sched/preempt: Fix cond_resched_lock() and cond_resched_softirq()
[deliverable/linux.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <uapi/linux/sched.h>
5
6 #include <linux/sched/prio.h>
7
8
9 struct sched_param {
10 int sched_priority;
11 };
12
13 #include <asm/param.h> /* for HZ */
14
15 #include <linux/capability.h>
16 #include <linux/threads.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/timex.h>
20 #include <linux/jiffies.h>
21 #include <linux/plist.h>
22 #include <linux/rbtree.h>
23 #include <linux/thread_info.h>
24 #include <linux/cpumask.h>
25 #include <linux/errno.h>
26 #include <linux/nodemask.h>
27 #include <linux/mm_types.h>
28 #include <linux/preempt.h>
29
30 #include <asm/page.h>
31 #include <asm/ptrace.h>
32 #include <linux/cputime.h>
33
34 #include <linux/smp.h>
35 #include <linux/sem.h>
36 #include <linux/shm.h>
37 #include <linux/signal.h>
38 #include <linux/compiler.h>
39 #include <linux/completion.h>
40 #include <linux/pid.h>
41 #include <linux/percpu.h>
42 #include <linux/topology.h>
43 #include <linux/proportions.h>
44 #include <linux/seccomp.h>
45 #include <linux/rcupdate.h>
46 #include <linux/rculist.h>
47 #include <linux/rtmutex.h>
48
49 #include <linux/time.h>
50 #include <linux/param.h>
51 #include <linux/resource.h>
52 #include <linux/timer.h>
53 #include <linux/hrtimer.h>
54 #include <linux/task_io_accounting.h>
55 #include <linux/latencytop.h>
56 #include <linux/cred.h>
57 #include <linux/llist.h>
58 #include <linux/uidgid.h>
59 #include <linux/gfp.h>
60 #include <linux/magic.h>
61 #include <linux/cgroup-defs.h>
62
63 #include <asm/processor.h>
64
65 #define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */
66
67 /*
68 * Extended scheduling parameters data structure.
69 *
70 * This is needed because the original struct sched_param can not be
71 * altered without introducing ABI issues with legacy applications
72 * (e.g., in sched_getparam()).
73 *
74 * However, the possibility of specifying more than just a priority for
75 * the tasks may be useful for a wide variety of application fields, e.g.,
76 * multimedia, streaming, automation and control, and many others.
77 *
78 * This variant (sched_attr) is meant at describing a so-called
79 * sporadic time-constrained task. In such model a task is specified by:
80 * - the activation period or minimum instance inter-arrival time;
81 * - the maximum (or average, depending on the actual scheduling
82 * discipline) computation time of all instances, a.k.a. runtime;
83 * - the deadline (relative to the actual activation time) of each
84 * instance.
85 * Very briefly, a periodic (sporadic) task asks for the execution of
86 * some specific computation --which is typically called an instance--
87 * (at most) every period. Moreover, each instance typically lasts no more
88 * than the runtime and must be completed by time instant t equal to
89 * the instance activation time + the deadline.
90 *
91 * This is reflected by the actual fields of the sched_attr structure:
92 *
93 * @size size of the structure, for fwd/bwd compat.
94 *
95 * @sched_policy task's scheduling policy
96 * @sched_flags for customizing the scheduler behaviour
97 * @sched_nice task's nice value (SCHED_NORMAL/BATCH)
98 * @sched_priority task's static priority (SCHED_FIFO/RR)
99 * @sched_deadline representative of the task's deadline
100 * @sched_runtime representative of the task's runtime
101 * @sched_period representative of the task's period
102 *
103 * Given this task model, there are a multiplicity of scheduling algorithms
104 * and policies, that can be used to ensure all the tasks will make their
105 * timing constraints.
106 *
107 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
108 * only user of this new interface. More information about the algorithm
109 * available in the scheduling class file or in Documentation/.
110 */
111 struct sched_attr {
112 u32 size;
113
114 u32 sched_policy;
115 u64 sched_flags;
116
117 /* SCHED_NORMAL, SCHED_BATCH */
118 s32 sched_nice;
119
120 /* SCHED_FIFO, SCHED_RR */
121 u32 sched_priority;
122
123 /* SCHED_DEADLINE */
124 u64 sched_runtime;
125 u64 sched_deadline;
126 u64 sched_period;
127 };
128
129 struct futex_pi_state;
130 struct robust_list_head;
131 struct bio_list;
132 struct fs_struct;
133 struct perf_event_context;
134 struct blk_plug;
135 struct filename;
136 struct nameidata;
137
138 #define VMACACHE_BITS 2
139 #define VMACACHE_SIZE (1U << VMACACHE_BITS)
140 #define VMACACHE_MASK (VMACACHE_SIZE - 1)
141
142 /*
143 * These are the constant used to fake the fixed-point load-average
144 * counting. Some notes:
145 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
146 * a load-average precision of 10 bits integer + 11 bits fractional
147 * - if you want to count load-averages more often, you need more
148 * precision, or rounding will get you. With 2-second counting freq,
149 * the EXP_n values would be 1981, 2034 and 2043 if still using only
150 * 11 bit fractions.
151 */
152 extern unsigned long avenrun[]; /* Load averages */
153 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
154
155 #define FSHIFT 11 /* nr of bits of precision */
156 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
157 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
158 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
159 #define EXP_5 2014 /* 1/exp(5sec/5min) */
160 #define EXP_15 2037 /* 1/exp(5sec/15min) */
161
162 #define CALC_LOAD(load,exp,n) \
163 load *= exp; \
164 load += n*(FIXED_1-exp); \
165 load >>= FSHIFT;
166
167 extern unsigned long total_forks;
168 extern int nr_threads;
169 DECLARE_PER_CPU(unsigned long, process_counts);
170 extern int nr_processes(void);
171 extern unsigned long nr_running(void);
172 extern bool single_task_running(void);
173 extern unsigned long nr_iowait(void);
174 extern unsigned long nr_iowait_cpu(int cpu);
175 extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
176
177 extern void calc_global_load(unsigned long ticks);
178
179 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
180 extern void update_cpu_load_nohz(void);
181 #else
182 static inline void update_cpu_load_nohz(void) { }
183 #endif
184
185 extern unsigned long get_parent_ip(unsigned long addr);
186
187 extern void dump_cpu_task(int cpu);
188
189 struct seq_file;
190 struct cfs_rq;
191 struct task_group;
192 #ifdef CONFIG_SCHED_DEBUG
193 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
194 extern void proc_sched_set_task(struct task_struct *p);
195 #endif
196
197 /*
198 * Task state bitmask. NOTE! These bits are also
199 * encoded in fs/proc/array.c: get_task_state().
200 *
201 * We have two separate sets of flags: task->state
202 * is about runnability, while task->exit_state are
203 * about the task exiting. Confusing, but this way
204 * modifying one set can't modify the other one by
205 * mistake.
206 */
207 #define TASK_RUNNING 0
208 #define TASK_INTERRUPTIBLE 1
209 #define TASK_UNINTERRUPTIBLE 2
210 #define __TASK_STOPPED 4
211 #define __TASK_TRACED 8
212 /* in tsk->exit_state */
213 #define EXIT_DEAD 16
214 #define EXIT_ZOMBIE 32
215 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
216 /* in tsk->state again */
217 #define TASK_DEAD 64
218 #define TASK_WAKEKILL 128
219 #define TASK_WAKING 256
220 #define TASK_PARKED 512
221 #define TASK_NOLOAD 1024
222 #define TASK_STATE_MAX 2048
223
224 #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPN"
225
226 extern char ___assert_task_state[1 - 2*!!(
227 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
228
229 /* Convenience macros for the sake of set_task_state */
230 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
231 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
232 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
233
234 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
235
236 /* Convenience macros for the sake of wake_up */
237 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
238 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
239
240 /* get_task_state() */
241 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
242 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
243 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
244
245 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
246 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
247 #define task_is_stopped_or_traced(task) \
248 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
249 #define task_contributes_to_load(task) \
250 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
251 (task->flags & PF_FROZEN) == 0 && \
252 (task->state & TASK_NOLOAD) == 0)
253
254 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
255
256 #define __set_task_state(tsk, state_value) \
257 do { \
258 (tsk)->task_state_change = _THIS_IP_; \
259 (tsk)->state = (state_value); \
260 } while (0)
261 #define set_task_state(tsk, state_value) \
262 do { \
263 (tsk)->task_state_change = _THIS_IP_; \
264 smp_store_mb((tsk)->state, (state_value)); \
265 } while (0)
266
267 /*
268 * set_current_state() includes a barrier so that the write of current->state
269 * is correctly serialised wrt the caller's subsequent test of whether to
270 * actually sleep:
271 *
272 * set_current_state(TASK_UNINTERRUPTIBLE);
273 * if (do_i_need_to_sleep())
274 * schedule();
275 *
276 * If the caller does not need such serialisation then use __set_current_state()
277 */
278 #define __set_current_state(state_value) \
279 do { \
280 current->task_state_change = _THIS_IP_; \
281 current->state = (state_value); \
282 } while (0)
283 #define set_current_state(state_value) \
284 do { \
285 current->task_state_change = _THIS_IP_; \
286 smp_store_mb(current->state, (state_value)); \
287 } while (0)
288
289 #else
290
291 #define __set_task_state(tsk, state_value) \
292 do { (tsk)->state = (state_value); } while (0)
293 #define set_task_state(tsk, state_value) \
294 smp_store_mb((tsk)->state, (state_value))
295
296 /*
297 * set_current_state() includes a barrier so that the write of current->state
298 * is correctly serialised wrt the caller's subsequent test of whether to
299 * actually sleep:
300 *
301 * set_current_state(TASK_UNINTERRUPTIBLE);
302 * if (do_i_need_to_sleep())
303 * schedule();
304 *
305 * If the caller does not need such serialisation then use __set_current_state()
306 */
307 #define __set_current_state(state_value) \
308 do { current->state = (state_value); } while (0)
309 #define set_current_state(state_value) \
310 smp_store_mb(current->state, (state_value))
311
312 #endif
313
314 /* Task command name length */
315 #define TASK_COMM_LEN 16
316
317 #include <linux/spinlock.h>
318
319 /*
320 * This serializes "schedule()" and also protects
321 * the run-queue from deletions/modifications (but
322 * _adding_ to the beginning of the run-queue has
323 * a separate lock).
324 */
325 extern rwlock_t tasklist_lock;
326 extern spinlock_t mmlist_lock;
327
328 struct task_struct;
329
330 #ifdef CONFIG_PROVE_RCU
331 extern int lockdep_tasklist_lock_is_held(void);
332 #endif /* #ifdef CONFIG_PROVE_RCU */
333
334 extern void sched_init(void);
335 extern void sched_init_smp(void);
336 extern asmlinkage void schedule_tail(struct task_struct *prev);
337 extern void init_idle(struct task_struct *idle, int cpu);
338 extern void init_idle_bootup_task(struct task_struct *idle);
339
340 extern cpumask_var_t cpu_isolated_map;
341
342 extern int runqueue_is_locked(int cpu);
343
344 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
345 extern void nohz_balance_enter_idle(int cpu);
346 extern void set_cpu_sd_state_idle(void);
347 extern int get_nohz_timer_target(void);
348 #else
349 static inline void nohz_balance_enter_idle(int cpu) { }
350 static inline void set_cpu_sd_state_idle(void) { }
351 #endif
352
353 /*
354 * Only dump TASK_* tasks. (0 for all tasks)
355 */
356 extern void show_state_filter(unsigned long state_filter);
357
358 static inline void show_state(void)
359 {
360 show_state_filter(0);
361 }
362
363 extern void show_regs(struct pt_regs *);
364
365 /*
366 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
367 * task), SP is the stack pointer of the first frame that should be shown in the back
368 * trace (or NULL if the entire call-chain of the task should be shown).
