mm: numa: Revert temporarily disabling of NUMA migration
[deliverable/linux.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <uapi/linux/sched.h>
5
6
7 struct sched_param {
8 int sched_priority;
9 };
10
11 #include <asm/param.h> /* for HZ */
12
13 #include <linux/capability.h>
14 #include <linux/threads.h>
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/timex.h>
18 #include <linux/jiffies.h>
19 #include <linux/rbtree.h>
20 #include <linux/thread_info.h>
21 #include <linux/cpumask.h>
22 #include <linux/errno.h>
23 #include <linux/nodemask.h>
24 #include <linux/mm_types.h>
25 #include <linux/preempt.h>
26
27 #include <asm/page.h>
28 #include <asm/ptrace.h>
29 #include <asm/cputime.h>
30
31 #include <linux/smp.h>
32 #include <linux/sem.h>
33 #include <linux/signal.h>
34 #include <linux/compiler.h>
35 #include <linux/completion.h>
36 #include <linux/pid.h>
37 #include <linux/percpu.h>
38 #include <linux/topology.h>
39 #include <linux/proportions.h>
40 #include <linux/seccomp.h>
41 #include <linux/rcupdate.h>
42 #include <linux/rculist.h>
43 #include <linux/rtmutex.h>
44
45 #include <linux/time.h>
46 #include <linux/param.h>
47 #include <linux/resource.h>
48 #include <linux/timer.h>
49 #include <linux/hrtimer.h>
50 #include <linux/task_io_accounting.h>
51 #include <linux/latencytop.h>
52 #include <linux/cred.h>
53 #include <linux/llist.h>
54 #include <linux/uidgid.h>
55 #include <linux/gfp.h>
56
57 #include <asm/processor.h>
58
59 struct exec_domain;
60 struct futex_pi_state;
61 struct robust_list_head;
62 struct bio_list;
63 struct fs_struct;
64 struct perf_event_context;
65 struct blk_plug;
66
67 /*
68 * List of flags we want to share for kernel threads,
69 * if only because they are not used by them anyway.
70 */
71 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
72
73 /*
74 * These are the constant used to fake the fixed-point load-average
75 * counting. Some notes:
76 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
77 * a load-average precision of 10 bits integer + 11 bits fractional
78 * - if you want to count load-averages more often, you need more
79 * precision, or rounding will get you. With 2-second counting freq,
80 * the EXP_n values would be 1981, 2034 and 2043 if still using only
81 * 11 bit fractions.
82 */
83 extern unsigned long avenrun[]; /* Load averages */
84 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
85
86 #define FSHIFT 11 /* nr of bits of precision */
87 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
88 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
89 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
90 #define EXP_5 2014 /* 1/exp(5sec/5min) */
91 #define EXP_15 2037 /* 1/exp(5sec/15min) */
92
93 #define CALC_LOAD(load,exp,n) \
94 load *= exp; \
95 load += n*(FIXED_1-exp); \
96 load >>= FSHIFT;
97
98 extern unsigned long total_forks;
99 extern int nr_threads;
100 DECLARE_PER_CPU(unsigned long, process_counts);
101 extern int nr_processes(void);
102 extern unsigned long nr_running(void);
103 extern unsigned long nr_iowait(void);
104 extern unsigned long nr_iowait_cpu(int cpu);
105 extern unsigned long this_cpu_load(void);
106
107
108 extern void calc_global_load(unsigned long ticks);
109 extern void update_cpu_load_nohz(void);
110
111 extern unsigned long get_parent_ip(unsigned long addr);
112
113 extern void dump_cpu_task(int cpu);
114
115 struct seq_file;
116 struct cfs_rq;
117 struct task_group;
118 #ifdef CONFIG_SCHED_DEBUG
119 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
120 extern void proc_sched_set_task(struct task_struct *p);
121 extern void
122 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
123 #endif
124
125 /*
126 * Task state bitmask. NOTE! These bits are also
127 * encoded in fs/proc/array.c: get_task_state().
128 *
129 * We have two separate sets of flags: task->state
130 * is about runnability, while task->exit_state are
131 * about the task exiting. Confusing, but this way
132 * modifying one set can't modify the other one by
133 * mistake.
134 */
135 #define TASK_RUNNING 0
136 #define TASK_INTERRUPTIBLE 1
137 #define TASK_UNINTERRUPTIBLE 2
138 #define __TASK_STOPPED 4
139 #define __TASK_TRACED 8
140 /* in tsk->exit_state */
141 #define EXIT_ZOMBIE 16
142 #define EXIT_DEAD 32
143 /* in tsk->state again */
144 #define TASK_DEAD 64
145 #define TASK_WAKEKILL 128
146 #define TASK_WAKING 256
147 #define TASK_PARKED 512
148 #define TASK_STATE_MAX 1024
149
150 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
151
152 extern char ___assert_task_state[1 - 2*!!(
153 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
154
155 /* Convenience macros for the sake of set_task_state */
156 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
157 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
158 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
159
160 /* Convenience macros for the sake of wake_up */
161 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
162 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
163
164 /* get_task_state() */
165 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
166 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
167 __TASK_TRACED)
168
169 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
170 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
171 #define task_is_dead(task) ((task)->exit_state != 0)
172 #define task_is_stopped_or_traced(task) \
173 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
174 #define task_contributes_to_load(task) \
175 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
176 (task->flags & PF_FROZEN) == 0)
177
178 #define __set_task_state(tsk, state_value) \
179 do { (tsk)->state = (state_value); } while (0)
180 #define set_task_state(tsk, state_value) \
181 set_mb((tsk)->state, (state_value))
182
183 /*
184 * set_current_state() includes a barrier so that the write of current->state
185 * is correctly serialised wrt the caller's subsequent test of whether to
186 * actually sleep:
187 *
188 * set_current_state(TASK_UNINTERRUPTIBLE);
189 * if (do_i_need_to_sleep())
190 * schedule();
191 *
192 * If the caller does not need such serialisation then use __set_current_state()
193 */
194 #define __set_current_state(state_value) \
195 do { current->state = (state_value); } while (0)
196 #define set_current_state(state_value) \
197 set_mb(current->state, (state_value))
198
199 /* Task command name length */
200 #define TASK_COMM_LEN 16
201
202 #include <linux/spinlock.h>
203
204 /*
205 * This serializes "schedule()" and also protects
206 * the run-queue from deletions/modifications (but
207 * _adding_ to the beginning of the run-queue has
208 * a separate lock).
