ELF loader support for auxvec base platform string
[deliverable/linux.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
29 #define CLONE_NEWNET 0x40000000 /* New network namespace */
30 #define CLONE_IO 0x80000000 /* Clone io context */
31
32 /*
33 * Scheduling policies
34 */
35 #define SCHED_NORMAL 0
36 #define SCHED_FIFO 1
37 #define SCHED_RR 2
38 #define SCHED_BATCH 3
39 /* SCHED_ISO: reserved but not implemented yet */
40 #define SCHED_IDLE 5
41
42 #ifdef __KERNEL__
43
44 struct sched_param {
45 int sched_priority;
46 };
47
48 #include <asm/param.h> /* for HZ */
49
50 #include <linux/capability.h>
51 #include <linux/threads.h>
52 #include <linux/kernel.h>
53 #include <linux/types.h>
54 #include <linux/timex.h>
55 #include <linux/jiffies.h>
56 #include <linux/rbtree.h>
57 #include <linux/thread_info.h>
58 #include <linux/cpumask.h>
59 #include <linux/errno.h>
60 #include <linux/nodemask.h>
61 #include <linux/mm_types.h>
62
63 #include <asm/system.h>
64 #include <asm/page.h>
65 #include <asm/ptrace.h>
66 #include <asm/cputime.h>
67
68 #include <linux/smp.h>
69 #include <linux/sem.h>
70 #include <linux/signal.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compiler.h>
73 #include <linux/completion.h>
74 #include <linux/pid.h>
75 #include <linux/percpu.h>
76 #include <linux/topology.h>
77 #include <linux/proportions.h>
78 #include <linux/seccomp.h>
79 #include <linux/rcupdate.h>
80 #include <linux/rtmutex.h>
81
82 #include <linux/time.h>
83 #include <linux/param.h>
84 #include <linux/resource.h>
85 #include <linux/timer.h>
86 #include <linux/hrtimer.h>
87 #include <linux/task_io_accounting.h>
88 #include <linux/kobject.h>
89 #include <linux/latencytop.h>
90
91 #include <asm/processor.h>
92
93 struct mem_cgroup;
94 struct exec_domain;
95 struct futex_pi_state;
96 struct robust_list_head;
97 struct bio;
98
99 /*
100 * List of flags we want to share for kernel threads,
101 * if only because they are not used by them anyway.
102 */
103 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
104
105 /*
106 * These are the constant used to fake the fixed-point load-average
107 * counting. Some notes:
108 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
109 * a load-average precision of 10 bits integer + 11 bits fractional
110 * - if you want to count load-averages more often, you need more
111 * precision, or rounding will get you. With 2-second counting freq,
112 * the EXP_n values would be 1981, 2034 and 2043 if still using only
113 * 11 bit fractions.
114 */
115 extern unsigned long avenrun[]; /* Load averages */
116
117 #define FSHIFT 11 /* nr of bits of precision */
118 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
119 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
120 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
121 #define EXP_5 2014 /* 1/exp(5sec/5min) */
122 #define EXP_15 2037 /* 1/exp(5sec/15min) */
123
124 #define CALC_LOAD(load,exp,n) \
125 load *= exp; \
126 load += n*(FIXED_1-exp); \
127 load >>= FSHIFT;
128
129 extern unsigned long total_forks;
130 extern int nr_threads;
131 DECLARE_PER_CPU(unsigned long, process_counts);
132 extern int nr_processes(void);
133 extern unsigned long nr_running(void);
134 extern unsigned long nr_uninterruptible(void);
135 extern unsigned long nr_active(void);
136 extern unsigned long nr_iowait(void);
137
138 struct seq_file;
139 struct cfs_rq;
140 struct task_group;
141 #ifdef CONFIG_SCHED_DEBUG
142 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
143 extern void proc_sched_set_task(struct task_struct *p);
144 extern void
145 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
146 #else
147 static inline void
148 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
149 {
150 }
151 static inline void proc_sched_set_task(struct task_struct *p)
152 {
153 }
154 static inline void
155 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
156 {
157 }
158 #endif
159
160 extern unsigned long long time_sync_thresh;
161
162 /*
163 * Task state bitmask. NOTE! These bits are also
164 * encoded in fs/proc/array.c: get_task_state().
165 *
166 * We have two separate sets of flags: task->state
167 * is about runnability, while task->exit_state are
168 * about the task exiting. Confusing, but this way
169 * modifying one set can't modify the other one by
170 * mistake.
171 */
172 #define TASK_RUNNING 0
173 #define TASK_INTERRUPTIBLE 1
174 #define TASK_UNINTERRUPTIBLE 2
175 #define __TASK_STOPPED 4
176 #define __TASK_TRACED 8
177 /* in tsk->exit_state */
178 #define EXIT_ZOMBIE 16
179 #define EXIT_DEAD 32
180 /* in tsk->state again */
181 #define TASK_DEAD 64
182 #define TASK_WAKEKILL 128
183
184 /* Convenience macros for the sake of set_task_state */
185 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
186 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
187 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
188
189 /* Convenience macros for the sake of wake_up */
190 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
191 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
192
193 /* get_task_state() */
194 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
195 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
196 __TASK_TRACED)
197
198 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
199 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
200 #define task_is_stopped_or_traced(task) \
201 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
202 #define task_contributes_to_load(task) \
203 ((task->state & TASK_UNINTERRUPTIBLE) != 0)
204
205 #define __set_task_state(tsk, state_value) \
206 do { (tsk)->state = (state_value); } while (0)
207 #define set_task_state(tsk, state_value) \
208 set_mb((tsk)->state, (state_value))
209
210 /*
211 * set_current_state() includes a barrier so that the write of current->state
212 * is correctly serialised wrt the caller's subsequent test of whether to
213 * actually sleep:
214 *
215 * set_current_state(TASK_UNINTERRUPTIBLE);
216 * if (do_i_need_to_sleep())
217 * schedule();
218 *
219 * If the caller does not need such serialisation then use __set_current_state()
220 */
221 #define __set_current_state(state_value) \
222 do { current->state = (state_value); } while (0)
223 #define set_current_state(state_value) \
224 set_mb(current->state, (state_value))
225
226 /* Task command name length */
227 #define TASK_COMM_LEN 16
228
229 #include <linux/spinlock.h>
230
231 /*
232 * This serializes "schedule()" and also protects
233 * the run-queue from deletions/modifications (but
234 * _adding_ to the beginning of the run-queue has
235 * a separate lock).
236 */
237 extern rwlock_t tasklist_lock;
238 extern spinlock_t mmlist_lock;
239
240 struct task_struct;
241
242 extern void sched_init(void);
243 extern void sched_init_smp(void);
244 extern asmlinkage void schedule_tail(struct task_struct *prev);
245 extern void init_idle(struct task_struct *idle, int cpu);
246 extern void init_idle_bootup_task(struct task_struct *idle);
247
248 extern int runqueue_is_locked(void);
249
250 extern cpumask_t nohz_cpu_mask;
251 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
252 extern int select_nohz_load_balancer(int cpu);
253 #else
254 static inline int select_nohz_load_balancer(int cpu)
255 {
256 return 0;
257 }
258 #endif
259
260 extern unsigned long rt_needs_cpu(int cpu);
261
262 /*
263 * Only dump TASK_* tasks. (0 for all tasks)
264 */
265 extern void show_state_filter(unsigned long state_filter);
266
267 static inline void show_state(void)
268 {
269 show_state_filter(0);
270 }
271
272 extern void show_regs(struct pt_regs *);
273
274 /*
275 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
276 * task), SP is the stack pointer of the first frame that should be shown in the back
277 * trace (or NULL if the entire call-chain of the task should be shown).