369 */
370 extern void show_stack(struct task_struct *task, unsigned long *sp);
371
372 extern void cpu_init (void);
373 extern void trap_init(void);
374 extern void update_process_times(int user);
375 extern void scheduler_tick(void);
376
377 extern void sched_show_task(struct task_struct *p);
378
379 #ifdef CONFIG_LOCKUP_DETECTOR
380 extern void touch_softlockup_watchdog(void);
381 extern void touch_softlockup_watchdog_sync(void);
382 extern void touch_all_softlockup_watchdogs(void);
383 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
384 void __user *buffer,
385 size_t *lenp, loff_t *ppos);
386 extern unsigned int softlockup_panic;
387 void lockup_detector_init(void);
388 #else
389 static inline void touch_softlockup_watchdog(void)
390 {
391 }
392 static inline void touch_softlockup_watchdog_sync(void)
393 {
394 }
395 static inline void touch_all_softlockup_watchdogs(void)
396 {
397 }
398 static inline void lockup_detector_init(void)
399 {
400 }
401 #endif
402
403 #ifdef CONFIG_DETECT_HUNG_TASK
404 void reset_hung_task_detector(void);
405 #else
406 static inline void reset_hung_task_detector(void)
407 {
408 }
409 #endif
410
411 /* Attach to any functions which should be ignored in wchan output. */
412 #define __sched __attribute__((__section__(".sched.text")))
413
414 /* Linker adds these: start and end of __sched functions */
415 extern char __sched_text_start[], __sched_text_end[];
416
417 /* Is this address in the __sched functions? */
418 extern int in_sched_functions(unsigned long addr);
419
420 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
421 extern signed long schedule_timeout(signed long timeout);
422 extern signed long schedule_timeout_interruptible(signed long timeout);
423 extern signed long schedule_timeout_killable(signed long timeout);
424 extern signed long schedule_timeout_uninterruptible(signed long timeout);
425 asmlinkage void schedule(void);
426 extern void schedule_preempt_disabled(void);
427
428 extern long io_schedule_timeout(long timeout);
429
430 static inline void io_schedule(void)
431 {
432 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT);
433 }
434
435 struct nsproxy;
436 struct user_namespace;
437
438 #ifdef CONFIG_MMU
439 extern void arch_pick_mmap_layout(struct mm_struct *mm);
440 extern unsigned long
441 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
442 unsigned long, unsigned long);
443 extern unsigned long
444 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
445 unsigned long len, unsigned long pgoff,
446 unsigned long flags);
447 #else
448 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
449 #endif
450
451 #define SUID_DUMP_DISABLE 0 /* No setuid dumping */
452 #define SUID_DUMP_USER 1 /* Dump as user of process */
453 #define SUID_DUMP_ROOT 2 /* Dump as root */
454
455 /* mm flags */
456
457 /* for SUID_DUMP_* above */
458 #define MMF_DUMPABLE_BITS 2
459 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
460
461 extern void set_dumpable(struct mm_struct *mm, int value);
462 /*
463 * This returns the actual value of the suid_dumpable flag. For things
464 * that are using this for checking for privilege transitions, it must
465 * test against SUID_DUMP_USER rather than treating it as a boolean
466 * value.
467 */
468 static inline int __get_dumpable(unsigned long mm_flags)
469 {
470 return mm_flags & MMF_DUMPABLE_MASK;
471 }
472
473 static inline int get_dumpable(struct mm_struct *mm)
474 {
475 return __get_dumpable(mm->flags);
476 }
477
478 /* coredump filter bits */
479 #define MMF_DUMP_ANON_PRIVATE 2
480 #define MMF_DUMP_ANON_SHARED 3
481 #define MMF_DUMP_MAPPED_PRIVATE 4
482 #define MMF_DUMP_MAPPED_SHARED 5
483 #define MMF_DUMP_ELF_HEADERS 6
484 #define MMF_DUMP_HUGETLB_PRIVATE 7
485 #define MMF_DUMP_HUGETLB_SHARED 8
486
487 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
488 #define MMF_DUMP_FILTER_BITS 7
489 #define MMF_DUMP_FILTER_MASK \
490 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
491 #define MMF_DUMP_FILTER_DEFAULT \
492 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
493 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
494
495 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
496 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
497 #else
498 # define MMF_DUMP_MASK_DEFAULT_ELF 0
499 #endif
500 /* leave room for more dump flags */
501 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
502 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
503 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
504
505 #define MMF_HAS_UPROBES 19 /* has uprobes */
506 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
507
508 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
509
510 struct sighand_struct {
511 atomic_t count;
512 struct k_sigaction action[_NSIG];
513 spinlock_t siglock;
514 wait_queue_head_t signalfd_wqh;
515 };
516
517 struct pacct_struct {
518 int ac_flag;
519 long ac_exitcode;
520 unsigned long ac_mem;
521 cputime_t ac_utime, ac_stime;
522 unsigned long ac_minflt, ac_majflt;
523 };
524
525 struct cpu_itimer {
526 cputime_t expires;
527 cputime_t incr;
528 u32 error;
529 u32 incr_error;
530 };
531
532 /**
533 * struct prev_cputime - snaphsot of system and user cputime
534 * @utime: time spent in user mode
535 * @stime: time spent in system mode
536 * @lock: protects the above two fields
537 *
538 * Stores previous user/system time values such that we can guarantee
539 * monotonicity.
540 */
541 struct prev_cputime {
542 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
543 cputime_t utime;
544 cputime_t stime;
545 raw_spinlock_t lock;
546 #endif
547 };
548
549 static inline void prev_cputime_init(struct prev_cputime *prev)
550 {
551 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
552 prev->utime = prev->stime = 0;
553 raw_spin_lock_init(&prev->lock);
554 #endif
555 }
556
557 /**
558 * struct task_cputime - collected CPU time counts
559 * @utime: time spent in user mode, in &cputime_t units
560 * @stime: time spent in kernel mode, in &cputime_t units
561 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
562 *
563 * This structure groups together three kinds of CPU time that are tracked for
564 * threads and thread groups. Most things considering CPU time want to group
565 * these counts together and treat all three of them in parallel.
566 */
567 struct task_cputime {
568 cputime_t utime;
569 cputime_t stime;
570 unsigned long long sum_exec_runtime;
571 };
572
573 /* Alternate field names when used to cache expirations. */
574 #define virt_exp utime
575 #define prof_exp stime
576 #define sched_exp sum_exec_runtime
577
578 #define INIT_CPUTIME \
579 (struct task_cputime) { \
580 .utime = 0, \
581 .stime = 0, \
582 .sum_exec_runtime = 0, \
583 }
584
585 /*
586 * This is the atomic variant of task_cputime, which can be used for
587 * storing and updating task_cputime statistics without locking.
588 */
589 struct task_cputime_atomic {
590 atomic64_t utime;
591 atomic64_t stime;
592 atomic64_t sum_exec_runtime;
593 };
594
595 #define INIT_CPUTIME_ATOMIC \
596 (struct task_cputime_atomic) { \
597 .utime = ATOMIC64_INIT(0), \
598 .stime = ATOMIC64_INIT(0), \
599 .sum_exec_runtime = ATOMIC64_INIT(0), \
600 }
601
602 #ifdef CONFIG_PREEMPT_COUNT
603 #define PREEMPT_DISABLED (1 + PREEMPT_ENABLED)
604 #else
605 #define PREEMPT_DISABLED PREEMPT_ENABLED
606 #endif
607
608 /*
609 * Disable preemption until the scheduler is running.
610 * Reset by start_kernel()->sched_init()->init_idle().
611 *
612 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
613 * before the scheduler is active -- see should_resched().
614 */
615 #define INIT_PREEMPT_COUNT (PREEMPT_DISABLED + PREEMPT_ACTIVE)
616
617 /**
618 * struct thread_group_cputimer - thread group interval timer counts
619 * @cputime_atomic: atomic thread group interval timers.
620 * @running: non-zero when there are timers running and
621 * @cputime receives updates.
622 *
623 * This structure contains the version of task_cputime, above, that is
624 * used for thread group CPU timer calculations.
625 */
626 struct thread_group_cputimer {
627 struct task_cputime_atomic cputime_atomic;
628 int running;
629 };
630
631 #include <linux/rwsem.h>
632 struct autogroup;
633
634 /*
635 * NOTE! "signal_struct" does not have its own
636 * locking, because a shared signal_struct always
637 * implies a shared sighand_struct, so locking
638 * sighand_struct is always a proper superset of
639 * the locking of signal_struct.
640 */
641 struct signal_struct {
642 atomic_t sigcnt;
643 atomic_t live;
644 int nr_threads;
645 struct list_head thread_head;
646
647 wait_queue_head_t wait_chldexit; /* for wait4() */
648
649 /* current thread group signal load-balancing target: */
650 struct task_struct *curr_target;
651
652 /* shared signal handling: */
653 struct sigpending shared_pending;
654
655 /* thread group exit support */
656 int group_exit_code;
657 /* overloaded:
658 * - notify group_exit_task when ->count is equal to notify_count
659 * - everyone except group_exit_task is stopped during signal delivery
660 * of fatal signals, group_exit_task processes the signal.
661 */
662 int notify_count;
663 struct task_struct *group_exit_task;
664
665 /* thread group stop support, overloads group_exit_code too */
666 int group_stop_count;
667 unsigned int flags; /* see SIGNAL_* flags below */
668
669 /*
670 * PR_SET_CHILD_SUBREAPER marks a process, like a service
671 * manager, to re-parent orphan (double-forking) child processes
672 * to this process instead of 'init'. The service manager is
673 * able to receive SIGCHLD signals and is able to investigate
674 * the process until it calls wait(). All children of this
675 * process will inherit a flag if they should look for a
676 * child_subreaper process at exit.
677 */
678 unsigned int is_child_subreaper:1;
679 unsigned int has_child_subreaper:1;
680
681 /* POSIX.1b Interval Timers */
682 int posix_timer_id;
683 struct list_head posix_timers;
684
685 /* ITIMER_REAL timer for the process */
686 struct hrtimer real_timer;
687 struct pid *leader_pid;
688 ktime_t it_real_incr;
689
690 /*
691 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
692 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
693 * values are defined to 0 and 1 respectively
694 */
695 struct cpu_itimer it[2];
696
697 /*
698 * Thread group totals for process CPU timers.
699 * See thread_group_cputimer(), et al, for details.
700 */
701 struct thread_group_cputimer cputimer;
702
703 /* Earliest-expiration cache. */
704 struct task_cputime cputime_expires;
705
706 struct list_head cpu_timers[3];
707
708 struct pid *tty_old_pgrp;
709
710 /* boolean value for session group leader */
711 int leader;
712
713 struct tty_struct *tty; /* NULL if no tty */
714
715 #ifdef CONFIG_SCHED_AUTOGROUP
716 struct autogroup *autogroup;
717 #endif
718 /*
719 * Cumulative resource counters for dead threads in the group,
720 * and for reaped dead child processes forked by this group.
721 * Live threads maintain their own counters and add to these
722 * in __exit_signal, except for the group leader.
723 */
724 seqlock_t stats_lock;
725 cputime_t utime, stime, cutime, cstime;
726 cputime_t gtime;
727 cputime_t cgtime;
728 struct prev_cputime prev_cputime;
729 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
730 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
731 unsigned long inblock, oublock, cinblock, coublock;
732 unsigned long maxrss, cmaxrss;
733 struct task_io_accounting ioac;
734
735 /*
736 * Cumulative ns of schedule CPU time fo dead threads in the
737 * group, not including a zombie group leader, (This only differs
738 * from jiffies_to_ns(utime + stime) if sched_clock uses something
739 * other than jiffies.)
740 */
741 unsigned long long sum_sched_runtime;
742
743 /*
744 * We don't bother to synchronize most readers of this at all,
745 * because there is no reader checking a limit that actually needs
746 * to get both rlim_cur and rlim_max atomically, and either one
747 * alone is a single word that can safely be read normally.
748 * getrlimit/setrlimit use task_lock(current->group_leader) to
749 * protect this instead of the siglock, because they really
750 * have no need to disable irqs.
751 */
752 struct rlimit rlim[RLIM_NLIMITS];
753
754 #ifdef CONFIG_BSD_PROCESS_ACCT
755 struct pacct_struct pacct; /* per-process accounting information */
756 #endif
757 #ifdef CONFIG_TASKSTATS
758 struct taskstats *stats;
759 #endif
760 #ifdef CONFIG_AUDIT
761 unsigned audit_tty;
762 unsigned audit_tty_log_passwd;
763 struct tty_audit_buf *tty_audit_buf;
764 #endif
765
766 oom_flags_t oom_flags;
767 short oom_score_adj; /* OOM kill score adjustment */
768 short oom_score_adj_min; /* OOM kill score adjustment min value.
769 * Only settable by CAP_SYS_RESOURCE. */
770
771 struct mutex cred_guard_mutex; /* guard against foreign influences on
772 * credential calculations
773 * (notably. ptrace) */
774 };
775
776 /*
777 * Bits in flags field of signal_struct.
