Merge commit 'v2.6.37-rc1' into for-2.6.38
[deliverable/linux.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
29 #define CLONE_NEWNET 0x40000000 /* New network namespace */
30 #define CLONE_IO 0x80000000 /* Clone io context */
31
32 /*
33 * Scheduling policies
34 */
35 #define SCHED_NORMAL 0
36 #define SCHED_FIFO 1
37 #define SCHED_RR 2
38 #define SCHED_BATCH 3
39 /* SCHED_ISO: reserved but not implemented yet */
40 #define SCHED_IDLE 5
41 /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
42 #define SCHED_RESET_ON_FORK 0x40000000
43
44 #ifdef __KERNEL__
45
46 struct sched_param {
47 int sched_priority;
48 };
49
50 #include <asm/param.h> /* for HZ */
51
52 #include <linux/capability.h>
53 #include <linux/threads.h>
54 #include <linux/kernel.h>
55 #include <linux/types.h>
56 #include <linux/timex.h>
57 #include <linux/jiffies.h>
58 #include <linux/rbtree.h>
59 #include <linux/thread_info.h>
60 #include <linux/cpumask.h>
61 #include <linux/errno.h>
62 #include <linux/nodemask.h>
63 #include <linux/mm_types.h>
64
65 #include <asm/system.h>
66 #include <asm/page.h>
67 #include <asm/ptrace.h>
68 #include <asm/cputime.h>
69
70 #include <linux/smp.h>
71 #include <linux/sem.h>
72 #include <linux/signal.h>
73 #include <linux/path.h>
74 #include <linux/compiler.h>
75 #include <linux/completion.h>
76 #include <linux/pid.h>
77 #include <linux/percpu.h>
78 #include <linux/topology.h>
79 #include <linux/proportions.h>
80 #include <linux/seccomp.h>
81 #include <linux/rcupdate.h>
82 #include <linux/rculist.h>
83 #include <linux/rtmutex.h>
84
85 #include <linux/time.h>
86 #include <linux/param.h>
87 #include <linux/resource.h>
88 #include <linux/timer.h>
89 #include <linux/hrtimer.h>
90 #include <linux/task_io_accounting.h>
91 #include <linux/kobject.h>
92 #include <linux/latencytop.h>
93 #include <linux/cred.h>
94
95 #include <asm/processor.h>
96
97 struct exec_domain;
98 struct futex_pi_state;
99 struct robust_list_head;
100 struct bio_list;
101 struct fs_struct;
102 struct perf_event_context;
103
104 /*
105 * List of flags we want to share for kernel threads,
106 * if only because they are not used by them anyway.
107 */
108 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
109
110 /*
111 * These are the constant used to fake the fixed-point load-average
112 * counting. Some notes:
113 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
114 * a load-average precision of 10 bits integer + 11 bits fractional
115 * - if you want to count load-averages more often, you need more
116 * precision, or rounding will get you. With 2-second counting freq,
117 * the EXP_n values would be 1981, 2034 and 2043 if still using only
118 * 11 bit fractions.
119 */
120 extern unsigned long avenrun[]; /* Load averages */
121 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
122
123 #define FSHIFT 11 /* nr of bits of precision */
124 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
125 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
126 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
127 #define EXP_5 2014 /* 1/exp(5sec/5min) */
128 #define EXP_15 2037 /* 1/exp(5sec/15min) */
129
130 #define CALC_LOAD(load,exp,n) \
131 load *= exp; \
132 load += n*(FIXED_1-exp); \
133 load >>= FSHIFT;
134
135 extern unsigned long total_forks;
136 extern int nr_threads;
137 DECLARE_PER_CPU(unsigned long, process_counts);
138 extern int nr_processes(void);
139 extern unsigned long nr_running(void);
140 extern unsigned long nr_uninterruptible(void);
141 extern unsigned long nr_iowait(void);
142 extern unsigned long nr_iowait_cpu(int cpu);
143 extern unsigned long this_cpu_load(void);
144
145
146 extern void calc_global_load(void);
147
148 extern unsigned long get_parent_ip(unsigned long addr);
149
150 struct seq_file;
151 struct cfs_rq;
152 struct task_group;
153 #ifdef CONFIG_SCHED_DEBUG
154 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
155 extern void proc_sched_set_task(struct task_struct *p);
156 extern void
157 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
158 #else
159 static inline void
160 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
161 {
162 }
163 static inline void proc_sched_set_task(struct task_struct *p)
164 {
165 }
166 static inline void
167 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
168 {
169 }
170 #endif
171
172 /*
173 * Task state bitmask. NOTE! These bits are also
174 * encoded in fs/proc/array.c: get_task_state().
175 *
176 * We have two separate sets of flags: task->state
177 * is about runnability, while task->exit_state are
178 * about the task exiting. Confusing, but this way
179 * modifying one set can't modify the other one by
180 * mistake.
181 */
182 #define TASK_RUNNING 0
183 #define TASK_INTERRUPTIBLE 1
184 #define TASK_UNINTERRUPTIBLE 2
185 #define __TASK_STOPPED 4
186 #define __TASK_TRACED 8
187 /* in tsk->exit_state */
188 #define EXIT_ZOMBIE 16
189 #define EXIT_DEAD 32
190 /* in tsk->state again */
191 #define TASK_DEAD 64
192 #define TASK_WAKEKILL 128
193 #define TASK_WAKING 256
194 #define TASK_STATE_MAX 512
195
196 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW"
197
198 extern char ___assert_task_state[1 - 2*!!(
199 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
200
201 /* Convenience macros for the sake of set_task_state */
202 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
203 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
204 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
205
206 /* Convenience macros for the sake of wake_up */
207 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
208 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
209
210 /* get_task_state() */
211 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
212 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
213 __TASK_TRACED)
214
215 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
216 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
217 #define task_is_dead(task) ((task)->exit_state != 0)
218 #define task_is_stopped_or_traced(task) \
219 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
220 #define task_contributes_to_load(task) \
221 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
222 (task->flags & PF_FREEZING) == 0)
223
224 #define __set_task_state(tsk, state_value) \
225 do { (tsk)->state = (state_value); } while (0)
226 #define set_task_state(tsk, state_value) \
227 set_mb((tsk)->state, (state_value))
228
229 /*
230 * set_current_state() includes a barrier so that the write of current->state
231 * is correctly serialised wrt the caller's subsequent test of whether to
232 * actually sleep:
233 *
234 * set_current_state(TASK_UNINTERRUPTIBLE);
235 * if (do_i_need_to_sleep())
236 * schedule();
237 *
238 * If the caller does not need such serialisation then use __set_current_state()
239 */
240 #define __set_current_state(state_value) \
241 do { current->state = (state_value); } while (0)
242 #define set_current_state(state_value) \
243 set_mb(current->state, (state_value))
244
245 /* Task command name length */
246 #define TASK_COMM_LEN 16
247
248 #include <linux/spinlock.h>
249
250 /*
251 * This serializes "schedule()" and also protects
252 * the run-queue from deletions/modifications (but
253 * _adding_ to the beginning of the run-queue has
254 * a separate lock).
255 */
256 extern rwlock_t tasklist_lock;
257 extern spinlock_t mmlist_lock;
258
259 struct task_struct;
260
261 #ifdef CONFIG_PROVE_RCU
262 extern int lockdep_tasklist_lock_is_held(void);
263 #endif /* #ifdef CONFIG_PROVE_RCU */
264
265 extern void sched_init(void);
266 extern void sched_init_smp(void);
267 extern asmlinkage void schedule_tail(struct task_struct *prev);
268 extern void init_idle(struct task_struct *idle, int cpu);
269 extern void init_idle_bootup_task(struct task_struct *idle);
270
271 extern int runqueue_is_locked(int cpu);
272
273 extern cpumask_var_t nohz_cpu_mask;
274 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
275 extern void select_nohz_load_balancer(int stop_tick);
276 extern int get_nohz_timer_target(void);
277 #else
278 static inline void select_nohz_load_balancer(int stop_tick) { }
279 #endif
280
281 /*
282 * Only dump TASK_* tasks. (0 for all tasks)
283 */
284 extern void show_state_filter(unsigned long state_filter);
285
286 static inline void show_state(void)
287 {
288 show_state_filter(0);
289 }
290
291 extern void show_regs(struct pt_regs *);
292
293 /*
294 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
295 * task), SP is the stack pointer of the first frame that should be shown in the back
296 * trace (or NULL if the entire call-chain of the task should be shown).
297 */
298 extern void show_stack(struct task_struct *task, unsigned long *sp);
299
300 void io_schedule(void);
301 long io_schedule_timeout(long timeout);
302
303 extern void cpu_init (void);
304 extern void trap_init(void);
305 extern void update_process_times(int user);
306 extern void scheduler_tick(void);
307
308 extern void sched_show_task(struct task_struct *p);
309
310 #ifdef CONFIG_LOCKUP_DETECTOR
311 extern void touch_softlockup_watchdog(void);
312 extern void touch_softlockup_watchdog_sync(void);
313 extern void touch_all_softlockup_watchdogs(void);
314 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
315 void __user *buffer,
316 size_t *lenp, loff_t *ppos);
317 extern unsigned int softlockup_panic;
318 extern int softlockup_thresh;
319 #else
320 static inline void touch_softlockup_watchdog(void)
321 {
322 }
323 static inline void touch_softlockup_watchdog_sync(void)
324 {
325 }
326 static inline void touch_all_softlockup_watchdogs(void)
327 {
328 }
329 #endif
330
331 #ifdef CONFIG_DETECT_HUNG_TASK
332 extern unsigned int sysctl_hung_task_panic;
333 extern unsigned long sysctl_hung_task_check_count;
334 extern unsigned long sysctl_hung_task_timeout_secs;
335 extern unsigned long sysctl_hung_task_warnings;
336 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
337 void __user *buffer,
338 size_t *lenp, loff_t *ppos);
339 #else
340 /* Avoid need for ifdefs elsewhere in the code */
341 enum { sysctl_hung_task_timeout_secs = 0 };
342 #endif
343
344 /* Attach to any functions which should be ignored in wchan output. */
345 #define __sched __attribute__((__section__(".sched.text")))
346
347 /* Linker adds these: start and end of __sched functions */
348 extern char __sched_text_start[], __sched_text_end[];
349
350 /* Is this address in the __sched functions? */
351 extern int in_sched_functions(unsigned long addr);
352
353 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
354 extern signed long schedule_timeout(signed long timeout);
355 extern signed long schedule_timeout_interruptible(signed long timeout);
356 extern signed long schedule_timeout_killable(signed long timeout);
357 extern signed long schedule_timeout_uninterruptible(signed long timeout);
358 asmlinkage void schedule(void);
359 extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner);
360
361 struct nsproxy;
362 struct user_namespace;
363
364 /*
365 * Default maximum number of active map areas, this limits the number of vmas
366 * per mm struct. Users can overwrite this number by sysctl but there is a
367 * problem.
