d0cc58311b1301c094af3a9de292460052d43d66
[deliverable/linux.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <linux/auxvec.h> /* For AT_VECTOR_SIZE */
5
6 /*
7 * cloning flags:
8 */
9 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
10 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
11 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
12 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
13 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
14 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
15 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
16 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
17 #define CLONE_THREAD 0x00010000 /* Same thread group? */
18 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
19 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
20 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
21 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
22 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
23 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
24 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
25 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
26 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
27 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
28 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
29 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
30 #define CLONE_NEWNET 0x40000000 /* New network namespace */
31
32 /*
33 * Scheduling policies
34 */
35 #define SCHED_NORMAL 0
36 #define SCHED_FIFO 1
37 #define SCHED_RR 2
38 #define SCHED_BATCH 3
39 /* SCHED_ISO: reserved but not implemented yet */
40 #define SCHED_IDLE 5
41
42 #ifdef __KERNEL__
43
44 struct sched_param {
45 int sched_priority;
46 };
47
48 #include <asm/param.h> /* for HZ */
49
50 #include <linux/capability.h>
51 #include <linux/threads.h>
52 #include <linux/kernel.h>
53 #include <linux/types.h>
54 #include <linux/timex.h>
55 #include <linux/jiffies.h>
56 #include <linux/rbtree.h>
57 #include <linux/thread_info.h>
58 #include <linux/cpumask.h>
59 #include <linux/errno.h>
60 #include <linux/nodemask.h>
61
62 #include <asm/system.h>
63 #include <asm/semaphore.h>
64 #include <asm/page.h>
65 #include <asm/ptrace.h>
66 #include <asm/mmu.h>
67 #include <asm/cputime.h>
68
69 #include <linux/smp.h>
70 #include <linux/sem.h>
71 #include <linux/signal.h>
72 #include <linux/securebits.h>
73 #include <linux/fs_struct.h>
74 #include <linux/compiler.h>
75 #include <linux/completion.h>
76 #include <linux/pid.h>
77 #include <linux/percpu.h>
78 #include <linux/topology.h>
79 #include <linux/seccomp.h>
80 #include <linux/rcupdate.h>
81 #include <linux/futex.h>
82 #include <linux/rtmutex.h>
83
84 #include <linux/time.h>
85 #include <linux/param.h>
86 #include <linux/resource.h>
87 #include <linux/timer.h>
88 #include <linux/hrtimer.h>
89 #include <linux/task_io_accounting.h>
90
91 #include <asm/processor.h>
92
93 struct exec_domain;
94 struct futex_pi_state;
95 struct bio;
96
97 /*
98 * List of flags we want to share for kernel threads,
99 * if only because they are not used by them anyway.
100 */
101 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
102
103 /*
104 * These are the constant used to fake the fixed-point load-average
105 * counting. Some notes:
106 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
107 * a load-average precision of 10 bits integer + 11 bits fractional
108 * - if you want to count load-averages more often, you need more
109 * precision, or rounding will get you. With 2-second counting freq,
110 * the EXP_n values would be 1981, 2034 and 2043 if still using only
111 * 11 bit fractions.
112 */
113 extern unsigned long avenrun[]; /* Load averages */
114
115 #define FSHIFT 11 /* nr of bits of precision */
116 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
117 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
118 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
119 #define EXP_5 2014 /* 1/exp(5sec/5min) */
120 #define EXP_15 2037 /* 1/exp(5sec/15min) */
121
122 #define CALC_LOAD(load,exp,n) \
123 load *= exp; \
124 load += n*(FIXED_1-exp); \
125 load >>= FSHIFT;
126
127 extern unsigned long total_forks;
128 extern int nr_threads;
129 DECLARE_PER_CPU(unsigned long, process_counts);
130 extern int nr_processes(void);
131 extern unsigned long nr_running(void);
132 extern unsigned long nr_uninterruptible(void);
133 extern unsigned long nr_active(void);
134 extern unsigned long nr_iowait(void);
135 extern unsigned long weighted_cpuload(const int cpu);
136
137 struct seq_file;
138 struct cfs_rq;
139 struct task_grp;
140 #ifdef CONFIG_SCHED_DEBUG
141 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
142 extern void proc_sched_set_task(struct task_struct *p);
143 extern void
144 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
145 #else
146 static inline void
147 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
148 {
149 }
150 static inline void proc_sched_set_task(struct task_struct *p)
151 {
152 }
153 static inline void
154 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
155 {
156 }
157 #endif
158
159 /*
160 * Task state bitmask. NOTE! These bits are also
161 * encoded in fs/proc/array.c: get_task_state().
162 *
163 * We have two separate sets of flags: task->state
164 * is about runnability, while task->exit_state are
165 * about the task exiting. Confusing, but this way
166 * modifying one set can't modify the other one by
167 * mistake.
168 */
169 #define TASK_RUNNING 0
170 #define TASK_INTERRUPTIBLE 1
171 #define TASK_UNINTERRUPTIBLE 2
172 #define TASK_STOPPED 4
173 #define TASK_TRACED 8
174 /* in tsk->exit_state */
175 #define EXIT_ZOMBIE 16
176 #define EXIT_DEAD 32
177 /* in tsk->state again */
178 #define TASK_NONINTERACTIVE 64
179 #define TASK_DEAD 128
180
181 #define __set_task_state(tsk, state_value) \
182 do { (tsk)->state = (state_value); } while (0)
183 #define set_task_state(tsk, state_value) \
184 set_mb((tsk)->state, (state_value))
185
186 /*
187 * set_current_state() includes a barrier so that the write of current->state
188 * is correctly serialised wrt the caller's subsequent test of whether to
189 * actually sleep:
190 *
191 * set_current_state(TASK_UNINTERRUPTIBLE);
192 * if (do_i_need_to_sleep())
193 * schedule();
194 *
195 * If the caller does not need such serialisation then use __set_current_state()
196 */
197 #define __set_current_state(state_value) \
198 do { current->state = (state_value); } while (0)
199 #define set_current_state(state_value) \
200 set_mb(current->state, (state_value))
201
202 /* Task command name length */
203 #define TASK_COMM_LEN 16
204
205 #include <linux/spinlock.h>
206
207 /*
208 * This serializes "schedule()" and also protects
209 * the run-queue from deletions/modifications (but
210 * _adding_ to the beginning of the run-queue has
211 * a separate lock).
212 */
213 extern rwlock_t tasklist_lock;
214 extern spinlock_t mmlist_lock;
215
216 struct task_struct;
217
218 extern void sched_init(void);
219 extern void sched_init_smp(void);
220 extern void init_idle(struct task_struct *idle, int cpu);
221 extern void init_idle_bootup_task(struct task_struct *idle);
222
223 extern cpumask_t nohz_cpu_mask;
224 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
225 extern int select_nohz_load_balancer(int cpu);
226 #else
227 static inline int select_nohz_load_balancer(int cpu)
228 {
229 return 0;
230 }
231 #endif
232
233 /*
234 * Only dump TASK_* tasks. (0 for all tasks)
235 */
236 extern void show_state_filter(unsigned long state_filter);
237
238 static inline void show_state(void)
239 {
240 show_state_filter(0);
241 }
242
243 extern void show_regs(struct pt_regs *);
244
245 /*
246 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
247 * task), SP is the stack pointer of the first frame that should be shown in the back
248 * trace (or NULL if the entire call-chain of the task should be shown).