778 */
779 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
780 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
781 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
782 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
783 /*
784 * Pending notifications to parent.
785 */
786 #define SIGNAL_CLD_STOPPED 0x00000010
787 #define SIGNAL_CLD_CONTINUED 0x00000020
788 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
789
790 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
791
792 /* If true, all threads except ->group_exit_task have pending SIGKILL */
793 static inline int signal_group_exit(const struct signal_struct *sig)
794 {
795 return (sig->flags & SIGNAL_GROUP_EXIT) ||
796 (sig->group_exit_task != NULL);
797 }
798
799 /*
800 * Some day this will be a full-fledged user tracking system..
801 */
802 struct user_struct {
803 atomic_t __count; /* reference count */
804 atomic_t processes; /* How many processes does this user have? */
805 atomic_t sigpending; /* How many pending signals does this user have? */
806 #ifdef CONFIG_INOTIFY_USER
807 atomic_t inotify_watches; /* How many inotify watches does this user have? */
808 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
809 #endif
810 #ifdef CONFIG_FANOTIFY
811 atomic_t fanotify_listeners;
812 #endif
813 #ifdef CONFIG_EPOLL
814 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
815 #endif
816 #ifdef CONFIG_POSIX_MQUEUE
817 /* protected by mq_lock */
818 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
819 #endif
820 unsigned long locked_shm; /* How many pages of mlocked shm ? */
821
822 #ifdef CONFIG_KEYS
823 struct key *uid_keyring; /* UID specific keyring */
824 struct key *session_keyring; /* UID's default session keyring */
825 #endif
826
827 /* Hash table maintenance information */
828 struct hlist_node uidhash_node;
829 kuid_t uid;
830
831 #ifdef CONFIG_PERF_EVENTS
832 atomic_long_t locked_vm;
833 #endif
834 };
835
836 extern int uids_sysfs_init(void);
837
838 extern struct user_struct *find_user(kuid_t);
839
840 extern struct user_struct root_user;
841 #define INIT_USER (&root_user)
842
843
844 struct backing_dev_info;
845 struct reclaim_state;
846
847 #ifdef CONFIG_SCHED_INFO
848 struct sched_info {
849 /* cumulative counters */
850 unsigned long pcount; /* # of times run on this cpu */
851 unsigned long long run_delay; /* time spent waiting on a runqueue */
852
853 /* timestamps */
854 unsigned long long last_arrival,/* when we last ran on a cpu */
855 last_queued; /* when we were last queued to run */
856 };
857 #endif /* CONFIG_SCHED_INFO */
858
859 #ifdef CONFIG_TASK_DELAY_ACCT
860 struct task_delay_info {
861 spinlock_t lock;
862 unsigned int flags; /* Private per-task flags */
863
864 /* For each stat XXX, add following, aligned appropriately
865 *
866 * struct timespec XXX_start, XXX_end;
867 * u64 XXX_delay;
868 * u32 XXX_count;
869 *
870 * Atomicity of updates to XXX_delay, XXX_count protected by
871 * single lock above (split into XXX_lock if contention is an issue).
872 */
873
874 /*
875 * XXX_count is incremented on every XXX operation, the delay
876 * associated with the operation is added to XXX_delay.
877 * XXX_delay contains the accumulated delay time in nanoseconds.
878 */
879 u64 blkio_start; /* Shared by blkio, swapin */
880 u64 blkio_delay; /* wait for sync block io completion */
881 u64 swapin_delay; /* wait for swapin block io completion */
882 u32 blkio_count; /* total count of the number of sync block */
883 /* io operations performed */
884 u32 swapin_count; /* total count of the number of swapin block */
885 /* io operations performed */
886
887 u64 freepages_start;
888 u64 freepages_delay; /* wait for memory reclaim */
889 u32 freepages_count; /* total count of memory reclaim */
890 };
891 #endif /* CONFIG_TASK_DELAY_ACCT */
892
893 static inline int sched_info_on(void)
894 {
895 #ifdef CONFIG_SCHEDSTATS
896 return 1;
897 #elif defined(CONFIG_TASK_DELAY_ACCT)
898 extern int delayacct_on;
899 return delayacct_on;
900 #else
901 return 0;
902 #endif
903 }
904
905 enum cpu_idle_type {
906 CPU_IDLE,
907 CPU_NOT_IDLE,
908 CPU_NEWLY_IDLE,
909 CPU_MAX_IDLE_TYPES
910 };
911
912 /*
913 * Increase resolution of cpu_capacity calculations
914 */
915 #define SCHED_CAPACITY_SHIFT 10
916 #define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
917
918 /*
919 * Wake-queues are lists of tasks with a pending wakeup, whose
920 * callers have already marked the task as woken internally,
921 * and can thus carry on. A common use case is being able to
922 * do the wakeups once the corresponding user lock as been
923 * released.
924 *
925 * We hold reference to each task in the list across the wakeup,
926 * thus guaranteeing that the memory is still valid by the time
927 * the actual wakeups are performed in wake_up_q().
928 *
929 * One per task suffices, because there's never a need for a task to be
930 * in two wake queues simultaneously; it is forbidden to abandon a task
931 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is
932 * already in a wake queue, the wakeup will happen soon and the second
933 * waker can just skip it.
934 *
935 * The WAKE_Q macro declares and initializes the list head.
936 * wake_up_q() does NOT reinitialize the list; it's expected to be
937 * called near the end of a function, where the fact that the queue is
938 * not used again will be easy to see by inspection.
939 *
940 * Note that this can cause spurious wakeups. schedule() callers
941 * must ensure the call is done inside a loop, confirming that the
942 * wakeup condition has in fact occurred.
943 */
944 struct wake_q_node {
945 struct wake_q_node *next;
946 };
947
948 struct wake_q_head {
949 struct wake_q_node *first;
950 struct wake_q_node **lastp;
951 };
952
953 #define WAKE_Q_TAIL ((struct wake_q_node *) 0x01)
954
955 #define WAKE_Q(name) \
956 struct wake_q_head name = { WAKE_Q_TAIL, &name.first }
957
958 extern void wake_q_add(struct wake_q_head *head,
959 struct task_struct *task);
960 extern void wake_up_q(struct wake_q_head *head);
961
962 /*
963 * sched-domains (multiprocessor balancing) declarations:
964 */
965 #ifdef CONFIG_SMP
966 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
967 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
968 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
969 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
970 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
971 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
972 #define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu power */
973 #define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */
974 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
975 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
976 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
977 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
978 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
979 #define SD_NUMA 0x4000 /* cross-node balancing */
980
981 #ifdef CONFIG_SCHED_SMT
982 static inline int cpu_smt_flags(void)
983 {
984 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
985 }
986 #endif
987
988 #ifdef CONFIG_SCHED_MC
989 static inline int cpu_core_flags(void)
990 {
991 return SD_SHARE_PKG_RESOURCES;
992 }
993 #endif
994
995 #ifdef CONFIG_NUMA
996 static inline int cpu_numa_flags(void)
997 {
998 return SD_NUMA;
999 }
1000 #endif
1001
1002 struct sched_domain_attr {
1003 int relax_domain_level;
1004 };
1005
1006 #define SD_ATTR_INIT (struct sched_domain_attr) { \
1007 .relax_domain_level = -1, \
1008 }
1009
1010 extern int sched_domain_level_max;
1011
1012 struct sched_group;
1013
1014 struct sched_domain {
1015 /* These fields must be setup */
1016 struct sched_domain *parent; /* top domain must be null terminated */
1017 struct sched_domain *child; /* bottom domain must be null terminated */
1018 struct sched_group *groups; /* the balancing groups of the domain */
1019 unsigned long min_interval; /* Minimum balance interval ms */
1020 unsigned long max_interval; /* Maximum balance interval ms */
1021 unsigned int busy_factor; /* less balancing by factor if busy */
1022 unsigned int imbalance_pct; /* No balance until over watermark */
1023 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
1024 unsigned int busy_idx;
1025 unsigned int idle_idx;
1026 unsigned int newidle_idx;
1027 unsigned int wake_idx;
1028 unsigned int forkexec_idx;
1029 unsigned int smt_gain;
1030
1031 int nohz_idle; /* NOHZ IDLE status */
1032 int flags; /* See SD_* */
1033 int level;
1034
1035 /* Runtime fields. */
1036 unsigned long last_balance; /* init to jiffies. units in jiffies */
1037 unsigned int balance_interval; /* initialise to 1. units in ms. */
1038 unsigned int nr_balance_failed; /* initialise to 0 */
1039
1040 /* idle_balance() stats */
1041 u64 max_newidle_lb_cost;
1042 unsigned long next_decay_max_lb_cost;
1043
1044 #ifdef CONFIG_SCHEDSTATS
1045 /* load_balance() stats */
1046 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
1047 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
1048 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
1049 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
1050 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
1051 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
1052 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
1053 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1054
1055 /* Active load balancing */
1056 unsigned int alb_count;
1057 unsigned int alb_failed;
1058 unsigned int alb_pushed;
1059
1060 /* SD_BALANCE_EXEC stats */
1061 unsigned int sbe_count;
1062 unsigned int sbe_balanced;
1063 unsigned int sbe_pushed;
1064
1065 /* SD_BALANCE_FORK stats */
1066 unsigned int sbf_count;
1067 unsigned int sbf_balanced;
1068 unsigned int sbf_pushed;
1069
1070 /* try_to_wake_up() stats */
1071 unsigned int ttwu_wake_remote;
1072 unsigned int ttwu_move_affine;
1073 unsigned int ttwu_move_balance;
1074 #endif
1075 #ifdef CONFIG_SCHED_DEBUG
1076 char *name;
1077 #endif
1078 union {
1079 void *private; /* used during construction */
1080 struct rcu_head rcu; /* used during destruction */
1081 };
1082
1083 unsigned int span_weight;
1084 /*
1085 * Span of all CPUs in this domain.
1086 *
1087 * NOTE: this field is variable length. (Allocated dynamically
1088 * by attaching extra space to the end of the structure,
1089 * depending on how many CPUs the kernel has booted up with)
1090 */
1091 unsigned long span[0];
1092 };
1093
1094 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1095 {
1096 return to_cpumask(sd->span);
1097 }
1098
1099 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1100 struct sched_domain_attr *dattr_new);
1101
1102 /* Allocate an array of sched domains, for partition_sched_domains(). */
1103 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1104 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1105
1106 bool cpus_share_cache(int this_cpu, int that_cpu);
1107
1108 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
1109 typedef int (*sched_domain_flags_f)(void);
1110
1111 #define SDTL_OVERLAP 0x01
1112
1113 struct sd_data {
1114 struct sched_domain **__percpu sd;
1115 struct sched_group **__percpu sg;
1116 struct sched_group_capacity **__percpu sgc;
1117 };
1118
1119 struct sched_domain_topology_level {
1120 sched_domain_mask_f mask;
1121 sched_domain_flags_f sd_flags;
1122 int flags;
1123 int numa_level;
1124 struct sd_data data;
1125 #ifdef CONFIG_SCHED_DEBUG
1126 char *name;
1127 #endif
1128 };
1129
1130 extern struct sched_domain_topology_level *sched_domain_topology;
1131
1132 extern void set_sched_topology(struct sched_domain_topology_level *tl);
1133 extern void wake_up_if_idle(int cpu);
1134
1135 #ifdef CONFIG_SCHED_DEBUG
1136 # define SD_INIT_NAME(type) .name = #type
1137 #else
1138 # define SD_INIT_NAME(type)
1139 #endif
1140
1141 #else /* CONFIG_SMP */
1142
1143 struct sched_domain_attr;
1144
1145 static inline void
1146 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1147 struct sched_domain_attr *dattr_new)
1148 {
1149 }
1150
1151 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1152 {
1153 return true;
1154 }
1155
1156 #endif /* !CONFIG_SMP */
1157
1158
1159 struct io_context; /* See blkdev.h */
1160
1161
1162 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1163 extern void prefetch_stack(struct task_struct *t);
1164 #else
1165 static inline void prefetch_stack(struct task_struct *t) { }
1166 #endif
1167
1168 struct audit_context; /* See audit.c */
1169 struct mempolicy;
1170 struct pipe_inode_info;
1171 struct uts_namespace;
1172
1173 struct load_weight {
1174 unsigned long weight;
1175 u32 inv_weight;
1176 };
1177
1178 struct sched_avg {
1179 u64 last_runnable_update;
1180 s64 decay_count;
1181 /*
1182 * utilization_avg_contrib describes the amount of time that a
1183 * sched_entity is running on a CPU. It is based on running_avg_sum
1184 * and is scaled in the range [0..SCHED_LOAD_SCALE].