278 */
279 extern void show_stack(struct task_struct *task, unsigned long *sp);
280
281 void io_schedule(void);
282 long io_schedule_timeout(long timeout);
283
284 extern void cpu_init (void);
285 extern void trap_init(void);
286 extern void account_process_tick(struct task_struct *task, int user);
287 extern void update_process_times(int user);
288 extern void scheduler_tick(void);
289 extern void hrtick_resched(void);
290
291 extern void sched_show_task(struct task_struct *p);
292
293 #ifdef CONFIG_DETECT_SOFTLOCKUP
294 extern void softlockup_tick(void);
295 extern void spawn_softlockup_task(void);
296 extern void touch_softlockup_watchdog(void);
297 extern void touch_all_softlockup_watchdogs(void);
298 extern unsigned int softlockup_panic;
299 extern unsigned long sysctl_hung_task_check_count;
300 extern unsigned long sysctl_hung_task_timeout_secs;
301 extern unsigned long sysctl_hung_task_warnings;
302 extern int softlockup_thresh;
303 #else
304 static inline void softlockup_tick(void)
305 {
306 }
307 static inline void spawn_softlockup_task(void)
308 {
309 }
310 static inline void touch_softlockup_watchdog(void)
311 {
312 }
313 static inline void touch_all_softlockup_watchdogs(void)
314 {
315 }
316 #endif
317
318
319 /* Attach to any functions which should be ignored in wchan output. */
320 #define __sched __attribute__((__section__(".sched.text")))
321
322 /* Linker adds these: start and end of __sched functions */
323 extern char __sched_text_start[], __sched_text_end[];
324
325 /* Is this address in the __sched functions? */
326 extern int in_sched_functions(unsigned long addr);
327
328 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
329 extern signed long schedule_timeout(signed long timeout);
330 extern signed long schedule_timeout_interruptible(signed long timeout);
331 extern signed long schedule_timeout_killable(signed long timeout);
332 extern signed long schedule_timeout_uninterruptible(signed long timeout);
333 asmlinkage void schedule(void);
334
335 struct nsproxy;
336 struct user_namespace;
337
338 /* Maximum number of active map areas.. This is a random (large) number */
339 #define DEFAULT_MAX_MAP_COUNT 65536
340
341 extern int sysctl_max_map_count;
342
343 #include <linux/aio.h>
344
345 extern unsigned long
346 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
347 unsigned long, unsigned long);
348 extern unsigned long
349 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
350 unsigned long len, unsigned long pgoff,
351 unsigned long flags);
352 extern void arch_unmap_area(struct mm_struct *, unsigned long);
353 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
354
355 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
356 /*
357 * The mm counters are not protected by its page_table_lock,
358 * so must be incremented atomically.
359 */
360 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
361 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
362 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
363 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
364 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
365
366 #else /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
367 /*
368 * The mm counters are protected by its page_table_lock,
369 * so can be incremented directly.
370 */
371 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
372 #define get_mm_counter(mm, member) ((mm)->_##member)
373 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
374 #define inc_mm_counter(mm, member) (mm)->_##member++
375 #define dec_mm_counter(mm, member) (mm)->_##member--
376
377 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
378
379 #define get_mm_rss(mm) \
380 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
381 #define update_hiwater_rss(mm) do { \
382 unsigned long _rss = get_mm_rss(mm); \
383 if ((mm)->hiwater_rss < _rss) \
384 (mm)->hiwater_rss = _rss; \
385 } while (0)
386 #define update_hiwater_vm(mm) do { \
387 if ((mm)->hiwater_vm < (mm)->total_vm) \
388 (mm)->hiwater_vm = (mm)->total_vm; \
389 } while (0)
390
391 extern void set_dumpable(struct mm_struct *mm, int value);
392 extern int get_dumpable(struct mm_struct *mm);
393
394 /* mm flags */
395 /* dumpable bits */
396 #define MMF_DUMPABLE 0 /* core dump is permitted */
397 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
398 #define MMF_DUMPABLE_BITS 2
399
400 /* coredump filter bits */
401 #define MMF_DUMP_ANON_PRIVATE 2
402 #define MMF_DUMP_ANON_SHARED 3
403 #define MMF_DUMP_MAPPED_PRIVATE 4
404 #define MMF_DUMP_MAPPED_SHARED 5
405 #define MMF_DUMP_ELF_HEADERS 6
406 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
407 #define MMF_DUMP_FILTER_BITS 5
408 #define MMF_DUMP_FILTER_MASK \
409 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
410 #define MMF_DUMP_FILTER_DEFAULT \
411 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED))
412
413 struct sighand_struct {
414 atomic_t count;
415 struct k_sigaction action[_NSIG];
416 spinlock_t siglock;
417 wait_queue_head_t signalfd_wqh;
418 };
419
420 struct pacct_struct {
421 int ac_flag;
422 long ac_exitcode;
423 unsigned long ac_mem;
424 cputime_t ac_utime, ac_stime;
425 unsigned long ac_minflt, ac_majflt;
426 };
427
428 /*
429 * NOTE! "signal_struct" does not have it's own
430 * locking, because a shared signal_struct always
431 * implies a shared sighand_struct, so locking
432 * sighand_struct is always a proper superset of
433 * the locking of signal_struct.
434 */
435 struct signal_struct {
436 atomic_t count;
437 atomic_t live;
438
439 wait_queue_head_t wait_chldexit; /* for wait4() */
440
441 /* current thread group signal load-balancing target: */
442 struct task_struct *curr_target;
443
444 /* shared signal handling: */
445 struct sigpending shared_pending;
446
447 /* thread group exit support */
448 int group_exit_code;
449 /* overloaded:
450 * - notify group_exit_task when ->count is equal to notify_count
451 * - everyone except group_exit_task is stopped during signal delivery
452 * of fatal signals, group_exit_task processes the signal.
453 */
454 struct task_struct *group_exit_task;
455 int notify_count;
456
457 /* thread group stop support, overloads group_exit_code too */
458 int group_stop_count;
459 unsigned int flags; /* see SIGNAL_* flags below */
460
461 /* POSIX.1b Interval Timers */
462 struct list_head posix_timers;
463
464 /* ITIMER_REAL timer for the process */
465 struct hrtimer real_timer;
466 struct pid *leader_pid;
467 ktime_t it_real_incr;
468
469 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
470 cputime_t it_prof_expires, it_virt_expires;
471 cputime_t it_prof_incr, it_virt_incr;
472
473 /* job control IDs */
474
475 /*
476 * pgrp and session fields are deprecated.
477 * use the task_session_Xnr and task_pgrp_Xnr routines below
478 */
479
480 union {
481 pid_t pgrp __deprecated;
482 pid_t __pgrp;
483 };
484
485 struct pid *tty_old_pgrp;
486
487 union {
488 pid_t session __deprecated;
489 pid_t __session;
490 };
491
492 /* boolean value for session group leader */
493 int leader;
494
495 struct tty_struct *tty; /* NULL if no tty */
496
497 /*
498 * Cumulative resource counters for dead threads in the group,
499 * and for reaped dead child processes forked by this group.
500 * Live threads maintain their own counters and add to these
501 * in __exit_signal, except for the group leader.
502 */
503 cputime_t utime, stime, cutime, cstime;
504 cputime_t gtime;
505 cputime_t cgtime;
506 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
507 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
508 unsigned long inblock, oublock, cinblock, coublock;
509
510 /*
511 * Cumulative ns of scheduled CPU time for dead threads in the
512 * group, not including a zombie group leader. (This only differs
513 * from jiffies_to_ns(utime + stime) if sched_clock uses something
514 * other than jiffies.)
515 */
516 unsigned long long sum_sched_runtime;
517
518 /*
519 * We don't bother to synchronize most readers of this at all,
520 * because there is no reader checking a limit that actually needs
521 * to get both rlim_cur and rlim_max atomically, and either one
522 * alone is a single word that can safely be read normally.
523 * getrlimit/setrlimit use task_lock(current->group_leader) to
524 * protect this instead of the siglock, because they really
525 * have no need to disable irqs.
526 */
527 struct rlimit rlim[RLIM_NLIMITS];
528
529 struct list_head cpu_timers[3];
530
531 /* keep the process-shared keyrings here so that they do the right
532 * thing in threads created with CLONE_THREAD */
533 #ifdef CONFIG_KEYS
534 struct key *session_keyring; /* keyring inherited over fork */
535 struct key *process_keyring; /* keyring private to this process */
536 #endif
537 #ifdef CONFIG_BSD_PROCESS_ACCT
538 struct pacct_struct pacct; /* per-process accounting information */
539 #endif
540 #ifdef CONFIG_TASKSTATS
541 struct taskstats *stats;
542 #endif
543 #ifdef CONFIG_AUDIT
544 unsigned audit_tty;
545 struct tty_audit_buf *tty_audit_buf;
546 #endif
547 };
548
549 /* Context switch must be unlocked if interrupts are to be enabled */
550 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
551 # define __ARCH_WANT_UNLOCKED_CTXSW
552 #endif
553
554 /*
555 * Bits in flags field of signal_struct.
556 */
557 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
558 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
559 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
560 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
561 /*
562 * Pending notifications to parent.
563 */
564 #define SIGNAL_CLD_STOPPED 0x00000010
565 #define SIGNAL_CLD_CONTINUED 0x00000020
566 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
567
568 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
569
570 /* If true, all threads except ->group_exit_task have pending SIGKILL */
571 static inline int signal_group_exit(const struct signal_struct *sig)
572 {
573 return (sig->flags & SIGNAL_GROUP_EXIT) ||
574 (sig->group_exit_task != NULL);
575 }
576
577 /*
578 * Some day this will be a full-fledged user tracking system..