209 */
210 extern rwlock_t tasklist_lock;
211 extern spinlock_t mmlist_lock;
212
213 struct task_struct;
214
215 #ifdef CONFIG_PROVE_RCU
216 extern int lockdep_tasklist_lock_is_held(void);
217 #endif /* #ifdef CONFIG_PROVE_RCU */
218
219 extern void sched_init(void);
220 extern void sched_init_smp(void);
221 extern asmlinkage void schedule_tail(struct task_struct *prev);
222 extern void init_idle(struct task_struct *idle, int cpu);
223 extern void init_idle_bootup_task(struct task_struct *idle);
224
225 extern int runqueue_is_locked(int cpu);
226
227 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
228 extern void nohz_balance_enter_idle(int cpu);
229 extern void set_cpu_sd_state_idle(void);
230 extern int get_nohz_timer_target(void);
231 #else
232 static inline void nohz_balance_enter_idle(int cpu) { }
233 static inline void set_cpu_sd_state_idle(void) { }
234 #endif
235
236 /*
237 * Only dump TASK_* tasks. (0 for all tasks)
238 */
239 extern void show_state_filter(unsigned long state_filter);
240
241 static inline void show_state(void)
242 {
243 show_state_filter(0);
244 }
245
246 extern void show_regs(struct pt_regs *);
247
248 /*
249 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
250 * task), SP is the stack pointer of the first frame that should be shown in the back
251 * trace (or NULL if the entire call-chain of the task should be shown).
252 */
253 extern void show_stack(struct task_struct *task, unsigned long *sp);
254
255 void io_schedule(void);
256 long io_schedule_timeout(long timeout);
257
258 extern void cpu_init (void);
259 extern void trap_init(void);
260 extern void update_process_times(int user);
261 extern void scheduler_tick(void);
262
263 extern void sched_show_task(struct task_struct *p);
264
265 #ifdef CONFIG_LOCKUP_DETECTOR
266 extern void touch_softlockup_watchdog(void);
267 extern void touch_softlockup_watchdog_sync(void);
268 extern void touch_all_softlockup_watchdogs(void);
269 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
270 void __user *buffer,
271 size_t *lenp, loff_t *ppos);
272 extern unsigned int softlockup_panic;
273 void lockup_detector_init(void);
274 #else
275 static inline void touch_softlockup_watchdog(void)
276 {
277 }
278 static inline void touch_softlockup_watchdog_sync(void)
279 {
280 }
281 static inline void touch_all_softlockup_watchdogs(void)
282 {
283 }
284 static inline void lockup_detector_init(void)
285 {
286 }
287 #endif
288
289 /* Attach to any functions which should be ignored in wchan output. */
290 #define __sched __attribute__((__section__(".sched.text")))
291
292 /* Linker adds these: start and end of __sched functions */
293 extern char __sched_text_start[], __sched_text_end[];
294
295 /* Is this address in the __sched functions? */
296 extern int in_sched_functions(unsigned long addr);
297
298 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
299 extern signed long schedule_timeout(signed long timeout);
300 extern signed long schedule_timeout_interruptible(signed long timeout);
301 extern signed long schedule_timeout_killable(signed long timeout);
302 extern signed long schedule_timeout_uninterruptible(signed long timeout);
303 asmlinkage void schedule(void);
304 extern void schedule_preempt_disabled(void);
305
306 struct nsproxy;
307 struct user_namespace;
308
309 #ifdef CONFIG_MMU
310 extern void arch_pick_mmap_layout(struct mm_struct *mm);
311 extern unsigned long
312 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
313 unsigned long, unsigned long);
314 extern unsigned long
315 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
316 unsigned long len, unsigned long pgoff,
317 unsigned long flags);
318 #else
319 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
320 #endif
321
322
323 extern void set_dumpable(struct mm_struct *mm, int value);
324 extern int get_dumpable(struct mm_struct *mm);
325
326 /* mm flags */
327 /* dumpable bits */
328 #define MMF_DUMPABLE 0 /* core dump is permitted */
329 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
330
331 #define MMF_DUMPABLE_BITS 2
332 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
333
334 /* coredump filter bits */
335 #define MMF_DUMP_ANON_PRIVATE 2
336 #define MMF_DUMP_ANON_SHARED 3
337 #define MMF_DUMP_MAPPED_PRIVATE 4
338 #define MMF_DUMP_MAPPED_SHARED 5
339 #define MMF_DUMP_ELF_HEADERS 6
340 #define MMF_DUMP_HUGETLB_PRIVATE 7
341 #define MMF_DUMP_HUGETLB_SHARED 8
342
343 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
344 #define MMF_DUMP_FILTER_BITS 7
345 #define MMF_DUMP_FILTER_MASK \
346 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
347 #define MMF_DUMP_FILTER_DEFAULT \
348 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
349 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
350
351 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
352 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
353 #else
354 # define MMF_DUMP_MASK_DEFAULT_ELF 0
355 #endif
356 /* leave room for more dump flags */
357 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
358 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
359 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
360
361 #define MMF_HAS_UPROBES 19 /* has uprobes */
362 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
363
364 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
365
366 struct sighand_struct {
367 atomic_t count;
368 struct k_sigaction action[_NSIG];
369 spinlock_t siglock;
370 wait_queue_head_t signalfd_wqh;
371 };
372
373 struct pacct_struct {
374 int ac_flag;
375 long ac_exitcode;
376 unsigned long ac_mem;
377 cputime_t ac_utime, ac_stime;
378 unsigned long ac_minflt, ac_majflt;
379 };
380
381 struct cpu_itimer {
382 cputime_t expires;
383 cputime_t incr;
384 u32 error;
385 u32 incr_error;
386 };
387
388 /**
389 * struct cputime - snaphsot of system and user cputime
390 * @utime: time spent in user mode
391 * @stime: time spent in system mode
392 *
393 * Gathers a generic snapshot of user and system time.
394 */
395 struct cputime {
396 cputime_t utime;
397 cputime_t stime;
398 };
399
400 /**
401 * struct task_cputime - collected CPU time counts
402 * @utime: time spent in user mode, in &cputime_t units
403 * @stime: time spent in kernel mode, in &cputime_t units
404 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
405 *
406 * This is an extension of struct cputime that includes the total runtime
407 * spent by the task from the scheduler point of view.
408 *
409 * As a result, this structure groups together three kinds of CPU time
410 * that are tracked for threads and thread groups. Most things considering
411 * CPU time want to group these counts together and treat all three
412 * of them in parallel.
413 */
414 struct task_cputime {
415 cputime_t utime;
416 cputime_t stime;
417 unsigned long long sum_exec_runtime;
418 };
419 /* Alternate field names when used to cache expirations. */
420 #define prof_exp stime
421 #define virt_exp utime
422 #define sched_exp sum_exec_runtime
423
424 #define INIT_CPUTIME \
425 (struct task_cputime) { \
426 .utime = 0, \
427 .stime = 0, \
428 .sum_exec_runtime = 0, \
429 }
430
431 #define PREEMPT_ENABLED (PREEMPT_NEED_RESCHED)
432
433 #ifdef CONFIG_PREEMPT_COUNT
434 #define PREEMPT_DISABLED (1 + PREEMPT_ENABLED)
435 #else
436 #define PREEMPT_DISABLED PREEMPT_ENABLED
437 #endif
438
439 /*
440 * Disable preemption until the scheduler is running.
441 * Reset by start_kernel()->sched_init()->init_idle().
442 *
443 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
444 * before the scheduler is active -- see should_resched().