368 *
369 * When a program's coredump is generated as ELF format, a section is created
370 * per a vma. In ELF, the number of sections is represented in unsigned short.
371 * This means the number of sections should be smaller than 65535 at coredump.
372 * Because the kernel adds some informative sections to a image of program at
373 * generating coredump, we need some margin. The number of extra sections is
374 * 1-3 now and depends on arch. We use "5" as safe margin, here.
375 */
376 #define MAPCOUNT_ELF_CORE_MARGIN (5)
377 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
378
379 extern int sysctl_max_map_count;
380
381 #include <linux/aio.h>
382
383 #ifdef CONFIG_MMU
384 extern void arch_pick_mmap_layout(struct mm_struct *mm);
385 extern unsigned long
386 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
387 unsigned long, unsigned long);
388 extern unsigned long
389 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
390 unsigned long len, unsigned long pgoff,
391 unsigned long flags);
392 extern void arch_unmap_area(struct mm_struct *, unsigned long);
393 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
394 #else
395 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
396 #endif
397
398
399 extern void set_dumpable(struct mm_struct *mm, int value);
400 extern int get_dumpable(struct mm_struct *mm);
401
402 /* mm flags */
403 /* dumpable bits */
404 #define MMF_DUMPABLE 0 /* core dump is permitted */
405 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
406
407 #define MMF_DUMPABLE_BITS 2
408 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
409
410 /* coredump filter bits */
411 #define MMF_DUMP_ANON_PRIVATE 2
412 #define MMF_DUMP_ANON_SHARED 3
413 #define MMF_DUMP_MAPPED_PRIVATE 4
414 #define MMF_DUMP_MAPPED_SHARED 5
415 #define MMF_DUMP_ELF_HEADERS 6
416 #define MMF_DUMP_HUGETLB_PRIVATE 7
417 #define MMF_DUMP_HUGETLB_SHARED 8
418
419 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
420 #define MMF_DUMP_FILTER_BITS 7
421 #define MMF_DUMP_FILTER_MASK \
422 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
423 #define MMF_DUMP_FILTER_DEFAULT \
424 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
425 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
426
427 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
428 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
429 #else
430 # define MMF_DUMP_MASK_DEFAULT_ELF 0
431 #endif
432 /* leave room for more dump flags */
433 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
434
435 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
436
437 struct sighand_struct {
438 atomic_t count;
439 struct k_sigaction action[_NSIG];
440 spinlock_t siglock;
441 wait_queue_head_t signalfd_wqh;
442 };
443
444 struct pacct_struct {
445 int ac_flag;
446 long ac_exitcode;
447 unsigned long ac_mem;
448 cputime_t ac_utime, ac_stime;
449 unsigned long ac_minflt, ac_majflt;
450 };
451
452 struct cpu_itimer {
453 cputime_t expires;
454 cputime_t incr;
455 u32 error;
456 u32 incr_error;
457 };
458
459 /**
460 * struct task_cputime - collected CPU time counts
461 * @utime: time spent in user mode, in &cputime_t units
462 * @stime: time spent in kernel mode, in &cputime_t units
463 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
464 *
465 * This structure groups together three kinds of CPU time that are
466 * tracked for threads and thread groups. Most things considering
467 * CPU time want to group these counts together and treat all three
468 * of them in parallel.
469 */
470 struct task_cputime {
471 cputime_t utime;
472 cputime_t stime;
473 unsigned long long sum_exec_runtime;
474 };
475 /* Alternate field names when used to cache expirations. */
476 #define prof_exp stime
477 #define virt_exp utime
478 #define sched_exp sum_exec_runtime
479
480 #define INIT_CPUTIME \
481 (struct task_cputime) { \
482 .utime = cputime_zero, \
483 .stime = cputime_zero, \
484 .sum_exec_runtime = 0, \
485 }
486
487 /*
488 * Disable preemption until the scheduler is running.
489 * Reset by start_kernel()->sched_init()->init_idle().
490 *
491 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
492 * before the scheduler is active -- see should_resched().
493 */
494 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
495
496 /**
497 * struct thread_group_cputimer - thread group interval timer counts
498 * @cputime: thread group interval timers.
499 * @running: non-zero when there are timers running and
500 * @cputime receives updates.
501 * @lock: lock for fields in this struct.
502 *
503 * This structure contains the version of task_cputime, above, that is
504 * used for thread group CPU timer calculations.
505 */
506 struct thread_group_cputimer {
507 struct task_cputime cputime;
508 int running;
509 spinlock_t lock;
510 };
511
512 /*
513 * NOTE! "signal_struct" does not have it's own
514 * locking, because a shared signal_struct always
515 * implies a shared sighand_struct, so locking
516 * sighand_struct is always a proper superset of
517 * the locking of signal_struct.
518 */
519 struct signal_struct {
520 atomic_t sigcnt;
521 atomic_t live;
522 int nr_threads;
523
524 wait_queue_head_t wait_chldexit; /* for wait4() */
525
526 /* current thread group signal load-balancing target: */
527 struct task_struct *curr_target;
528
529 /* shared signal handling: */
530 struct sigpending shared_pending;
531
532 /* thread group exit support */
533 int group_exit_code;
534 /* overloaded:
535 * - notify group_exit_task when ->count is equal to notify_count
536 * - everyone except group_exit_task is stopped during signal delivery
537 * of fatal signals, group_exit_task processes the signal.
538 */
539 int notify_count;
540 struct task_struct *group_exit_task;
541
542 /* thread group stop support, overloads group_exit_code too */
543 int group_stop_count;
544 unsigned int flags; /* see SIGNAL_* flags below */
545
546 /* POSIX.1b Interval Timers */
547 struct list_head posix_timers;
548
549 /* ITIMER_REAL timer for the process */
550 struct hrtimer real_timer;
551 struct pid *leader_pid;
552 ktime_t it_real_incr;
553
554 /*
555 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
556 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
557 * values are defined to 0 and 1 respectively
558 */
559 struct cpu_itimer it[2];
560
561 /*
562 * Thread group totals for process CPU timers.
563 * See thread_group_cputimer(), et al, for details.
564 */
565 struct thread_group_cputimer cputimer;
566
567 /* Earliest-expiration cache. */
568 struct task_cputime cputime_expires;
569
570 struct list_head cpu_timers[3];
571
572 struct pid *tty_old_pgrp;
573
574 /* boolean value for session group leader */
575 int leader;
576
577 struct tty_struct *tty; /* NULL if no tty */
578
579 /*
580 * Cumulative resource counters for dead threads in the group,
581 * and for reaped dead child processes forked by this group.
582 * Live threads maintain their own counters and add to these
583 * in __exit_signal, except for the group leader.
584 */
585 cputime_t utime, stime, cutime, cstime;
586 cputime_t gtime;
587 cputime_t cgtime;
588 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
589 cputime_t prev_utime, prev_stime;
590 #endif
591 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
592 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
593 unsigned long inblock, oublock, cinblock, coublock;
594 unsigned long maxrss, cmaxrss;
595 struct task_io_accounting ioac;
596
597 /*
598 * Cumulative ns of schedule CPU time fo dead threads in the
599 * group, not including a zombie group leader, (This only differs
600 * from jiffies_to_ns(utime + stime) if sched_clock uses something
601 * other than jiffies.)
602 */
603 unsigned long long sum_sched_runtime;
604
605 /*
606 * We don't bother to synchronize most readers of this at all,
607 * because there is no reader checking a limit that actually needs
608 * to get both rlim_cur and rlim_max atomically, and either one
609 * alone is a single word that can safely be read normally.
610 * getrlimit/setrlimit use task_lock(current->group_leader) to
611 * protect this instead of the siglock, because they really
612 * have no need to disable irqs.
613 */
614 struct rlimit rlim[RLIM_NLIMITS];
615
616 #ifdef CONFIG_BSD_PROCESS_ACCT
617 struct pacct_struct pacct; /* per-process accounting information */
618 #endif
619 #ifdef CONFIG_TASKSTATS
620 struct taskstats *stats;
621 #endif
622 #ifdef CONFIG_AUDIT
623 unsigned audit_tty;
624 struct tty_audit_buf *tty_audit_buf;
625 #endif
626
627 int oom_adj; /* OOM kill score adjustment (bit shift) */
628 int oom_score_adj; /* OOM kill score adjustment */
629
630 struct mutex cred_guard_mutex; /* guard against foreign influences on
631 * credential calculations
632 * (notably. ptrace) */
633 };
634
635 /* Context switch must be unlocked if interrupts are to be enabled */
636 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
637 # define __ARCH_WANT_UNLOCKED_CTXSW
638 #endif
639
640 /*
641 * Bits in flags field of signal_struct.
642 */
643 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
644 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
645 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
646 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
647 /*
648 * Pending notifications to parent.