579 */
580 struct user_struct {
581 atomic_t __count; /* reference count */
582 atomic_t processes; /* How many processes does this user have? */
583 atomic_t files; /* How many open files does this user have? */
584 atomic_t sigpending; /* How many pending signals does this user have? */
585 #ifdef CONFIG_INOTIFY_USER
586 atomic_t inotify_watches; /* How many inotify watches does this user have? */
587 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
588 #endif
589 #ifdef CONFIG_POSIX_MQUEUE
590 /* protected by mq_lock */
591 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
592 #endif
593 unsigned long locked_shm; /* How many pages of mlocked shm ? */
594
595 #ifdef CONFIG_KEYS
596 struct key *uid_keyring; /* UID specific keyring */
597 struct key *session_keyring; /* UID's default session keyring */
598 #endif
599
600 /* Hash table maintenance information */
601 struct hlist_node uidhash_node;
602 uid_t uid;
603
604 #ifdef CONFIG_USER_SCHED
605 struct task_group *tg;
606 #ifdef CONFIG_SYSFS
607 struct kobject kobj;
608 struct work_struct work;
609 #endif
610 #endif
611 };
612
613 extern int uids_sysfs_init(void);
614
615 extern struct user_struct *find_user(uid_t);
616
617 extern struct user_struct root_user;
618 #define INIT_USER (&root_user)
619
620 struct backing_dev_info;
621 struct reclaim_state;
622
623 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
624 struct sched_info {
625 /* cumulative counters */
626 unsigned long pcount; /* # of times run on this cpu */
627 unsigned long long cpu_time, /* time spent on the cpu */
628 run_delay; /* time spent waiting on a runqueue */
629
630 /* timestamps */
631 unsigned long long last_arrival,/* when we last ran on a cpu */
632 last_queued; /* when we were last queued to run */
633 #ifdef CONFIG_SCHEDSTATS
634 /* BKL stats */
635 unsigned int bkl_count;
636 #endif
637 };
638 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
639
640 #ifdef CONFIG_SCHEDSTATS
641 extern const struct file_operations proc_schedstat_operations;
642 #endif /* CONFIG_SCHEDSTATS */
643
644 #ifdef CONFIG_TASK_DELAY_ACCT
645 struct task_delay_info {
646 spinlock_t lock;
647 unsigned int flags; /* Private per-task flags */
648
649 /* For each stat XXX, add following, aligned appropriately
650 *
651 * struct timespec XXX_start, XXX_end;
652 * u64 XXX_delay;
653 * u32 XXX_count;
654 *
655 * Atomicity of updates to XXX_delay, XXX_count protected by
656 * single lock above (split into XXX_lock if contention is an issue).
657 */
658
659 /*
660 * XXX_count is incremented on every XXX operation, the delay
661 * associated with the operation is added to XXX_delay.
662 * XXX_delay contains the accumulated delay time in nanoseconds.
663 */
664 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
665 u64 blkio_delay; /* wait for sync block io completion */
666 u64 swapin_delay; /* wait for swapin block io completion */
667 u32 blkio_count; /* total count of the number of sync block */
668 /* io operations performed */
669 u32 swapin_count; /* total count of the number of swapin block */
670 /* io operations performed */
671 };
672 #endif /* CONFIG_TASK_DELAY_ACCT */
673
674 static inline int sched_info_on(void)
675 {
676 #ifdef CONFIG_SCHEDSTATS
677 return 1;
678 #elif defined(CONFIG_TASK_DELAY_ACCT)
679 extern int delayacct_on;
680 return delayacct_on;
681 #else
682 return 0;
683 #endif
684 }
685
686 enum cpu_idle_type {
687 CPU_IDLE,
688 CPU_NOT_IDLE,
689 CPU_NEWLY_IDLE,
690 CPU_MAX_IDLE_TYPES
691 };
692
693 /*
694 * sched-domains (multiprocessor balancing) declarations:
695 */
696
697 /*
698 * Increase resolution of nice-level calculations:
699 */
700 #define SCHED_LOAD_SHIFT 10
701 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
702
703 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
704
705 #ifdef CONFIG_SMP
706 #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */
707 #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */
708 #define SD_BALANCE_EXEC 4 /* Balance on exec */
709 #define SD_BALANCE_FORK 8 /* Balance on fork, clone */
710 #define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */
711 #define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */
712 #define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */
713 #define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */
714 #define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */
715 #define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */
716 #define SD_SERIALIZE 1024 /* Only a single load balancing instance */
717 #define SD_WAKE_IDLE_FAR 2048 /* Gain latency sacrificing cache hit */
718
719 #define BALANCE_FOR_MC_POWER \
720 (sched_smt_power_savings ? SD_POWERSAVINGS_BALANCE : 0)
721
722 #define BALANCE_FOR_PKG_POWER \
723 ((sched_mc_power_savings || sched_smt_power_savings) ? \
724 SD_POWERSAVINGS_BALANCE : 0)
725
726 #define test_sd_parent(sd, flag) ((sd->parent && \
727 (sd->parent->flags & flag)) ? 1 : 0)
728
729
730 struct sched_group {
731 struct sched_group *next; /* Must be a circular list */
732 cpumask_t cpumask;
733
734 /*
735 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
736 * single CPU. This is read only (except for setup, hotplug CPU).
737 * Note : Never change cpu_power without recompute its reciprocal
738 */
739 unsigned int __cpu_power;
740 /*
741 * reciprocal value of cpu_power to avoid expensive divides
742 * (see include/linux/reciprocal_div.h)
743 */
744 u32 reciprocal_cpu_power;
745 };
746
747 enum sched_domain_level {
748 SD_LV_NONE = 0,
749 SD_LV_SIBLING,
750 SD_LV_MC,
751 SD_LV_CPU,
752 SD_LV_NODE,
753 SD_LV_ALLNODES,
754 SD_LV_MAX
755 };
756
757 struct sched_domain_attr {
758 int relax_domain_level;
759 };
760
761 #define SD_ATTR_INIT (struct sched_domain_attr) { \
762 .relax_domain_level = -1, \
763 }
764
765 struct sched_domain {
766 /* These fields must be setup */
767 struct sched_domain *parent; /* top domain must be null terminated */
768 struct sched_domain *child; /* bottom domain must be null terminated */
769 struct sched_group *groups; /* the balancing groups of the domain */
770 cpumask_t span; /* span of all CPUs in this domain */
771 unsigned long min_interval; /* Minimum balance interval ms */
772 unsigned long max_interval; /* Maximum balance interval ms */
773 unsigned int busy_factor; /* less balancing by factor if busy */
774 unsigned int imbalance_pct; /* No balance until over watermark */
775 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
776 unsigned int busy_idx;
777 unsigned int idle_idx;
778 unsigned int newidle_idx;
779 unsigned int wake_idx;
780 unsigned int forkexec_idx;
781 int flags; /* See SD_* */
782 enum sched_domain_level level;
783
784 /* Runtime fields. */
785 unsigned long last_balance; /* init to jiffies. units in jiffies */
786 unsigned int balance_interval; /* initialise to 1. units in ms. */
787 unsigned int nr_balance_failed; /* initialise to 0 */
788
789 u64 last_update;
790
791 #ifdef CONFIG_SCHEDSTATS
792 /* load_balance() stats */
793 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
794 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
795 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
796 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
797 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
798 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
799 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
800 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
801
802 /* Active load balancing */
803 unsigned int alb_count;
804 unsigned int alb_failed;
805 unsigned int alb_pushed;
806
807 /* SD_BALANCE_EXEC stats */
808 unsigned int sbe_count;
809 unsigned int sbe_balanced;
810 unsigned int sbe_pushed;
811
812 /* SD_BALANCE_FORK stats */
813 unsigned int sbf_count;
814 unsigned int sbf_balanced;
815 unsigned int sbf_pushed;
816
817 /* try_to_wake_up() stats */
818 unsigned int ttwu_wake_remote;
819 unsigned int ttwu_move_affine;
820 unsigned int ttwu_move_balance;
821 #endif
822 };
823
824 extern void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
825 struct sched_domain_attr *dattr_new);
826 extern int arch_reinit_sched_domains(void);
827
828 #else /* CONFIG_SMP */
829
830 struct sched_domain_attr;
831
832 static inline void
833 partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
834 struct sched_domain_attr *dattr_new)
835 {
836 }
837 #endif /* !CONFIG_SMP */
838
839 struct io_context; /* See blkdev.h */
840 #define NGROUPS_SMALL 32
841 #define NGROUPS_PER_BLOCK ((unsigned int)(PAGE_SIZE / sizeof(gid_t)))
842 struct group_info {
843 int ngroups;
844 atomic_t usage;
845 gid_t small_block[NGROUPS_SMALL];
846 int nblocks;
847 gid_t *blocks[0];
848 };
849
850 /*
851 * get_group_info() must be called with the owning task locked (via task_lock())
852 * when task != current. The reason being that the vast majority of callers are
853 * looking at current->group_info, which can not be changed except by the
854 * current task. Changing current->group_info requires the task lock, too.