249 */
250 extern void show_stack(struct task_struct *task, unsigned long *sp);
251
252 void io_schedule(void);
253 long io_schedule_timeout(long timeout);
254
255 extern void cpu_init (void);
256 extern void trap_init(void);
257 extern void update_process_times(int user);
258 extern void scheduler_tick(void);
259
260 #ifdef CONFIG_DETECT_SOFTLOCKUP
261 extern void softlockup_tick(void);
262 extern void spawn_softlockup_task(void);
263 extern void touch_softlockup_watchdog(void);
264 extern void touch_all_softlockup_watchdogs(void);
265 #else
266 static inline void softlockup_tick(void)
267 {
268 }
269 static inline void spawn_softlockup_task(void)
270 {
271 }
272 static inline void touch_softlockup_watchdog(void)
273 {
274 }
275 static inline void touch_all_softlockup_watchdogs(void)
276 {
277 }
278 #endif
279
280
281 /* Attach to any functions which should be ignored in wchan output. */
282 #define __sched __attribute__((__section__(".sched.text")))
283 /* Is this address in the __sched functions? */
284 extern int in_sched_functions(unsigned long addr);
285
286 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
287 extern signed long FASTCALL(schedule_timeout(signed long timeout));
288 extern signed long schedule_timeout_interruptible(signed long timeout);
289 extern signed long schedule_timeout_uninterruptible(signed long timeout);
290 asmlinkage void schedule(void);
291
292 struct nsproxy;
293 struct user_namespace;
294
295 /* Maximum number of active map areas.. This is a random (large) number */
296 #define DEFAULT_MAX_MAP_COUNT 65536
297
298 extern int sysctl_max_map_count;
299
300 #include <linux/aio.h>
301
302 extern unsigned long
303 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
304 unsigned long, unsigned long);
305 extern unsigned long
306 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
307 unsigned long len, unsigned long pgoff,
308 unsigned long flags);
309 extern void arch_unmap_area(struct mm_struct *, unsigned long);
310 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
311
312 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
313 /*
314 * The mm counters are not protected by its page_table_lock,
315 * so must be incremented atomically.
316 */
317 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
318 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
319 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
320 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
321 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
322 typedef atomic_long_t mm_counter_t;
323
324 #else /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
325 /*
326 * The mm counters are protected by its page_table_lock,
327 * so can be incremented directly.
328 */
329 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
330 #define get_mm_counter(mm, member) ((mm)->_##member)
331 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
332 #define inc_mm_counter(mm, member) (mm)->_##member++
333 #define dec_mm_counter(mm, member) (mm)->_##member--
334 typedef unsigned long mm_counter_t;
335
336 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
337
338 #define get_mm_rss(mm) \
339 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
340 #define update_hiwater_rss(mm) do { \
341 unsigned long _rss = get_mm_rss(mm); \
342 if ((mm)->hiwater_rss < _rss) \
343 (mm)->hiwater_rss = _rss; \
344 } while (0)
345 #define update_hiwater_vm(mm) do { \
346 if ((mm)->hiwater_vm < (mm)->total_vm) \
347 (mm)->hiwater_vm = (mm)->total_vm; \
348 } while (0)
349
350 extern void set_dumpable(struct mm_struct *mm, int value);
351 extern int get_dumpable(struct mm_struct *mm);
352
353 /* mm flags */
354 /* dumpable bits */
355 #define MMF_DUMPABLE 0 /* core dump is permitted */
356 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
357 #define MMF_DUMPABLE_BITS 2
358
359 /* coredump filter bits */
360 #define MMF_DUMP_ANON_PRIVATE 2
361 #define MMF_DUMP_ANON_SHARED 3
362 #define MMF_DUMP_MAPPED_PRIVATE 4
363 #define MMF_DUMP_MAPPED_SHARED 5
364 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
365 #define MMF_DUMP_FILTER_BITS 4
366 #define MMF_DUMP_FILTER_MASK \
367 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
368 #define MMF_DUMP_FILTER_DEFAULT \
369 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED))
370
371 struct mm_struct {
372 struct vm_area_struct * mmap; /* list of VMAs */
373 struct rb_root mm_rb;
374 struct vm_area_struct * mmap_cache; /* last find_vma result */
375 unsigned long (*get_unmapped_area) (struct file *filp,
376 unsigned long addr, unsigned long len,
377 unsigned long pgoff, unsigned long flags);
378 void (*unmap_area) (struct mm_struct *mm, unsigned long addr);
379 unsigned long mmap_base; /* base of mmap area */
380 unsigned long task_size; /* size of task vm space */
381 unsigned long cached_hole_size; /* if non-zero, the largest hole below free_area_cache */
382 unsigned long free_area_cache; /* first hole of size cached_hole_size or larger */
383 pgd_t * pgd;
384 atomic_t mm_users; /* How many users with user space? */
385 atomic_t mm_count; /* How many references to "struct mm_struct" (users count as 1) */
386 int map_count; /* number of VMAs */
387 struct rw_semaphore mmap_sem;
388 spinlock_t page_table_lock; /* Protects page tables and some counters */
389
390 struct list_head mmlist; /* List of maybe swapped mm's. These are globally strung
391 * together off init_mm.mmlist, and are protected
392 * by mmlist_lock
393 */
394
395 /* Special counters, in some configurations protected by the
396 * page_table_lock, in other configurations by being atomic.
397 */
398 mm_counter_t _file_rss;
399 mm_counter_t _anon_rss;
400
401 unsigned long hiwater_rss; /* High-watermark of RSS usage */
402 unsigned long hiwater_vm; /* High-water virtual memory usage */
403
404 unsigned long total_vm, locked_vm, shared_vm, exec_vm;
405 unsigned long stack_vm, reserved_vm, def_flags, nr_ptes;
406 unsigned long start_code, end_code, start_data, end_data;
407 unsigned long start_brk, brk, start_stack;
408 unsigned long arg_start, arg_end, env_start, env_end;
409
410 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
411
412 cpumask_t cpu_vm_mask;
413
414 /* Architecture-specific MM context */
415 mm_context_t context;
416
417 /* Swap token stuff */
418 /*
419 * Last value of global fault stamp as seen by this process.
420 * In other words, this value gives an indication of how long
421 * it has been since this task got the token.
422 * Look at mm/thrash.c
423 */
424 unsigned int faultstamp;
425 unsigned int token_priority;
426 unsigned int last_interval;
427
428 unsigned long flags; /* Must use atomic bitops to access the bits */
429
430 /* coredumping support */
431 int core_waiters;
432 struct completion *core_startup_done, core_done;
433
434 /* aio bits */
435 rwlock_t ioctx_list_lock;
436 struct kioctx *ioctx_list;
437 };
438
439 struct sighand_struct {
440 atomic_t count;
441 struct k_sigaction action[_NSIG];
442 spinlock_t siglock;
443 wait_queue_head_t signalfd_wqh;
444 };
445
446 struct pacct_struct {
447 int ac_flag;
448 long ac_exitcode;
449 unsigned long ac_mem;
450 cputime_t ac_utime, ac_stime;
451 unsigned long ac_minflt, ac_majflt;
452 };
453
454 /*
455 * NOTE! "signal_struct" does not have it's own
456 * locking, because a shared signal_struct always
457 * implies a shared sighand_struct, so locking
458 * sighand_struct is always a proper superset of
459 * the locking of signal_struct.
460 */
461 struct signal_struct {
462 atomic_t count;
463 atomic_t live;
464
465 wait_queue_head_t wait_chldexit; /* for wait4() */
466
467 /* current thread group signal load-balancing target: */
468 struct task_struct *curr_target;
469
470 /* shared signal handling: */
471 struct sigpending shared_pending;
472
473 /* thread group exit support */
474 int group_exit_code;
475 /* overloaded:
476 * - notify group_exit_task when ->count is equal to notify_count
477 * - everyone except group_exit_task is stopped during signal delivery
478 * of fatal signals, group_exit_task processes the signal.