445 */
446 #define INIT_PREEMPT_COUNT (PREEMPT_DISABLED + PREEMPT_ACTIVE)
447
448 /**
449 * struct thread_group_cputimer - thread group interval timer counts
450 * @cputime: thread group interval timers.
451 * @running: non-zero when there are timers running and
452 * @cputime receives updates.
453 * @lock: lock for fields in this struct.
454 *
455 * This structure contains the version of task_cputime, above, that is
456 * used for thread group CPU timer calculations.
457 */
458 struct thread_group_cputimer {
459 struct task_cputime cputime;
460 int running;
461 raw_spinlock_t lock;
462 };
463
464 #include <linux/rwsem.h>
465 struct autogroup;
466
467 /*
468 * NOTE! "signal_struct" does not have its own
469 * locking, because a shared signal_struct always
470 * implies a shared sighand_struct, so locking
471 * sighand_struct is always a proper superset of
472 * the locking of signal_struct.
473 */
474 struct signal_struct {
475 atomic_t sigcnt;
476 atomic_t live;
477 int nr_threads;
478
479 wait_queue_head_t wait_chldexit; /* for wait4() */
480
481 /* current thread group signal load-balancing target: */
482 struct task_struct *curr_target;
483
484 /* shared signal handling: */
485 struct sigpending shared_pending;
486
487 /* thread group exit support */
488 int group_exit_code;
489 /* overloaded:
490 * - notify group_exit_task when ->count is equal to notify_count
491 * - everyone except group_exit_task is stopped during signal delivery
492 * of fatal signals, group_exit_task processes the signal.
493 */
494 int notify_count;
495 struct task_struct *group_exit_task;
496
497 /* thread group stop support, overloads group_exit_code too */
498 int group_stop_count;
499 unsigned int flags; /* see SIGNAL_* flags below */
500
501 /*
502 * PR_SET_CHILD_SUBREAPER marks a process, like a service
503 * manager, to re-parent orphan (double-forking) child processes
504 * to this process instead of 'init'. The service manager is
505 * able to receive SIGCHLD signals and is able to investigate
506 * the process until it calls wait(). All children of this
507 * process will inherit a flag if they should look for a
508 * child_subreaper process at exit.
509 */
510 unsigned int is_child_subreaper:1;
511 unsigned int has_child_subreaper:1;
512
513 /* POSIX.1b Interval Timers */
514 int posix_timer_id;
515 struct list_head posix_timers;
516
517 /* ITIMER_REAL timer for the process */
518 struct hrtimer real_timer;
519 struct pid *leader_pid;
520 ktime_t it_real_incr;
521
522 /*
523 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
524 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
525 * values are defined to 0 and 1 respectively
526 */
527 struct cpu_itimer it[2];
528
529 /*
530 * Thread group totals for process CPU timers.
531 * See thread_group_cputimer(), et al, for details.
532 */
533 struct thread_group_cputimer cputimer;
534
535 /* Earliest-expiration cache. */
536 struct task_cputime cputime_expires;
537
538 struct list_head cpu_timers[3];
539
540 struct pid *tty_old_pgrp;
541
542 /* boolean value for session group leader */
543 int leader;
544
545 struct tty_struct *tty; /* NULL if no tty */
546
547 #ifdef CONFIG_SCHED_AUTOGROUP
548 struct autogroup *autogroup;
549 #endif
550 /*
551 * Cumulative resource counters for dead threads in the group,
552 * and for reaped dead child processes forked by this group.
553 * Live threads maintain their own counters and add to these
554 * in __exit_signal, except for the group leader.
555 */
556 cputime_t utime, stime, cutime, cstime;
557 cputime_t gtime;
558 cputime_t cgtime;
559 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
560 struct cputime prev_cputime;
561 #endif
562 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
563 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
564 unsigned long inblock, oublock, cinblock, coublock;
565 unsigned long maxrss, cmaxrss;
566 struct task_io_accounting ioac;
567
568 /*
569 * Cumulative ns of schedule CPU time fo dead threads in the
570 * group, not including a zombie group leader, (This only differs
571 * from jiffies_to_ns(utime + stime) if sched_clock uses something
572 * other than jiffies.)
573 */
574 unsigned long long sum_sched_runtime;
575
576 /*
577 * We don't bother to synchronize most readers of this at all,
578 * because there is no reader checking a limit that actually needs
579 * to get both rlim_cur and rlim_max atomically, and either one
580 * alone is a single word that can safely be read normally.
581 * getrlimit/setrlimit use task_lock(current->group_leader) to
582 * protect this instead of the siglock, because they really
583 * have no need to disable irqs.
584 */
585 struct rlimit rlim[RLIM_NLIMITS];
586
587 #ifdef CONFIG_BSD_PROCESS_ACCT
588 struct pacct_struct pacct; /* per-process accounting information */
589 #endif
590 #ifdef CONFIG_TASKSTATS
591 struct taskstats *stats;
592 #endif
593 #ifdef CONFIG_AUDIT
594 unsigned audit_tty;
595 unsigned audit_tty_log_passwd;
596 struct tty_audit_buf *tty_audit_buf;
597 #endif
598 #ifdef CONFIG_CGROUPS
599 /*
600 * group_rwsem prevents new tasks from entering the threadgroup and
601 * member tasks from exiting,a more specifically, setting of
602 * PF_EXITING. fork and exit paths are protected with this rwsem
603 * using threadgroup_change_begin/end(). Users which require
604 * threadgroup to remain stable should use threadgroup_[un]lock()
605 * which also takes care of exec path. Currently, cgroup is the
606 * only user.
607 */
608 struct rw_semaphore group_rwsem;
609 #endif
610
611 oom_flags_t oom_flags;
612 short oom_score_adj; /* OOM kill score adjustment */
613 short oom_score_adj_min; /* OOM kill score adjustment min value.
614 * Only settable by CAP_SYS_RESOURCE. */
615
616 struct mutex cred_guard_mutex; /* guard against foreign influences on
617 * credential calculations
618 * (notably. ptrace) */
619 };
620
621 /*
622 * Bits in flags field of signal_struct.
623 */
624 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
625 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
626 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
627 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
628 /*
629 * Pending notifications to parent.
630 */
631 #define SIGNAL_CLD_STOPPED 0x00000010
632 #define SIGNAL_CLD_CONTINUED 0x00000020
633 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
634
635 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
636
637 /* If true, all threads except ->group_exit_task have pending SIGKILL */
638 static inline int signal_group_exit(const struct signal_struct *sig)
639 {
640 return (sig->flags & SIGNAL_GROUP_EXIT) ||
641 (sig->group_exit_task != NULL);
642 }
643
644 /*
645 * Some day this will be a full-fledged user tracking system..