855 */
856 #define get_group_info(group_info) do { \
857 atomic_inc(&(group_info)->usage); \
858 } while (0)
859
860 #define put_group_info(group_info) do { \
861 if (atomic_dec_and_test(&(group_info)->usage)) \
862 groups_free(group_info); \
863 } while (0)
864
865 extern struct group_info *groups_alloc(int gidsetsize);
866 extern void groups_free(struct group_info *group_info);
867 extern int set_current_groups(struct group_info *group_info);
868 extern int groups_search(struct group_info *group_info, gid_t grp);
869 /* access the groups "array" with this macro */
870 #define GROUP_AT(gi, i) \
871 ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK])
872
873 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
874 extern void prefetch_stack(struct task_struct *t);
875 #else
876 static inline void prefetch_stack(struct task_struct *t) { }
877 #endif
878
879 struct audit_context; /* See audit.c */
880 struct mempolicy;
881 struct pipe_inode_info;
882 struct uts_namespace;
883
884 struct rq;
885 struct sched_domain;
886
887 struct sched_class {
888 const struct sched_class *next;
889
890 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
891 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
892 void (*yield_task) (struct rq *rq);
893 int (*select_task_rq)(struct task_struct *p, int sync);
894
895 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p);
896
897 struct task_struct * (*pick_next_task) (struct rq *rq);
898 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
899
900 #ifdef CONFIG_SMP
901 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
902 struct rq *busiest, unsigned long max_load_move,
903 struct sched_domain *sd, enum cpu_idle_type idle,
904 int *all_pinned, int *this_best_prio);
905
906 int (*move_one_task) (struct rq *this_rq, int this_cpu,
907 struct rq *busiest, struct sched_domain *sd,
908 enum cpu_idle_type idle);
909 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
910 void (*post_schedule) (struct rq *this_rq);
911 void (*task_wake_up) (struct rq *this_rq, struct task_struct *task);
912 #endif
913
914 void (*set_curr_task) (struct rq *rq);
915 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
916 void (*task_new) (struct rq *rq, struct task_struct *p);
917 void (*set_cpus_allowed)(struct task_struct *p,
918 const cpumask_t *newmask);
919
920 void (*rq_online)(struct rq *rq);
921 void (*rq_offline)(struct rq *rq);
922
923 void (*switched_from) (struct rq *this_rq, struct task_struct *task,
924 int running);
925 void (*switched_to) (struct rq *this_rq, struct task_struct *task,
926 int running);
927 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
928 int oldprio, int running);
929
930 #ifdef CONFIG_FAIR_GROUP_SCHED
931 void (*moved_group) (struct task_struct *p);
932 #endif
933 };
934
935 struct load_weight {
936 unsigned long weight, inv_weight;
937 };
938
939 /*
940 * CFS stats for a schedulable entity (task, task-group etc)
941 *
942 * Current field usage histogram:
943 *
944 * 4 se->block_start
945 * 4 se->run_node
946 * 4 se->sleep_start
947 * 6 se->load.weight
948 */
949 struct sched_entity {
950 struct load_weight load; /* for load-balancing */
951 struct rb_node run_node;
952 struct list_head group_node;
953 unsigned int on_rq;
954
955 u64 exec_start;
956 u64 sum_exec_runtime;
957 u64 vruntime;
958 u64 prev_sum_exec_runtime;
959
960 u64 last_wakeup;
961 u64 avg_overlap;
962
963 #ifdef CONFIG_SCHEDSTATS
964 u64 wait_start;
965 u64 wait_max;
966 u64 wait_count;
967 u64 wait_sum;
968
969 u64 sleep_start;
970 u64 sleep_max;
971 s64 sum_sleep_runtime;
972
973 u64 block_start;
974 u64 block_max;
975 u64 exec_max;
976 u64 slice_max;
977
978 u64 nr_migrations;
979 u64 nr_migrations_cold;
980 u64 nr_failed_migrations_affine;
981 u64 nr_failed_migrations_running;
982 u64 nr_failed_migrations_hot;
983 u64 nr_forced_migrations;
984 u64 nr_forced2_migrations;
985
986 u64 nr_wakeups;
987 u64 nr_wakeups_sync;
988 u64 nr_wakeups_migrate;
989 u64 nr_wakeups_local;
990 u64 nr_wakeups_remote;
991 u64 nr_wakeups_affine;
992 u64 nr_wakeups_affine_attempts;
993 u64 nr_wakeups_passive;
994 u64 nr_wakeups_idle;
995 #endif
996
997 #ifdef CONFIG_FAIR_GROUP_SCHED
998 struct sched_entity *parent;
999 /* rq on which this entity is (to be) queued: */
1000 struct cfs_rq *cfs_rq;
1001 /* rq "owned" by this entity/group: */
1002 struct cfs_rq *my_q;
1003 #endif
1004 };
1005
1006 struct sched_rt_entity {
1007 struct list_head run_list;
1008 unsigned int time_slice;
1009 unsigned long timeout;
1010 int nr_cpus_allowed;
1011
1012 struct sched_rt_entity *back;
1013 #ifdef CONFIG_RT_GROUP_SCHED
1014 struct sched_rt_entity *parent;
1015 /* rq on which this entity is (to be) queued: */
1016 struct rt_rq *rt_rq;
1017 /* rq "owned" by this entity/group: */
1018 struct rt_rq *my_q;
1019 #endif
1020 };
1021
1022 struct task_struct {
1023 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1024 void *stack;
1025 atomic_t usage;
1026 unsigned int flags; /* per process flags, defined below */
1027 unsigned int ptrace;
1028
1029 int lock_depth; /* BKL lock depth */
1030
1031 #ifdef CONFIG_SMP
1032 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1033 int oncpu;
1034 #endif
1035 #endif
1036
1037 int prio, static_prio, normal_prio;
1038 unsigned int rt_priority;
1039 const struct sched_class *sched_class;
1040 struct sched_entity se;
1041 struct sched_rt_entity rt;
1042
1043 #ifdef CONFIG_PREEMPT_NOTIFIERS
1044 /* list of struct preempt_notifier: */
1045 struct hlist_head preempt_notifiers;
1046 #endif
1047
1048 /*
1049 * fpu_counter contains the number of consecutive context switches
1050 * that the FPU is used. If this is over a threshold, the lazy fpu
1051 * saving becomes unlazy to save the trap. This is an unsigned char
1052 * so that after 256 times the counter wraps and the behavior turns
1053 * lazy again; this to deal with bursty apps that only use FPU for
1054 * a short time
1055 */
1056 unsigned char fpu_counter;
1057 s8 oomkilladj; /* OOM kill score adjustment (bit shift). */
1058 #ifdef CONFIG_BLK_DEV_IO_TRACE
1059 unsigned int btrace_seq;
1060 #endif
1061
1062 unsigned int policy;
1063 cpumask_t cpus_allowed;
1064
1065 #ifdef CONFIG_PREEMPT_RCU
1066 int rcu_read_lock_nesting;
1067 int rcu_flipctr_idx;
1068 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1069
1070 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1071 struct sched_info sched_info;
1072 #endif
1073
1074 struct list_head tasks;
1075
1076 struct mm_struct *mm, *active_mm;
1077
1078 /* task state */
1079 struct linux_binfmt *binfmt;
1080 int exit_state;
1081 int exit_code, exit_signal;
1082 int pdeath_signal; /* The signal sent when the parent dies */
1083 /* ??? */
1084 unsigned int personality;
1085 unsigned did_exec:1;
1086 pid_t pid;
1087 pid_t tgid;
1088
1089 #ifdef CONFIG_CC_STACKPROTECTOR
1090 /* Canary value for the -fstack-protector gcc feature */
1091 unsigned long stack_canary;
1092 #endif
1093 /*
1094 * pointers to (original) parent process, youngest child, younger sibling,
1095 * older sibling, respectively. (p->father can be replaced with
1096 * p->real_parent->pid)
1097 */
1098 struct task_struct *real_parent; /* real parent process */
1099 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1100 /*
1101 * children/sibling forms the list of my natural children
1102 */
1103 struct list_head children; /* list of my children */
1104 struct list_head sibling; /* linkage in my parent's children list */
1105 struct task_struct *group_leader; /* threadgroup leader */
1106
1107 /*
1108 * ptraced is the list of tasks this task is using ptrace on.
1109 * This includes both natural children and PTRACE_ATTACH targets.