649 */
650 #define SIGNAL_CLD_STOPPED 0x00000010
651 #define SIGNAL_CLD_CONTINUED 0x00000020
652 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
653
654 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
655
656 /* If true, all threads except ->group_exit_task have pending SIGKILL */
657 static inline int signal_group_exit(const struct signal_struct *sig)
658 {
659 return (sig->flags & SIGNAL_GROUP_EXIT) ||
660 (sig->group_exit_task != NULL);
661 }
662
663 /*
664 * Some day this will be a full-fledged user tracking system..
665 */
666 struct user_struct {
667 atomic_t __count; /* reference count */
668 atomic_t processes; /* How many processes does this user have? */
669 atomic_t files; /* How many open files does this user have? */
670 atomic_t sigpending; /* How many pending signals does this user have? */
671 #ifdef CONFIG_INOTIFY_USER
672 atomic_t inotify_watches; /* How many inotify watches does this user have? */
673 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
674 #endif
675 #ifdef CONFIG_FANOTIFY
676 atomic_t fanotify_listeners;
677 #endif
678 #ifdef CONFIG_EPOLL
679 atomic_t epoll_watches; /* The number of file descriptors currently watched */
680 #endif
681 #ifdef CONFIG_POSIX_MQUEUE
682 /* protected by mq_lock */
683 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
684 #endif
685 unsigned long locked_shm; /* How many pages of mlocked shm ? */
686
687 #ifdef CONFIG_KEYS
688 struct key *uid_keyring; /* UID specific keyring */
689 struct key *session_keyring; /* UID's default session keyring */
690 #endif
691
692 /* Hash table maintenance information */
693 struct hlist_node uidhash_node;
694 uid_t uid;
695 struct user_namespace *user_ns;
696
697 #ifdef CONFIG_PERF_EVENTS
698 atomic_long_t locked_vm;
699 #endif
700 };
701
702 extern int uids_sysfs_init(void);
703
704 extern struct user_struct *find_user(uid_t);
705
706 extern struct user_struct root_user;
707 #define INIT_USER (&root_user)
708
709
710 struct backing_dev_info;
711 struct reclaim_state;
712
713 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
714 struct sched_info {
715 /* cumulative counters */
716 unsigned long pcount; /* # of times run on this cpu */
717 unsigned long long run_delay; /* time spent waiting on a runqueue */
718
719 /* timestamps */
720 unsigned long long last_arrival,/* when we last ran on a cpu */
721 last_queued; /* when we were last queued to run */
722 #ifdef CONFIG_SCHEDSTATS
723 /* BKL stats */
724 unsigned int bkl_count;
725 #endif
726 };
727 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
728
729 #ifdef CONFIG_TASK_DELAY_ACCT
730 struct task_delay_info {
731 spinlock_t lock;
732 unsigned int flags; /* Private per-task flags */
733
734 /* For each stat XXX, add following, aligned appropriately
735 *
736 * struct timespec XXX_start, XXX_end;
737 * u64 XXX_delay;
738 * u32 XXX_count;
739 *
740 * Atomicity of updates to XXX_delay, XXX_count protected by
741 * single lock above (split into XXX_lock if contention is an issue).
742 */
743
744 /*
745 * XXX_count is incremented on every XXX operation, the delay
746 * associated with the operation is added to XXX_delay.
747 * XXX_delay contains the accumulated delay time in nanoseconds.
748 */
749 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
750 u64 blkio_delay; /* wait for sync block io completion */
751 u64 swapin_delay; /* wait for swapin block io completion */
752 u32 blkio_count; /* total count of the number of sync block */
753 /* io operations performed */
754 u32 swapin_count; /* total count of the number of swapin block */
755 /* io operations performed */
756
757 struct timespec freepages_start, freepages_end;
758 u64 freepages_delay; /* wait for memory reclaim */
759 u32 freepages_count; /* total count of memory reclaim */
760 };
761 #endif /* CONFIG_TASK_DELAY_ACCT */
762
763 static inline int sched_info_on(void)
764 {
765 #ifdef CONFIG_SCHEDSTATS
766 return 1;
767 #elif defined(CONFIG_TASK_DELAY_ACCT)
768 extern int delayacct_on;
769 return delayacct_on;
770 #else
771 return 0;
772 #endif
773 }
774
775 enum cpu_idle_type {
776 CPU_IDLE,
777 CPU_NOT_IDLE,
778 CPU_NEWLY_IDLE,
779 CPU_MAX_IDLE_TYPES
780 };
781
782 /*
783 * sched-domains (multiprocessor balancing) declarations:
784 */
785
786 /*
787 * Increase resolution of nice-level calculations:
788 */
789 #define SCHED_LOAD_SHIFT 10
790 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
791
792 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
793
794 #ifdef CONFIG_SMP
795 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
796 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
797 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
798 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
799 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
800 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
801 #define SD_PREFER_LOCAL 0x0040 /* Prefer to keep tasks local to this domain */
802 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
803 #define SD_POWERSAVINGS_BALANCE 0x0100 /* Balance for power savings */
804 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
805 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
806 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
807 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
808
809 enum powersavings_balance_level {
810 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */
811 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package
812 * first for long running threads
813 */
814 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle
815 * cpu package for power savings
816 */
817 MAX_POWERSAVINGS_BALANCE_LEVELS
818 };
819
820 extern int sched_mc_power_savings, sched_smt_power_savings;
821
822 static inline int sd_balance_for_mc_power(void)
823 {
824 if (sched_smt_power_savings)
825 return SD_POWERSAVINGS_BALANCE;
826
827 if (!sched_mc_power_savings)
828 return SD_PREFER_SIBLING;
829
830 return 0;
831 }
832
833 static inline int sd_balance_for_package_power(void)
834 {
835 if (sched_mc_power_savings | sched_smt_power_savings)
836 return SD_POWERSAVINGS_BALANCE;
837
838 return SD_PREFER_SIBLING;
839 }
840
841 extern int __weak arch_sd_sibiling_asym_packing(void);
842
843 /*
844 * Optimise SD flags for power savings:
845 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings.
846 * Keep default SD flags if sched_{smt,mc}_power_saving=0
847 */
848
849 static inline int sd_power_saving_flags(void)
850 {
851 if (sched_mc_power_savings | sched_smt_power_savings)
852 return SD_BALANCE_NEWIDLE;
853
854 return 0;
855 }
856
857 struct sched_group {
858 struct sched_group *next; /* Must be a circular list */
859
860 /*
861 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
862 * single CPU.
863 */
864 unsigned int cpu_power, cpu_power_orig;
865
866 /*
867 * The CPUs this group covers.
868 *
869 * NOTE: this field is variable length. (Allocated dynamically
870 * by attaching extra space to the end of the structure,
871 * depending on how many CPUs the kernel has booted up with)
872 *
873 * It is also be embedded into static data structures at build
874 * time. (See 'struct static_sched_group' in kernel/sched.c)
875 */
876 unsigned long cpumask[0];
877 };
878
879 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
880 {
881 return to_cpumask(sg->cpumask);
882 }
883
884 enum sched_domain_level {
885 SD_LV_NONE = 0,
886 SD_LV_SIBLING,
887 SD_LV_MC,
888 SD_LV_BOOK,
889 SD_LV_CPU,
890 SD_LV_NODE,
891 SD_LV_ALLNODES,
892 SD_LV_MAX
893 };
894
895 struct sched_domain_attr {
896 int relax_domain_level;
897 };
898
899 #define SD_ATTR_INIT (struct sched_domain_attr) { \
900 .relax_domain_level = -1, \
901 }
902
903 struct sched_domain {
904 /* These fields must be setup */
905 struct sched_domain *parent; /* top domain must be null terminated */
906 struct sched_domain *child; /* bottom domain must be null terminated */
907 struct sched_group *groups; /* the balancing groups of the domain */
908 unsigned long min_interval; /* Minimum balance interval ms */
909 unsigned long max_interval; /* Maximum balance interval ms */
910 unsigned int busy_factor; /* less balancing by factor if busy */
911 unsigned int imbalance_pct; /* No balance until over watermark */
912 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
913 unsigned int busy_idx;
914 unsigned int idle_idx;
915 unsigned int newidle_idx;
916 unsigned int wake_idx;
917 unsigned int forkexec_idx;
918 unsigned int smt_gain;
919 int flags; /* See SD_* */
920 enum sched_domain_level level;
921
922 /* Runtime fields. */
923 unsigned long last_balance; /* init to jiffies. units in jiffies */
924 unsigned int balance_interval; /* initialise to 1. units in ms. */
925 unsigned int nr_balance_failed; /* initialise to 0 */
926
927 u64 last_update;
928
929 #ifdef CONFIG_SCHEDSTATS
930 /* load_balance() stats */
931 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
932 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
933 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
934 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
935 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
936 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
937 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
938 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
939
940 /* Active load balancing */
941 unsigned int alb_count;
942 unsigned int alb_failed;
943 unsigned int alb_pushed;
944
945 /* SD_BALANCE_EXEC stats */
946 unsigned int sbe_count;
947 unsigned int sbe_balanced;
948 unsigned int sbe_pushed;
949
950 /* SD_BALANCE_FORK stats */
951 unsigned int sbf_count;
952 unsigned int sbf_balanced;
953 unsigned int sbf_pushed;
954
955 /* try_to_wake_up() stats */
956 unsigned int ttwu_wake_remote;
957 unsigned int ttwu_move_affine;
958 unsigned int ttwu_move_balance;
959 #endif
960 #ifdef CONFIG_SCHED_DEBUG
961 char *name;
962 #endif
963
964 unsigned int span_weight;
965 /*
966 * Span of all CPUs in this domain.