1185 * load_avg_contrib described the amount of time that a sched_entity
1186 * is runnable on a rq. It is based on both runnable_avg_sum and the
1187 * weight of the task.
1188 */
1189 unsigned long load_avg_contrib, utilization_avg_contrib;
1190 /*
1191 * These sums represent an infinite geometric series and so are bound
1192 * above by 1024/(1-y). Thus we only need a u32 to store them for all
1193 * choices of y < 1-2^(-32)*1024.
1194 * running_avg_sum reflects the time that the sched_entity is
1195 * effectively running on the CPU.
1196 * runnable_avg_sum represents the amount of time a sched_entity is on
1197 * a runqueue which includes the running time that is monitored by
1198 * running_avg_sum.
1199 */
1200 u32 runnable_avg_sum, avg_period, running_avg_sum;
1201 };
1202
1203 #ifdef CONFIG_SCHEDSTATS
1204 struct sched_statistics {
1205 u64 wait_start;
1206 u64 wait_max;
1207 u64 wait_count;
1208 u64 wait_sum;
1209 u64 iowait_count;
1210 u64 iowait_sum;
1211
1212 u64 sleep_start;
1213 u64 sleep_max;
1214 s64 sum_sleep_runtime;
1215
1216 u64 block_start;
1217 u64 block_max;
1218 u64 exec_max;
1219 u64 slice_max;
1220
1221 u64 nr_migrations_cold;
1222 u64 nr_failed_migrations_affine;
1223 u64 nr_failed_migrations_running;
1224 u64 nr_failed_migrations_hot;
1225 u64 nr_forced_migrations;
1226
1227 u64 nr_wakeups;
1228 u64 nr_wakeups_sync;
1229 u64 nr_wakeups_migrate;
1230 u64 nr_wakeups_local;
1231 u64 nr_wakeups_remote;
1232 u64 nr_wakeups_affine;
1233 u64 nr_wakeups_affine_attempts;
1234 u64 nr_wakeups_passive;
1235 u64 nr_wakeups_idle;
1236 };
1237 #endif
1238
1239 struct sched_entity {
1240 struct load_weight load; /* for load-balancing */
1241 struct rb_node run_node;
1242 struct list_head group_node;
1243 unsigned int on_rq;
1244
1245 u64 exec_start;
1246 u64 sum_exec_runtime;
1247 u64 vruntime;
1248 u64 prev_sum_exec_runtime;
1249
1250 u64 nr_migrations;
1251
1252 #ifdef CONFIG_SCHEDSTATS
1253 struct sched_statistics statistics;
1254 #endif
1255
1256 #ifdef CONFIG_FAIR_GROUP_SCHED
1257 int depth;
1258 struct sched_entity *parent;
1259 /* rq on which this entity is (to be) queued: */
1260 struct cfs_rq *cfs_rq;
1261 /* rq "owned" by this entity/group: */
1262 struct cfs_rq *my_q;
1263 #endif
1264
1265 #ifdef CONFIG_SMP
1266 /* Per-entity load-tracking */
1267 struct sched_avg avg;
1268 #endif
1269 };
1270
1271 struct sched_rt_entity {
1272 struct list_head run_list;
1273 unsigned long timeout;
1274 unsigned long watchdog_stamp;
1275 unsigned int time_slice;
1276
1277 struct sched_rt_entity *back;
1278 #ifdef CONFIG_RT_GROUP_SCHED
1279 struct sched_rt_entity *parent;
1280 /* rq on which this entity is (to be) queued: */
1281 struct rt_rq *rt_rq;
1282 /* rq "owned" by this entity/group: */
1283 struct rt_rq *my_q;
1284 #endif
1285 };
1286
1287 struct sched_dl_entity {
1288 struct rb_node rb_node;
1289
1290 /*
1291 * Original scheduling parameters. Copied here from sched_attr
1292 * during sched_setattr(), they will remain the same until
1293 * the next sched_setattr().
1294 */
1295 u64 dl_runtime; /* maximum runtime for each instance */
1296 u64 dl_deadline; /* relative deadline of each instance */
1297 u64 dl_period; /* separation of two instances (period) */
1298 u64 dl_bw; /* dl_runtime / dl_deadline */
1299
1300 /*
1301 * Actual scheduling parameters. Initialized with the values above,
1302 * they are continously updated during task execution. Note that
1303 * the remaining runtime could be < 0 in case we are in overrun.
1304 */
1305 s64 runtime; /* remaining runtime for this instance */
1306 u64 deadline; /* absolute deadline for this instance */
1307 unsigned int flags; /* specifying the scheduler behaviour */
1308
1309 /*
1310 * Some bool flags:
1311 *
1312 * @dl_throttled tells if we exhausted the runtime. If so, the
1313 * task has to wait for a replenishment to be performed at the
1314 * next firing of dl_timer.
1315 *
1316 * @dl_new tells if a new instance arrived. If so we must
1317 * start executing it with full runtime and reset its absolute
1318 * deadline;
1319 *
1320 * @dl_boosted tells if we are boosted due to DI. If so we are
1321 * outside bandwidth enforcement mechanism (but only until we
1322 * exit the critical section);
1323 *
1324 * @dl_yielded tells if task gave up the cpu before consuming
1325 * all its available runtime during the last job.
1326 */
1327 int dl_throttled, dl_new, dl_boosted, dl_yielded;
1328
1329 /*
1330 * Bandwidth enforcement timer. Each -deadline task has its
1331 * own bandwidth to be enforced, thus we need one timer per task.
1332 */
1333 struct hrtimer dl_timer;
1334 };
1335
1336 union rcu_special {
1337 struct {
1338 bool blocked;
1339 bool need_qs;
1340 } b;
1341 short s;
1342 };
1343 struct rcu_node;
1344
1345 enum perf_event_task_context {
1346 perf_invalid_context = -1,
1347 perf_hw_context = 0,
1348 perf_sw_context,
1349 perf_nr_task_contexts,
1350 };
1351
1352 struct task_struct {
1353 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1354 void *stack;
1355 atomic_t usage;
1356 unsigned int flags; /* per process flags, defined below */
1357 unsigned int ptrace;
1358
1359 #ifdef CONFIG_SMP
1360 struct llist_node wake_entry;
1361 int on_cpu;
1362 unsigned int wakee_flips;
1363 unsigned long wakee_flip_decay_ts;
1364 struct task_struct *last_wakee;
1365
1366 int wake_cpu;
1367 #endif
1368 int on_rq;
1369
1370 int prio, static_prio, normal_prio;
1371 unsigned int rt_priority;
1372 const struct sched_class *sched_class;
1373 struct sched_entity se;
1374 struct sched_rt_entity rt;
1375 #ifdef CONFIG_CGROUP_SCHED
1376 struct task_group *sched_task_group;
1377 #endif
1378 struct sched_dl_entity dl;
1379
1380 #ifdef CONFIG_PREEMPT_NOTIFIERS
1381 /* list of struct preempt_notifier: */
1382 struct hlist_head preempt_notifiers;
1383 #endif
1384
1385 #ifdef CONFIG_BLK_DEV_IO_TRACE
1386 unsigned int btrace_seq;
1387 #endif
1388
1389 unsigned int policy;
1390 int nr_cpus_allowed;
1391 cpumask_t cpus_allowed;
1392
1393 #ifdef CONFIG_PREEMPT_RCU
1394 int rcu_read_lock_nesting;
1395 union rcu_special rcu_read_unlock_special;
1396 struct list_head rcu_node_entry;
1397 struct rcu_node *rcu_blocked_node;
1398 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1399 #ifdef CONFIG_TASKS_RCU
1400 unsigned long rcu_tasks_nvcsw;
1401 bool rcu_tasks_holdout;
1402 struct list_head rcu_tasks_holdout_list;
1403 int rcu_tasks_idle_cpu;
1404 #endif /* #ifdef CONFIG_TASKS_RCU */
1405
1406 #ifdef CONFIG_SCHED_INFO
1407 struct sched_info sched_info;
1408 #endif
1409
1410 struct list_head tasks;
1411 #ifdef CONFIG_SMP
1412 struct plist_node pushable_tasks;
1413 struct rb_node pushable_dl_tasks;
1414 #endif
1415
1416 struct mm_struct *mm, *active_mm;
1417 /* per-thread vma caching */
1418 u32 vmacache_seqnum;
1419 struct vm_area_struct *vmacache[VMACACHE_SIZE];
1420 #if defined(SPLIT_RSS_COUNTING)
1421 struct task_rss_stat rss_stat;
1422 #endif
1423 /* task state */
1424 int exit_state;
1425 int exit_code, exit_signal;
1426 int pdeath_signal; /* The signal sent when the parent dies */
1427 unsigned long jobctl; /* JOBCTL_*, siglock protected */
1428
1429 /* Used for emulating ABI behavior of previous Linux versions */
1430 unsigned int personality;
1431
1432 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1433 * execve */
1434 unsigned in_iowait:1;
1435
1436 /* Revert to default priority/policy when forking */
1437 unsigned sched_reset_on_fork:1;
1438 unsigned sched_contributes_to_load:1;
1439 unsigned sched_migrated:1;
1440
1441 #ifdef CONFIG_MEMCG_KMEM
1442 unsigned memcg_kmem_skip_account:1;
1443 #endif
1444 #ifdef CONFIG_COMPAT_BRK
1445 unsigned brk_randomized:1;
1446 #endif
1447
1448 unsigned long atomic_flags; /* Flags needing atomic access. */
1449
1450 struct restart_block restart_block;
1451
1452 pid_t pid;
1453 pid_t tgid;
1454
1455 #ifdef CONFIG_CC_STACKPROTECTOR
1456 /* Canary value for the -fstack-protector gcc feature */
1457 unsigned long stack_canary;
1458 #endif
1459 /*
1460 * pointers to (original) parent process, youngest child, younger sibling,
1461 * older sibling, respectively. (p->father can be replaced with
1462 * p->real_parent->pid)
1463 */
1464 struct task_struct __rcu *real_parent; /* real parent process */
1465 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1466 /*
1467 * children/sibling forms the list of my natural children
1468 */
1469 struct list_head children; /* list of my children */
1470 struct list_head sibling; /* linkage in my parent's children list */
1471 struct task_struct *group_leader; /* threadgroup leader */
1472
1473 /*
1474 * ptraced is the list of tasks this task is using ptrace on.
1475 * This includes both natural children and PTRACE_ATTACH targets.