1110 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1111 */
1112 struct list_head ptraced;
1113 struct list_head ptrace_entry;
1114
1115 /* PID/PID hash table linkage. */
1116 struct pid_link pids[PIDTYPE_MAX];
1117 struct list_head thread_group;
1118
1119 struct completion *vfork_done; /* for vfork() */
1120 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1121 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1122
1123 cputime_t utime, stime, utimescaled, stimescaled;
1124 cputime_t gtime;
1125 cputime_t prev_utime, prev_stime;
1126 unsigned long nvcsw, nivcsw; /* context switch counts */
1127 struct timespec start_time; /* monotonic time */
1128 struct timespec real_start_time; /* boot based time */
1129 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1130 unsigned long min_flt, maj_flt;
1131
1132 cputime_t it_prof_expires, it_virt_expires;
1133 unsigned long long it_sched_expires;
1134 struct list_head cpu_timers[3];
1135
1136 /* process credentials */
1137 uid_t uid,euid,suid,fsuid;
1138 gid_t gid,egid,sgid,fsgid;
1139 struct group_info *group_info;
1140 kernel_cap_t cap_effective, cap_inheritable, cap_permitted, cap_bset;
1141 struct user_struct *user;
1142 unsigned securebits;
1143 #ifdef CONFIG_KEYS
1144 unsigned char jit_keyring; /* default keyring to attach requested keys to */
1145 struct key *request_key_auth; /* assumed request_key authority */
1146 struct key *thread_keyring; /* keyring private to this thread */
1147 #endif
1148 char comm[TASK_COMM_LEN]; /* executable name excluding path
1149 - access with [gs]et_task_comm (which lock
1150 it with task_lock())
1151 - initialized normally by flush_old_exec */
1152 /* file system info */
1153 int link_count, total_link_count;
1154 #ifdef CONFIG_SYSVIPC
1155 /* ipc stuff */
1156 struct sysv_sem sysvsem;
1157 #endif
1158 #ifdef CONFIG_DETECT_SOFTLOCKUP
1159 /* hung task detection */
1160 unsigned long last_switch_timestamp;
1161 unsigned long last_switch_count;
1162 #endif
1163 /* CPU-specific state of this task */
1164 struct thread_struct thread;
1165 /* filesystem information */
1166 struct fs_struct *fs;
1167 /* open file information */
1168 struct files_struct *files;
1169 /* namespaces */
1170 struct nsproxy *nsproxy;
1171 /* signal handlers */
1172 struct signal_struct *signal;
1173 struct sighand_struct *sighand;
1174
1175 sigset_t blocked, real_blocked;
1176 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1177 struct sigpending pending;
1178
1179 unsigned long sas_ss_sp;
1180 size_t sas_ss_size;
1181 int (*notifier)(void *priv);
1182 void *notifier_data;
1183 sigset_t *notifier_mask;
1184 #ifdef CONFIG_SECURITY
1185 void *security;
1186 #endif
1187 struct audit_context *audit_context;
1188 #ifdef CONFIG_AUDITSYSCALL
1189 uid_t loginuid;
1190 unsigned int sessionid;
1191 #endif
1192 seccomp_t seccomp;
1193
1194 /* Thread group tracking */
1195 u32 parent_exec_id;
1196 u32 self_exec_id;
1197 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
1198 spinlock_t alloc_lock;
1199
1200 /* Protection of the PI data structures: */
1201 spinlock_t pi_lock;
1202
1203 #ifdef CONFIG_RT_MUTEXES
1204 /* PI waiters blocked on a rt_mutex held by this task */
1205 struct plist_head pi_waiters;
1206 /* Deadlock detection and priority inheritance handling */
1207 struct rt_mutex_waiter *pi_blocked_on;
1208 #endif
1209
1210 #ifdef CONFIG_DEBUG_MUTEXES
1211 /* mutex deadlock detection */
1212 struct mutex_waiter *blocked_on;
1213 #endif
1214 #ifdef CONFIG_TRACE_IRQFLAGS
1215 unsigned int irq_events;
1216 int hardirqs_enabled;
1217 unsigned long hardirq_enable_ip;
1218 unsigned int hardirq_enable_event;
1219 unsigned long hardirq_disable_ip;
1220 unsigned int hardirq_disable_event;
1221 int softirqs_enabled;
1222 unsigned long softirq_disable_ip;
1223 unsigned int softirq_disable_event;
1224 unsigned long softirq_enable_ip;
1225 unsigned int softirq_enable_event;
1226 int hardirq_context;
1227 int softirq_context;
1228 #endif
1229 #ifdef CONFIG_LOCKDEP
1230 # define MAX_LOCK_DEPTH 48UL
1231 u64 curr_chain_key;
1232 int lockdep_depth;
1233 unsigned int lockdep_recursion;
1234 struct held_lock held_locks[MAX_LOCK_DEPTH];
1235 #endif
1236
1237 /* journalling filesystem info */
1238 void *journal_info;
1239
1240 /* stacked block device info */
1241 struct bio *bio_list, **bio_tail;
1242
1243 /* VM state */
1244 struct reclaim_state *reclaim_state;
1245
1246 struct backing_dev_info *backing_dev_info;
1247
1248 struct io_context *io_context;
1249
1250 unsigned long ptrace_message;
1251 siginfo_t *last_siginfo; /* For ptrace use. */
1252 #ifdef CONFIG_TASK_XACCT
1253 /* i/o counters(bytes read/written, #syscalls */
1254 u64 rchar, wchar, syscr, syscw;
1255 #endif
1256 struct task_io_accounting ioac;
1257 #if defined(CONFIG_TASK_XACCT)
1258 u64 acct_rss_mem1; /* accumulated rss usage */
1259 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1260 cputime_t acct_stimexpd;/* stime since last update */
1261 #endif
1262 #ifdef CONFIG_CPUSETS
1263 nodemask_t mems_allowed;
1264 int cpuset_mems_generation;
1265 int cpuset_mem_spread_rotor;
1266 #endif
1267 #ifdef CONFIG_CGROUPS
1268 /* Control Group info protected by css_set_lock */
1269 struct css_set *cgroups;
1270 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1271 struct list_head cg_list;
1272 #endif
1273 #ifdef CONFIG_FUTEX
1274 struct robust_list_head __user *robust_list;
1275 #ifdef CONFIG_COMPAT
1276 struct compat_robust_list_head __user *compat_robust_list;
1277 #endif
1278 struct list_head pi_state_list;
1279 struct futex_pi_state *pi_state_cache;
1280 #endif
1281 #ifdef CONFIG_NUMA
1282 struct mempolicy *mempolicy;
1283 short il_next;
1284 #endif
1285 atomic_t fs_excl; /* holding fs exclusive resources */
1286 struct rcu_head rcu;
1287
1288 /*
1289 * cache last used pipe for splice
1290 */
1291 struct pipe_inode_info *splice_pipe;
1292 #ifdef CONFIG_TASK_DELAY_ACCT
1293 struct task_delay_info *delays;
1294 #endif
1295 #ifdef CONFIG_FAULT_INJECTION
1296 int make_it_fail;
1297 #endif
1298 struct prop_local_single dirties;
1299 #ifdef CONFIG_LATENCYTOP
1300 int latency_record_count;
1301 struct latency_record latency_record[LT_SAVECOUNT];
1302 #endif
1303 };
1304
1305 /*
1306 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1307 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1308 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1309 * values are inverted: lower p->prio value means higher priority.
1310 *
1311 * The MAX_USER_RT_PRIO value allows the actual maximum
1312 * RT priority to be separate from the value exported to
1313 * user-space. This allows kernel threads to set their
1314 * priority to a value higher than any user task. Note:
1315 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1316 */
1317
1318 #define MAX_USER_RT_PRIO 100
1319 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1320
1321 #define MAX_PRIO (MAX_RT_PRIO + 40)
1322 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1323
1324 static inline int rt_prio(int prio)
1325 {
1326 if (unlikely(prio < MAX_RT_PRIO))
1327 return 1;
1328 return 0;
1329 }
1330
1331 static inline int rt_task(struct task_struct *p)
1332 {
1333 return rt_prio(p->prio);
1334 }
1335
1336 static inline void set_task_session(struct task_struct *tsk, pid_t session)
1337 {
1338 tsk->signal->__session = session;
1339 }
1340
1341 static inline void set_task_pgrp(struct task_struct *tsk, pid_t pgrp)
1342 {
1343 tsk->signal->__pgrp = pgrp;
1344 }
1345
1346 static inline struct pid *task_pid(struct task_struct *task)
1347 {
1348 return task->pids[PIDTYPE_PID].pid;
1349 }
1350
1351 static inline struct pid *task_tgid(struct task_struct *task)
1352 {
1353 return task->group_leader->pids[PIDTYPE_PID].pid;
1354 }
1355
1356 static inline struct pid *task_pgrp(struct task_struct *task)
1357 {
1358 return task->group_leader->pids[PIDTYPE_PGID].pid;
1359 }
1360
1361 static inline struct pid *task_session(struct task_struct *task)
1362 {
1363 return task->group_leader->pids[PIDTYPE_SID].pid;
1364 }
1365
1366 struct pid_namespace;
1367
1368 /*
1369 * the helpers to get the task's different pids as they are seen
1370 * from various namespaces
1371 *
1372 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1373 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1374 * current.