967 *
968 * NOTE: this field is variable length. (Allocated dynamically
969 * by attaching extra space to the end of the structure,
970 * depending on how many CPUs the kernel has booted up with)
971 *
972 * It is also be embedded into static data structures at build
973 * time. (See 'struct static_sched_domain' in kernel/sched.c)
974 */
975 unsigned long span[0];
976 };
977
978 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
979 {
980 return to_cpumask(sd->span);
981 }
982
983 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
984 struct sched_domain_attr *dattr_new);
985
986 /* Allocate an array of sched domains, for partition_sched_domains(). */
987 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
988 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
989
990 /* Test a flag in parent sched domain */
991 static inline int test_sd_parent(struct sched_domain *sd, int flag)
992 {
993 if (sd->parent && (sd->parent->flags & flag))
994 return 1;
995
996 return 0;
997 }
998
999 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
1000 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
1001
1002 #else /* CONFIG_SMP */
1003
1004 struct sched_domain_attr;
1005
1006 static inline void
1007 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1008 struct sched_domain_attr *dattr_new)
1009 {
1010 }
1011 #endif /* !CONFIG_SMP */
1012
1013
1014 struct io_context; /* See blkdev.h */
1015
1016
1017 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1018 extern void prefetch_stack(struct task_struct *t);
1019 #else
1020 static inline void prefetch_stack(struct task_struct *t) { }
1021 #endif
1022
1023 struct audit_context; /* See audit.c */
1024 struct mempolicy;
1025 struct pipe_inode_info;
1026 struct uts_namespace;
1027
1028 struct rq;
1029 struct sched_domain;
1030
1031 /*
1032 * wake flags
1033 */
1034 #define WF_SYNC 0x01 /* waker goes to sleep after wakup */
1035 #define WF_FORK 0x02 /* child wakeup after fork */
1036
1037 #define ENQUEUE_WAKEUP 1
1038 #define ENQUEUE_WAKING 2
1039 #define ENQUEUE_HEAD 4
1040
1041 #define DEQUEUE_SLEEP 1
1042
1043 struct sched_class {
1044 const struct sched_class *next;
1045
1046 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1047 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1048 void (*yield_task) (struct rq *rq);
1049
1050 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1051
1052 struct task_struct * (*pick_next_task) (struct rq *rq);
1053 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1054
1055 #ifdef CONFIG_SMP
1056 int (*select_task_rq)(struct rq *rq, struct task_struct *p,
1057 int sd_flag, int flags);
1058
1059 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1060 void (*post_schedule) (struct rq *this_rq);
1061 void (*task_waking) (struct rq *this_rq, struct task_struct *task);
1062 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1063
1064 void (*set_cpus_allowed)(struct task_struct *p,
1065 const struct cpumask *newmask);
1066
1067 void (*rq_online)(struct rq *rq);
1068 void (*rq_offline)(struct rq *rq);
1069 #endif
1070
1071 void (*set_curr_task) (struct rq *rq);
1072 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1073 void (*task_fork) (struct task_struct *p);
1074
1075 void (*switched_from) (struct rq *this_rq, struct task_struct *task,
1076 int running);
1077 void (*switched_to) (struct rq *this_rq, struct task_struct *task,
1078 int running);
1079 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1080 int oldprio, int running);
1081
1082 unsigned int (*get_rr_interval) (struct rq *rq,
1083 struct task_struct *task);
1084
1085 #ifdef CONFIG_FAIR_GROUP_SCHED
1086 void (*task_move_group) (struct task_struct *p, int on_rq);
1087 #endif
1088 };
1089
1090 struct load_weight {
1091 unsigned long weight, inv_weight;
1092 };
1093
1094 #ifdef CONFIG_SCHEDSTATS
1095 struct sched_statistics {
1096 u64 wait_start;
1097 u64 wait_max;
1098 u64 wait_count;
1099 u64 wait_sum;
1100 u64 iowait_count;
1101 u64 iowait_sum;
1102
1103 u64 sleep_start;
1104 u64 sleep_max;
1105 s64 sum_sleep_runtime;
1106
1107 u64 block_start;
1108 u64 block_max;
1109 u64 exec_max;
1110 u64 slice_max;
1111
1112 u64 nr_migrations_cold;
1113 u64 nr_failed_migrations_affine;
1114 u64 nr_failed_migrations_running;
1115 u64 nr_failed_migrations_hot;
1116 u64 nr_forced_migrations;
1117
1118 u64 nr_wakeups;
1119 u64 nr_wakeups_sync;
1120 u64 nr_wakeups_migrate;
1121 u64 nr_wakeups_local;
1122 u64 nr_wakeups_remote;
1123 u64 nr_wakeups_affine;
1124 u64 nr_wakeups_affine_attempts;
1125 u64 nr_wakeups_passive;
1126 u64 nr_wakeups_idle;
1127 };
1128 #endif
1129
1130 struct sched_entity {
1131 struct load_weight load; /* for load-balancing */
1132 struct rb_node run_node;
1133 struct list_head group_node;
1134 unsigned int on_rq;
1135
1136 u64 exec_start;
1137 u64 sum_exec_runtime;
1138 u64 vruntime;
1139 u64 prev_sum_exec_runtime;
1140
1141 u64 nr_migrations;
1142
1143 #ifdef CONFIG_SCHEDSTATS
1144 struct sched_statistics statistics;
1145 #endif
1146
1147 #ifdef CONFIG_FAIR_GROUP_SCHED
1148 struct sched_entity *parent;
1149 /* rq on which this entity is (to be) queued: */
1150 struct cfs_rq *cfs_rq;
1151 /* rq "owned" by this entity/group: */
1152 struct cfs_rq *my_q;
1153 #endif
1154 };
1155
1156 struct sched_rt_entity {
1157 struct list_head run_list;
1158 unsigned long timeout;
1159 unsigned int time_slice;
1160 int nr_cpus_allowed;
1161
1162 struct sched_rt_entity *back;
1163 #ifdef CONFIG_RT_GROUP_SCHED
1164 struct sched_rt_entity *parent;
1165 /* rq on which this entity is (to be) queued: */
1166 struct rt_rq *rt_rq;
1167 /* rq "owned" by this entity/group: */
1168 struct rt_rq *my_q;
1169 #endif
1170 };
1171
1172 struct rcu_node;
1173
1174 enum perf_event_task_context {
1175 perf_invalid_context = -1,
1176 perf_hw_context = 0,
1177 perf_sw_context,
1178 perf_nr_task_contexts,
1179 };
1180
1181 struct task_struct {
1182 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1183 void *stack;
1184 atomic_t usage;
1185 unsigned int flags; /* per process flags, defined below */
1186 unsigned int ptrace;
1187
1188 int lock_depth; /* BKL lock depth */
1189
1190 #ifdef CONFIG_SMP
1191 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1192 int oncpu;
1193 #endif
1194 #endif
1195
1196 int prio, static_prio, normal_prio;
1197 unsigned int rt_priority;
1198 const struct sched_class *sched_class;
1199 struct sched_entity se;
1200 struct sched_rt_entity rt;
1201
1202 #ifdef CONFIG_PREEMPT_NOTIFIERS
1203 /* list of struct preempt_notifier: */
1204 struct hlist_head preempt_notifiers;
1205 #endif
1206
1207 /*
1208 * fpu_counter contains the number of consecutive context switches
1209 * that the FPU is used. If this is over a threshold, the lazy fpu
1210 * saving becomes unlazy to save the trap. This is an unsigned char
1211 * so that after 256 times the counter wraps and the behavior turns
1212 * lazy again; this to deal with bursty apps that only use FPU for
1213 * a short time
1214 */
1215 unsigned char fpu_counter;
1216 #ifdef CONFIG_BLK_DEV_IO_TRACE
1217 unsigned int btrace_seq;
1218 #endif
1219
1220 unsigned int policy;
1221 cpumask_t cpus_allowed;
1222
1223 #ifdef CONFIG_PREEMPT_RCU
1224 int rcu_read_lock_nesting;
1225 char rcu_read_unlock_special;
1226 struct list_head rcu_node_entry;
1227 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1228 #ifdef CONFIG_TREE_PREEMPT_RCU
1229 struct rcu_node *rcu_blocked_node;
1230 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1231
1232 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1233 struct sched_info sched_info;
1234 #endif
1235
1236 struct list_head tasks;
1237 struct plist_node pushable_tasks;
1238
1239 struct mm_struct *mm, *active_mm;
1240 #if defined(SPLIT_RSS_COUNTING)
1241 struct task_rss_stat rss_stat;
1242 #endif
1243 /* task state */
1244 int exit_state;
1245 int exit_code, exit_signal;
1246 int pdeath_signal; /* The signal sent when the parent dies */
1247 /* ??? */
1248 unsigned int personality;
1249 unsigned did_exec:1;
1250 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1251 * execve */
1252 unsigned in_iowait:1;
1253
1254
1255 /* Revert to default priority/policy when forking */
1256 unsigned sched_reset_on_fork:1;
1257
1258 pid_t pid;
1259 pid_t tgid;
1260
1261 #ifdef CONFIG_CC_STACKPROTECTOR
1262 /* Canary value for the -fstack-protector gcc feature */
1263 unsigned long stack_canary;
1264 #endif
1265
1266 /*
1267 * pointers to (original) parent process, youngest child, younger sibling,
1268 * older sibling, respectively. (p->father can be replaced with
1269 * p->real_parent->pid)
1270 */
1271 struct task_struct *real_parent; /* real parent process */
1272 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1273 /*
1274 * children/sibling forms the list of my natural children
1275 */
1276 struct list_head children; /* list of my children */
1277 struct list_head sibling; /* linkage in my parent's children list */
1278 struct task_struct *group_leader; /* threadgroup leader */
1279
1280 /*
1281 * ptraced is the list of tasks this task is using ptrace on.
1282 * This includes both natural children and PTRACE_ATTACH targets.