1476 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1477 */
1478 struct list_head ptraced;
1479 struct list_head ptrace_entry;
1480
1481 /* PID/PID hash table linkage. */
1482 struct pid_link pids[PIDTYPE_MAX];
1483 struct list_head thread_group;
1484 struct list_head thread_node;
1485
1486 struct completion *vfork_done; /* for vfork() */
1487 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1488 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1489
1490 cputime_t utime, stime, utimescaled, stimescaled;
1491 cputime_t gtime;
1492 struct prev_cputime prev_cputime;
1493 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1494 seqlock_t vtime_seqlock;
1495 unsigned long long vtime_snap;
1496 enum {
1497 VTIME_SLEEPING = 0,
1498 VTIME_USER,
1499 VTIME_SYS,
1500 } vtime_snap_whence;
1501 #endif
1502 unsigned long nvcsw, nivcsw; /* context switch counts */
1503 u64 start_time; /* monotonic time in nsec */
1504 u64 real_start_time; /* boot based time in nsec */
1505 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1506 unsigned long min_flt, maj_flt;
1507
1508 struct task_cputime cputime_expires;
1509 struct list_head cpu_timers[3];
1510
1511 /* process credentials */
1512 const struct cred __rcu *real_cred; /* objective and real subjective task
1513 * credentials (COW) */
1514 const struct cred __rcu *cred; /* effective (overridable) subjective task
1515 * credentials (COW) */
1516 char comm[TASK_COMM_LEN]; /* executable name excluding path
1517 - access with [gs]et_task_comm (which lock
1518 it with task_lock())
1519 - initialized normally by setup_new_exec */
1520 /* file system info */
1521 struct nameidata *nameidata;
1522 #ifdef CONFIG_SYSVIPC
1523 /* ipc stuff */
1524 struct sysv_sem sysvsem;
1525 struct sysv_shm sysvshm;
1526 #endif
1527 #ifdef CONFIG_DETECT_HUNG_TASK
1528 /* hung task detection */
1529 unsigned long last_switch_count;
1530 #endif
1531 /* CPU-specific state of this task */
1532 struct thread_struct thread;
1533 /* filesystem information */
1534 struct fs_struct *fs;
1535 /* open file information */
1536 struct files_struct *files;
1537 /* namespaces */
1538 struct nsproxy *nsproxy;
1539 /* signal handlers */
1540 struct signal_struct *signal;
1541 struct sighand_struct *sighand;
1542
1543 sigset_t blocked, real_blocked;
1544 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1545 struct sigpending pending;
1546
1547 unsigned long sas_ss_sp;
1548 size_t sas_ss_size;
1549 int (*notifier)(void *priv);
1550 void *notifier_data;
1551 sigset_t *notifier_mask;
1552 struct callback_head *task_works;
1553
1554 struct audit_context *audit_context;
1555 #ifdef CONFIG_AUDITSYSCALL
1556 kuid_t loginuid;
1557 unsigned int sessionid;
1558 #endif
1559 struct seccomp seccomp;
1560
1561 /* Thread group tracking */
1562 u32 parent_exec_id;
1563 u32 self_exec_id;
1564 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1565 * mempolicy */
1566 spinlock_t alloc_lock;
1567
1568 /* Protection of the PI data structures: */
1569 raw_spinlock_t pi_lock;
1570
1571 struct wake_q_node wake_q;
1572
1573 #ifdef CONFIG_RT_MUTEXES
1574 /* PI waiters blocked on a rt_mutex held by this task */
1575 struct rb_root pi_waiters;
1576 struct rb_node *pi_waiters_leftmost;
1577 /* Deadlock detection and priority inheritance handling */
1578 struct rt_mutex_waiter *pi_blocked_on;
1579 #endif
1580
1581 #ifdef CONFIG_DEBUG_MUTEXES
1582 /* mutex deadlock detection */
1583 struct mutex_waiter *blocked_on;
1584 #endif
1585 #ifdef CONFIG_TRACE_IRQFLAGS
1586 unsigned int irq_events;
1587 unsigned long hardirq_enable_ip;
1588 unsigned long hardirq_disable_ip;
1589 unsigned int hardirq_enable_event;
1590 unsigned int hardirq_disable_event;
1591 int hardirqs_enabled;
1592 int hardirq_context;
1593 unsigned long softirq_disable_ip;
1594 unsigned long softirq_enable_ip;
1595 unsigned int softirq_disable_event;
1596 unsigned int softirq_enable_event;
1597 int softirqs_enabled;
1598 int softirq_context;
1599 #endif
1600 #ifdef CONFIG_LOCKDEP
1601 # define MAX_LOCK_DEPTH 48UL
1602 u64 curr_chain_key;
1603 int lockdep_depth;
1604 unsigned int lockdep_recursion;
1605 struct held_lock held_locks[MAX_LOCK_DEPTH];
1606 gfp_t lockdep_reclaim_gfp;
1607 #endif
1608
1609 /* journalling filesystem info */
1610 void *journal_info;
1611
1612 /* stacked block device info */
1613 struct bio_list *bio_list;
1614
1615 #ifdef CONFIG_BLOCK
1616 /* stack plugging */
1617 struct blk_plug *plug;
1618 #endif
1619
1620 /* VM state */
1621 struct reclaim_state *reclaim_state;
1622
1623 struct backing_dev_info *backing_dev_info;
1624
1625 struct io_context *io_context;
1626
1627 unsigned long ptrace_message;
1628 siginfo_t *last_siginfo; /* For ptrace use. */
1629 struct task_io_accounting ioac;
1630 #if defined(CONFIG_TASK_XACCT)
1631 u64 acct_rss_mem1; /* accumulated rss usage */
1632 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1633 cputime_t acct_timexpd; /* stime + utime since last update */
1634 #endif
1635 #ifdef CONFIG_CPUSETS
1636 nodemask_t mems_allowed; /* Protected by alloc_lock */
1637 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
1638 int cpuset_mem_spread_rotor;
1639 int cpuset_slab_spread_rotor;
1640 #endif
1641 #ifdef CONFIG_CGROUPS
1642 /* Control Group info protected by css_set_lock */
1643 struct css_set __rcu *cgroups;
1644 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1645 struct list_head cg_list;
1646 #endif
1647 #ifdef CONFIG_FUTEX
1648 struct robust_list_head __user *robust_list;
1649 #ifdef CONFIG_COMPAT
1650 struct compat_robust_list_head __user *compat_robust_list;
1651 #endif
1652 struct list_head pi_state_list;
1653 struct futex_pi_state *pi_state_cache;
1654 #endif
1655 #ifdef CONFIG_PERF_EVENTS
1656 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1657 struct mutex perf_event_mutex;
1658 struct list_head perf_event_list;
1659 #endif
1660 #ifdef CONFIG_DEBUG_PREEMPT
1661 unsigned long preempt_disable_ip;
1662 #endif
1663 #ifdef CONFIG_NUMA
1664 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1665 short il_next;
1666 short pref_node_fork;
1667 #endif
1668 #ifdef CONFIG_NUMA_BALANCING
1669 int numa_scan_seq;
1670 unsigned int numa_scan_period;
1671 unsigned int numa_scan_period_max;
1672 int numa_preferred_nid;
1673 unsigned long numa_migrate_retry;
1674 u64 node_stamp; /* migration stamp */
1675 u64 last_task_numa_placement;
1676 u64 last_sum_exec_runtime;
1677 struct callback_head numa_work;
1678
1679 struct list_head numa_entry;
1680 struct numa_group *numa_group;
1681
1682 /*
1683 * numa_faults is an array split into four regions:
1684 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1685 * in this precise order.
1686 *
1687 * faults_memory: Exponential decaying average of faults on a per-node
1688 * basis. Scheduling placement decisions are made based on these
1689 * counts. The values remain static for the duration of a PTE scan.
1690 * faults_cpu: Track the nodes the process was running on when a NUMA
1691 * hinting fault was incurred.
1692 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1693 * during the current scan window. When the scan completes, the counts
1694 * in faults_memory and faults_cpu decay and these values are copied.
1695 */
1696 unsigned long *numa_faults;
1697 unsigned long total_numa_faults;
1698
1699 /*
1700 * numa_faults_locality tracks if faults recorded during the last
1701 * scan window were remote/local or failed to migrate. The task scan
1702 * period is adapted based on the locality of the faults with different
1703 * weights depending on whether they were shared or private faults
1704 */
1705 unsigned long numa_faults_locality[3];
1706
1707 unsigned long numa_pages_migrated;
1708 #endif /* CONFIG_NUMA_BALANCING */
1709
1710 struct rcu_head rcu;
1711
1712 /*
1713 * cache last used pipe for splice
1714 */
1715 struct pipe_inode_info *splice_pipe;
1716
1717 struct page_frag task_frag;
1718
1719 #ifdef CONFIG_TASK_DELAY_ACCT
1720 struct task_delay_info *delays;
1721 #endif
1722 #ifdef CONFIG_FAULT_INJECTION
1723 int make_it_fail;
1724 #endif
1725 /*
1726 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1727 * balance_dirty_pages() for some dirty throttling pause
1728 */
1729 int nr_dirtied;
1730 int nr_dirtied_pause;
1731 unsigned long dirty_paused_when; /* start of a write-and-pause period */
1732
1733 #ifdef CONFIG_LATENCYTOP
1734 int latency_record_count;
1735 struct latency_record latency_record[LT_SAVECOUNT];
1736 #endif
1737 /*
1738 * time slack values; these are used to round up poll() and
1739 * select() etc timeout values. These are in nanoseconds.
1740 */
1741 unsigned long timer_slack_ns;
1742 unsigned long default_timer_slack_ns;
1743
1744 #ifdef CONFIG_KASAN
1745 unsigned int kasan_depth;
1746 #endif
1747 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1748 /* Index of current stored address in ret_stack */
1749 int curr_ret_stack;
1750 /* Stack of return addresses for return function tracing */
1751 struct ftrace_ret_stack *ret_stack;
1752 /* time stamp for last schedule */
1753 unsigned long long ftrace_timestamp;
1754 /*
1755 * Number of functions that haven't been traced
1756 * because of depth overrun.
1757 */
1758 atomic_t trace_overrun;
1759 /* Pause for the tracing */
1760 atomic_t tracing_graph_pause;
1761 #endif
1762 #ifdef CONFIG_TRACING
1763 /* state flags for use by tracers */
1764 unsigned long trace;
1765 /* bitmask and counter of trace recursion */
1766 unsigned long trace_recursion;
1767 #endif /* CONFIG_TRACING */
1768 #ifdef CONFIG_MEMCG
1769 struct memcg_oom_info {
1770 struct mem_cgroup *memcg;
1771 gfp_t gfp_mask;
1772 int order;
1773 unsigned int may_oom:1;
1774 } memcg_oom;
1775 #endif
1776 #ifdef CONFIG_UPROBES
1777 struct uprobe_task *utask;
1778 #endif
1779 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1780 unsigned int sequential_io;
1781 unsigned int sequential_io_avg;
1782 #endif
1783 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1784 unsigned long task_state_change;
1785 #endif
1786 int pagefault_disabled;
1787 };
1788
1789 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1790 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1791
1792 #define TNF_MIGRATED 0x01
1793 #define TNF_NO_GROUP 0x02
1794 #define TNF_SHARED 0x04
1795 #define TNF_FAULT_LOCAL 0x08
1796 #define TNF_MIGRATE_FAIL 0x10
1797
1798 #ifdef CONFIG_NUMA_BALANCING
1799 extern void task_numa_fault(int last_node, int node, int pages, int flags);
1800 extern pid_t task_numa_group_id(struct task_struct *p);
1801 extern void set_numabalancing_state(bool enabled);
1802 extern void task_numa_free(struct task_struct *p);
1803 extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
1804 int src_nid, int dst_cpu);
1805 #else
1806 static inline void task_numa_fault(int last_node, int node, int pages,
1807 int flags)
1808 {
1809 }
1810 static inline pid_t task_numa_group_id(struct task_struct *p)
1811 {
1812 return 0;
1813 }
1814 static inline void set_numabalancing_state(bool enabled)
1815 {
1816 }
1817 static inline void task_numa_free(struct task_struct *p)
1818 {
1819 }
1820 static inline bool should_numa_migrate_memory(struct task_struct *p,
1821 struct page *page, int src_nid, int dst_cpu)
1822 {
1823 return true;
1824 }
1825 #endif
1826
1827 static inline struct pid *task_pid(struct task_struct *task)
1828 {
1829 return task->pids[PIDTYPE_PID].pid;
1830 }
1831
1832 static inline struct pid *task_tgid(struct task_struct *task)
1833 {
1834 return task->group_leader->pids[PIDTYPE_PID].pid;
1835 }
1836
1837 /*
1838 * Without tasklist or rcu lock it is not safe to dereference
1839 * the result of task_pgrp/task_session even if task == current,
1840 * we can race with another thread doing sys_setsid/sys_setpgid.
1841 */
1842 static inline struct pid *task_pgrp(struct task_struct *task)
1843 {
1844 return task->group_leader->pids[PIDTYPE_PGID].pid;
1845 }
1846
1847 static inline struct pid *task_session(struct task_struct *task)
1848 {
1849 return task->group_leader->pids[PIDTYPE_SID].pid;
1850 }
1851
1852 struct pid_namespace;
1853
1854 /*
1855 * the helpers to get the task's different pids as they are seen
1856 * from various namespaces
1857 *
1858 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1859 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1860 * current.