646 */
647 struct user_struct {
648 atomic_t __count; /* reference count */
649 atomic_t processes; /* How many processes does this user have? */
650 atomic_t files; /* How many open files does this user have? */
651 atomic_t sigpending; /* How many pending signals does this user have? */
652 #ifdef CONFIG_INOTIFY_USER
653 atomic_t inotify_watches; /* How many inotify watches does this user have? */
654 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
655 #endif
656 #ifdef CONFIG_FANOTIFY
657 atomic_t fanotify_listeners;
658 #endif
659 #ifdef CONFIG_EPOLL
660 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
661 #endif
662 #ifdef CONFIG_POSIX_MQUEUE
663 /* protected by mq_lock */
664 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
665 #endif
666 unsigned long locked_shm; /* How many pages of mlocked shm ? */
667
668 #ifdef CONFIG_KEYS
669 struct key *uid_keyring; /* UID specific keyring */
670 struct key *session_keyring; /* UID's default session keyring */
671 #endif
672
673 /* Hash table maintenance information */
674 struct hlist_node uidhash_node;
675 kuid_t uid;
676
677 #ifdef CONFIG_PERF_EVENTS
678 atomic_long_t locked_vm;
679 #endif
680 };
681
682 extern int uids_sysfs_init(void);
683
684 extern struct user_struct *find_user(kuid_t);
685
686 extern struct user_struct root_user;
687 #define INIT_USER (&root_user)
688
689
690 struct backing_dev_info;
691 struct reclaim_state;
692
693 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
694 struct sched_info {
695 /* cumulative counters */
696 unsigned long pcount; /* # of times run on this cpu */
697 unsigned long long run_delay; /* time spent waiting on a runqueue */
698
699 /* timestamps */
700 unsigned long long last_arrival,/* when we last ran on a cpu */
701 last_queued; /* when we were last queued to run */
702 };
703 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
704
705 #ifdef CONFIG_TASK_DELAY_ACCT
706 struct task_delay_info {
707 spinlock_t lock;
708 unsigned int flags; /* Private per-task flags */
709
710 /* For each stat XXX, add following, aligned appropriately
711 *
712 * struct timespec XXX_start, XXX_end;
713 * u64 XXX_delay;
714 * u32 XXX_count;
715 *
716 * Atomicity of updates to XXX_delay, XXX_count protected by
717 * single lock above (split into XXX_lock if contention is an issue).
718 */
719
720 /*
721 * XXX_count is incremented on every XXX operation, the delay
722 * associated with the operation is added to XXX_delay.
723 * XXX_delay contains the accumulated delay time in nanoseconds.
724 */
725 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
726 u64 blkio_delay; /* wait for sync block io completion */
727 u64 swapin_delay; /* wait for swapin block io completion */
728 u32 blkio_count; /* total count of the number of sync block */
729 /* io operations performed */
730 u32 swapin_count; /* total count of the number of swapin block */
731 /* io operations performed */
732
733 struct timespec freepages_start, freepages_end;
734 u64 freepages_delay; /* wait for memory reclaim */
735 u32 freepages_count; /* total count of memory reclaim */
736 };
737 #endif /* CONFIG_TASK_DELAY_ACCT */
738
739 static inline int sched_info_on(void)
740 {
741 #ifdef CONFIG_SCHEDSTATS
742 return 1;
743 #elif defined(CONFIG_TASK_DELAY_ACCT)
744 extern int delayacct_on;
745 return delayacct_on;
746 #else
747 return 0;
748 #endif
749 }
750
751 enum cpu_idle_type {
752 CPU_IDLE,
753 CPU_NOT_IDLE,
754 CPU_NEWLY_IDLE,
755 CPU_MAX_IDLE_TYPES
756 };
757
758 /*
759 * Increase resolution of cpu_power calculations
760 */
761 #define SCHED_POWER_SHIFT 10
762 #define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT)
763
764 /*
765 * sched-domains (multiprocessor balancing) declarations:
766 */
767 #ifdef CONFIG_SMP
768 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
769 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
770 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
771 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
772 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
773 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
774 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
775 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
776 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
777 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
778 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
779 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
780 #define SD_NUMA 0x4000 /* cross-node balancing */
781
782 extern int __weak arch_sd_sibiling_asym_packing(void);
783
784 struct sched_domain_attr {
785 int relax_domain_level;
786 };
787
788 #define SD_ATTR_INIT (struct sched_domain_attr) { \
789 .relax_domain_level = -1, \
790 }
791
792 extern int sched_domain_level_max;
793
794 struct sched_group;
795
796 struct sched_domain {
797 /* These fields must be setup */
798 struct sched_domain *parent; /* top domain must be null terminated */
799 struct sched_domain *child; /* bottom domain must be null terminated */
800 struct sched_group *groups; /* the balancing groups of the domain */
801 unsigned long min_interval; /* Minimum balance interval ms */
802 unsigned long max_interval; /* Maximum balance interval ms */
803 unsigned int busy_factor; /* less balancing by factor if busy */
804 unsigned int imbalance_pct; /* No balance until over watermark */
805 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
806 unsigned int busy_idx;
807 unsigned int idle_idx;
808 unsigned int newidle_idx;
809 unsigned int wake_idx;
810 unsigned int forkexec_idx;
811 unsigned int smt_gain;
812
813 int nohz_idle; /* NOHZ IDLE status */
814 int flags; /* See SD_* */
815 int level;
816
817 /* Runtime fields. */
818 unsigned long last_balance; /* init to jiffies. units in jiffies */
819 unsigned int balance_interval; /* initialise to 1. units in ms. */
820 unsigned int nr_balance_failed; /* initialise to 0 */
821
822 u64 last_update;
823
824 /* idle_balance() stats */
825 u64 max_newidle_lb_cost;
826 unsigned long next_decay_max_lb_cost;
827
828 #ifdef CONFIG_SCHEDSTATS
829 /* load_balance() stats */
830 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
831 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
832 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
833 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
834 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
835 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
836 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
837 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
838
839 /* Active load balancing */
840 unsigned int alb_count;
841 unsigned int alb_failed;
842 unsigned int alb_pushed;
843
844 /* SD_BALANCE_EXEC stats */
845 unsigned int sbe_count;
846 unsigned int sbe_balanced;
847 unsigned int sbe_pushed;
848
849 /* SD_BALANCE_FORK stats */
850 unsigned int sbf_count;
851 unsigned int sbf_balanced;
852 unsigned int sbf_pushed;
853
854 /* try_to_wake_up() stats */
855 unsigned int ttwu_wake_remote;
856 unsigned int ttwu_move_affine;
857 unsigned int ttwu_move_balance;
858 #endif
859 #ifdef CONFIG_SCHED_DEBUG
860 char *name;
861 #endif
862 union {
863 void *private; /* used during construction */
864 struct rcu_head rcu; /* used during destruction */
865 };
866
867 unsigned int span_weight;
868 /*
869 * Span of all CPUs in this domain.