479 */
480 struct task_struct *group_exit_task;
481 int notify_count;
482
483 /* thread group stop support, overloads group_exit_code too */
484 int group_stop_count;
485 unsigned int flags; /* see SIGNAL_* flags below */
486
487 /* POSIX.1b Interval Timers */
488 struct list_head posix_timers;
489
490 /* ITIMER_REAL timer for the process */
491 struct hrtimer real_timer;
492 struct task_struct *tsk;
493 ktime_t it_real_incr;
494
495 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
496 cputime_t it_prof_expires, it_virt_expires;
497 cputime_t it_prof_incr, it_virt_incr;
498
499 /* job control IDs */
500 pid_t pgrp;
501 struct pid *tty_old_pgrp;
502
503 union {
504 pid_t session __deprecated;
505 pid_t __session;
506 };
507
508 /* boolean value for session group leader */
509 int leader;
510
511 struct tty_struct *tty; /* NULL if no tty */
512
513 /*
514 * Cumulative resource counters for dead threads in the group,
515 * and for reaped dead child processes forked by this group.
516 * Live threads maintain their own counters and add to these
517 * in __exit_signal, except for the group leader.
518 */
519 cputime_t utime, stime, cutime, cstime;
520 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
521 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
522 unsigned long inblock, oublock, cinblock, coublock;
523
524 /*
525 * Cumulative ns of scheduled CPU time for dead threads in the
526 * group, not including a zombie group leader. (This only differs
527 * from jiffies_to_ns(utime + stime) if sched_clock uses something
528 * other than jiffies.)
529 */
530 unsigned long long sum_sched_runtime;
531
532 /*
533 * We don't bother to synchronize most readers of this at all,
534 * because there is no reader checking a limit that actually needs
535 * to get both rlim_cur and rlim_max atomically, and either one
536 * alone is a single word that can safely be read normally.
537 * getrlimit/setrlimit use task_lock(current->group_leader) to
538 * protect this instead of the siglock, because they really
539 * have no need to disable irqs.
540 */
541 struct rlimit rlim[RLIM_NLIMITS];
542
543 struct list_head cpu_timers[3];
544
545 /* keep the process-shared keyrings here so that they do the right
546 * thing in threads created with CLONE_THREAD */
547 #ifdef CONFIG_KEYS
548 struct key *session_keyring; /* keyring inherited over fork */
549 struct key *process_keyring; /* keyring private to this process */
550 #endif
551 #ifdef CONFIG_BSD_PROCESS_ACCT
552 struct pacct_struct pacct; /* per-process accounting information */
553 #endif
554 #ifdef CONFIG_TASKSTATS
555 struct taskstats *stats;
556 #endif
557 #ifdef CONFIG_AUDIT
558 unsigned audit_tty;
559 struct tty_audit_buf *tty_audit_buf;
560 #endif
561 };
562
563 /* Context switch must be unlocked if interrupts are to be enabled */
564 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
565 # define __ARCH_WANT_UNLOCKED_CTXSW
566 #endif
567
568 /*
569 * Bits in flags field of signal_struct.
570 */
571 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
572 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
573 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
574 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
575
576 /*
577 * Some day this will be a full-fledged user tracking system..
578 */
579 struct user_struct {
580 atomic_t __count; /* reference count */
581 atomic_t processes; /* How many processes does this user have? */
582 atomic_t files; /* How many open files does this user have? */
583 atomic_t sigpending; /* How many pending signals does this user have? */
584 #ifdef CONFIG_INOTIFY_USER
585 atomic_t inotify_watches; /* How many inotify watches does this user have? */
586 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
587 #endif
588 /* protected by mq_lock */
589 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
590 unsigned long locked_shm; /* How many pages of mlocked shm ? */
591
592 #ifdef CONFIG_KEYS
593 struct key *uid_keyring; /* UID specific keyring */
594 struct key *session_keyring; /* UID's default session keyring */
595 #endif
596
597 /* Hash table maintenance information */
598 struct hlist_node uidhash_node;
599 uid_t uid;
600
601 #ifdef CONFIG_FAIR_USER_SCHED
602 struct task_grp *tg;
603 #endif
604 };
605
606 extern struct user_struct *find_user(uid_t);
607
608 extern struct user_struct root_user;
609 #define INIT_USER (&root_user)
610
611 struct backing_dev_info;
612 struct reclaim_state;
613
614 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
615 struct sched_info {
616 /* cumulative counters */
617 unsigned long pcnt; /* # of times run on this cpu */
618 unsigned long long cpu_time, /* time spent on the cpu */
619 run_delay; /* time spent waiting on a runqueue */
620
621 /* timestamps */
622 unsigned long long last_arrival,/* when we last ran on a cpu */
623 last_queued; /* when we were last queued to run */
624 };
625 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
626
627 #ifdef CONFIG_SCHEDSTATS
628 extern const struct file_operations proc_schedstat_operations;
629 #endif /* CONFIG_SCHEDSTATS */
630
631 #ifdef CONFIG_TASK_DELAY_ACCT
632 struct task_delay_info {
633 spinlock_t lock;
634 unsigned int flags; /* Private per-task flags */
635
636 /* For each stat XXX, add following, aligned appropriately
637 *
638 * struct timespec XXX_start, XXX_end;
639 * u64 XXX_delay;
640 * u32 XXX_count;
641 *
642 * Atomicity of updates to XXX_delay, XXX_count protected by
643 * single lock above (split into XXX_lock if contention is an issue).
644 */
645
646 /*
647 * XXX_count is incremented on every XXX operation, the delay
648 * associated with the operation is added to XXX_delay.
649 * XXX_delay contains the accumulated delay time in nanoseconds.
650 */
651 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
652 u64 blkio_delay; /* wait for sync block io completion */
653 u64 swapin_delay; /* wait for swapin block io completion */
654 u32 blkio_count; /* total count of the number of sync block */
655 /* io operations performed */
656 u32 swapin_count; /* total count of the number of swapin block */
657 /* io operations performed */
658 };
659 #endif /* CONFIG_TASK_DELAY_ACCT */
660
661 static inline int sched_info_on(void)
662 {
663 #ifdef CONFIG_SCHEDSTATS
664 return 1;
665 #elif defined(CONFIG_TASK_DELAY_ACCT)
666 extern int delayacct_on;
667 return delayacct_on;
668 #else
669 return 0;
670 #endif
671 }
672
673 enum cpu_idle_type {
674 CPU_IDLE,
675 CPU_NOT_IDLE,
676 CPU_NEWLY_IDLE,
677 CPU_MAX_IDLE_TYPES
678 };
679
680 /*
681 * sched-domains (multiprocessor balancing) declarations:
682 */
683
684 /*
685 * Increase resolution of nice-level calculations:
686 */
687 #define SCHED_LOAD_SHIFT 10
688 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
689
690 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
691
692 #ifdef CONFIG_SMP
693 #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */
694 #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */
695 #define SD_BALANCE_EXEC 4 /* Balance on exec */
696 #define SD_BALANCE_FORK 8 /* Balance on fork, clone */
697 #define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */
698 #define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */
699 #define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */
700 #define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */
701 #define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */
702 #define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */
703 #define SD_SERIALIZE 1024 /* Only a single load balancing instance */
704
705 #define BALANCE_FOR_MC_POWER \
706 (sched_smt_power_savings ? SD_POWERSAVINGS_BALANCE : 0)
707
708 #define BALANCE_FOR_PKG_POWER \
709 ((sched_mc_power_savings || sched_smt_power_savings) ? \
710 SD_POWERSAVINGS_BALANCE : 0)
711
712 #define test_sd_parent(sd, flag) ((sd->parent && \
713 (sd->parent->flags & flag)) ? 1 : 0)
714
715
716 struct sched_group {
717 struct sched_group *next; /* Must be a circular list */
718 cpumask_t cpumask;
719
720 /*
721 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
722 * single CPU. This is read only (except for setup, hotplug CPU).