1375 * task_xid_nr_ns() : id seen from the ns specified;
1376 *
1377 * set_task_vxid() : assigns a virtual id to a task;
1378 *
1379 * see also pid_nr() etc in include/linux/pid.h
1380 */
1381
1382 static inline pid_t task_pid_nr(struct task_struct *tsk)
1383 {
1384 return tsk->pid;
1385 }
1386
1387 pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1388
1389 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1390 {
1391 return pid_vnr(task_pid(tsk));
1392 }
1393
1394
1395 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1396 {
1397 return tsk->tgid;
1398 }
1399
1400 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1401
1402 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1403 {
1404 return pid_vnr(task_tgid(tsk));
1405 }
1406
1407
1408 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1409 {
1410 return tsk->signal->__pgrp;
1411 }
1412
1413 pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1414
1415 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1416 {
1417 return pid_vnr(task_pgrp(tsk));
1418 }
1419
1420
1421 static inline pid_t task_session_nr(struct task_struct *tsk)
1422 {
1423 return tsk->signal->__session;
1424 }
1425
1426 pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1427
1428 static inline pid_t task_session_vnr(struct task_struct *tsk)
1429 {
1430 return pid_vnr(task_session(tsk));
1431 }
1432
1433
1434 /**
1435 * pid_alive - check that a task structure is not stale
1436 * @p: Task structure to be checked.
1437 *
1438 * Test if a process is not yet dead (at most zombie state)
1439 * If pid_alive fails, then pointers within the task structure
1440 * can be stale and must not be dereferenced.
1441 */
1442 static inline int pid_alive(struct task_struct *p)
1443 {
1444 return p->pids[PIDTYPE_PID].pid != NULL;
1445 }
1446
1447 /**
1448 * is_global_init - check if a task structure is init
1449 * @tsk: Task structure to be checked.
1450 *
1451 * Check if a task structure is the first user space task the kernel created.
1452 */
1453 static inline int is_global_init(struct task_struct *tsk)
1454 {
1455 return tsk->pid == 1;
1456 }
1457
1458 /*
1459 * is_container_init:
1460 * check whether in the task is init in its own pid namespace.
1461 */
1462 extern int is_container_init(struct task_struct *tsk);
1463
1464 extern struct pid *cad_pid;
1465
1466 extern void free_task(struct task_struct *tsk);
1467 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1468
1469 extern void __put_task_struct(struct task_struct *t);
1470
1471 static inline void put_task_struct(struct task_struct *t)
1472 {
1473 if (atomic_dec_and_test(&t->usage))
1474 __put_task_struct(t);
1475 }
1476
1477 /*
1478 * Per process flags
1479 */
1480 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1481 /* Not implemented yet, only for 486*/
1482 #define PF_STARTING 0x00000002 /* being created */
1483 #define PF_EXITING 0x00000004 /* getting shut down */
1484 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1485 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1486 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1487 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1488 #define PF_DUMPCORE 0x00000200 /* dumped core */
1489 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1490 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1491 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1492 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1493 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1494 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1495 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1496 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1497 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */
1498 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1499 #define PF_BORROWED_MM 0x00200000 /* I am a kthread doing use_mm */
1500 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1501 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1502 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1503 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1504 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1505 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1506 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1507 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1508 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */
1509
1510 /*
1511 * Only the _current_ task can read/write to tsk->flags, but other
1512 * tasks can access tsk->flags in readonly mode for example
1513 * with tsk_used_math (like during threaded core dumping).
1514 * There is however an exception to this rule during ptrace
1515 * or during fork: the ptracer task is allowed to write to the
1516 * child->flags of its traced child (same goes for fork, the parent
1517 * can write to the child->flags), because we're guaranteed the
1518 * child is not running and in turn not changing child->flags
1519 * at the same time the parent does it.
1520 */
1521 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1522 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1523 #define clear_used_math() clear_stopped_child_used_math(current)
1524 #define set_used_math() set_stopped_child_used_math(current)
1525 #define conditional_stopped_child_used_math(condition, child) \
1526 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1527 #define conditional_used_math(condition) \
1528 conditional_stopped_child_used_math(condition, current)
1529 #define copy_to_stopped_child_used_math(child) \
1530 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1531 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1532 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1533 #define used_math() tsk_used_math(current)
1534
1535 #ifdef CONFIG_SMP
1536 extern int set_cpus_allowed_ptr(struct task_struct *p,
1537 const cpumask_t *new_mask);
1538 #else
1539 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1540 const cpumask_t *new_mask)
1541 {
1542 if (!cpu_isset(0, *new_mask))
1543 return -EINVAL;
1544 return 0;
1545 }
1546 #endif
1547 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1548 {
1549 return set_cpus_allowed_ptr(p, &new_mask);
1550 }
1551
1552 extern unsigned long long sched_clock(void);
1553
1554 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1555 static inline void sched_clock_init(void)
1556 {
1557 }
1558
1559 static inline u64 sched_clock_cpu(int cpu)
1560 {
1561 return sched_clock();
1562 }
1563
1564 static inline void sched_clock_tick(void)
1565 {
1566 }
1567
1568 static inline void sched_clock_idle_sleep_event(void)
1569 {
1570 }
1571
1572 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1573 {
1574 }
1575
1576 #ifdef CONFIG_NO_HZ
1577 static inline void sched_clock_tick_stop(int cpu)
1578 {
1579 }
1580
1581 static inline void sched_clock_tick_start(int cpu)
1582 {
1583 }
1584 #endif
1585
1586 #else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
1587 extern void sched_clock_init(void);
1588 extern u64 sched_clock_cpu(int cpu);
1589 extern void sched_clock_tick(void);
1590 extern void sched_clock_idle_sleep_event(void);
1591 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1592 #ifdef CONFIG_NO_HZ
1593 extern void sched_clock_tick_stop(int cpu);
1594 extern void sched_clock_tick_start(int cpu);
1595 #endif
1596 #endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
1597
1598 /*
1599 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1600 * clock constructed from sched_clock():
1601 */
1602 extern unsigned long long cpu_clock(int cpu);
1603
1604 extern unsigned long long
1605 task_sched_runtime(struct task_struct *task);
1606
1607 /* sched_exec is called by processes performing an exec */
1608 #ifdef CONFIG_SMP
1609 extern void sched_exec(void);
1610 #else
1611 #define sched_exec() {}
1612 #endif
1613
1614 extern void sched_clock_idle_sleep_event(void);
1615 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1616
1617 #ifdef CONFIG_HOTPLUG_CPU
1618 extern void idle_task_exit(void);
1619 #else
1620 static inline void idle_task_exit(void) {}
1621 #endif
1622
1623 extern void sched_idle_next(void);
1624
1625 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1626 extern void wake_up_idle_cpu(int cpu);
1627 #else
1628 static inline void wake_up_idle_cpu(int cpu) { }
1629 #endif
1630
1631 #ifdef CONFIG_SCHED_DEBUG
1632 extern unsigned int sysctl_sched_latency;
1633 extern unsigned int sysctl_sched_min_granularity;
1634 extern unsigned int sysctl_sched_wakeup_granularity;
1635 extern unsigned int sysctl_sched_child_runs_first;
1636 extern unsigned int sysctl_sched_features;
1637 extern unsigned int sysctl_sched_migration_cost;
1638 extern unsigned int sysctl_sched_nr_migrate;
1639 extern unsigned int sysctl_sched_shares_ratelimit;
1640
1641 int sched_nr_latency_handler(struct ctl_table *table, int write,
1642 struct file *file, void __user *buffer, size_t *length,
1643 loff_t *ppos);
1644 #endif
1645 extern unsigned int sysctl_sched_rt_period;
1646 extern int sysctl_sched_rt_runtime;
1647
1648 int sched_rt_handler(struct ctl_table *table, int write,
1649 struct file *filp, void __user *buffer, size_t *lenp,
1650 loff_t *ppos);
1651
1652 extern unsigned int sysctl_sched_compat_yield;
1653
1654 #ifdef CONFIG_RT_MUTEXES
1655 extern int rt_mutex_getprio(struct task_struct *p);
1656 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1657 extern void rt_mutex_adjust_pi(struct task_struct *p);
1658 #else
1659 static inline int rt_mutex_getprio(struct task_struct *p)
1660 {
1661 return p->normal_prio;
1662 }
1663 # define rt_mutex_adjust_pi(p) do { } while (0)
1664 #endif
1665
1666 extern void set_user_nice(struct task_struct *p, long nice);
1667 extern int task_prio(const struct task_struct *p);
1668 extern int task_nice(const struct task_struct *p);
1669 extern int can_nice(const struct task_struct *p, const int nice);
1670 extern int task_curr(const struct task_struct *p);
1671 extern int idle_cpu(int cpu);
1672 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1673 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1674 struct sched_param *);
1675 extern struct task_struct *idle_task(int cpu);
1676 extern struct task_struct *curr_task(int cpu);
1677 extern void set_curr_task(int cpu, struct task_struct *p);
1678
1679 void yield(void);
1680
1681 /*
1682 * The default (Linux) execution domain.