870 *
871 * NOTE: this field is variable length. (Allocated dynamically
872 * by attaching extra space to the end of the structure,
873 * depending on how many CPUs the kernel has booted up with)
874 */
875 unsigned long span[0];
876 };
877
878 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
879 {
880 return to_cpumask(sd->span);
881 }
882
883 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
884 struct sched_domain_attr *dattr_new);
885
886 /* Allocate an array of sched domains, for partition_sched_domains(). */
887 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
888 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
889
890 bool cpus_share_cache(int this_cpu, int that_cpu);
891
892 #else /* CONFIG_SMP */
893
894 struct sched_domain_attr;
895
896 static inline void
897 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
898 struct sched_domain_attr *dattr_new)
899 {
900 }
901
902 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
903 {
904 return true;
905 }
906
907 #endif /* !CONFIG_SMP */
908
909
910 struct io_context; /* See blkdev.h */
911
912
913 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
914 extern void prefetch_stack(struct task_struct *t);
915 #else
916 static inline void prefetch_stack(struct task_struct *t) { }
917 #endif
918
919 struct audit_context; /* See audit.c */
920 struct mempolicy;
921 struct pipe_inode_info;
922 struct uts_namespace;
923
924 struct load_weight {
925 unsigned long weight, inv_weight;
926 };
927
928 struct sched_avg {
929 /*
930 * These sums represent an infinite geometric series and so are bound
931 * above by 1024/(1-y). Thus we only need a u32 to store them for all
932 * choices of y < 1-2^(-32)*1024.
933 */
934 u32 runnable_avg_sum, runnable_avg_period;
935 u64 last_runnable_update;
936 s64 decay_count;
937 unsigned long load_avg_contrib;
938 };
939
940 #ifdef CONFIG_SCHEDSTATS
941 struct sched_statistics {
942 u64 wait_start;
943 u64 wait_max;
944 u64 wait_count;
945 u64 wait_sum;
946 u64 iowait_count;
947 u64 iowait_sum;
948
949 u64 sleep_start;
950 u64 sleep_max;
951 s64 sum_sleep_runtime;
952
953 u64 block_start;
954 u64 block_max;
955 u64 exec_max;
956 u64 slice_max;
957
958 u64 nr_migrations_cold;
959 u64 nr_failed_migrations_affine;
960 u64 nr_failed_migrations_running;
961 u64 nr_failed_migrations_hot;
962 u64 nr_forced_migrations;
963
964 u64 nr_wakeups;
965 u64 nr_wakeups_sync;
966 u64 nr_wakeups_migrate;
967 u64 nr_wakeups_local;
968 u64 nr_wakeups_remote;
969 u64 nr_wakeups_affine;
970 u64 nr_wakeups_affine_attempts;
971 u64 nr_wakeups_passive;
972 u64 nr_wakeups_idle;
973 };
974 #endif
975
976 struct sched_entity {
977 struct load_weight load; /* for load-balancing */
978 struct rb_node run_node;
979 struct list_head group_node;
980 unsigned int on_rq;
981
982 u64 exec_start;
983 u64 sum_exec_runtime;
984 u64 vruntime;
985 u64 prev_sum_exec_runtime;
986
987 u64 nr_migrations;
988
989 #ifdef CONFIG_SCHEDSTATS
990 struct sched_statistics statistics;
991 #endif
992
993 #ifdef CONFIG_FAIR_GROUP_SCHED
994 struct sched_entity *parent;
995 /* rq on which this entity is (to be) queued: */
996 struct cfs_rq *cfs_rq;
997 /* rq "owned" by this entity/group: */
998 struct cfs_rq *my_q;
999 #endif
1000
1001 #ifdef CONFIG_SMP
1002 /* Per-entity load-tracking */
1003 struct sched_avg avg;
1004 #endif
1005 };
1006
1007 struct sched_rt_entity {
1008 struct list_head run_list;
1009 unsigned long timeout;
1010 unsigned long watchdog_stamp;
1011 unsigned int time_slice;
1012
1013 struct sched_rt_entity *back;
1014 #ifdef CONFIG_RT_GROUP_SCHED
1015 struct sched_rt_entity *parent;
1016 /* rq on which this entity is (to be) queued: */
1017 struct rt_rq *rt_rq;
1018 /* rq "owned" by this entity/group: */
1019 struct rt_rq *my_q;
1020 #endif
1021 };
1022
1023
1024 struct rcu_node;
1025
1026 enum perf_event_task_context {
1027 perf_invalid_context = -1,
1028 perf_hw_context = 0,
1029 perf_sw_context,
1030 perf_nr_task_contexts,
1031 };
1032
1033 struct task_struct {
1034 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1035 void *stack;
1036 atomic_t usage;
1037 unsigned int flags; /* per process flags, defined below */
1038 unsigned int ptrace;
1039
1040 #ifdef CONFIG_SMP
1041 struct llist_node wake_entry;
1042 int on_cpu;
1043 struct task_struct *last_wakee;
1044 unsigned long wakee_flips;
1045 unsigned long wakee_flip_decay_ts;
1046
1047 int wake_cpu;
1048 #endif
1049 int on_rq;
1050
1051 int prio, static_prio, normal_prio;
1052 unsigned int rt_priority;
1053 const struct sched_class *sched_class;
1054 struct sched_entity se;
1055 struct sched_rt_entity rt;
1056 #ifdef CONFIG_CGROUP_SCHED
1057 struct task_group *sched_task_group;
1058 #endif
1059
1060 #ifdef CONFIG_PREEMPT_NOTIFIERS
1061 /* list of struct preempt_notifier: */
1062 struct hlist_head preempt_notifiers;
1063 #endif
1064
1065 /*
1066 * fpu_counter contains the number of consecutive context switches
1067 * that the FPU is used. If this is over a threshold, the lazy fpu
1068 * saving becomes unlazy to save the trap. This is an unsigned char
1069 * so that after 256 times the counter wraps and the behavior turns
1070 * lazy again; this to deal with bursty apps that only use FPU for
1071 * a short time
1072 */
1073 unsigned char fpu_counter;
1074 #ifdef CONFIG_BLK_DEV_IO_TRACE
1075 unsigned int btrace_seq;
1076 #endif
1077
1078 unsigned int policy;
1079 int nr_cpus_allowed;
1080 cpumask_t cpus_allowed;
1081
1082 #ifdef CONFIG_PREEMPT_RCU
1083 int rcu_read_lock_nesting;
1084 char rcu_read_unlock_special;
1085 struct list_head rcu_node_entry;
1086 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1087 #ifdef CONFIG_TREE_PREEMPT_RCU
1088 struct rcu_node *rcu_blocked_node;
1089 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1090 #ifdef CONFIG_RCU_BOOST
1091 struct rt_mutex *rcu_boost_mutex;
1092 #endif /* #ifdef CONFIG_RCU_BOOST */
1093
1094 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1095 struct sched_info sched_info;
1096 #endif
1097
1098 struct list_head tasks;
1099 #ifdef CONFIG_SMP
1100 struct plist_node pushable_tasks;
1101 #endif
1102
1103 struct mm_struct *mm, *active_mm;
1104 #ifdef CONFIG_COMPAT_BRK
1105 unsigned brk_randomized:1;
1106 #endif
1107 #if defined(SPLIT_RSS_COUNTING)
1108 struct task_rss_stat rss_stat;
1109 #endif
1110 /* task state */
1111 int exit_state;
1112 int exit_code, exit_signal;
1113 int pdeath_signal; /* The signal sent when the parent dies */
1114 unsigned int jobctl; /* JOBCTL_*, siglock protected */
1115
1116 /* Used for emulating ABI behavior of previous Linux versions */
1117 unsigned int personality;
1118
1119 unsigned did_exec:1;
1120 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1121 * execve */
1122 unsigned in_iowait:1;
1123
1124 /* task may not gain privileges */
1125 unsigned no_new_privs:1;
1126
1127 /* Revert to default priority/policy when forking */
1128 unsigned sched_reset_on_fork:1;
1129 unsigned sched_contributes_to_load:1;
1130
1131 pid_t pid;
1132 pid_t tgid;
1133
1134 #ifdef CONFIG_CC_STACKPROTECTOR
1135 /* Canary value for the -fstack-protector gcc feature */
1136 unsigned long stack_canary;
1137 #endif
1138 /*
1139 * pointers to (original) parent process, youngest child, younger sibling,
1140 * older sibling, respectively. (p->father can be replaced with
1141 * p->real_parent->pid)
1142 */
1143 struct task_struct __rcu *real_parent; /* real parent process */
1144 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1145 /*
1146 * children/sibling forms the list of my natural children
1147 */
1148 struct list_head children; /* list of my children */
1149 struct list_head sibling; /* linkage in my parent's children list */
1150 struct task_struct *group_leader; /* threadgroup leader */
1151
1152 /*
1153 * ptraced is the list of tasks this task is using ptrace on.