723 * Note : Never change cpu_power without recompute its reciprocal
724 */
725 unsigned int __cpu_power;
726 /*
727 * reciprocal value of cpu_power to avoid expensive divides
728 * (see include/linux/reciprocal_div.h)
729 */
730 u32 reciprocal_cpu_power;
731 };
732
733 struct sched_domain {
734 /* These fields must be setup */
735 struct sched_domain *parent; /* top domain must be null terminated */
736 struct sched_domain *child; /* bottom domain must be null terminated */
737 struct sched_group *groups; /* the balancing groups of the domain */
738 cpumask_t span; /* span of all CPUs in this domain */
739 unsigned long min_interval; /* Minimum balance interval ms */
740 unsigned long max_interval; /* Maximum balance interval ms */
741 unsigned int busy_factor; /* less balancing by factor if busy */
742 unsigned int imbalance_pct; /* No balance until over watermark */
743 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
744 unsigned int busy_idx;
745 unsigned int idle_idx;
746 unsigned int newidle_idx;
747 unsigned int wake_idx;
748 unsigned int forkexec_idx;
749 int flags; /* See SD_* */
750
751 /* Runtime fields. */
752 unsigned long last_balance; /* init to jiffies. units in jiffies */
753 unsigned int balance_interval; /* initialise to 1. units in ms. */
754 unsigned int nr_balance_failed; /* initialise to 0 */
755
756 #ifdef CONFIG_SCHEDSTATS
757 /* load_balance() stats */
758 unsigned long lb_cnt[CPU_MAX_IDLE_TYPES];
759 unsigned long lb_failed[CPU_MAX_IDLE_TYPES];
760 unsigned long lb_balanced[CPU_MAX_IDLE_TYPES];
761 unsigned long lb_imbalance[CPU_MAX_IDLE_TYPES];
762 unsigned long lb_gained[CPU_MAX_IDLE_TYPES];
763 unsigned long lb_hot_gained[CPU_MAX_IDLE_TYPES];
764 unsigned long lb_nobusyg[CPU_MAX_IDLE_TYPES];
765 unsigned long lb_nobusyq[CPU_MAX_IDLE_TYPES];
766
767 /* Active load balancing */
768 unsigned long alb_cnt;
769 unsigned long alb_failed;
770 unsigned long alb_pushed;
771
772 /* SD_BALANCE_EXEC stats */
773 unsigned long sbe_cnt;
774 unsigned long sbe_balanced;
775 unsigned long sbe_pushed;
776
777 /* SD_BALANCE_FORK stats */
778 unsigned long sbf_cnt;
779 unsigned long sbf_balanced;
780 unsigned long sbf_pushed;
781
782 /* try_to_wake_up() stats */
783 unsigned long ttwu_wake_remote;
784 unsigned long ttwu_move_affine;
785 unsigned long ttwu_move_balance;
786 #endif
787 };
788
789 extern int partition_sched_domains(cpumask_t *partition1,
790 cpumask_t *partition2);
791
792 #endif /* CONFIG_SMP */
793
794 /*
795 * A runqueue laden with a single nice 0 task scores a weighted_cpuload of
796 * SCHED_LOAD_SCALE. This function returns 1 if any cpu is laden with a
797 * task of nice 0 or enough lower priority tasks to bring up the
798 * weighted_cpuload
799 */
800 static inline int above_background_load(void)
801 {
802 unsigned long cpu;
803
804 for_each_online_cpu(cpu) {
805 if (weighted_cpuload(cpu) >= SCHED_LOAD_SCALE)
806 return 1;
807 }
808 return 0;
809 }
810
811 struct io_context; /* See blkdev.h */
812 struct cpuset;
813
814 #define NGROUPS_SMALL 32
815 #define NGROUPS_PER_BLOCK ((int)(PAGE_SIZE / sizeof(gid_t)))
816 struct group_info {
817 int ngroups;
818 atomic_t usage;
819 gid_t small_block[NGROUPS_SMALL];
820 int nblocks;
821 gid_t *blocks[0];
822 };
823
824 /*
825 * get_group_info() must be called with the owning task locked (via task_lock())
826 * when task != current. The reason being that the vast majority of callers are
827 * looking at current->group_info, which can not be changed except by the
828 * current task. Changing current->group_info requires the task lock, too.
829 */
830 #define get_group_info(group_info) do { \
831 atomic_inc(&(group_info)->usage); \
832 } while (0)
833
834 #define put_group_info(group_info) do { \
835 if (atomic_dec_and_test(&(group_info)->usage)) \
836 groups_free(group_info); \
837 } while (0)
838
839 extern struct group_info *groups_alloc(int gidsetsize);
840 extern void groups_free(struct group_info *group_info);
841 extern int set_current_groups(struct group_info *group_info);
842 extern int groups_search(struct group_info *group_info, gid_t grp);
843 /* access the groups "array" with this macro */
844 #define GROUP_AT(gi, i) \
845 ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK])
846
847 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
848 extern void prefetch_stack(struct task_struct *t);
849 #else
850 static inline void prefetch_stack(struct task_struct *t) { }
851 #endif
852
853 struct audit_context; /* See audit.c */
854 struct mempolicy;
855 struct pipe_inode_info;
856 struct uts_namespace;
857
858 struct rq;
859 struct sched_domain;
860
861 struct sched_class {
862 struct sched_class *next;
863
864 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
865 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
866 void (*yield_task) (struct rq *rq);
867
868 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p);
869
870 struct task_struct * (*pick_next_task) (struct rq *rq);
871 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
872
873 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
874 struct rq *busiest,
875 unsigned long max_nr_move, unsigned long max_load_move,
876 struct sched_domain *sd, enum cpu_idle_type idle,
877 int *all_pinned, int *this_best_prio);
878
879 void (*set_curr_task) (struct rq *rq);
880 void (*task_tick) (struct rq *rq, struct task_struct *p);
881 void (*task_new) (struct rq *rq, struct task_struct *p);
882 };
883
884 struct load_weight {
885 unsigned long weight, inv_weight;
886 };
887
888 /*
889 * CFS stats for a schedulable entity (task, task-group etc)
890 *
891 * Current field usage histogram:
892 *
893 * 4 se->block_start
894 * 4 se->run_node
895 * 4 se->sleep_start
896 * 6 se->load.weight
897 */
898 struct sched_entity {
899 struct load_weight load; /* for load-balancing */
900 struct rb_node run_node;
901 unsigned int on_rq;
902
903 u64 exec_start;
904 u64 sum_exec_runtime;
905 u64 vruntime;
906 u64 prev_sum_exec_runtime;
907
908 #ifdef CONFIG_SCHEDSTATS
909 u64 wait_start;
910 u64 wait_max;
911
912 u64 sleep_start;
913 u64 sleep_max;
914 s64 sum_sleep_runtime;
915
916 u64 block_start;
917 u64 block_max;
918 u64 exec_max;
919 u64 slice_max;
920 #endif
921
922 #ifdef CONFIG_FAIR_GROUP_SCHED
923 struct sched_entity *parent;
924 /* rq on which this entity is (to be) queued: */
925 struct cfs_rq *cfs_rq;
926 /* rq "owned" by this entity/group: */
927 struct cfs_rq *my_q;
928 #endif
929 };
930
931 struct task_struct {
932 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
933 void *stack;
934 atomic_t usage;
935 unsigned int flags; /* per process flags, defined below */
936 unsigned int ptrace;
937
938 int lock_depth; /* BKL lock depth */
939
940 #ifdef CONFIG_SMP
941 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
942 int oncpu;
943 #endif
944 #endif
945
946 int prio, static_prio, normal_prio;
947 struct list_head run_list;
948 struct sched_class *sched_class;
949 struct sched_entity se;
950
951 #ifdef CONFIG_PREEMPT_NOTIFIERS
952 /* list of struct preempt_notifier: */
953 struct hlist_head preempt_notifiers;
954 #endif
955
956 unsigned short ioprio;
957 #ifdef CONFIG_BLK_DEV_IO_TRACE
958 unsigned int btrace_seq;
959 #endif
960
961 unsigned int policy;
962 cpumask_t cpus_allowed;
963 unsigned int time_slice;
964
965 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
966 struct sched_info sched_info;
967 #endif
968
969 struct list_head tasks;
970 /*
971 * ptrace_list/ptrace_children forms the list of my children
972 * that were stolen by a ptracer.