1283 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1284 */
1285 struct list_head ptraced;
1286 struct list_head ptrace_entry;
1287
1288 /* PID/PID hash table linkage. */
1289 struct pid_link pids[PIDTYPE_MAX];
1290 struct list_head thread_group;
1291
1292 struct completion *vfork_done; /* for vfork() */
1293 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1294 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1295
1296 cputime_t utime, stime, utimescaled, stimescaled;
1297 cputime_t gtime;
1298 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1299 cputime_t prev_utime, prev_stime;
1300 #endif
1301 unsigned long nvcsw, nivcsw; /* context switch counts */
1302 struct timespec start_time; /* monotonic time */
1303 struct timespec real_start_time; /* boot based time */
1304 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1305 unsigned long min_flt, maj_flt;
1306
1307 struct task_cputime cputime_expires;
1308 struct list_head cpu_timers[3];
1309
1310 /* process credentials */
1311 const struct cred __rcu *real_cred; /* objective and real subjective task
1312 * credentials (COW) */
1313 const struct cred __rcu *cred; /* effective (overridable) subjective task
1314 * credentials (COW) */
1315 struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */
1316
1317 char comm[TASK_COMM_LEN]; /* executable name excluding path
1318 - access with [gs]et_task_comm (which lock
1319 it with task_lock())
1320 - initialized normally by setup_new_exec */
1321 /* file system info */
1322 int link_count, total_link_count;
1323 #ifdef CONFIG_SYSVIPC
1324 /* ipc stuff */
1325 struct sysv_sem sysvsem;
1326 #endif
1327 #ifdef CONFIG_DETECT_HUNG_TASK
1328 /* hung task detection */
1329 unsigned long last_switch_count;
1330 #endif
1331 /* CPU-specific state of this task */
1332 struct thread_struct thread;
1333 /* filesystem information */
1334 struct fs_struct *fs;
1335 /* open file information */
1336 struct files_struct *files;
1337 /* namespaces */
1338 struct nsproxy *nsproxy;
1339 /* signal handlers */
1340 struct signal_struct *signal;
1341 struct sighand_struct *sighand;
1342
1343 sigset_t blocked, real_blocked;
1344 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1345 struct sigpending pending;
1346
1347 unsigned long sas_ss_sp;
1348 size_t sas_ss_size;
1349 int (*notifier)(void *priv);
1350 void *notifier_data;
1351 sigset_t *notifier_mask;
1352 struct audit_context *audit_context;
1353 #ifdef CONFIG_AUDITSYSCALL
1354 uid_t loginuid;
1355 unsigned int sessionid;
1356 #endif
1357 seccomp_t seccomp;
1358
1359 /* Thread group tracking */
1360 u32 parent_exec_id;
1361 u32 self_exec_id;
1362 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1363 * mempolicy */
1364 spinlock_t alloc_lock;
1365
1366 #ifdef CONFIG_GENERIC_HARDIRQS
1367 /* IRQ handler threads */
1368 struct irqaction *irqaction;
1369 #endif
1370
1371 /* Protection of the PI data structures: */
1372 raw_spinlock_t pi_lock;
1373
1374 #ifdef CONFIG_RT_MUTEXES
1375 /* PI waiters blocked on a rt_mutex held by this task */
1376 struct plist_head pi_waiters;
1377 /* Deadlock detection and priority inheritance handling */
1378 struct rt_mutex_waiter *pi_blocked_on;
1379 #endif
1380
1381 #ifdef CONFIG_DEBUG_MUTEXES
1382 /* mutex deadlock detection */
1383 struct mutex_waiter *blocked_on;
1384 #endif
1385 #ifdef CONFIG_TRACE_IRQFLAGS
1386 unsigned int irq_events;
1387 unsigned long hardirq_enable_ip;
1388 unsigned long hardirq_disable_ip;
1389 unsigned int hardirq_enable_event;
1390 unsigned int hardirq_disable_event;
1391 int hardirqs_enabled;
1392 int hardirq_context;
1393 unsigned long softirq_disable_ip;
1394 unsigned long softirq_enable_ip;
1395 unsigned int softirq_disable_event;
1396 unsigned int softirq_enable_event;
1397 int softirqs_enabled;
1398 int softirq_context;
1399 #endif
1400 #ifdef CONFIG_LOCKDEP
1401 # define MAX_LOCK_DEPTH 48UL
1402 u64 curr_chain_key;
1403 int lockdep_depth;
1404 unsigned int lockdep_recursion;
1405 struct held_lock held_locks[MAX_LOCK_DEPTH];
1406 gfp_t lockdep_reclaim_gfp;
1407 #endif
1408
1409 /* journalling filesystem info */
1410 void *journal_info;
1411
1412 /* stacked block device info */
1413 struct bio_list *bio_list;
1414
1415 /* VM state */
1416 struct reclaim_state *reclaim_state;
1417
1418 struct backing_dev_info *backing_dev_info;
1419
1420 struct io_context *io_context;
1421
1422 unsigned long ptrace_message;
1423 siginfo_t *last_siginfo; /* For ptrace use. */
1424 struct task_io_accounting ioac;
1425 #if defined(CONFIG_TASK_XACCT)
1426 u64 acct_rss_mem1; /* accumulated rss usage */
1427 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1428 cputime_t acct_timexpd; /* stime + utime since last update */
1429 #endif
1430 #ifdef CONFIG_CPUSETS
1431 nodemask_t mems_allowed; /* Protected by alloc_lock */
1432 int mems_allowed_change_disable;
1433 int cpuset_mem_spread_rotor;
1434 int cpuset_slab_spread_rotor;
1435 #endif
1436 #ifdef CONFIG_CGROUPS
1437 /* Control Group info protected by css_set_lock */
1438 struct css_set __rcu *cgroups;
1439 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1440 struct list_head cg_list;
1441 #endif
1442 #ifdef CONFIG_FUTEX
1443 struct robust_list_head __user *robust_list;
1444 #ifdef CONFIG_COMPAT
1445 struct compat_robust_list_head __user *compat_robust_list;
1446 #endif
1447 struct list_head pi_state_list;
1448 struct futex_pi_state *pi_state_cache;
1449 #endif
1450 #ifdef CONFIG_PERF_EVENTS
1451 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1452 struct mutex perf_event_mutex;
1453 struct list_head perf_event_list;
1454 #endif
1455 #ifdef CONFIG_NUMA
1456 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1457 short il_next;
1458 #endif
1459 atomic_t fs_excl; /* holding fs exclusive resources */
1460 struct rcu_head rcu;
1461
1462 /*
1463 * cache last used pipe for splice
1464 */
1465 struct pipe_inode_info *splice_pipe;
1466 #ifdef CONFIG_TASK_DELAY_ACCT
1467 struct task_delay_info *delays;
1468 #endif
1469 #ifdef CONFIG_FAULT_INJECTION
1470 int make_it_fail;
1471 #endif
1472 struct prop_local_single dirties;
1473 #ifdef CONFIG_LATENCYTOP
1474 int latency_record_count;
1475 struct latency_record latency_record[LT_SAVECOUNT];
1476 #endif
1477 /*
1478 * time slack values; these are used to round up poll() and
1479 * select() etc timeout values. These are in nanoseconds.
1480 */
1481 unsigned long timer_slack_ns;
1482 unsigned long default_timer_slack_ns;
1483
1484 struct list_head *scm_work_list;
1485 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1486 /* Index of current stored address in ret_stack */
1487 int curr_ret_stack;
1488 /* Stack of return addresses for return function tracing */
1489 struct ftrace_ret_stack *ret_stack;
1490 /* time stamp for last schedule */
1491 unsigned long long ftrace_timestamp;
1492 /*
1493 * Number of functions that haven't been traced
1494 * because of depth overrun.
1495 */
1496 atomic_t trace_overrun;
1497 /* Pause for the tracing */
1498 atomic_t tracing_graph_pause;
1499 #endif
1500 #ifdef CONFIG_TRACING
1501 /* state flags for use by tracers */
1502 unsigned long trace;
1503 /* bitmask of trace recursion */
1504 unsigned long trace_recursion;
1505 #endif /* CONFIG_TRACING */
1506 #ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */
1507 struct memcg_batch_info {
1508 int do_batch; /* incremented when batch uncharge started */
1509 struct mem_cgroup *memcg; /* target memcg of uncharge */
1510 unsigned long bytes; /* uncharged usage */
1511 unsigned long memsw_bytes; /* uncharged mem+swap usage */
1512 } memcg_batch;
1513 #endif
1514 };
1515
1516 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1517 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1518
1519 /*
1520 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1521 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1522 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1523 * values are inverted: lower p->prio value means higher priority.
1524 *
1525 * The MAX_USER_RT_PRIO value allows the actual maximum
1526 * RT priority to be separate from the value exported to
1527 * user-space. This allows kernel threads to set their
1528 * priority to a value higher than any user task. Note:
1529 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1530 */
1531
1532 #define MAX_USER_RT_PRIO 100
1533 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1534
1535 #define MAX_PRIO (MAX_RT_PRIO + 40)
1536 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1537
1538 static inline int rt_prio(int prio)
1539 {
1540 if (unlikely(prio < MAX_RT_PRIO))
1541 return 1;
1542 return 0;
1543 }
1544
1545 static inline int rt_task(struct task_struct *p)
1546 {
1547 return rt_prio(p->prio);
1548 }
1549
1550 static inline struct pid *task_pid(struct task_struct *task)
1551 {
1552 return task->pids[PIDTYPE_PID].pid;
1553 }
1554
1555 static inline struct pid *task_tgid(struct task_struct *task)
1556 {
1557 return task->group_leader->pids[PIDTYPE_PID].pid;
1558 }
1559
1560 /*
1561 * Without tasklist or rcu lock it is not safe to dereference
1562 * the result of task_pgrp/task_session even if task == current,
1563 * we can race with another thread doing sys_setsid/sys_setpgid.