1154 * This includes both natural children and PTRACE_ATTACH targets.
1155 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1156 */
1157 struct list_head ptraced;
1158 struct list_head ptrace_entry;
1159
1160 /* PID/PID hash table linkage. */
1161 struct pid_link pids[PIDTYPE_MAX];
1162 struct list_head thread_group;
1163
1164 struct completion *vfork_done; /* for vfork() */
1165 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1166 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1167
1168 cputime_t utime, stime, utimescaled, stimescaled;
1169 cputime_t gtime;
1170 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1171 struct cputime prev_cputime;
1172 #endif
1173 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1174 seqlock_t vtime_seqlock;
1175 unsigned long long vtime_snap;
1176 enum {
1177 VTIME_SLEEPING = 0,
1178 VTIME_USER,
1179 VTIME_SYS,
1180 } vtime_snap_whence;
1181 #endif
1182 unsigned long nvcsw, nivcsw; /* context switch counts */
1183 struct timespec start_time; /* monotonic time */
1184 struct timespec real_start_time; /* boot based time */
1185 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1186 unsigned long min_flt, maj_flt;
1187
1188 struct task_cputime cputime_expires;
1189 struct list_head cpu_timers[3];
1190
1191 /* process credentials */
1192 const struct cred __rcu *real_cred; /* objective and real subjective task
1193 * credentials (COW) */
1194 const struct cred __rcu *cred; /* effective (overridable) subjective task
1195 * credentials (COW) */
1196 char comm[TASK_COMM_LEN]; /* executable name excluding path
1197 - access with [gs]et_task_comm (which lock
1198 it with task_lock())
1199 - initialized normally by setup_new_exec */
1200 /* file system info */
1201 int link_count, total_link_count;
1202 #ifdef CONFIG_SYSVIPC
1203 /* ipc stuff */
1204 struct sysv_sem sysvsem;
1205 #endif
1206 #ifdef CONFIG_DETECT_HUNG_TASK
1207 /* hung task detection */
1208 unsigned long last_switch_count;
1209 #endif
1210 /* CPU-specific state of this task */
1211 struct thread_struct thread;
1212 /* filesystem information */
1213 struct fs_struct *fs;
1214 /* open file information */
1215 struct files_struct *files;
1216 /* namespaces */
1217 struct nsproxy *nsproxy;
1218 /* signal handlers */
1219 struct signal_struct *signal;
1220 struct sighand_struct *sighand;
1221
1222 sigset_t blocked, real_blocked;
1223 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1224 struct sigpending pending;
1225
1226 unsigned long sas_ss_sp;
1227 size_t sas_ss_size;
1228 int (*notifier)(void *priv);
1229 void *notifier_data;
1230 sigset_t *notifier_mask;
1231 struct callback_head *task_works;
1232
1233 struct audit_context *audit_context;
1234 #ifdef CONFIG_AUDITSYSCALL
1235 kuid_t loginuid;
1236 unsigned int sessionid;
1237 #endif
1238 struct seccomp seccomp;
1239
1240 /* Thread group tracking */
1241 u32 parent_exec_id;
1242 u32 self_exec_id;
1243 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1244 * mempolicy */
1245 spinlock_t alloc_lock;
1246
1247 /* Protection of the PI data structures: */
1248 raw_spinlock_t pi_lock;
1249
1250 #ifdef CONFIG_RT_MUTEXES
1251 /* PI waiters blocked on a rt_mutex held by this task */
1252 struct plist_head pi_waiters;
1253 /* Deadlock detection and priority inheritance handling */
1254 struct rt_mutex_waiter *pi_blocked_on;
1255 #endif
1256
1257 #ifdef CONFIG_DEBUG_MUTEXES
1258 /* mutex deadlock detection */
1259 struct mutex_waiter *blocked_on;
1260 #endif
1261 #ifdef CONFIG_TRACE_IRQFLAGS
1262 unsigned int irq_events;
1263 unsigned long hardirq_enable_ip;
1264 unsigned long hardirq_disable_ip;
1265 unsigned int hardirq_enable_event;
1266 unsigned int hardirq_disable_event;
1267 int hardirqs_enabled;
1268 int hardirq_context;
1269 unsigned long softirq_disable_ip;
1270 unsigned long softirq_enable_ip;
1271 unsigned int softirq_disable_event;
1272 unsigned int softirq_enable_event;
1273 int softirqs_enabled;
1274 int softirq_context;
1275 #endif
1276 #ifdef CONFIG_LOCKDEP
1277 # define MAX_LOCK_DEPTH 48UL
1278 u64 curr_chain_key;
1279 int lockdep_depth;
1280 unsigned int lockdep_recursion;
1281 struct held_lock held_locks[MAX_LOCK_DEPTH];
1282 gfp_t lockdep_reclaim_gfp;
1283 #endif
1284
1285 /* journalling filesystem info */
1286 void *journal_info;
1287
1288 /* stacked block device info */
1289 struct bio_list *bio_list;
1290
1291 #ifdef CONFIG_BLOCK
1292 /* stack plugging */
1293 struct blk_plug *plug;
1294 #endif
1295
1296 /* VM state */
1297 struct reclaim_state *reclaim_state;
1298
1299 struct backing_dev_info *backing_dev_info;
1300
1301 struct io_context *io_context;
1302
1303 unsigned long ptrace_message;
1304 siginfo_t *last_siginfo; /* For ptrace use. */
1305 struct task_io_accounting ioac;
1306 #if defined(CONFIG_TASK_XACCT)
1307 u64 acct_rss_mem1; /* accumulated rss usage */
1308 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1309 cputime_t acct_timexpd; /* stime + utime since last update */
1310 #endif
1311 #ifdef CONFIG_CPUSETS
1312 nodemask_t mems_allowed; /* Protected by alloc_lock */
1313 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
1314 int cpuset_mem_spread_rotor;
1315 int cpuset_slab_spread_rotor;
1316 #endif
1317 #ifdef CONFIG_CGROUPS
1318 /* Control Group info protected by css_set_lock */
1319 struct css_set __rcu *cgroups;
1320 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1321 struct list_head cg_list;
1322 #endif
1323 #ifdef CONFIG_FUTEX
1324 struct robust_list_head __user *robust_list;
1325 #ifdef CONFIG_COMPAT
1326 struct compat_robust_list_head __user *compat_robust_list;
1327 #endif
1328 struct list_head pi_state_list;
1329 struct futex_pi_state *pi_state_cache;
1330 #endif
1331 #ifdef CONFIG_PERF_EVENTS
1332 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1333 struct mutex perf_event_mutex;
1334 struct list_head perf_event_list;
1335 #endif
1336 #ifdef CONFIG_NUMA
1337 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1338 short il_next;
1339 short pref_node_fork;
1340 #endif
1341 #ifdef CONFIG_NUMA_BALANCING
1342 int numa_scan_seq;
1343 unsigned int numa_scan_period;
1344 unsigned int numa_scan_period_max;
1345 unsigned long numa_migrate_retry;
1346 u64 node_stamp; /* migration stamp */
1347 struct callback_head numa_work;
1348
1349 struct list_head numa_entry;
1350 struct numa_group *numa_group;
1351
1352 /*
1353 * Exponential decaying average of faults on a per-node basis.