1683 */
1684 extern struct exec_domain default_exec_domain;
1685
1686 union thread_union {
1687 struct thread_info thread_info;
1688 unsigned long stack[THREAD_SIZE/sizeof(long)];
1689 };
1690
1691 #ifndef __HAVE_ARCH_KSTACK_END
1692 static inline int kstack_end(void *addr)
1693 {
1694 /* Reliable end of stack detection:
1695 * Some APM bios versions misalign the stack
1696 */
1697 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1698 }
1699 #endif
1700
1701 extern union thread_union init_thread_union;
1702 extern struct task_struct init_task;
1703
1704 extern struct mm_struct init_mm;
1705
1706 extern struct pid_namespace init_pid_ns;
1707
1708 /*
1709 * find a task by one of its numerical ids
1710 *
1711 * find_task_by_pid_type_ns():
1712 * it is the most generic call - it finds a task by all id,
1713 * type and namespace specified
1714 * find_task_by_pid_ns():
1715 * finds a task by its pid in the specified namespace
1716 * find_task_by_vpid():
1717 * finds a task by its virtual pid
1718 * find_task_by_pid():
1719 * finds a task by its global pid
1720 *
1721 * see also find_pid() etc in include/linux/pid.h
1722 */
1723
1724 extern struct task_struct *find_task_by_pid_type_ns(int type, int pid,
1725 struct pid_namespace *ns);
1726
1727 static inline struct task_struct *__deprecated find_task_by_pid(pid_t nr)
1728 {
1729 return find_task_by_pid_type_ns(PIDTYPE_PID, nr, &init_pid_ns);
1730 }
1731 extern struct task_struct *find_task_by_vpid(pid_t nr);
1732 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1733 struct pid_namespace *ns);
1734
1735 extern void __set_special_pids(struct pid *pid);
1736
1737 /* per-UID process charging. */
1738 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1739 static inline struct user_struct *get_uid(struct user_struct *u)
1740 {
1741 atomic_inc(&u->__count);
1742 return u;
1743 }
1744 extern void free_uid(struct user_struct *);
1745 extern void switch_uid(struct user_struct *);
1746 extern void release_uids(struct user_namespace *ns);
1747
1748 #include <asm/current.h>
1749
1750 extern void do_timer(unsigned long ticks);
1751
1752 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1753 extern int wake_up_process(struct task_struct *tsk);
1754 extern void wake_up_new_task(struct task_struct *tsk,
1755 unsigned long clone_flags);
1756 #ifdef CONFIG_SMP
1757 extern void kick_process(struct task_struct *tsk);
1758 #else
1759 static inline void kick_process(struct task_struct *tsk) { }
1760 #endif
1761 extern void sched_fork(struct task_struct *p, int clone_flags);
1762 extern void sched_dead(struct task_struct *p);
1763
1764 extern int in_group_p(gid_t);
1765 extern int in_egroup_p(gid_t);
1766
1767 extern void proc_caches_init(void);
1768 extern void flush_signals(struct task_struct *);
1769 extern void ignore_signals(struct task_struct *);
1770 extern void flush_signal_handlers(struct task_struct *, int force_default);
1771 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1772
1773 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1774 {
1775 unsigned long flags;
1776 int ret;
1777
1778 spin_lock_irqsave(&tsk->sighand->siglock, flags);
1779 ret = dequeue_signal(tsk, mask, info);
1780 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1781
1782 return ret;
1783 }
1784
1785 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1786 sigset_t *mask);
1787 extern void unblock_all_signals(void);
1788 extern void release_task(struct task_struct * p);
1789 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1790 extern int force_sigsegv(int, struct task_struct *);
1791 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1792 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1793 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
1794 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
1795 extern int kill_pgrp(struct pid *pid, int sig, int priv);
1796 extern int kill_pid(struct pid *pid, int sig, int priv);
1797 extern int kill_proc_info(int, struct siginfo *, pid_t);
1798 extern void do_notify_parent(struct task_struct *, int);
1799 extern void force_sig(int, struct task_struct *);
1800 extern void force_sig_specific(int, struct task_struct *);
1801 extern int send_sig(int, struct task_struct *, int);
1802 extern void zap_other_threads(struct task_struct *p);
1803 extern int kill_proc(pid_t, int, int);
1804 extern struct sigqueue *sigqueue_alloc(void);
1805 extern void sigqueue_free(struct sigqueue *);
1806 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
1807 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1808 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1809
1810 static inline int kill_cad_pid(int sig, int priv)
1811 {
1812 return kill_pid(cad_pid, sig, priv);
1813 }
1814
1815 /* These can be the second arg to send_sig_info/send_group_sig_info. */
1816 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
1817 #define SEND_SIG_PRIV ((struct siginfo *) 1)
1818 #define SEND_SIG_FORCED ((struct siginfo *) 2)
1819
1820 static inline int is_si_special(const struct siginfo *info)
1821 {
1822 return info <= SEND_SIG_FORCED;
1823 }
1824
1825 /* True if we are on the alternate signal stack. */
1826
1827 static inline int on_sig_stack(unsigned long sp)
1828 {
1829 return (sp - current->sas_ss_sp < current->sas_ss_size);
1830 }
1831
1832 static inline int sas_ss_flags(unsigned long sp)
1833 {
1834 return (current->sas_ss_size == 0 ? SS_DISABLE
1835 : on_sig_stack(sp) ? SS_ONSTACK : 0);
1836 }
1837
1838 /*
1839 * Routines for handling mm_structs
1840 */
1841 extern struct mm_struct * mm_alloc(void);
1842
1843 /* mmdrop drops the mm and the page tables */
1844 extern void __mmdrop(struct mm_struct *);
1845 static inline void mmdrop(struct mm_struct * mm)
1846 {
1847 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1848 __mmdrop(mm);
1849 }
1850
1851 /* mmput gets rid of the mappings and all user-space */
1852 extern void mmput(struct mm_struct *);
1853 /* Grab a reference to a task's mm, if it is not already going away */
1854 extern struct mm_struct *get_task_mm(struct task_struct *task);
1855 /* Remove the current tasks stale references to the old mm_struct */
1856 extern void mm_release(struct task_struct *, struct mm_struct *);
1857 /* Allocate a new mm structure and copy contents from tsk->mm */
1858 extern struct mm_struct *dup_mm(struct task_struct *tsk);
1859
1860 extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
1861 extern void flush_thread(void);
1862 extern void exit_thread(void);
1863
1864 extern void exit_files(struct task_struct *);
1865 extern void __cleanup_signal(struct signal_struct *);
1866 extern void __cleanup_sighand(struct sighand_struct *);
1867
1868 extern void exit_itimers(struct signal_struct *);
1869 extern void flush_itimer_signals(void);
1870
1871 extern NORET_TYPE void do_group_exit(int);
1872
1873 extern void daemonize(const char *, ...);
1874 extern int allow_signal(int);
1875 extern int disallow_signal(int);
1876
1877 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
1878 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
1879 struct task_struct *fork_idle(int);
1880
1881 extern void set_task_comm(struct task_struct *tsk, char *from);
1882 extern char *get_task_comm(char *to, struct task_struct *tsk);
1883
1884 #ifdef CONFIG_SMP
1885 extern void wait_task_inactive(struct task_struct * p);
1886 #else
1887 #define wait_task_inactive(p) do { } while (0)
1888 #endif
1889
1890 #define next_task(p) list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks)
1891
1892 #define for_each_process(p) \
1893 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
1894
1895 /*
1896 * Careful: do_each_thread/while_each_thread is a double loop so
1897 * 'break' will not work as expected - use goto instead.
1898 */
1899 #define do_each_thread(g, t) \
1900 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
1901
1902 #define while_each_thread(g, t) \
1903 while ((t = next_thread(t)) != g)
1904
1905 /* de_thread depends on thread_group_leader not being a pid based check */
1906 #define thread_group_leader(p) (p == p->group_leader)
1907
1908 /* Do to the insanities of de_thread it is possible for a process
1909 * to have the pid of the thread group leader without actually being
1910 * the thread group leader. For iteration through the pids in proc
1911 * all we care about is that we have a task with the appropriate
1912 * pid, we don't actually care if we have the right task.
1913 */
1914 static inline int has_group_leader_pid(struct task_struct *p)
1915 {
1916 return p->pid == p->tgid;
1917 }
1918
1919 static inline
1920 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
1921 {
1922 return p1->tgid == p2->tgid;
1923 }
1924
1925 static inline struct task_struct *next_thread(const struct task_struct *p)
1926 {
1927 return list_entry(rcu_dereference(p->thread_group.next),
1928 struct task_struct, thread_group);
1929 }
1930
1931 static inline int thread_group_empty(struct task_struct *p)
1932 {
1933 return list_empty(&p->thread_group);
1934 }
1935
1936 #define delay_group_leader(p) \
1937 (thread_group_leader(p) && !thread_group_empty(p))
1938
1939 /*
1940 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
1941 * subscriptions and synchronises with wait4(). Also used in procfs. Also
1942 * pins the final release of task.io_context. Also protects ->cpuset and
1943 * ->cgroup.subsys[].
1944 *
1945 * Nests both inside and outside of read_lock(&tasklist_lock).