973 */
974 struct list_head ptrace_children;
975 struct list_head ptrace_list;
976
977 struct mm_struct *mm, *active_mm;
978
979 /* task state */
980 struct linux_binfmt *binfmt;
981 int exit_state;
982 int exit_code, exit_signal;
983 int pdeath_signal; /* The signal sent when the parent dies */
984 /* ??? */
985 unsigned int personality;
986 unsigned did_exec:1;
987 pid_t pid;
988 pid_t tgid;
989
990 #ifdef CONFIG_CC_STACKPROTECTOR
991 /* Canary value for the -fstack-protector gcc feature */
992 unsigned long stack_canary;
993 #endif
994 /*
995 * pointers to (original) parent process, youngest child, younger sibling,
996 * older sibling, respectively. (p->father can be replaced with
997 * p->parent->pid)
998 */
999 struct task_struct *real_parent; /* real parent process (when being debugged) */
1000 struct task_struct *parent; /* parent process */
1001 /*
1002 * children/sibling forms the list of my children plus the
1003 * tasks I'm ptracing.
1004 */
1005 struct list_head children; /* list of my children */
1006 struct list_head sibling; /* linkage in my parent's children list */
1007 struct task_struct *group_leader; /* threadgroup leader */
1008
1009 /* PID/PID hash table linkage. */
1010 struct pid_link pids[PIDTYPE_MAX];
1011 struct list_head thread_group;
1012
1013 struct completion *vfork_done; /* for vfork() */
1014 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1015 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1016
1017 unsigned int rt_priority;
1018 cputime_t utime, stime;
1019 unsigned long nvcsw, nivcsw; /* context switch counts */
1020 struct timespec start_time; /* monotonic time */
1021 struct timespec real_start_time; /* boot based time */
1022 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1023 unsigned long min_flt, maj_flt;
1024
1025 cputime_t it_prof_expires, it_virt_expires;
1026 unsigned long long it_sched_expires;
1027 struct list_head cpu_timers[3];
1028
1029 /* process credentials */
1030 uid_t uid,euid,suid,fsuid;
1031 gid_t gid,egid,sgid,fsgid;
1032 struct group_info *group_info;
1033 kernel_cap_t cap_effective, cap_inheritable, cap_permitted;
1034 unsigned keep_capabilities:1;
1035 struct user_struct *user;
1036 #ifdef CONFIG_KEYS
1037 struct key *request_key_auth; /* assumed request_key authority */
1038 struct key *thread_keyring; /* keyring private to this thread */
1039 unsigned char jit_keyring; /* default keyring to attach requested keys to */
1040 #endif
1041 /*
1042 * fpu_counter contains the number of consecutive context switches
1043 * that the FPU is used. If this is over a threshold, the lazy fpu
1044 * saving becomes unlazy to save the trap. This is an unsigned char
1045 * so that after 256 times the counter wraps and the behavior turns
1046 * lazy again; this to deal with bursty apps that only use FPU for
1047 * a short time
1048 */
1049 unsigned char fpu_counter;
1050 int oomkilladj; /* OOM kill score adjustment (bit shift). */
1051 char comm[TASK_COMM_LEN]; /* executable name excluding path
1052 - access with [gs]et_task_comm (which lock
1053 it with task_lock())
1054 - initialized normally by flush_old_exec */
1055 /* file system info */
1056 int link_count, total_link_count;
1057 #ifdef CONFIG_SYSVIPC
1058 /* ipc stuff */
1059 struct sysv_sem sysvsem;
1060 #endif
1061 /* CPU-specific state of this task */
1062 struct thread_struct thread;
1063 /* filesystem information */
1064 struct fs_struct *fs;
1065 /* open file information */
1066 struct files_struct *files;
1067 /* namespaces */
1068 struct nsproxy *nsproxy;
1069 /* signal handlers */
1070 struct signal_struct *signal;
1071 struct sighand_struct *sighand;
1072
1073 sigset_t blocked, real_blocked;
1074 sigset_t saved_sigmask; /* To be restored with TIF_RESTORE_SIGMASK */
1075 struct sigpending pending;
1076
1077 unsigned long sas_ss_sp;
1078 size_t sas_ss_size;
1079 int (*notifier)(void *priv);
1080 void *notifier_data;
1081 sigset_t *notifier_mask;
1082
1083 void *security;
1084 struct audit_context *audit_context;
1085 seccomp_t seccomp;
1086
1087 /* Thread group tracking */
1088 u32 parent_exec_id;
1089 u32 self_exec_id;
1090 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
1091 spinlock_t alloc_lock;
1092
1093 /* Protection of the PI data structures: */
1094 spinlock_t pi_lock;
1095
1096 #ifdef CONFIG_RT_MUTEXES
1097 /* PI waiters blocked on a rt_mutex held by this task */
1098 struct plist_head pi_waiters;
1099 /* Deadlock detection and priority inheritance handling */
1100 struct rt_mutex_waiter *pi_blocked_on;
1101 #endif
1102
1103 #ifdef CONFIG_DEBUG_MUTEXES
1104 /* mutex deadlock detection */
1105 struct mutex_waiter *blocked_on;
1106 #endif
1107 #ifdef CONFIG_TRACE_IRQFLAGS
1108 unsigned int irq_events;
1109 int hardirqs_enabled;
1110 unsigned long hardirq_enable_ip;
1111 unsigned int hardirq_enable_event;
1112 unsigned long hardirq_disable_ip;
1113 unsigned int hardirq_disable_event;
1114 int softirqs_enabled;
1115 unsigned long softirq_disable_ip;
1116 unsigned int softirq_disable_event;
1117 unsigned long softirq_enable_ip;
1118 unsigned int softirq_enable_event;
1119 int hardirq_context;
1120 int softirq_context;
1121 #endif
1122 #ifdef CONFIG_LOCKDEP
1123 # define MAX_LOCK_DEPTH 30UL
1124 u64 curr_chain_key;
1125 int lockdep_depth;
1126 struct held_lock held_locks[MAX_LOCK_DEPTH];
1127 unsigned int lockdep_recursion;
1128 #endif
1129
1130 /* journalling filesystem info */
1131 void *journal_info;
1132
1133 /* stacked block device info */
1134 struct bio *bio_list, **bio_tail;
1135
1136 /* VM state */
1137 struct reclaim_state *reclaim_state;
1138
1139 struct backing_dev_info *backing_dev_info;
1140
1141 struct io_context *io_context;
1142
1143 unsigned long ptrace_message;
1144 siginfo_t *last_siginfo; /* For ptrace use. */
1145 /*
1146 * current io wait handle: wait queue entry to use for io waits
1147 * If this thread is processing aio, this points at the waitqueue
1148 * inside the currently handled kiocb. It may be NULL (i.e. default
1149 * to a stack based synchronous wait) if its doing sync IO.