1354 * Scheduling placement decisions are made based on the these counts.
1355 * The values remain static for the duration of a PTE scan
1356 */
1357 unsigned long *numa_faults;
1358 unsigned long total_numa_faults;
1359
1360 /*
1361 * numa_faults_buffer records faults per node during the current
1362 * scan window. When the scan completes, the counts in numa_faults
1363 * decay and these values are copied.
1364 */
1365 unsigned long *numa_faults_buffer;
1366
1367 /*
1368 * numa_faults_locality tracks if faults recorded during the last
1369 * scan window were remote/local. The task scan period is adapted
1370 * based on the locality of the faults with different weights
1371 * depending on whether they were shared or private faults
1372 */
1373 unsigned long numa_faults_locality[2];
1374
1375 int numa_preferred_nid;
1376 unsigned long numa_pages_migrated;
1377 #endif /* CONFIG_NUMA_BALANCING */
1378
1379 struct rcu_head rcu;
1380
1381 /*
1382 * cache last used pipe for splice
1383 */
1384 struct pipe_inode_info *splice_pipe;
1385
1386 struct page_frag task_frag;
1387
1388 #ifdef CONFIG_TASK_DELAY_ACCT
1389 struct task_delay_info *delays;
1390 #endif
1391 #ifdef CONFIG_FAULT_INJECTION
1392 int make_it_fail;
1393 #endif
1394 /*
1395 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1396 * balance_dirty_pages() for some dirty throttling pause
1397 */
1398 int nr_dirtied;
1399 int nr_dirtied_pause;
1400 unsigned long dirty_paused_when; /* start of a write-and-pause period */
1401
1402 #ifdef CONFIG_LATENCYTOP
1403 int latency_record_count;
1404 struct latency_record latency_record[LT_SAVECOUNT];
1405 #endif
1406 /*
1407 * time slack values; these are used to round up poll() and
1408 * select() etc timeout values. These are in nanoseconds.
1409 */
1410 unsigned long timer_slack_ns;
1411 unsigned long default_timer_slack_ns;
1412
1413 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1414 /* Index of current stored address in ret_stack */
1415 int curr_ret_stack;
1416 /* Stack of return addresses for return function tracing */
1417 struct ftrace_ret_stack *ret_stack;
1418 /* time stamp for last schedule */
1419 unsigned long long ftrace_timestamp;
1420 /*
1421 * Number of functions that haven't been traced
1422 * because of depth overrun.
1423 */
1424 atomic_t trace_overrun;
1425 /* Pause for the tracing */
1426 atomic_t tracing_graph_pause;
1427 #endif
1428 #ifdef CONFIG_TRACING
1429 /* state flags for use by tracers */
1430 unsigned long trace;
1431 /* bitmask and counter of trace recursion */
1432 unsigned long trace_recursion;
1433 #endif /* CONFIG_TRACING */
1434 #ifdef CONFIG_MEMCG /* memcg uses this to do batch job */
1435 struct memcg_batch_info {
1436 int do_batch; /* incremented when batch uncharge started */
1437 struct mem_cgroup *memcg; /* target memcg of uncharge */
1438 unsigned long nr_pages; /* uncharged usage */
1439 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1440 } memcg_batch;
1441 unsigned int memcg_kmem_skip_account;
1442 struct memcg_oom_info {
1443 unsigned int may_oom:1;
1444 unsigned int in_memcg_oom:1;
1445 unsigned int oom_locked:1;
1446 int wakeups;
1447 struct mem_cgroup *wait_on_memcg;
1448 } memcg_oom;
1449 #endif
1450 #ifdef CONFIG_UPROBES
1451 struct uprobe_task *utask;
1452 #endif
1453 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1454 unsigned int sequential_io;
1455 unsigned int sequential_io_avg;
1456 #endif
1457 };
1458
1459 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1460 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1461
1462 #define TNF_MIGRATED 0x01
1463 #define TNF_NO_GROUP 0x02
1464 #define TNF_SHARED 0x04
1465 #define TNF_FAULT_LOCAL 0x08
1466
1467 #ifdef CONFIG_NUMA_BALANCING
1468 extern void task_numa_fault(int last_node, int node, int pages, int flags);
1469 extern pid_t task_numa_group_id(struct task_struct *p);
1470 extern void set_numabalancing_state(bool enabled);
1471 extern void task_numa_free(struct task_struct *p);
1472 #else
1473 static inline void task_numa_fault(int last_node, int node, int pages,
1474 int flags)
1475 {
1476 }
1477 static inline pid_t task_numa_group_id(struct task_struct *p)
1478 {
1479 return 0;
1480 }
1481 static inline void set_numabalancing_state(bool enabled)
1482 {
1483 }
1484 static inline void task_numa_free(struct task_struct *p)
1485 {
1486 }
1487 #endif
1488
1489 static inline struct pid *task_pid(struct task_struct *task)
1490 {
1491 return task->pids[PIDTYPE_PID].pid;
1492 }
1493
1494 static inline struct pid *task_tgid(struct task_struct *task)
1495 {
1496 return task->group_leader->pids[PIDTYPE_PID].pid;
1497 }
1498
1499 /*
1500 * Without tasklist or rcu lock it is not safe to dereference
1501 * the result of task_pgrp/task_session even if task == current,
1502 * we can race with another thread doing sys_setsid/sys_setpgid.
