extern void normalize_rt_tasks(void);
2283
2284 #ifdef CONFIG_GROUP_SCHED
2285
2286 extern struct task_group init_task_group;
2287 #ifdef CONFIG_USER_SCHED
2288 extern struct task_group root_task_group;
2289 extern void set_tg_uid(struct user_struct *user);
2290 #endif
2291
2292 extern struct task_group *sched_create_group(struct task_group *parent);
2293 extern void sched_destroy_group(struct task_group *tg);
2294 extern void sched_move_task(struct task_struct *tsk);
2295 #ifdef CONFIG_FAIR_GROUP_SCHED
2296 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2297 extern unsigned long sched_group_shares(struct task_group *tg);
2298 #endif
2299 #ifdef CONFIG_RT_GROUP_SCHED
2300 extern int sched_group_set_rt_runtime(struct task_group *tg,
2301 long rt_runtime_us);
2302 extern long sched_group_rt_runtime(struct task_group *tg);
2303 extern int sched_group_set_rt_period(struct task_group *tg,
2304 long rt_period_us);
2305 extern long sched_group_rt_period(struct task_group *tg);
2306 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2307 #endif
2308 #endif
2309
2310 extern int task_can_switch_user(struct user_struct *up,
2311 struct task_struct *tsk);
2312
2313 #ifdef CONFIG_TASK_XACCT
2314 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2315 {
2316 tsk->ioac.rchar += amt;
2317 }
2318
2319 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2320 {
2321 tsk->ioac.wchar += amt;
2322 }
2323
2324 static inline void inc_syscr(struct task_struct *tsk)
2325 {
2326 tsk->ioac.syscr++;
2327 }
2328
2329 static inline void inc_syscw(struct task_struct *tsk)
2330 {
2331 tsk->ioac.syscw++;
2332 }
2333 #else
2334 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2335 {
2336 }
2337
2338 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2339 {
2340 }
2341
2342 static inline void inc_syscr(struct task_struct *tsk)
2343 {
2344 }
2345
2346 static inline void inc_syscw(struct task_struct *tsk)
2347 {
2348 }
2349 #endif
2350
2351 #ifndef TASK_SIZE_OF
2352 #define TASK_SIZE_OF(tsk) TASK_SIZE
2353 #endif
2354
2355 #ifdef CONFIG_MM_OWNER
2356 extern void mm_update_next_owner(struct mm_struct *mm);
2357 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2358 #else
2359 static inline void mm_update_next_owner(struct mm_struct *mm)
2360 {
2361 }
2362
2363 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2364 {
2365 }
2366 #endif /* CONFIG_MM_OWNER */
2367
2368 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
2369
2370 #endif /* __KERNEL__ */
2371
2372 #endif
This page took 0.084203 seconds and 5 git commands to generate.