1564 */
1565 static inline struct pid *task_pgrp(struct task_struct *task)
1566 {
1567 return task->group_leader->pids[PIDTYPE_PGID].pid;
1568 }
1569
1570 static inline struct pid *task_session(struct task_struct *task)
1571 {
1572 return task->group_leader->pids[PIDTYPE_SID].pid;
1573 }
1574
1575 struct pid_namespace;
1576
1577 /*
1578 * the helpers to get the task's different pids as they are seen
1579 * from various namespaces
1580 *
1581 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1582 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1583 * current.
1584 * task_xid_nr_ns() : id seen from the ns specified;
1585 *
1586 * set_task_vxid() : assigns a virtual id to a task;
1587 *
1588 * see also pid_nr() etc in include/linux/pid.h
1589 */
1590 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1591 struct pid_namespace *ns);
1592
1593 static inline pid_t task_pid_nr(struct task_struct *tsk)
1594 {
1595 return tsk->pid;
1596 }
1597
1598 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1599 struct pid_namespace *ns)
1600 {
1601 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1602 }
1603
1604 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1605 {
1606 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1607 }
1608
1609
1610 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1611 {
1612 return tsk->tgid;
1613 }
1614
1615 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1616
1617 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1618 {
1619 return pid_vnr(task_tgid(tsk));
1620 }
1621
1622
1623 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1624 struct pid_namespace *ns)
1625 {
1626 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1627 }
1628
1629 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1630 {
1631 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1632 }
1633
1634
1635 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1636 struct pid_namespace *ns)
1637 {
1638 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1639 }
1640
1641 static inline pid_t task_session_vnr(struct task_struct *tsk)
1642 {
1643 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1644 }
1645
1646 /* obsolete, do not use */
1647 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1648 {
1649 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1650 }
1651
1652 /**
1653 * pid_alive - check that a task structure is not stale
1654 * @p: Task structure to be checked.
1655 *
1656 * Test if a process is not yet dead (at most zombie state)
1657 * If pid_alive fails, then pointers within the task structure
1658 * can be stale and must not be dereferenced.
1659 */
1660 static inline int pid_alive(struct task_struct *p)
1661 {
1662 return p->pids[PIDTYPE_PID].pid != NULL;
1663 }
1664
1665 /**
1666 * is_global_init - check if a task structure is init
1667 * @tsk: Task structure to be checked.
1668 *
1669 * Check if a task structure is the first user space task the kernel created.
1670 */
1671 static inline int is_global_init(struct task_struct *tsk)
1672 {
1673 return tsk->pid == 1;
1674 }
1675
1676 /*
1677 * is_container_init:
1678 * check whether in the task is init in its own pid namespace.
1679 */
1680 extern int is_container_init(struct task_struct *tsk);
1681
1682 extern struct pid *cad_pid;
1683
1684 extern void free_task(struct task_struct *tsk);
1685 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1686
1687 extern void __put_task_struct(struct task_struct *t);
1688
1689 static inline void put_task_struct(struct task_struct *t)
1690 {
1691 if (atomic_dec_and_test(&t->usage))
1692 __put_task_struct(t);
1693 }
1694
1695 extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1696 extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1697
1698 /*
1699 * Per process flags
1700 */
1701 #define PF_KSOFTIRQD 0x00000001 /* I am ksoftirqd */
1702 #define PF_STARTING 0x00000002 /* being created */
1703 #define PF_EXITING 0x00000004 /* getting shut down */
1704 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1705 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1706 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1707 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1708 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1709 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1710 #define PF_DUMPCORE 0x00000200 /* dumped core */
1711 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1712 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1713 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1714 #define PF_FREEZING 0x00004000 /* freeze in progress. do not account to load */
1715 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1716 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1717 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1718 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1719 #define PF_OOM_ORIGIN 0x00080000 /* Allocating much memory to others */
1720 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1721 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1722 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1723 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1724 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1725 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1726 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1727 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1728 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1729 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1730 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1731 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */
1732
1733 /*
1734 * Only the _current_ task can read/write to tsk->flags, but other
1735 * tasks can access tsk->flags in readonly mode for example
1736 * with tsk_used_math (like during threaded core dumping).
1737 * There is however an exception to this rule during ptrace
1738 * or during fork: the ptracer task is allowed to write to the
1739 * child->flags of its traced child (same goes for fork, the parent
1740 * can write to the child->flags), because we're guaranteed the
1741 * child is not running and in turn not changing child->flags
1742 * at the same time the parent does it.
1743 */
1744 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1745 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1746 #define clear_used_math() clear_stopped_child_used_math(current)
1747 #define set_used_math() set_stopped_child_used_math(current)
1748 #define conditional_stopped_child_used_math(condition, child) \
1749 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1750 #define conditional_used_math(condition) \
1751 conditional_stopped_child_used_math(condition, current)
1752 #define copy_to_stopped_child_used_math(child) \
1753 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1754 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1755 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1756 #define used_math() tsk_used_math(current)
1757
1758 #ifdef CONFIG_PREEMPT_RCU
1759
1760 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1761 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1762
1763 static inline void rcu_copy_process(struct task_struct *p)
1764 {
1765 p->rcu_read_lock_nesting = 0;
1766 p->rcu_read_unlock_special = 0;
1767 #ifdef CONFIG_TREE_PREEMPT_RCU
1768 p->rcu_blocked_node = NULL;
1769 #endif
1770 INIT_LIST_HEAD(&p->rcu_node_entry);
1771 }
1772
1773 #else
1774
1775 static inline void rcu_copy_process(struct task_struct *p)
1776 {
1777 }
1778
1779 #endif
1780
1781 #ifdef CONFIG_SMP
1782 extern int set_cpus_allowed_ptr(struct task_struct *p,
1783 const struct cpumask *new_mask);
1784 #else
1785 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1786 const struct cpumask *new_mask)
1787 {
1788 if (!cpumask_test_cpu(0, new_mask))
1789 return -EINVAL;
1790 return 0;
1791 }
1792 #endif
1793
1794 #ifndef CONFIG_CPUMASK_OFFSTACK
1795 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1796 {
1797 return set_cpus_allowed_ptr(p, &new_mask);
1798 }
1799 #endif
1800
1801 /*
1802 * Do not use outside of architecture code which knows its limitations.
1803 *
1804 * sched_clock() has no promise of monotonicity or bounded drift between
1805 * CPUs, use (which you should not) requires disabling IRQs.
1806 *
1807 * Please use one of the three interfaces below.
1808 */
1809 extern unsigned long long notrace sched_clock(void);
1810 /*
1811 * See the comment in kernel/sched_clock.c
1812 */
1813 extern u64 cpu_clock(int cpu);
1814 extern u64 local_clock(void);
1815 extern u64 sched_clock_cpu(int cpu);
1816
1817
1818 extern void sched_clock_init(void);
1819
1820 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1821 static inline void sched_clock_tick(void)
1822 {
1823 }
1824
1825 static inline void sched_clock_idle_sleep_event(void)
1826 {
1827 }
1828
1829 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1830 {
1831 }
1832 #else
1833 /*
1834 * Architectures can set this to 1 if they have specified
1835 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1836 * but then during bootup it turns out that sched_clock()
1837 * is reliable after all:
1838 */
1839 extern int sched_clock_stable;
1840
1841 extern void sched_clock_tick(void);
1842 extern void sched_clock_idle_sleep_event(void);
1843 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1844 #endif
1845
1846 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1847 /*
1848 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1849 * The reason for this explicit opt-in is not to have perf penalty with
1850 * slow sched_clocks.
1851 */
1852 extern void enable_sched_clock_irqtime(void);
1853 extern void disable_sched_clock_irqtime(void);
1854 #else
1855 static inline void enable_sched_clock_irqtime(void) {}
1856 static inline void disable_sched_clock_irqtime(void) {}
1857 #endif
1858
1859 extern unsigned long long
1860 task_sched_runtime(struct task_struct *task);
1861 extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1862
1863 /* sched_exec is called by processes performing an exec */
1864 #ifdef CONFIG_SMP
1865 extern void sched_exec(void);
1866 #else
1867 #define sched_exec() {}
1868 #endif
1869
1870 extern void sched_clock_idle_sleep_event(void);
1871 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1872
1873 #ifdef CONFIG_HOTPLUG_CPU
1874 extern void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p);
1875 extern void idle_task_exit(void);
1876 #else
1877 static inline void idle_task_exit(void) {}
1878 #endif
1879
1880 extern void sched_idle_next(void);
1881
1882 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1883 extern void wake_up_idle_cpu(int cpu);
1884 #else
1885 static inline void wake_up_idle_cpu(int cpu) { }
1886 #endif
1887
1888 extern unsigned int sysctl_sched_latency;
1889 extern unsigned int sysctl_sched_min_granularity;
1890 extern unsigned int sysctl_sched_wakeup_granularity;
1891 extern unsigned int sysctl_sched_shares_ratelimit;
1892 extern unsigned int sysctl_sched_shares_thresh;
1893 extern unsigned int sysctl_sched_child_runs_first;
1894
1895 enum sched_tunable_scaling {
1896 SCHED_TUNABLESCALING_NONE,
1897 SCHED_TUNABLESCALING_LOG,
1898 SCHED_TUNABLESCALING_LINEAR,
1899 SCHED_TUNABLESCALING_END,
1900 };
1901 extern enum sched_tunable_scaling sysctl_sched_tunable_scaling;
1902
1903 #ifdef CONFIG_SCHED_DEBUG
1904 extern unsigned int sysctl_sched_migration_cost;
1905 extern unsigned int sysctl_sched_nr_migrate;
1906 extern unsigned int sysctl_sched_time_avg;
1907 extern unsigned int sysctl_timer_migration;
1908
1909 int sched_proc_update_handler(struct ctl_table *table, int write,
1910 void __user *buffer, size_t *length,
1911 loff_t *ppos);
1912 #endif
1913 #ifdef CONFIG_SCHED_DEBUG
1914 static inline unsigned int get_sysctl_timer_migration(void)
1915 {
1916 return sysctl_timer_migration;
1917 }
1918 #else
1919 static inline unsigned int get_sysctl_timer_migration(void)
1920 {
1921 return 1;
1922 }
1923 #endif
1924 extern unsigned int sysctl_sched_rt_period;
1925 extern int sysctl_sched_rt_runtime;
1926
1927 int sched_rt_handler(struct ctl_table *table, int write,
1928 void __user *buffer, size_t *lenp,
1929 loff_t *ppos);
1930
1931 extern unsigned int sysctl_sched_compat_yield;
1932
1933 #ifdef CONFIG_RT_MUTEXES
1934 extern int rt_mutex_getprio(struct task_struct *p);
1935 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1936 extern void rt_mutex_adjust_pi(struct task_struct *p);
1937 #else
1938 static inline int rt_mutex_getprio(struct task_struct *p)
1939 {
1940 return p->normal_prio;
1941 }
1942 # define rt_mutex_adjust_pi(p) do { } while (0)
1943 #endif
1944
1945 extern void set_user_nice(struct task_struct *p, long nice);
1946 extern int task_prio(const struct task_struct *p);
1947 extern int task_nice(const struct task_struct *p);
1948 extern int can_nice(const struct task_struct *p, const int nice);
1949 extern int task_curr(const struct task_struct *p);
1950 extern int idle_cpu(int cpu);
1951 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1952 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1953 struct sched_param *);
1954 extern struct task_struct *idle_task(int cpu);
1955 extern struct task_struct *curr_task(int cpu);
1956 extern void set_curr_task(int cpu, struct task_struct *p);
1957
1958 void yield(void);
1959
1960 /*
1961 * The default (Linux) execution domain.