1150 */
1151 wait_queue_t *io_wait;
1152 #ifdef CONFIG_TASK_XACCT
1153 /* i/o counters(bytes read/written, #syscalls */
1154 u64 rchar, wchar, syscr, syscw;
1155 #endif
1156 struct task_io_accounting ioac;
1157 #if defined(CONFIG_TASK_XACCT)
1158 u64 acct_rss_mem1; /* accumulated rss usage */
1159 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1160 cputime_t acct_stimexpd;/* stime since last update */
1161 #endif
1162 #ifdef CONFIG_NUMA
1163 struct mempolicy *mempolicy;
1164 short il_next;
1165 #endif
1166 #ifdef CONFIG_CPUSETS
1167 struct cpuset *cpuset;
1168 nodemask_t mems_allowed;
1169 int cpuset_mems_generation;
1170 int cpuset_mem_spread_rotor;
1171 #endif
1172 struct robust_list_head __user *robust_list;
1173 #ifdef CONFIG_COMPAT
1174 struct compat_robust_list_head __user *compat_robust_list;
1175 #endif
1176 struct list_head pi_state_list;
1177 struct futex_pi_state *pi_state_cache;
1178
1179 atomic_t fs_excl; /* holding fs exclusive resources */
1180 struct rcu_head rcu;
1181
1182 /*
1183 * cache last used pipe for splice
1184 */
1185 struct pipe_inode_info *splice_pipe;
1186 #ifdef CONFIG_TASK_DELAY_ACCT
1187 struct task_delay_info *delays;
1188 #endif
1189 #ifdef CONFIG_FAULT_INJECTION
1190 int make_it_fail;
1191 #endif
1192 };
1193
1194 /*
1195 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1196 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1197 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1198 * values are inverted: lower p->prio value means higher priority.
1199 *
1200 * The MAX_USER_RT_PRIO value allows the actual maximum
1201 * RT priority to be separate from the value exported to
1202 * user-space. This allows kernel threads to set their
1203 * priority to a value higher than any user task. Note:
1204 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1205 */
1206
1207 #define MAX_USER_RT_PRIO 100
1208 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1209
1210 #define MAX_PRIO (MAX_RT_PRIO + 40)
1211 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1212
1213 static inline int rt_prio(int prio)
1214 {
1215 if (unlikely(prio < MAX_RT_PRIO))
1216 return 1;
1217 return 0;
1218 }
1219
1220 static inline int rt_task(struct task_struct *p)
1221 {
1222 return rt_prio(p->prio);
1223 }
1224
1225 static inline pid_t process_group(struct task_struct *tsk)
1226 {
1227 return tsk->signal->pgrp;
1228 }
1229
1230 static inline pid_t signal_session(struct signal_struct *sig)
1231 {
1232 return sig->__session;
1233 }
1234
1235 static inline pid_t process_session(struct task_struct *tsk)
1236 {
1237 return signal_session(tsk->signal);
1238 }
1239
1240 static inline void set_signal_session(struct signal_struct *sig, pid_t session)
1241 {
1242 sig->__session = session;
1243 }
1244
1245 static inline struct pid *task_pid(struct task_struct *task)
1246 {
1247 return task->pids[PIDTYPE_PID].pid;
1248 }
1249
1250 static inline struct pid *task_tgid(struct task_struct *task)
1251 {
1252 return task->group_leader->pids[PIDTYPE_PID].pid;
1253 }
1254
1255 static inline struct pid *task_pgrp(struct task_struct *task)
1256 {
1257 return task->group_leader->pids[PIDTYPE_PGID].pid;
1258 }
1259
1260 static inline struct pid *task_session(struct task_struct *task)
1261 {
1262 return task->group_leader->pids[PIDTYPE_SID].pid;
1263 }
1264
1265 /**
1266 * pid_alive - check that a task structure is not stale
1267 * @p: Task structure to be checked.
1268 *
1269 * Test if a process is not yet dead (at most zombie state)
1270 * If pid_alive fails, then pointers within the task structure
1271 * can be stale and must not be dereferenced.
1272 */
1273 static inline int pid_alive(struct task_struct *p)
1274 {
1275 return p->pids[PIDTYPE_PID].pid != NULL;
1276 }
1277
1278 /**
1279 * is_init - check if a task structure is init
1280 * @tsk: Task structure to be checked.
1281 *
1282 * Check if a task structure is the first user space task the kernel created.
1283 */
1284 static inline int is_init(struct task_struct *tsk)
1285 {
1286 return tsk->pid == 1;
1287 }
1288
1289 extern struct pid *cad_pid;
1290
1291 extern void free_task(struct task_struct *tsk);
1292 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1293
1294 extern void __put_task_struct(struct task_struct *t);
1295
1296 static inline void put_task_struct(struct task_struct *t)
1297 {
1298 if (atomic_dec_and_test(&t->usage))
1299 __put_task_struct(t);
1300 }
1301
1302 /*
1303 * Per process flags
1304 */
1305 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1306 /* Not implemented yet, only for 486*/
1307 #define PF_STARTING 0x00000002 /* being created */
1308 #define PF_EXITING 0x00000004 /* getting shut down */
1309 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1310 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1311 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1312 #define PF_DUMPCORE 0x00000200 /* dumped core */
1313 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1314 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1315 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1316 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1317 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1318 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1319 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1320 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1321 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */
1322 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1323 #define PF_BORROWED_MM 0x00200000 /* I am a kthread doing use_mm */
1324 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1325 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1326 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1327 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1328 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1329 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1330 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1331
1332 /*
1333 * Only the _current_ task can read/write to tsk->flags, but other
1334 * tasks can access tsk->flags in readonly mode for example
1335 * with tsk_used_math (like during threaded core dumping).
1336 * There is however an exception to this rule during ptrace
1337 * or during fork: the ptracer task is allowed to write to the
1338 * child->flags of its traced child (same goes for fork, the parent
1339 * can write to the child->flags), because we're guaranteed the
1340 * child is not running and in turn not changing child->flags
1341 * at the same time the parent does it.
1342 */
1343 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1344 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1345 #define clear_used_math() clear_stopped_child_used_math(current)
1346 #define set_used_math() set_stopped_child_used_math(current)
1347 #define conditional_stopped_child_used_math(condition, child) \
1348 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1349 #define conditional_used_math(condition) \
1350 conditional_stopped_child_used_math(condition, current)
1351 #define copy_to_stopped_child_used_math(child) \
1352 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1353 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1354 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1355 #define used_math() tsk_used_math(current)
1356
1357 #ifdef CONFIG_SMP
1358 extern int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask);
1359 #else
1360 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1361 {
1362 if (!cpu_isset(0, new_mask))
1363 return -EINVAL;
1364 return 0;
1365 }
1366 #endif
1367
1368 extern unsigned long long sched_clock(void);
1369
1370 /*
1371 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1372 * clock constructed from sched_clock():
1373 */
1374 extern unsigned long long cpu_clock(int cpu);
1375
1376 extern unsigned long long
1377 task_sched_runtime(struct task_struct *task);
1378
1379 /* sched_exec is called by processes performing an exec */
1380 #ifdef CONFIG_SMP
1381 extern void sched_exec(void);
1382 #else
1383 #define sched_exec() {}
1384 #endif
1385
1386 extern void sched_clock_idle_sleep_event(void);
1387 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1388
1389 #ifdef CONFIG_HOTPLUG_CPU
1390 extern void idle_task_exit(void);
1391 #else
1392 static inline void idle_task_exit(void) {}
1393 #endif
1394
1395 extern void sched_idle_next(void);
1396
1397 #ifdef CONFIG_SCHED_DEBUG
1398 extern unsigned int sysctl_sched_latency;
1399 extern unsigned int sysctl_sched_min_granularity;
1400 extern unsigned int sysctl_sched_wakeup_granularity;
1401 extern unsigned int sysctl_sched_batch_wakeup_granularity;
1402 extern unsigned int sysctl_sched_stat_granularity;
1403 extern unsigned int sysctl_sched_runtime_limit;
1404 extern unsigned int sysctl_sched_child_runs_first;
1405 extern unsigned int sysctl_sched_features;
1406 #endif
1407
1408 extern unsigned int sysctl_sched_compat_yield;
1409
1410 #ifdef CONFIG_RT_MUTEXES
1411 extern int rt_mutex_getprio(struct task_struct *p);
1412 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1413 extern void rt_mutex_adjust_pi(struct task_struct *p);
1414 #else
1415 static inline int rt_mutex_getprio(struct task_struct *p)
1416 {
1417 return p->normal_prio;
1418 }
1419 # define rt_mutex_adjust_pi(p) do { } while (0)
1420 #endif
1421
1422 extern void set_user_nice(struct task_struct *p, long nice);
1423 extern int task_prio(const struct task_struct *p);
1424 extern int task_nice(const struct task_struct *p);
1425 extern int can_nice(const struct task_struct *p, const int nice);
1426 extern int task_curr(const struct task_struct *p);
1427 extern int idle_cpu(int cpu);
1428 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1429 extern struct task_struct *idle_task(int cpu);
1430 extern struct task_struct *curr_task(int cpu);
1431 extern void set_curr_task(int cpu, struct task_struct *p);
1432
1433 void yield(void);
1434
1435 /*
1436 * The default (Linux) execution domain.