1861 * task_xid_nr_ns() : id seen from the ns specified;
1862 *
1863 * set_task_vxid() : assigns a virtual id to a task;
1864 *
1865 * see also pid_nr() etc in include/linux/pid.h
1866 */
1867 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1868 struct pid_namespace *ns);
1869
1870 static inline pid_t task_pid_nr(struct task_struct *tsk)
1871 {
1872 return tsk->pid;
1873 }
1874
1875 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1876 struct pid_namespace *ns)
1877 {
1878 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1879 }
1880
1881 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1882 {
1883 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1884 }
1885
1886
1887 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1888 {
1889 return tsk->tgid;
1890 }
1891
1892 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1893
1894 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1895 {
1896 return pid_vnr(task_tgid(tsk));
1897 }
1898
1899
1900 static inline int pid_alive(const struct task_struct *p);
1901 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1902 {
1903 pid_t pid = 0;
1904
1905 rcu_read_lock();
1906 if (pid_alive(tsk))
1907 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1908 rcu_read_unlock();
1909
1910 return pid;
1911 }
1912
1913 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1914 {
1915 return task_ppid_nr_ns(tsk, &init_pid_ns);
1916 }
1917
1918 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1919 struct pid_namespace *ns)
1920 {
1921 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1922 }
1923
1924 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1925 {
1926 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1927 }
1928
1929
1930 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1931 struct pid_namespace *ns)
1932 {
1933 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1934 }
1935
1936 static inline pid_t task_session_vnr(struct task_struct *tsk)
1937 {
1938 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1939 }
1940
1941 /* obsolete, do not use */
1942 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1943 {
1944 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1945 }
1946
1947 /**
1948 * pid_alive - check that a task structure is not stale
1949 * @p: Task structure to be checked.
1950 *
1951 * Test if a process is not yet dead (at most zombie state)
1952 * If pid_alive fails, then pointers within the task structure
1953 * can be stale and must not be dereferenced.
1954 *
1955 * Return: 1 if the process is alive. 0 otherwise.
1956 */
1957 static inline int pid_alive(const struct task_struct *p)
1958 {
1959 return p->pids[PIDTYPE_PID].pid != NULL;
1960 }
1961
1962 /**
1963 * is_global_init - check if a task structure is init
1964 * @tsk: Task structure to be checked.
1965 *
1966 * Check if a task structure is the first user space task the kernel created.
1967 *
1968 * Return: 1 if the task structure is init. 0 otherwise.
1969 */
1970 static inline int is_global_init(struct task_struct *tsk)
1971 {
1972 return tsk->pid == 1;
1973 }
1974
1975 extern struct pid *cad_pid;
1976
1977 extern void free_task(struct task_struct *tsk);
1978 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1979
1980 extern void __put_task_struct(struct task_struct *t);
1981
1982 static inline void put_task_struct(struct task_struct *t)
1983 {
1984 if (atomic_dec_and_test(&t->usage))
1985 __put_task_struct(t);
1986 }
1987
1988 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1989 extern void task_cputime(struct task_struct *t,
1990 cputime_t *utime, cputime_t *stime);
1991 extern void task_cputime_scaled(struct task_struct *t,
1992 cputime_t *utimescaled, cputime_t *stimescaled);
1993 extern cputime_t task_gtime(struct task_struct *t);
1994 #else
1995 static inline void task_cputime(struct task_struct *t,
1996 cputime_t *utime, cputime_t *stime)
1997 {
1998 if (utime)
1999 *utime = t->utime;
2000 if (stime)
2001 *stime = t->stime;
2002 }
2003
2004 static inline void task_cputime_scaled(struct task_struct *t,
2005 cputime_t *utimescaled,
2006 cputime_t *stimescaled)
2007 {
2008 if (utimescaled)
2009 *utimescaled = t->utimescaled;
2010 if (stimescaled)
2011 *stimescaled = t->stimescaled;
2012 }
2013
2014 static inline cputime_t task_gtime(struct task_struct *t)
2015 {
2016 return t->gtime;
2017 }
2018 #endif
2019 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2020 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2021
2022 /*
2023 * Per process flags
2024 */
2025 #define PF_EXITING 0x00000004 /* getting shut down */
2026 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
2027 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
2028 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
2029 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
2030 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
2031 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
2032 #define PF_DUMPCORE 0x00000200 /* dumped core */
2033 #define PF_SIGNALED 0x00000400 /* killed by a signal */
2034 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
2035 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
2036 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
2037 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
2038 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
2039 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
2040 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
2041 #define PF_KSWAPD 0x00040000 /* I am kswapd */
2042 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
2043 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
2044 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
2045 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
2046 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
2047 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
2048 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
2049 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
2050 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
2051 #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
2052
2053 /*
2054 * Only the _current_ task can read/write to tsk->flags, but other
2055 * tasks can access tsk->flags in readonly mode for example
2056 * with tsk_used_math (like during threaded core dumping).
2057 * There is however an exception to this rule during ptrace
2058 * or during fork: the ptracer task is allowed to write to the
2059 * child->flags of its traced child (same goes for fork, the parent
2060 * can write to the child->flags), because we're guaranteed the
2061 * child is not running and in turn not changing child->flags
2062 * at the same time the parent does it.
2063 */
2064 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2065 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2066 #define clear_used_math() clear_stopped_child_used_math(current)
2067 #define set_used_math() set_stopped_child_used_math(current)
2068 #define conditional_stopped_child_used_math(condition, child) \
2069 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2070 #define conditional_used_math(condition) \
2071 conditional_stopped_child_used_math(condition, current)
2072 #define copy_to_stopped_child_used_math(child) \
2073 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2074 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2075 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2076 #define used_math() tsk_used_math(current)
2077
2078 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2079 * __GFP_FS is also cleared as it implies __GFP_IO.
2080 */
2081 static inline gfp_t memalloc_noio_flags(gfp_t flags)
2082 {
2083 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
2084 flags &= ~(__GFP_IO | __GFP_FS);
2085 return flags;
2086 }
2087
2088 static inline unsigned int memalloc_noio_save(void)
2089 {
2090 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2091 current->flags |= PF_MEMALLOC_NOIO;
2092 return flags;
2093 }
2094
2095 static inline void memalloc_noio_restore(unsigned int flags)
2096 {
2097 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2098 }
2099
2100 /* Per-process atomic flags. */
2101 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
2102 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
2103 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
2104
2105
2106 #define TASK_PFA_TEST(name, func) \
2107 static inline bool task_##func(struct task_struct *p) \
2108 { return test_bit(PFA_##name, &p->atomic_flags); }
2109 #define TASK_PFA_SET(name, func) \
2110 static inline void task_set_##func(struct task_struct *p) \
2111 { set_bit(PFA_##name, &p->atomic_flags); }
2112 #define TASK_PFA_CLEAR(name, func) \
2113 static inline void task_clear_##func(struct task_struct *p) \
2114 { clear_bit(PFA_##name, &p->atomic_flags); }
2115
2116 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2117 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
2118
2119 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2120 TASK_PFA_SET(SPREAD_PAGE, spread_page)
2121 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2122
2123 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2124 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2125 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
2126
2127 /*
2128 * task->jobctl flags
2129 */
2130 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
2131
2132 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
2133 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
2134 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
2135 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
2136 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
2137 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
2138 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
2139
2140 #define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT)
2141 #define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT)
2142 #define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT)
2143 #define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT)
2144 #define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT)
2145 #define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT)
2146 #define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT)
2147
2148 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
2149 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
2150
2151 extern bool task_set_jobctl_pending(struct task_struct *task,
2152 unsigned long mask);
2153 extern void task_clear_jobctl_trapping(struct task_struct *task);
2154 extern void task_clear_jobctl_pending(struct task_struct *task,
2155 unsigned long mask);
2156
2157 static inline void rcu_copy_process(struct task_struct *p)
2158 {
2159 #ifdef CONFIG_PREEMPT_RCU
2160 p->rcu_read_lock_nesting = 0;
2161 p->rcu_read_unlock_special.s = 0;
2162 p->rcu_blocked_node = NULL;
2163 INIT_LIST_HEAD(&p->rcu_node_entry);
2164 #endif /* #ifdef CONFIG_PREEMPT_RCU */
2165 #ifdef CONFIG_TASKS_RCU
2166 p->rcu_tasks_holdout = false;
2167 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
2168 p->rcu_tasks_idle_cpu = -1;
2169 #endif /* #ifdef CONFIG_TASKS_RCU */
2170 }
2171
2172 static inline void tsk_restore_flags(struct task_struct *task,
2173 unsigned long orig_flags, unsigned long flags)
2174 {
2175 task->flags &= ~flags;
2176 task->flags |= orig_flags & flags;
2177 }
2178
2179 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2180 const struct cpumask *trial);
2181 extern int task_can_attach(struct task_struct *p,
2182 const struct cpumask *cs_cpus_allowed);
2183 #ifdef CONFIG_SMP
2184 extern void do_set_cpus_allowed(struct task_struct *p,
2185 const struct cpumask *new_mask);
2186
2187 extern int set_cpus_allowed_ptr(struct task_struct *p,
2188 const struct cpumask *new_mask);
2189 #else
2190 static inline void do_set_cpus_allowed(struct task_struct *p,
2191 const struct cpumask *new_mask)
2192 {
2193 }
2194 static inline int set_cpus_allowed_ptr(struct task_struct *p,
2195 const struct cpumask *new_mask)
2196 {
2197 if (!cpumask_test_cpu(0, new_mask))
2198 return -EINVAL;
2199 return 0;
2200 }
2201 #endif
2202
2203 #ifdef CONFIG_NO_HZ_COMMON
2204 void calc_load_enter_idle(void);
2205 void calc_load_exit_idle(void);
2206 #else
2207 static inline void calc_load_enter_idle(void) { }
2208 static inline void calc_load_exit_idle(void) { }
2209 #endif /* CONFIG_NO_HZ_COMMON */
2210
2211 #ifndef CONFIG_CPUMASK_OFFSTACK
2212 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
2213 {
2214 return set_cpus_allowed_ptr(p, &new_mask);
2215 }
2216 #endif
2217
2218 /*
2219 * Do not use outside of architecture code which knows its limitations.
2220 *
2221 * sched_clock() has no promise of monotonicity or bounded drift between
2222 * CPUs, use (which you should not) requires disabling IRQs.
2223 *
2224 * Please use one of the three interfaces below.
2225 */
2226 extern unsigned long long notrace sched_clock(void);
2227 /*
2228 * See the comment in kernel/sched/clock.c
2229 */
2230 extern u64 cpu_clock(int cpu);
2231 extern u64 local_clock(void);
2232 extern u64 running_clock(void);
2233 extern u64 sched_clock_cpu(int cpu);
2234
2235
2236 extern void sched_clock_init(void);
2237
2238 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2239 static inline void sched_clock_tick(void)
2240 {
2241 }
2242
2243 static inline void sched_clock_idle_sleep_event(void)
2244 {
2245 }
2246
2247 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2248 {
2249 }
2250 #else
2251 /*
2252 * Architectures can set this to 1 if they have specified
2253 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2254 * but then during bootup it turns out that sched_clock()
2255 * is reliable after all:
2256 */
2257 extern int sched_clock_stable(void);
2258 extern void set_sched_clock_stable(void);
2259 extern void clear_sched_clock_stable(void);
2260
2261 extern void sched_clock_tick(void);
2262 extern void sched_clock_idle_sleep_event(void);
2263 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2264 #endif
2265
2266 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2267 /*
2268 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2269 * The reason for this explicit opt-in is not to have perf penalty with
2270 * slow sched_clocks.
2271 */
2272 extern void enable_sched_clock_irqtime(void);
2273 extern void disable_sched_clock_irqtime(void);
2274 #else
2275 static inline void enable_sched_clock_irqtime(void) {}
2276 static inline void disable_sched_clock_irqtime(void) {}
2277 #endif
2278
2279 extern unsigned long long
2280 task_sched_runtime(struct task_struct *task);
2281
2282 /* sched_exec is called by processes performing an exec */
2283 #ifdef CONFIG_SMP
2284 extern void sched_exec(void);
2285 #else
2286 #define sched_exec() {}
2287 #endif
2288
2289 extern void sched_clock_idle_sleep_event(void);
2290 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2291
2292 #ifdef CONFIG_HOTPLUG_CPU
2293 extern void idle_task_exit(void);
2294 #else
2295 static inline void idle_task_exit(void) {}
2296 #endif
2297
2298 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
2299 extern void wake_up_nohz_cpu(int cpu);
2300 #else
2301 static inline void wake_up_nohz_cpu(int cpu) { }
2302 #endif
2303
2304 #ifdef CONFIG_NO_HZ_FULL
2305 extern bool sched_can_stop_tick(void);
2306 extern u64 scheduler_tick_max_deferment(void);
2307 #else
2308 static inline bool sched_can_stop_tick(void) { return false; }
2309 #endif
2310
2311 #ifdef CONFIG_SCHED_AUTOGROUP
2312 extern void sched_autogroup_create_attach(struct task_struct *p);
2313 extern void sched_autogroup_detach(struct task_struct *p);
2314 extern void sched_autogroup_fork(struct signal_struct *sig);
2315 extern void sched_autogroup_exit(struct signal_struct *sig);
2316 #ifdef CONFIG_PROC_FS
2317 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2318 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2319 #endif
2320 #else
2321 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2322 static inline void sched_autogroup_detach(struct task_struct *p) { }
2323 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2324 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2325 #endif
2326
2327 extern int yield_to(struct task_struct *p, bool preempt);
2328 extern void set_user_nice(struct task_struct *p, long nice);
2329 extern int task_prio(const struct task_struct *p);
2330 /**
2331 * task_nice - return the nice value of a given task.