1946 * It must not be nested with write_lock_irq(&tasklist_lock),
1947 * neither inside nor outside.
1948 */
1949 static inline void task_lock(struct task_struct *p)
1950 {
1951 spin_lock(&p->alloc_lock);
1952 }
1953
1954 static inline void task_unlock(struct task_struct *p)
1955 {
1956 spin_unlock(&p->alloc_lock);
1957 }
1958
1959 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
1960 unsigned long *flags);
1961
1962 static inline void unlock_task_sighand(struct task_struct *tsk,
1963 unsigned long *flags)
1964 {
1965 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
1966 }
1967
1968 #ifndef __HAVE_THREAD_FUNCTIONS
1969
1970 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
1971 #define task_stack_page(task) ((task)->stack)
1972
1973 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
1974 {
1975 *task_thread_info(p) = *task_thread_info(org);
1976 task_thread_info(p)->task = p;
1977 }
1978
1979 static inline unsigned long *end_of_stack(struct task_struct *p)
1980 {
1981 return (unsigned long *)(task_thread_info(p) + 1);
1982 }
1983
1984 #endif
1985
1986 static inline int object_is_on_stack(void *obj)
1987 {
1988 void *stack = task_stack_page(current);
1989
1990 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
1991 }
1992
1993 extern void thread_info_cache_init(void);
1994
1995 /* set thread flags in other task's structures
1996 * - see asm/thread_info.h for TIF_xxxx flags available
1997 */
1998 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1999 {
2000 set_ti_thread_flag(task_thread_info(tsk), flag);
2001 }
2002
2003 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2004 {
2005 clear_ti_thread_flag(task_thread_info(tsk), flag);
2006 }
2007
2008 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2009 {
2010 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2011 }
2012
2013 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2014 {
2015 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2016 }
2017
2018 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2019 {
2020 return test_ti_thread_flag(task_thread_info(tsk), flag);
2021 }
2022
2023 static inline void set_tsk_need_resched(struct task_struct *tsk)
2024 {
2025 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2026 }
2027
2028 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2029 {
2030 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2031 }
2032
2033 static inline int test_tsk_need_resched(struct task_struct *tsk)
2034 {
2035 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2036 }
2037
2038 static inline int signal_pending(struct task_struct *p)
2039 {
2040 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2041 }
2042
2043 extern int __fatal_signal_pending(struct task_struct *p);
2044
2045 static inline int fatal_signal_pending(struct task_struct *p)
2046 {
2047 return signal_pending(p) && __fatal_signal_pending(p);
2048 }
2049
2050 static inline int signal_pending_state(long state, struct task_struct *p)
2051 {
2052 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2053 return 0;
2054 if (!signal_pending(p))
2055 return 0;
2056
2057 if (state & (__TASK_STOPPED | __TASK_TRACED))
2058 return 0;
2059
2060 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2061 }
2062
2063 static inline int need_resched(void)
2064 {
2065 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2066 }
2067
2068 /*
2069 * cond_resched() and cond_resched_lock(): latency reduction via
2070 * explicit rescheduling in places that are safe. The return
2071 * value indicates whether a reschedule was done in fact.
2072 * cond_resched_lock() will drop the spinlock before scheduling,
2073 * cond_resched_softirq() will enable bhs before scheduling.
2074 */
2075 extern int _cond_resched(void);
2076 #ifdef CONFIG_PREEMPT_BKL
2077 static inline int cond_resched(void)
2078 {
2079 return 0;
2080 }
2081 #else
2082 static inline int cond_resched(void)
2083 {
2084 return _cond_resched();
2085 }
2086 #endif
2087 extern int cond_resched_lock(spinlock_t * lock);
2088 extern int cond_resched_softirq(void);
2089 static inline int cond_resched_bkl(void)
2090 {
2091 return _cond_resched();
2092 }
2093
2094 /*
2095 * Does a critical section need to be broken due to another
2096 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2097 * but a general need for low latency)
2098 */
2099 static inline int spin_needbreak(spinlock_t *lock)
2100 {
2101 #ifdef CONFIG_PREEMPT
2102 return spin_is_contended(lock);
2103 #else
2104 return 0;
2105 #endif
2106 }
2107
2108 /*
2109 * Reevaluate whether the task has signals pending delivery.
2110 * Wake the task if so.
2111 * This is required every time the blocked sigset_t changes.
2112 * callers must hold sighand->siglock.
2113 */
2114 extern void recalc_sigpending_and_wake(struct task_struct *t);
2115 extern void recalc_sigpending(void);
2116
2117 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2118
2119 /*
2120 * Wrappers for p->thread_info->cpu access. No-op on UP.
2121 */
2122 #ifdef CONFIG_SMP
2123
2124 static inline unsigned int task_cpu(const struct task_struct *p)
2125 {
2126 return task_thread_info(p)->cpu;
2127 }
2128
2129 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2130
2131 #else
2132
2133 static inline unsigned int task_cpu(const struct task_struct *p)
2134 {
2135 return 0;
2136 }
2137
2138 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2139 {
2140 }
2141
2142 #endif /* CONFIG_SMP */
2143
2144 #ifdef HAVE_ARCH_PICK_MMAP_LAYOUT
2145 extern void arch_pick_mmap_layout(struct mm_struct *mm);
2146 #else
2147 static inline void arch_pick_mmap_layout(struct mm_struct *mm)
2148 {
2149 mm->mmap_base = TASK_UNMAPPED_BASE;
2150 mm->get_unmapped_area = arch_get_unmapped_area;
2151 mm->unmap_area = arch_unmap_area;
2152 }
2153 #endif
2154
2155 #ifdef CONFIG_TRACING
2156 extern void
2157 __trace_special(void *__tr, void *__data,
2158 unsigned long arg1, unsigned long arg2, unsigned long arg3);
2159 #else
2160 static inline void
2161 __trace_special(void *__tr, void *__data,
2162 unsigned long arg1, unsigned long arg2, unsigned long arg3)
2163 {
2164 }
2165 #endif
2166
2167 extern long sched_setaffinity(pid_t pid, const cpumask_t *new_mask);
2168 extern long sched_getaffinity(pid_t pid, cpumask_t *mask);
2169
2170 extern int sched_mc_power_savings, sched_smt_power_savings;
2171
2172 extern void normalize_rt_tasks(void);
2173
2174 #ifdef CONFIG_GROUP_SCHED
2175
2176 extern struct task_group init_task_group;
2177 #ifdef CONFIG_USER_SCHED
2178 extern struct task_group root_task_group;
2179 #endif
2180
2181 extern struct task_group *sched_create_group(struct task_group *parent);
2182 extern void sched_destroy_group(struct task_group *tg);
2183 extern void sched_move_task(struct task_struct *tsk);
2184 #ifdef CONFIG_FAIR_GROUP_SCHED
2185 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2186 extern unsigned long sched_group_shares(struct task_group *tg);
2187 #endif
2188 #ifdef CONFIG_RT_GROUP_SCHED
2189 extern int sched_group_set_rt_runtime(struct task_group *tg,
2190 long rt_runtime_us);
2191 extern long sched_group_rt_runtime(struct task_group *tg);
2192 extern int sched_group_set_rt_period(struct task_group *tg,
2193 long rt_period_us);
2194 extern long sched_group_rt_period(struct task_group *tg);
2195 #endif
2196 #endif
2197
2198 #ifdef CONFIG_TASK_XACCT
2199 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2200 {
2201 tsk->rchar += amt;
2202 }
2203
2204 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2205 {
2206 tsk->wchar += amt;
2207 }
2208
2209 static inline void inc_syscr(struct task_struct *tsk)
2210 {
2211 tsk->syscr++;
2212 }
2213
2214 static inline void inc_syscw(struct task_struct *tsk)
2215 {
2216 tsk->syscw++;
2217 }
2218 #else
2219 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2220 {
2221 }
2222
2223 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2224 {
2225 }
2226
2227 static inline void inc_syscr(struct task_struct *tsk)
2228 {
2229 }
2230
2231 static inline void inc_syscw(struct task_struct *tsk)
2232 {
2233 }
2234 #endif
2235
2236 #ifdef CONFIG_SMP
2237 void migration_init(void);
2238 #else
2239 static inline void migration_init(void)
2240 {
2241 }
2242 #endif
2243
2244 #ifndef TASK_SIZE_OF
2245 #define TASK_SIZE_OF(tsk) TASK_SIZE
2246 #endif
2247
2248 #ifdef CONFIG_MM_OWNER
2249 extern void mm_update_next_owner(struct mm_struct *mm);
2250 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2251 #else
2252 static inline void mm_update_next_owner(struct mm_struct *mm)
2253 {
2254 }
2255
2256 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2257 {
2258 }
2259 #endif /* CONFIG_MM_OWNER */
2260
2261 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
2262
2263 #endif /* __KERNEL__ */
2264
2265 #endif
This page took 0.083109 seconds and 5 git commands to generate.