1962 */
1963 extern struct exec_domain default_exec_domain;
1964
1965 union thread_union {
1966 struct thread_info thread_info;
1967 unsigned long stack[THREAD_SIZE/sizeof(long)];
1968 };
1969
1970 #ifndef __HAVE_ARCH_KSTACK_END
1971 static inline int kstack_end(void *addr)
1972 {
1973 /* Reliable end of stack detection:
1974 * Some APM bios versions misalign the stack
1975 */
1976 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1977 }
1978 #endif
1979
1980 extern union thread_union init_thread_union;
1981 extern struct task_struct init_task;
1982
1983 extern struct mm_struct init_mm;
1984
1985 extern struct pid_namespace init_pid_ns;
1986
1987 /*
1988 * find a task by one of its numerical ids
1989 *
1990 * find_task_by_pid_ns():
1991 * finds a task by its pid in the specified namespace
1992 * find_task_by_vpid():
1993 * finds a task by its virtual pid
1994 *
1995 * see also find_vpid() etc in include/linux/pid.h
1996 */
1997
1998 extern struct task_struct *find_task_by_vpid(pid_t nr);
1999 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2000 struct pid_namespace *ns);
2001
2002 extern void __set_special_pids(struct pid *pid);
2003
2004 /* per-UID process charging. */
2005 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
2006 static inline struct user_struct *get_uid(struct user_struct *u)
2007 {
2008 atomic_inc(&u->__count);
2009 return u;
2010 }
2011 extern void free_uid(struct user_struct *);
2012 extern void release_uids(struct user_namespace *ns);
2013
2014 #include <asm/current.h>
2015
2016 extern void do_timer(unsigned long ticks);
2017
2018 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2019 extern int wake_up_process(struct task_struct *tsk);
2020 extern void wake_up_new_task(struct task_struct *tsk,
2021 unsigned long clone_flags);
2022 #ifdef CONFIG_SMP
2023 extern void kick_process(struct task_struct *tsk);
2024 #else
2025 static inline void kick_process(struct task_struct *tsk) { }
2026 #endif
2027 extern void sched_fork(struct task_struct *p, int clone_flags);
2028 extern void sched_dead(struct task_struct *p);
2029
2030 extern void proc_caches_init(void);
2031 extern void flush_signals(struct task_struct *);
2032 extern void __flush_signals(struct task_struct *);
2033 extern void ignore_signals(struct task_struct *);
2034 extern void flush_signal_handlers(struct task_struct *, int force_default);
2035 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2036
2037 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2038 {
2039 unsigned long flags;
2040 int ret;
2041
2042 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2043 ret = dequeue_signal(tsk, mask, info);
2044 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2045
2046 return ret;
2047 }
2048
2049 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2050 sigset_t *mask);
2051 extern void unblock_all_signals(void);
2052 extern void release_task(struct task_struct * p);
2053 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2054 extern int force_sigsegv(int, struct task_struct *);
2055 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2056 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2057 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2058 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
2059 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2060 extern int kill_pid(struct pid *pid, int sig, int priv);
2061 extern int kill_proc_info(int, struct siginfo *, pid_t);
2062 extern int do_notify_parent(struct task_struct *, int);
2063 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2064 extern void force_sig(int, struct task_struct *);
2065 extern int send_sig(int, struct task_struct *, int);
2066 extern int zap_other_threads(struct task_struct *p);
2067 extern struct sigqueue *sigqueue_alloc(void);
2068 extern void sigqueue_free(struct sigqueue *);
2069 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2070 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2071 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2072
2073 static inline int kill_cad_pid(int sig, int priv)
2074 {
2075 return kill_pid(cad_pid, sig, priv);
2076 }
2077
2078 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2079 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2080 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2081 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2082
2083 /*
2084 * True if we are on the alternate signal stack.
2085 */
2086 static inline int on_sig_stack(unsigned long sp)
2087 {
2088 #ifdef CONFIG_STACK_GROWSUP
2089 return sp >= current->sas_ss_sp &&
2090 sp - current->sas_ss_sp < current->sas_ss_size;
2091 #else
2092 return sp > current->sas_ss_sp &&
2093 sp - current->sas_ss_sp <= current->sas_ss_size;
2094 #endif
2095 }
2096
2097 static inline int sas_ss_flags(unsigned long sp)
2098 {
2099 return (current->sas_ss_size == 0 ? SS_DISABLE
2100 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2101 }
2102
2103 /*
2104 * Routines for handling mm_structs
2105 */
2106 extern struct mm_struct * mm_alloc(void);
2107
2108 /* mmdrop drops the mm and the page tables */
2109 extern void __mmdrop(struct mm_struct *);
2110 static inline void mmdrop(struct mm_struct * mm)
2111 {
2112 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2113 __mmdrop(mm);
2114 }
2115
2116 /* mmput gets rid of the mappings and all user-space */
2117 extern void mmput(struct mm_struct *);
2118 /* Grab a reference to a task's mm, if it is not already going away */
2119 extern struct mm_struct *get_task_mm(struct task_struct *task);
2120 /* Remove the current tasks stale references to the old mm_struct */
2121 extern void mm_release(struct task_struct *, struct mm_struct *);
2122 /* Allocate a new mm structure and copy contents from tsk->mm */
2123 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2124
2125 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2126 struct task_struct *, struct pt_regs *);
2127 extern void flush_thread(void);
2128 extern void exit_thread(void);
2129
2130 extern void exit_files(struct task_struct *);
2131 extern void __cleanup_sighand(struct sighand_struct *);
2132
2133 extern void exit_itimers(struct signal_struct *);
2134 extern void flush_itimer_signals(void);
2135
2136 extern NORET_TYPE void do_group_exit(int);
2137
2138 extern void daemonize(const char *, ...);
2139 extern int allow_signal(int);
2140 extern int disallow_signal(int);
2141
2142 extern int do_execve(const char *,
2143 const char __user * const __user *,
2144 const char __user * const __user *, struct pt_regs *);
2145 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2146 struct task_struct *fork_idle(int);
2147
2148 extern void set_task_comm(struct task_struct *tsk, char *from);
2149 extern char *get_task_comm(char *to, struct task_struct *tsk);
2150
2151 #ifdef CONFIG_SMP
2152 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2153 #else
2154 static inline unsigned long wait_task_inactive(struct task_struct *p,
2155 long match_state)
2156 {
2157 return 1;
2158 }
2159 #endif
2160
2161 #define next_task(p) \
2162 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2163
2164 #define for_each_process(p) \
2165 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2166
2167 extern bool current_is_single_threaded(void);
2168
2169 /*
2170 * Careful: do_each_thread/while_each_thread is a double loop so
2171 * 'break' will not work as expected - use goto instead.
2172 */
2173 #define do_each_thread(g, t) \
2174 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2175
2176 #define while_each_thread(g, t) \
2177 while ((t = next_thread(t)) != g)
2178
2179 static inline int get_nr_threads(struct task_struct *tsk)
2180 {
2181 return tsk->signal->nr_threads;
2182 }
2183
2184 /* de_thread depends on thread_group_leader not being a pid based check */
2185 #define thread_group_leader(p) (p == p->group_leader)
2186
2187 /* Do to the insanities of de_thread it is possible for a process
2188 * to have the pid of the thread group leader without actually being
2189 * the thread group leader. For iteration through the pids in proc
2190 * all we care about is that we have a task with the appropriate
2191 * pid, we don't actually care if we have the right task.
2192 */
2193 static inline int has_group_leader_pid(struct task_struct *p)
2194 {
2195 return p->pid == p->tgid;
2196 }
2197
2198 static inline
2199 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2200 {
2201 return p1->tgid == p2->tgid;
2202 }
2203
2204 static inline struct task_struct *next_thread(const struct task_struct *p)
2205 {
2206 return list_entry_rcu(p->thread_group.next,
2207 struct task_struct, thread_group);
2208 }
2209
2210 static inline int thread_group_empty(struct task_struct *p)
2211 {
2212 return list_empty(&p->thread_group);
2213 }
2214
2215 #define delay_group_leader(p) \
2216 (thread_group_leader(p) && !thread_group_empty(p))
2217
2218 static inline int task_detached(struct task_struct *p)
2219 {
2220 return p->exit_signal == -1;
2221 }
2222
2223 /*
2224 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2225 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2226 * pins the final release of task.io_context. Also protects ->cpuset and
2227 * ->cgroup.subsys[].