2332 * @p: the task in question.
2333 *
2334 * Return: The nice value [ -20 ... 0 ... 19 ].
2335 */
2336 static inline int task_nice(const struct task_struct *p)
2337 {
2338 return PRIO_TO_NICE((p)->static_prio);
2339 }
2340 extern int can_nice(const struct task_struct *p, const int nice);
2341 extern int task_curr(const struct task_struct *p);
2342 extern int idle_cpu(int cpu);
2343 extern int sched_setscheduler(struct task_struct *, int,
2344 const struct sched_param *);
2345 extern int sched_setscheduler_nocheck(struct task_struct *, int,
2346 const struct sched_param *);
2347 extern int sched_setattr(struct task_struct *,
2348 const struct sched_attr *);
2349 extern struct task_struct *idle_task(int cpu);
2350 /**
2351 * is_idle_task - is the specified task an idle task?
2352 * @p: the task in question.
2353 *
2354 * Return: 1 if @p is an idle task. 0 otherwise.
2355 */
2356 static inline bool is_idle_task(const struct task_struct *p)
2357 {
2358 return p->pid == 0;
2359 }
2360 extern struct task_struct *curr_task(int cpu);
2361 extern void set_curr_task(int cpu, struct task_struct *p);
2362
2363 void yield(void);
2364
2365 union thread_union {
2366 struct thread_info thread_info;
2367 unsigned long stack[THREAD_SIZE/sizeof(long)];
2368 };
2369
2370 #ifndef __HAVE_ARCH_KSTACK_END
2371 static inline int kstack_end(void *addr)
2372 {
2373 /* Reliable end of stack detection:
2374 * Some APM bios versions misalign the stack
2375 */
2376 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2377 }
2378 #endif
2379
2380 extern union thread_union init_thread_union;
2381 extern struct task_struct init_task;
2382
2383 extern struct mm_struct init_mm;
2384
2385 extern struct pid_namespace init_pid_ns;
2386
2387 /*
2388 * find a task by one of its numerical ids
2389 *
2390 * find_task_by_pid_ns():
2391 * finds a task by its pid in the specified namespace
2392 * find_task_by_vpid():
2393 * finds a task by its virtual pid
2394 *
2395 * see also find_vpid() etc in include/linux/pid.h
2396 */
2397
2398 extern struct task_struct *find_task_by_vpid(pid_t nr);
2399 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2400 struct pid_namespace *ns);
2401
2402 /* per-UID process charging. */
2403 extern struct user_struct * alloc_uid(kuid_t);
2404 static inline struct user_struct *get_uid(struct user_struct *u)
2405 {
2406 atomic_inc(&u->__count);
2407 return u;
2408 }
2409 extern void free_uid(struct user_struct *);
2410
2411 #include <asm/current.h>
2412
2413 extern void xtime_update(unsigned long ticks);
2414
2415 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2416 extern int wake_up_process(struct task_struct *tsk);
2417 extern void wake_up_new_task(struct task_struct *tsk);
2418 #ifdef CONFIG_SMP
2419 extern void kick_process(struct task_struct *tsk);
2420 #else
2421 static inline void kick_process(struct task_struct *tsk) { }
2422 #endif
2423 extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
2424 extern void sched_dead(struct task_struct *p);
2425
2426 extern void proc_caches_init(void);
2427 extern void flush_signals(struct task_struct *);
2428 extern void ignore_signals(struct task_struct *);
2429 extern void flush_signal_handlers(struct task_struct *, int force_default);
2430 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2431
2432 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2433 {
2434 unsigned long flags;
2435 int ret;
2436
2437 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2438 ret = dequeue_signal(tsk, mask, info);
2439 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2440
2441 return ret;
2442 }
2443
2444 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2445 sigset_t *mask);
2446 extern void unblock_all_signals(void);
2447 extern void release_task(struct task_struct * p);
2448 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2449 extern int force_sigsegv(int, struct task_struct *);
2450 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2451 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2452 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2453 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2454 const struct cred *, u32);
2455 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2456 extern int kill_pid(struct pid *pid, int sig, int priv);
2457 extern int kill_proc_info(int, struct siginfo *, pid_t);
2458 extern __must_check bool do_notify_parent(struct task_struct *, int);
2459 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2460 extern void force_sig(int, struct task_struct *);
2461 extern int send_sig(int, struct task_struct *, int);
2462 extern int zap_other_threads(struct task_struct *p);
2463 extern struct sigqueue *sigqueue_alloc(void);
2464 extern void sigqueue_free(struct sigqueue *);
2465 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2466 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2467
2468 static inline void restore_saved_sigmask(void)
2469 {
2470 if (test_and_clear_restore_sigmask())
2471 __set_current_blocked(&current->saved_sigmask);
2472 }
2473
2474 static inline sigset_t *sigmask_to_save(void)
2475 {
2476 sigset_t *res = &current->blocked;
2477 if (unlikely(test_restore_sigmask()))
2478 res = &current->saved_sigmask;
2479 return res;
2480 }
2481
2482 static inline int kill_cad_pid(int sig, int priv)
2483 {
2484 return kill_pid(cad_pid, sig, priv);
2485 }
2486
2487 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2488 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2489 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2490 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2491
2492 /*
2493 * True if we are on the alternate signal stack.
2494 */
2495 static inline int on_sig_stack(unsigned long sp)
2496 {
2497 #ifdef CONFIG_STACK_GROWSUP
2498 return sp >= current->sas_ss_sp &&
2499 sp - current->sas_ss_sp < current->sas_ss_size;
2500 #else
2501 return sp > current->sas_ss_sp &&
2502 sp - current->sas_ss_sp <= current->sas_ss_size;
2503 #endif
2504 }
2505
2506 static inline int sas_ss_flags(unsigned long sp)
2507 {
2508 if (!current->sas_ss_size)
2509 return SS_DISABLE;
2510
2511 return on_sig_stack(sp) ? SS_ONSTACK : 0;
2512 }
2513
2514 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2515 {
2516 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2517 #ifdef CONFIG_STACK_GROWSUP
2518 return current->sas_ss_sp;
2519 #else
2520 return current->sas_ss_sp + current->sas_ss_size;
2521 #endif
2522 return sp;
2523 }
2524
2525 /*
2526 * Routines for handling mm_structs
2527 */
2528 extern struct mm_struct * mm_alloc(void);
2529
2530 /* mmdrop drops the mm and the page tables */
2531 extern void __mmdrop(struct mm_struct *);
2532 static inline void mmdrop(struct mm_struct * mm)
2533 {
2534 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2535 __mmdrop(mm);
2536 }
2537
2538 /* mmput gets rid of the mappings and all user-space */
2539 extern void mmput(struct mm_struct *);
2540 /* Grab a reference to a task's mm, if it is not already going away */
2541 extern struct mm_struct *get_task_mm(struct task_struct *task);
2542 /*
2543 * Grab a reference to a task's mm, if it is not already going away
2544 * and ptrace_may_access with the mode parameter passed to it
2545 * succeeds.
2546 */
2547 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2548 /* Remove the current tasks stale references to the old mm_struct */
2549 extern void mm_release(struct task_struct *, struct mm_struct *);
2550
2551 #ifdef CONFIG_HAVE_COPY_THREAD_TLS
2552 extern int copy_thread_tls(unsigned long, unsigned long, unsigned long,
2553 struct task_struct *, unsigned long);
2554 #else
2555 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2556 struct task_struct *);
2557
2558 /* Architectures that haven't opted into copy_thread_tls get the tls argument
2559 * via pt_regs, so ignore the tls argument passed via C. */
2560 static inline int copy_thread_tls(
2561 unsigned long clone_flags, unsigned long sp, unsigned long arg,
2562 struct task_struct *p, unsigned long tls)
2563 {
2564 return copy_thread(clone_flags, sp, arg, p);
2565 }
2566 #endif
2567 extern void flush_thread(void);
2568 extern void exit_thread(void);
2569
2570 extern void exit_files(struct task_struct *);
2571 extern void __cleanup_sighand(struct sighand_struct *);
2572
2573 extern void exit_itimers(struct signal_struct *);
2574 extern void flush_itimer_signals(void);
2575
2576 extern void do_group_exit(int);
2577
2578 extern int do_execve(struct filename *,
2579 const char __user * const __user *,
2580 const char __user * const __user *);
2581 extern int do_execveat(int, struct filename *,
2582 const char __user * const __user *,
2583 const char __user * const __user *,
2584 int);
2585 extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long);
2586 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2587 struct task_struct *fork_idle(int);
2588 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2589
2590 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2591 static inline void set_task_comm(struct task_struct *tsk, const char *from)
2592 {
2593 __set_task_comm(tsk, from, false);
2594 }
2595 extern char *get_task_comm(char *to, struct task_struct *tsk);
2596
2597 #ifdef CONFIG_SMP
2598 void scheduler_ipi(void);
2599 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2600 #else
2601 static inline void scheduler_ipi(void) { }
2602 static inline unsigned long wait_task_inactive(struct task_struct *p,
2603 long match_state)
2604 {
2605 return 1;
2606 }
2607 #endif
2608
2609 #define tasklist_empty() \
2610 list_empty(&init_task.tasks)
2611
2612 #define next_task(p) \
2613 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2614
2615 #define for_each_process(p) \
2616 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2617
2618 extern bool current_is_single_threaded(void);
2619
2620 /*
2621 * Careful: do_each_thread/while_each_thread is a double loop so
2622 * 'break' will not work as expected - use goto instead.
2623 */
2624 #define do_each_thread(g, t) \
2625 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2626
2627 #define while_each_thread(g, t) \
2628 while ((t = next_thread(t)) != g)
2629
2630 #define __for_each_thread(signal, t) \
2631 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2632
2633 #define for_each_thread(p, t) \
2634 __for_each_thread((p)->signal, t)
2635
2636 /* Careful: this is a double loop, 'break' won't work as expected. */
2637 #define for_each_process_thread(p, t) \
2638 for_each_process(p) for_each_thread(p, t)
2639
2640 static inline int get_nr_threads(struct task_struct *tsk)
2641 {
2642 return tsk->signal->nr_threads;
2643 }
2644
2645 static inline bool thread_group_leader(struct task_struct *p)
2646 {
2647 return p->exit_signal >= 0;
2648 }
2649
2650 /* Do to the insanities of de_thread it is possible for a process
2651 * to have the pid of the thread group leader without actually being
2652 * the thread group leader. For iteration through the pids in proc
2653 * all we care about is that we have a task with the appropriate
2654 * pid, we don't actually care if we have the right task.
2655 */
2656 static inline bool has_group_leader_pid(struct task_struct *p)
2657 {
2658 return task_pid(p) == p->signal->leader_pid;
2659 }
2660
2661 static inline
2662 bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
2663 {
2664 return p1->signal == p2->signal;
2665 }
2666
2667 static inline struct task_struct *next_thread(const struct task_struct *p)
2668 {
2669 return list_entry_rcu(p->thread_group.next,
2670 struct task_struct, thread_group);
2671 }
2672
2673 static inline int thread_group_empty(struct task_struct *p)
2674 {
2675 return list_empty(&p->thread_group);
2676 }
2677
2678 #define delay_group_leader(p) \
2679 (thread_group_leader(p) && !thread_group_empty(p))
2680
2681 /*
2682 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2683 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2684 * pins the final release of task.io_context. Also protects ->cpuset and
2685 * ->cgroup.subsys[]. And ->vfork_done.
2686 *
2687 * Nests both inside and outside of read_lock(&tasklist_lock).
2688 * It must not be nested with write_lock_irq(&tasklist_lock),
2689 * neither inside nor outside.