1437 */
1438 extern struct exec_domain default_exec_domain;
1439
1440 union thread_union {
1441 struct thread_info thread_info;
1442 unsigned long stack[THREAD_SIZE/sizeof(long)];
1443 };
1444
1445 #ifndef __HAVE_ARCH_KSTACK_END
1446 static inline int kstack_end(void *addr)
1447 {
1448 /* Reliable end of stack detection:
1449 * Some APM bios versions misalign the stack
1450 */
1451 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1452 }
1453 #endif
1454
1455 extern union thread_union init_thread_union;
1456 extern struct task_struct init_task;
1457
1458 extern struct mm_struct init_mm;
1459
1460 #define find_task_by_pid(nr) find_task_by_pid_type(PIDTYPE_PID, nr)
1461 extern struct task_struct *find_task_by_pid_type(int type, int pid);
1462 extern void __set_special_pids(pid_t session, pid_t pgrp);
1463
1464 /* per-UID process charging. */
1465 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1466 static inline struct user_struct *get_uid(struct user_struct *u)
1467 {
1468 atomic_inc(&u->__count);
1469 return u;
1470 }
1471 extern void free_uid(struct user_struct *);
1472 extern void switch_uid(struct user_struct *);
1473 extern void release_uids(struct user_namespace *ns);
1474
1475 #include <asm/current.h>
1476
1477 extern void do_timer(unsigned long ticks);
1478
1479 extern int FASTCALL(wake_up_state(struct task_struct * tsk, unsigned int state));
1480 extern int FASTCALL(wake_up_process(struct task_struct * tsk));
1481 extern void FASTCALL(wake_up_new_task(struct task_struct * tsk,
1482 unsigned long clone_flags));
1483 #ifdef CONFIG_SMP
1484 extern void kick_process(struct task_struct *tsk);
1485 #else
1486 static inline void kick_process(struct task_struct *tsk) { }
1487 #endif
1488 extern void sched_fork(struct task_struct *p, int clone_flags);
1489 extern void sched_dead(struct task_struct *p);
1490
1491 extern int in_group_p(gid_t);
1492 extern int in_egroup_p(gid_t);
1493
1494 extern void proc_caches_init(void);
1495 extern void flush_signals(struct task_struct *);
1496 extern void ignore_signals(struct task_struct *);
1497 extern void flush_signal_handlers(struct task_struct *, int force_default);
1498 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1499
1500 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1501 {
1502 unsigned long flags;
1503 int ret;
1504
1505 spin_lock_irqsave(&tsk->sighand->siglock, flags);
1506 ret = dequeue_signal(tsk, mask, info);
1507 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1508
1509 return ret;
1510 }
1511
1512 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1513 sigset_t *mask);
1514 extern void unblock_all_signals(void);
1515 extern void release_task(struct task_struct * p);
1516 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1517 extern int send_group_sig_info(int, struct siginfo *, struct task_struct *);
1518 extern int force_sigsegv(int, struct task_struct *);
1519 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1520 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1521 extern int kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1522 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
1523 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
1524 extern int kill_pgrp(struct pid *pid, int sig, int priv);
1525 extern int kill_pid(struct pid *pid, int sig, int priv);
1526 extern int kill_proc_info(int, struct siginfo *, pid_t);
1527 extern void do_notify_parent(struct task_struct *, int);
1528 extern void force_sig(int, struct task_struct *);
1529 extern void force_sig_specific(int, struct task_struct *);
1530 extern int send_sig(int, struct task_struct *, int);
1531 extern void zap_other_threads(struct task_struct *p);
1532 extern int kill_proc(pid_t, int, int);
1533 extern struct sigqueue *sigqueue_alloc(void);
1534 extern void sigqueue_free(struct sigqueue *);
1535 extern int send_sigqueue(int, struct sigqueue *, struct task_struct *);
1536 extern int send_group_sigqueue(int, struct sigqueue *, struct task_struct *);
1537 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1538 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1539
1540 static inline int kill_cad_pid(int sig, int priv)
1541 {
1542 return kill_pid(cad_pid, sig, priv);
1543 }
1544
1545 /* These can be the second arg to send_sig_info/send_group_sig_info. */
1546 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
1547 #define SEND_SIG_PRIV ((struct siginfo *) 1)
1548 #define SEND_SIG_FORCED ((struct siginfo *) 2)
1549
1550 static inline int is_si_special(const struct siginfo *info)
1551 {
1552 return info <= SEND_SIG_FORCED;
1553 }
1554
1555 /* True if we are on the alternate signal stack. */
1556
1557 static inline int on_sig_stack(unsigned long sp)
1558 {
1559 return (sp - current->sas_ss_sp < current->sas_ss_size);
1560 }
1561
1562 static inline int sas_ss_flags(unsigned long sp)
1563 {
1564 return (current->sas_ss_size == 0 ? SS_DISABLE
1565 : on_sig_stack(sp) ? SS_ONSTACK : 0);
1566 }
1567
1568 /*
1569 * Routines for handling mm_structs
1570 */
1571 extern struct mm_struct * mm_alloc(void);
1572
1573 /* mmdrop drops the mm and the page tables */
1574 extern void FASTCALL(__mmdrop(struct mm_struct *));
1575 static inline void mmdrop(struct mm_struct * mm)
1576 {
1577 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1578 __mmdrop(mm);
1579 }
1580
1581 /* mmput gets rid of the mappings and all user-space */
1582 extern void mmput(struct mm_struct *);
1583 /* Grab a reference to a task's mm, if it is not already going away */
1584 extern struct mm_struct *get_task_mm(struct task_struct *task);
1585 /* Remove the current tasks stale references to the old mm_struct */
1586 extern void mm_release(struct task_struct *, struct mm_struct *);
1587
1588 extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
1589 extern void flush_thread(void);
1590 extern void exit_thread(void);
1591
1592 extern void exit_files(struct task_struct *);
1593 extern void __cleanup_signal(struct signal_struct *);
1594 extern void __cleanup_sighand(struct sighand_struct *);
1595 extern void exit_itimers(struct signal_struct *);
1596
1597 extern NORET_TYPE void do_group_exit(int);
1598
1599 extern void daemonize(const char *, ...);
1600 extern int allow_signal(int);
1601 extern int disallow_signal(int);
1602
1603 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
1604 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
1605 struct task_struct *fork_idle(int);
1606
1607 extern void set_task_comm(struct task_struct *tsk, char *from);
1608 extern void get_task_comm(char *to, struct task_struct *tsk);
1609
1610 #ifdef CONFIG_SMP
1611 extern void wait_task_inactive(struct task_struct * p);
1612 #else
1613 #define wait_task_inactive(p) do { } while (0)
1614 #endif
1615
1616 #define remove_parent(p) list_del_init(&(p)->sibling)
1617 #define add_parent(p) list_add_tail(&(p)->sibling,&(p)->parent->children)
1618
1619 #define next_task(p) list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks)
1620
1621 #define for_each_process(p) \
1622 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
1623
1624 /*
1625 * Careful: do_each_thread/while_each_thread is a double loop so
1626 * 'break' will not work as expected - use goto instead.