2228 *
2229 * Nests both inside and outside of read_lock(&tasklist_lock).
2230 * It must not be nested with write_lock_irq(&tasklist_lock),
2231 * neither inside nor outside.
2232 */
2233 static inline void task_lock(struct task_struct *p)
2234 {
2235 spin_lock(&p->alloc_lock);
2236 }
2237
2238 static inline void task_unlock(struct task_struct *p)
2239 {
2240 spin_unlock(&p->alloc_lock);
2241 }
2242
2243 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2244 unsigned long *flags);
2245
2246 #define lock_task_sighand(tsk, flags) \
2247 ({ struct sighand_struct *__ss; \
2248 __cond_lock(&(tsk)->sighand->siglock, \
2249 (__ss = __lock_task_sighand(tsk, flags))); \
2250 __ss; \
2251 }) \
2252
2253 static inline void unlock_task_sighand(struct task_struct *tsk,
2254 unsigned long *flags)
2255 {
2256 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2257 }
2258
2259 #ifndef __HAVE_THREAD_FUNCTIONS
2260
2261 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2262 #define task_stack_page(task) ((task)->stack)
2263
2264 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2265 {
2266 *task_thread_info(p) = *task_thread_info(org);
2267 task_thread_info(p)->task = p;
2268 }
2269
2270 static inline unsigned long *end_of_stack(struct task_struct *p)
2271 {
2272 return (unsigned long *)(task_thread_info(p) + 1);
2273 }
2274
2275 #endif
2276
2277 static inline int object_is_on_stack(void *obj)
2278 {
2279 void *stack = task_stack_page(current);
2280
2281 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2282 }
2283
2284 extern void thread_info_cache_init(void);
2285
2286 #ifdef CONFIG_DEBUG_STACK_USAGE
2287 static inline unsigned long stack_not_used(struct task_struct *p)
2288 {
2289 unsigned long *n = end_of_stack(p);
2290
2291 do { /* Skip over canary */
2292 n++;
2293 } while (!*n);
2294
2295 return (unsigned long)n - (unsigned long)end_of_stack(p);
2296 }
2297 #endif
2298
2299 /* set thread flags in other task's structures
2300 * - see asm/thread_info.h for TIF_xxxx flags available
2301 */
2302 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2303 {
2304 set_ti_thread_flag(task_thread_info(tsk), flag);
2305 }
2306
2307 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2308 {
2309 clear_ti_thread_flag(task_thread_info(tsk), flag);
2310 }
2311
2312 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2313 {
2314 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2315 }
2316
2317 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2318 {
2319 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2320 }
2321
2322 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2323 {
2324 return test_ti_thread_flag(task_thread_info(tsk), flag);
2325 }
2326
2327 static inline void set_tsk_need_resched(struct task_struct *tsk)
2328 {
2329 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2330 }
2331
2332 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2333 {
2334 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2335 }
2336
2337 static inline int test_tsk_need_resched(struct task_struct *tsk)
2338 {
2339 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2340 }
2341
2342 static inline int restart_syscall(void)
2343 {
2344 set_tsk_thread_flag(current, TIF_SIGPENDING);
2345 return -ERESTARTNOINTR;
2346 }
2347
2348 static inline int signal_pending(struct task_struct *p)
2349 {
2350 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2351 }
2352
2353 static inline int __fatal_signal_pending(struct task_struct *p)
2354 {
2355 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2356 }
2357
2358 static inline int fatal_signal_pending(struct task_struct *p)
2359 {
2360 return signal_pending(p) && __fatal_signal_pending(p);
2361 }
2362
2363 static inline int signal_pending_state(long state, struct task_struct *p)
2364 {
2365 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2366 return 0;
2367 if (!signal_pending(p))
2368 return 0;
2369
2370 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2371 }
2372
2373 static inline int need_resched(void)
2374 {
2375 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2376 }
2377
2378 /*
2379 * cond_resched() and cond_resched_lock(): latency reduction via
2380 * explicit rescheduling in places that are safe. The return
2381 * value indicates whether a reschedule was done in fact.
2382 * cond_resched_lock() will drop the spinlock before scheduling,
2383 * cond_resched_softirq() will enable bhs before scheduling.
2384 */
2385 extern int _cond_resched(void);
2386
2387 #define cond_resched() ({ \
2388 __might_sleep(__FILE__, __LINE__, 0); \
2389 _cond_resched(); \
2390 })
2391
2392 extern int __cond_resched_lock(spinlock_t *lock);
2393
2394 #ifdef CONFIG_PREEMPT
2395 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2396 #else
2397 #define PREEMPT_LOCK_OFFSET 0
2398 #endif
2399
2400 #define cond_resched_lock(lock) ({ \
2401 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2402 __cond_resched_lock(lock); \
2403 })
2404
2405 extern int __cond_resched_softirq(void);
2406
2407 #define cond_resched_softirq() ({ \
2408 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2409 __cond_resched_softirq(); \
2410 })
2411
2412 /*
2413 * Does a critical section need to be broken due to another
2414 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2415 * but a general need for low latency)
2416 */
2417 static inline int spin_needbreak(spinlock_t *lock)
2418 {
2419 #ifdef CONFIG_PREEMPT
2420 return spin_is_contended(lock);
2421 #else
2422 return 0;
2423 #endif
2424 }
2425
2426 /*
2427 * Thread group CPU time accounting.
2428 */
2429 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2430 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2431
2432 static inline void thread_group_cputime_init(struct signal_struct *sig)
2433 {
2434 spin_lock_init(&sig->cputimer.lock);
2435 }
2436
2437 /*
2438 * Reevaluate whether the task has signals pending delivery.
2439 * Wake the task if so.
2440 * This is required every time the blocked sigset_t changes.
2441 * callers must hold sighand->siglock.
2442 */
2443 extern void recalc_sigpending_and_wake(struct task_struct *t);
2444 extern void recalc_sigpending(void);
2445
2446 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2447
2448 /*
2449 * Wrappers for p->thread_info->cpu access. No-op on UP.
2450 */
2451 #ifdef CONFIG_SMP
2452
2453 static inline unsigned int task_cpu(const struct task_struct *p)
2454 {
2455 return task_thread_info(p)->cpu;
2456 }
2457
2458 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2459
2460 #else
2461
2462 static inline unsigned int task_cpu(const struct task_struct *p)
2463 {
2464 return 0;
2465 }
2466
2467 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2468 {
2469 }
2470
2471 #endif /* CONFIG_SMP */
2472
2473 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2474 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2475
2476 extern void normalize_rt_tasks(void);
2477
2478 #ifdef CONFIG_CGROUP_SCHED
2479
2480 extern struct task_group init_task_group;
2481
2482 extern struct task_group *sched_create_group(struct task_group *parent);
2483 extern void sched_destroy_group(struct task_group *tg);
2484 extern void sched_move_task(struct task_struct *tsk);
2485 #ifdef CONFIG_FAIR_GROUP_SCHED
2486 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2487 extern unsigned long sched_group_shares(struct task_group *tg);
2488 #endif
2489 #ifdef CONFIG_RT_GROUP_SCHED
2490 extern int sched_group_set_rt_runtime(struct task_group *tg,
2491 long rt_runtime_us);
2492 extern long sched_group_rt_runtime(struct task_group *tg);
2493 extern int sched_group_set_rt_period(struct task_group *tg,
2494 long rt_period_us);
2495 extern long sched_group_rt_period(struct task_group *tg);
2496 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2497 #endif
2498 #endif
2499
2500 extern int task_can_switch_user(struct user_struct *up,
2501 struct task_struct *tsk);
2502
2503 #ifdef CONFIG_TASK_XACCT
2504 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2505 {
2506 tsk->ioac.rchar += amt;
2507 }
2508
2509 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2510 {
2511 tsk->ioac.wchar += amt;
2512 }
2513
2514 static inline void inc_syscr(struct task_struct *tsk)
2515 {
2516 tsk->ioac.syscr++;
2517 }
2518
2519 static inline void inc_syscw(struct task_struct *tsk)
2520 {
2521 tsk->ioac.syscw++;
2522 }
2523 #else
2524 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2525 {
2526 }
2527
2528 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2529 {
2530 }
2531
2532 static inline void inc_syscr(struct task_struct *tsk)
2533 {
2534 }
2535
2536 static inline void inc_syscw(struct task_struct *tsk)
2537 {
2538 }
2539 #endif
2540
2541 #ifndef TASK_SIZE_OF
2542 #define TASK_SIZE_OF(tsk) TASK_SIZE
2543 #endif
2544
2545 /*
2546 * Call the function if the target task is executing on a CPU right now:
2547 */
2548 extern void task_oncpu_function_call(struct task_struct *p,
2549 void (*func) (void *info), void *info);
2550
2551
2552 #ifdef CONFIG_MM_OWNER
2553 extern void mm_update_next_owner(struct mm_struct *mm);
2554 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2555 #else
2556 static inline void mm_update_next_owner(struct mm_struct *mm)
2557 {
2558 }
2559
2560 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2561 {
2562 }
2563 #endif /* CONFIG_MM_OWNER */
2564
2565 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2566 unsigned int limit)
2567 {
2568 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2569 }
2570
2571 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2572 unsigned int limit)
2573 {
2574 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2575 }
2576
2577 static inline unsigned long rlimit(unsigned int limit)
2578 {
2579 return task_rlimit(current, limit);
2580 }
2581
2582 static inline unsigned long rlimit_max(unsigned int limit)
2583 {
2584 return task_rlimit_max(current, limit);
2585 }
2586
2587 #endif /* __KERNEL__ */
2588
2589 #endif
This page took 0.129483 seconds and 5 git commands to generate.