2690 */
2691 static inline void task_lock(struct task_struct *p)
2692 {
2693 spin_lock(&p->alloc_lock);
2694 }
2695
2696 static inline void task_unlock(struct task_struct *p)
2697 {
2698 spin_unlock(&p->alloc_lock);
2699 }
2700
2701 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2702 unsigned long *flags);
2703
2704 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2705 unsigned long *flags)
2706 {
2707 struct sighand_struct *ret;
2708
2709 ret = __lock_task_sighand(tsk, flags);
2710 (void)__cond_lock(&tsk->sighand->siglock, ret);
2711 return ret;
2712 }
2713
2714 static inline void unlock_task_sighand(struct task_struct *tsk,
2715 unsigned long *flags)
2716 {
2717 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2718 }
2719
2720 /**
2721 * threadgroup_change_begin - mark the beginning of changes to a threadgroup
2722 * @tsk: task causing the changes
2723 *
2724 * All operations which modify a threadgroup - a new thread joining the
2725 * group, death of a member thread (the assertion of PF_EXITING) and
2726 * exec(2) dethreading the process and replacing the leader - are wrapped
2727 * by threadgroup_change_{begin|end}(). This is to provide a place which
2728 * subsystems needing threadgroup stability can hook into for
2729 * synchronization.
2730 */
2731 static inline void threadgroup_change_begin(struct task_struct *tsk)
2732 {
2733 might_sleep();
2734 cgroup_threadgroup_change_begin(tsk);
2735 }
2736
2737 /**
2738 * threadgroup_change_end - mark the end of changes to a threadgroup
2739 * @tsk: task causing the changes
2740 *
2741 * See threadgroup_change_begin().
2742 */
2743 static inline void threadgroup_change_end(struct task_struct *tsk)
2744 {
2745 cgroup_threadgroup_change_end(tsk);
2746 }
2747
2748 #ifndef __HAVE_THREAD_FUNCTIONS
2749
2750 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2751 #define task_stack_page(task) ((task)->stack)
2752
2753 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2754 {
2755 *task_thread_info(p) = *task_thread_info(org);
2756 task_thread_info(p)->task = p;
2757 }
2758
2759 /*
2760 * Return the address of the last usable long on the stack.
2761 *
2762 * When the stack grows down, this is just above the thread
2763 * info struct. Going any lower will corrupt the threadinfo.
2764 *
2765 * When the stack grows up, this is the highest address.
2766 * Beyond that position, we corrupt data on the next page.
2767 */
2768 static inline unsigned long *end_of_stack(struct task_struct *p)
2769 {
2770 #ifdef CONFIG_STACK_GROWSUP
2771 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
2772 #else
2773 return (unsigned long *)(task_thread_info(p) + 1);
2774 #endif
2775 }
2776
2777 #endif
2778 #define task_stack_end_corrupted(task) \
2779 (*(end_of_stack(task)) != STACK_END_MAGIC)
2780
2781 static inline int object_is_on_stack(void *obj)
2782 {
2783 void *stack = task_stack_page(current);
2784
2785 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2786 }
2787
2788 extern void thread_info_cache_init(void);
2789
2790 #ifdef CONFIG_DEBUG_STACK_USAGE
2791 static inline unsigned long stack_not_used(struct task_struct *p)
2792 {
2793 unsigned long *n = end_of_stack(p);
2794
2795 do { /* Skip over canary */
2796 n++;
2797 } while (!*n);
2798
2799 return (unsigned long)n - (unsigned long)end_of_stack(p);
2800 }
2801 #endif
2802 extern void set_task_stack_end_magic(struct task_struct *tsk);
2803
2804 /* set thread flags in other task's structures
2805 * - see asm/thread_info.h for TIF_xxxx flags available
2806 */
2807 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2808 {
2809 set_ti_thread_flag(task_thread_info(tsk), flag);
2810 }
2811
2812 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2813 {
2814 clear_ti_thread_flag(task_thread_info(tsk), flag);
2815 }
2816
2817 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2818 {
2819 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2820 }
2821
2822 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2823 {
2824 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2825 }
2826
2827 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2828 {
2829 return test_ti_thread_flag(task_thread_info(tsk), flag);
2830 }
2831
2832 static inline void set_tsk_need_resched(struct task_struct *tsk)
2833 {
2834 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2835 }
2836
2837 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2838 {
2839 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2840 }
2841
2842 static inline int test_tsk_need_resched(struct task_struct *tsk)
2843 {
2844 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2845 }
2846
2847 static inline int restart_syscall(void)
2848 {
2849 set_tsk_thread_flag(current, TIF_SIGPENDING);
2850 return -ERESTARTNOINTR;
2851 }
2852
2853 static inline int signal_pending(struct task_struct *p)
2854 {
2855 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2856 }
2857
2858 static inline int __fatal_signal_pending(struct task_struct *p)
2859 {
2860 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2861 }
2862
2863 static inline int fatal_signal_pending(struct task_struct *p)
2864 {
2865 return signal_pending(p) && __fatal_signal_pending(p);
2866 }
2867
2868 static inline int signal_pending_state(long state, struct task_struct *p)
2869 {
2870 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2871 return 0;
2872 if (!signal_pending(p))
2873 return 0;
2874
2875 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2876 }
2877
2878 /*
2879 * cond_resched() and cond_resched_lock(): latency reduction via
2880 * explicit rescheduling in places that are safe. The return
2881 * value indicates whether a reschedule was done in fact.
2882 * cond_resched_lock() will drop the spinlock before scheduling,
2883 * cond_resched_softirq() will enable bhs before scheduling.
2884 */
2885 extern int _cond_resched(void);
2886
2887 #define cond_resched() ({ \
2888 ___might_sleep(__FILE__, __LINE__, 0); \
2889 _cond_resched(); \
2890 })
2891
2892 extern int __cond_resched_lock(spinlock_t *lock);
2893
2894 #define cond_resched_lock(lock) ({ \
2895 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
2896 __cond_resched_lock(lock); \
2897 })
2898
2899 extern int __cond_resched_softirq(void);
2900
2901 #define cond_resched_softirq() ({ \
2902 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2903 __cond_resched_softirq(); \
2904 })
2905
2906 static inline void cond_resched_rcu(void)
2907 {
2908 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2909 rcu_read_unlock();
2910 cond_resched();
2911 rcu_read_lock();
2912 #endif
2913 }
2914
2915 /*
2916 * Does a critical section need to be broken due to another
2917 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2918 * but a general need for low latency)
2919 */
2920 static inline int spin_needbreak(spinlock_t *lock)
2921 {
2922 #ifdef CONFIG_PREEMPT
2923 return spin_is_contended(lock);
2924 #else
2925 return 0;
2926 #endif
2927 }
2928
2929 /*
2930 * Idle thread specific functions to determine the need_resched
2931 * polling state.
2932 */
2933 #ifdef TIF_POLLING_NRFLAG
2934 static inline int tsk_is_polling(struct task_struct *p)
2935 {
2936 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2937 }
2938
2939 static inline void __current_set_polling(void)
2940 {
2941 set_thread_flag(TIF_POLLING_NRFLAG);
2942 }
2943
2944 static inline bool __must_check current_set_polling_and_test(void)
2945 {
2946 __current_set_polling();
2947
2948 /*
2949 * Polling state must be visible before we test NEED_RESCHED,
2950 * paired by resched_curr()
2951 */
2952 smp_mb__after_atomic();
2953
2954 return unlikely(tif_need_resched());
2955 }
2956
2957 static inline void __current_clr_polling(void)
2958 {
2959 clear_thread_flag(TIF_POLLING_NRFLAG);
2960 }
2961
2962 static inline bool __must_check current_clr_polling_and_test(void)
2963 {
2964 __current_clr_polling();
2965
2966 /*
2967 * Polling state must be visible before we test NEED_RESCHED,
2968 * paired by resched_curr()
2969 */
2970 smp_mb__after_atomic();
2971
2972 return unlikely(tif_need_resched());
2973 }
2974
2975 #else
2976 static inline int tsk_is_polling(struct task_struct *p) { return 0; }
2977 static inline void __current_set_polling(void) { }
2978 static inline void __current_clr_polling(void) { }
2979
2980 static inline bool __must_check current_set_polling_and_test(void)
2981 {
2982 return unlikely(tif_need_resched());
2983 }
2984 static inline bool __must_check current_clr_polling_and_test(void)
2985 {
2986 return unlikely(tif_need_resched());
2987 }
2988 #endif
2989
2990 static inline void current_clr_polling(void)
2991 {
2992 __current_clr_polling();
2993
2994 /*
2995 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
2996 * Once the bit is cleared, we'll get IPIs with every new
2997 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
2998 * fold.
2999 */
3000 smp_mb(); /* paired with resched_curr() */
3001
3002 preempt_fold_need_resched();
3003 }
3004
3005 static __always_inline bool need_resched(void)
3006 {
3007 return unlikely(tif_need_resched());
3008 }
3009
3010 /*
3011 * Thread group CPU time accounting.
3012 */
3013 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
3014 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
3015
3016 /*
3017 * Reevaluate whether the task has signals pending delivery.
3018 * Wake the task if so.
3019 * This is required every time the blocked sigset_t changes.
3020 * callers must hold sighand->siglock.
3021 */
3022 extern void recalc_sigpending_and_wake(struct task_struct *t);
3023 extern void recalc_sigpending(void);
3024
3025 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
3026
3027 static inline void signal_wake_up(struct task_struct *t, bool resume)
3028 {
3029 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
3030 }
3031 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
3032 {
3033 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
3034 }
3035
3036 /*
3037 * Wrappers for p->thread_info->cpu access. No-op on UP.
3038 */
3039 #ifdef CONFIG_SMP
3040
3041 static inline unsigned int task_cpu(const struct task_struct *p)
3042 {
3043 return task_thread_info(p)->cpu;
3044 }
3045
3046 static inline int task_node(const struct task_struct *p)
3047 {
3048 return cpu_to_node(task_cpu(p));
3049 }
3050
3051 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
3052
3053 #else
3054
3055 static inline unsigned int task_cpu(const struct task_struct *p)
3056 {
3057 return 0;
3058 }
3059
3060 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3061 {
3062 }
3063
3064 #endif /* CONFIG_SMP */
3065
3066 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3067 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
3068
3069 #ifdef CONFIG_CGROUP_SCHED
3070 extern struct task_group root_task_group;
3071 #endif /* CONFIG_CGROUP_SCHED */
3072
3073 extern int task_can_switch_user(struct user_struct *up,
3074 struct task_struct *tsk);
3075
3076 #ifdef CONFIG_TASK_XACCT
3077 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3078 {
3079 tsk->ioac.rchar += amt;
3080 }
3081
3082 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3083 {
3084 tsk->ioac.wchar += amt;
3085 }
3086
3087 static inline void inc_syscr(struct task_struct *tsk)
3088 {
3089 tsk->ioac.syscr++;
3090 }
3091
3092 static inline void inc_syscw(struct task_struct *tsk)
3093 {
3094 tsk->ioac.syscw++;
3095 }
3096 #else
3097 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3098 {
3099 }
3100
3101 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3102 {
3103 }
3104
3105 static inline void inc_syscr(struct task_struct *tsk)
3106 {
3107 }
3108
3109 static inline void inc_syscw(struct task_struct *tsk)
3110 {
3111 }
3112 #endif
3113
3114 #ifndef TASK_SIZE_OF
3115 #define TASK_SIZE_OF(tsk) TASK_SIZE
3116 #endif
3117
3118 #ifdef CONFIG_MEMCG
3119 extern void mm_update_next_owner(struct mm_struct *mm);
3120 #else
3121 static inline void mm_update_next_owner(struct mm_struct *mm)
3122 {
3123 }
3124 #endif /* CONFIG_MEMCG */
3125
3126 static inline unsigned long task_rlimit(const struct task_struct *tsk,
3127 unsigned int limit)
3128 {
3129 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
3130 }
3131
3132 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3133 unsigned int limit)
3134 {
3135 return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
3136 }
3137
3138 static inline unsigned long rlimit(unsigned int limit)
3139 {
3140 return task_rlimit(current, limit);
3141 }
3142
3143 static inline unsigned long rlimit_max(unsigned int limit)
3144 {
3145 return task_rlimit_max(current, limit);
3146 }
3147
3148 #endif
This page took 0.11821 seconds and 5 git commands to generate.