1627 */
1628 #define do_each_thread(g, t) \
1629 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
1630
1631 #define while_each_thread(g, t) \
1632 while ((t = next_thread(t)) != g)
1633
1634 /* de_thread depends on thread_group_leader not being a pid based check */
1635 #define thread_group_leader(p) (p == p->group_leader)
1636
1637 /* Do to the insanities of de_thread it is possible for a process
1638 * to have the pid of the thread group leader without actually being
1639 * the thread group leader. For iteration through the pids in proc
1640 * all we care about is that we have a task with the appropriate
1641 * pid, we don't actually care if we have the right task.
1642 */
1643 static inline int has_group_leader_pid(struct task_struct *p)
1644 {
1645 return p->pid == p->tgid;
1646 }
1647
1648 static inline struct task_struct *next_thread(const struct task_struct *p)
1649 {
1650 return list_entry(rcu_dereference(p->thread_group.next),
1651 struct task_struct, thread_group);
1652 }
1653
1654 static inline int thread_group_empty(struct task_struct *p)
1655 {
1656 return list_empty(&p->thread_group);
1657 }
1658
1659 #define delay_group_leader(p) \
1660 (thread_group_leader(p) && !thread_group_empty(p))
1661
1662 /*
1663 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
1664 * subscriptions and synchronises with wait4(). Also used in procfs. Also
1665 * pins the final release of task.io_context. Also protects ->cpuset.
1666 *
1667 * Nests both inside and outside of read_lock(&tasklist_lock).
1668 * It must not be nested with write_lock_irq(&tasklist_lock),
1669 * neither inside nor outside.
1670 */
1671 static inline void task_lock(struct task_struct *p)
1672 {
1673 spin_lock(&p->alloc_lock);
1674 }
1675
1676 static inline void task_unlock(struct task_struct *p)
1677 {
1678 spin_unlock(&p->alloc_lock);
1679 }
1680
1681 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
1682 unsigned long *flags);
1683
1684 static inline void unlock_task_sighand(struct task_struct *tsk,
1685 unsigned long *flags)
1686 {
1687 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
1688 }
1689
1690 #ifndef __HAVE_THREAD_FUNCTIONS
1691
1692 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
1693 #define task_stack_page(task) ((task)->stack)
1694
1695 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
1696 {
1697 *task_thread_info(p) = *task_thread_info(org);
1698 task_thread_info(p)->task = p;
1699 }
1700
1701 static inline unsigned long *end_of_stack(struct task_struct *p)
1702 {
1703 return (unsigned long *)(task_thread_info(p) + 1);
1704 }
1705
1706 #endif
1707
1708 /* set thread flags in other task's structures
1709 * - see asm/thread_info.h for TIF_xxxx flags available
1710 */
1711 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1712 {
1713 set_ti_thread_flag(task_thread_info(tsk), flag);
1714 }
1715
1716 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1717 {
1718 clear_ti_thread_flag(task_thread_info(tsk), flag);
1719 }
1720
1721 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1722 {
1723 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1724 }
1725
1726 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1727 {
1728 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1729 }
1730
1731 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1732 {
1733 return test_ti_thread_flag(task_thread_info(tsk), flag);
1734 }
1735
1736 static inline void set_tsk_need_resched(struct task_struct *tsk)
1737 {
1738 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1739 }
1740
1741 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1742 {
1743 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1744 }
1745
1746 static inline int signal_pending(struct task_struct *p)
1747 {
1748 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
1749 }
1750
1751 static inline int need_resched(void)
1752 {
1753 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
1754 }
1755
1756 /*
1757 * cond_resched() and cond_resched_lock(): latency reduction via
1758 * explicit rescheduling in places that are safe. The return
1759 * value indicates whether a reschedule was done in fact.
1760 * cond_resched_lock() will drop the spinlock before scheduling,
1761 * cond_resched_softirq() will enable bhs before scheduling.
1762 */
1763 extern int cond_resched(void);
1764 extern int cond_resched_lock(spinlock_t * lock);
1765 extern int cond_resched_softirq(void);
1766
1767 /*
1768 * Does a critical section need to be broken due to another
1769 * task waiting?:
1770 */
1771 #if defined(CONFIG_PREEMPT) && defined(CONFIG_SMP)
1772 # define need_lockbreak(lock) ((lock)->break_lock)
1773 #else
1774 # define need_lockbreak(lock) 0
1775 #endif
1776
1777 /*
1778 * Does a critical section need to be broken due to another
1779 * task waiting or preemption being signalled:
1780 */
1781 static inline int lock_need_resched(spinlock_t *lock)
1782 {
1783 if (need_lockbreak(lock) || need_resched())
1784 return 1;
1785 return 0;
1786 }
1787
1788 /*
1789 * Reevaluate whether the task has signals pending delivery.
1790 * Wake the task if so.
1791 * This is required every time the blocked sigset_t changes.
1792 * callers must hold sighand->siglock.
1793 */
1794 extern void recalc_sigpending_and_wake(struct task_struct *t);
1795 extern void recalc_sigpending(void);
1796
1797 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
1798
1799 /*
1800 * Wrappers for p->thread_info->cpu access. No-op on UP.
1801 */
1802 #ifdef CONFIG_SMP
1803
1804 static inline unsigned int task_cpu(const struct task_struct *p)
1805 {
1806 return task_thread_info(p)->cpu;
1807 }
1808
1809 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1810
1811 #else
1812
1813 static inline unsigned int task_cpu(const struct task_struct *p)
1814 {
1815 return 0;
1816 }
1817
1818 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1819 {
1820 }
1821
1822 #endif /* CONFIG_SMP */
1823
1824 #ifdef HAVE_ARCH_PICK_MMAP_LAYOUT
1825 extern void arch_pick_mmap_layout(struct mm_struct *mm);
1826 #else
1827 static inline void arch_pick_mmap_layout(struct mm_struct *mm)
1828 {
1829 mm->mmap_base = TASK_UNMAPPED_BASE;
1830 mm->get_unmapped_area = arch_get_unmapped_area;
1831 mm->unmap_area = arch_unmap_area;
1832 }
1833 #endif
1834
1835 extern long sched_setaffinity(pid_t pid, cpumask_t new_mask);
1836 extern long sched_getaffinity(pid_t pid, cpumask_t *mask);
1837
1838 extern int sched_mc_power_savings, sched_smt_power_savings;
1839
1840 extern void normalize_rt_tasks(void);
1841
1842 #ifdef CONFIG_FAIR_GROUP_SCHED
1843
1844 extern struct task_grp init_task_grp;
1845
1846 extern struct task_grp *sched_create_group(void);
1847 extern void sched_destroy_group(struct task_grp *tg);
1848 extern void sched_move_task(struct task_struct *tsk);
1849 extern int sched_group_set_shares(struct task_grp *tg, unsigned long shares);
1850
1851 #endif
1852
1853 #ifdef CONFIG_TASK_XACCT
1854 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
1855 {
1856 tsk->rchar += amt;
1857 }
1858
1859 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
1860 {
1861 tsk->wchar += amt;
1862 }
1863
1864 static inline void inc_syscr(struct task_struct *tsk)
1865 {
1866 tsk->syscr++;
1867 }
1868
1869 static inline void inc_syscw(struct task_struct *tsk)
1870 {
1871 tsk->syscw++;
1872 }
1873 #else
1874 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
1875 {
1876 }
1877
1878 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
1879 {
1880 }
1881
1882 static inline void inc_syscr(struct task_struct *tsk)
1883 {
1884 }
1885
1886 static inline void inc_syscw(struct task_struct *tsk)
1887 {
1888 }
1889 #endif
1890
1891 #endif /* __KERNEL__ */
1892
1893 #endif
This page took 0.080106 seconds and 4 git commands to generate.