1503 */
1504 static inline struct pid *task_pgrp(struct task_struct *task)
1505 {
1506 return task->group_leader->pids[PIDTYPE_PGID].pid;
1507 }
1508
1509 static inline struct pid *task_session(struct task_struct *task)
1510 {
1511 return task->group_leader->pids[PIDTYPE_SID].pid;
1512 }
1513
1514 struct pid_namespace;
1515
1516 /*
1517 * the helpers to get the task's different pids as they are seen
1518 * from various namespaces
1519 *
1520 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1521 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1522 * current.
1523 * task_xid_nr_ns() : id seen from the ns specified;
1524 *
1525 * set_task_vxid() : assigns a virtual id to a task;
1526 *
1527 * see also pid_nr() etc in include/linux/pid.h
1528 */
1529 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1530 struct pid_namespace *ns);
1531
1532 static inline pid_t task_pid_nr(struct task_struct *tsk)
1533 {
1534 return tsk->pid;
1535 }
1536
1537 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1538 struct pid_namespace *ns)
1539 {
1540 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1541 }
1542
1543 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1544 {
1545 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1546 }
1547
1548
1549 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1550 {
1551 return tsk->tgid;
1552 }
1553
1554 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1555
1556 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1557 {
1558 return pid_vnr(task_tgid(tsk));
1559 }
1560
1561
1562 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1563 struct pid_namespace *ns)
1564 {
1565 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1566 }
1567
1568 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1569 {
1570 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1571 }
1572
1573
1574 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1575 struct pid_namespace *ns)
1576 {
1577 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1578 }
1579
1580 static inline pid_t task_session_vnr(struct task_struct *tsk)
1581 {
1582 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1583 }
1584
1585 /* obsolete, do not use */
1586 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1587 {
1588 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1589 }
1590
1591 /**
1592 * pid_alive - check that a task structure is not stale
1593 * @p: Task structure to be checked.
1594 *
1595 * Test if a process is not yet dead (at most zombie state)
1596 * If pid_alive fails, then pointers within the task structure
1597 * can be stale and must not be dereferenced.
1598 *
1599 * Return: 1 if the process is alive. 0 otherwise.
1600 */
1601 static inline int pid_alive(struct task_struct *p)
1602 {
1603 return p->pids[PIDTYPE_PID].pid != NULL;
1604 }
1605
1606 /**
1607 * is_global_init - check if a task structure is init
1608 * @tsk: Task structure to be checked.
1609 *
1610 * Check if a task structure is the first user space task the kernel created.
1611 *
1612 * Return: 1 if the task structure is init. 0 otherwise.
1613 */
1614 static inline int is_global_init(struct task_struct *tsk)
1615 {
1616 return tsk->pid == 1;
1617 }
1618
1619 extern struct pid *cad_pid;
1620
1621 extern void free_task(struct task_struct *tsk);
1622 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1623
1624 extern void __put_task_struct(struct task_struct *t);
1625
1626 static inline void put_task_struct(struct task_struct *t)
1627 {
1628 if (atomic_dec_and_test(&t->usage))
1629 __put_task_struct(t);
1630 }
1631
1632 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1633 extern void task_cputime(struct task_struct *t,
1634 cputime_t *utime, cputime_t *stime);
1635 extern void task_cputime_scaled(struct task_struct *t,
1636 cputime_t *utimescaled, cputime_t *stimescaled);
1637 extern cputime_t task_gtime(struct task_struct *t);
1638 #else
1639 static inline void task_cputime(struct task_struct *t,
1640 cputime_t *utime, cputime_t *stime)
1641 {
1642 if (utime)
1643 *utime = t->utime;
1644 if (stime)
1645 *stime = t->stime;
1646 }
1647
1648 static inline void task_cputime_scaled(struct task_struct *t,
1649 cputime_t *utimescaled,
1650 cputime_t *stimescaled)
1651 {
1652 if (utimescaled)
1653 *utimescaled = t->utimescaled;
1654 if (stimescaled)
1655 *stimescaled = t->stimescaled;
1656 }
1657
1658 static inline cputime_t task_gtime(struct task_struct *t)
1659 {
1660 return t->gtime;
1661 }
1662 #endif
1663 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1664 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1665
1666 /*
1667 * Per process flags
1668 */
1669 #define PF_EXITING 0x00000004 /* getting shut down */
1670 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1671 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1672 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1673 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1674 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1675 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1676 #define PF_DUMPCORE 0x00000200 /* dumped core */
1677 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1678 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1679 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1680 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1681 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1682 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1683 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1684 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1685 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1686 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1687 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1688 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1689 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1690 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1691 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1692 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1693 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
1694 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1695 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1696 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1697 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1698 #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
1699
1700 /*
1701 * Only the _current_ task can read/write to tsk->flags, but other
1702 * tasks can access tsk->flags in readonly mode for example
1703 * with tsk_used_math (like during threaded core dumping).
1704 * There is however an exception to this rule during ptrace
1705 * or during fork: the ptracer task is allowed to write to the
1706 * child->flags of its traced child (same goes for fork, the parent
1707 * can write to the child->flags), because we're guaranteed the
1708 * child is not running and in turn not changing child->flags
1709 * at the same time the parent does it.
1710 */
1711 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1712 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1713 #define clear_used_math() clear_stopped_child_used_math(current)
1714 #define set_used_math() set_stopped_child_used_math(current)
1715 #define conditional_stopped_child_used_math(condition, child) \
1716 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1717 #define conditional_used_math(condition) \
1718 conditional_stopped_child_used_math(condition, current)
1719 #define copy_to_stopped_child_used_math(child) \
1720 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1721 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1722 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1723 #define used_math() tsk_used_math(current)
1724
1725 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags */
1726 static inline gfp_t memalloc_noio_flags(gfp_t flags)
1727 {
1728 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
1729 flags &= ~__GFP_IO;
1730 return flags;
1731 }
1732
1733 static inline unsigned int memalloc_noio_save(void)
1734 {
1735 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
1736 current->flags |= PF_MEMALLOC_NOIO;
1737 return flags;
1738 }
1739
1740 static inline void memalloc_noio_restore(unsigned int flags)
1741 {
1742 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
1743 }
1744
1745 /*
1746 * task->jobctl flags
1747 */
1748 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
1749
1750 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
1751 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
1752 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
1753 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
1754 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
1755 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
1756 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
1757
1758 #define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT)
1759 #define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT)
1760 #define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT)
1761 #define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT)
1762 #define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT)
1763 #define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT)
1764 #define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT)
1765
1766 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1767 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1768
1769 extern bool task_set_jobctl_pending(struct task_struct *task,
1770 unsigned int mask);
1771 extern void task_clear_jobctl_trapping(struct task_struct *task);
1772 extern void task_clear_jobctl_pending(struct task_struct *task,
1773 unsigned int mask);
1774
1775 #ifdef CONFIG_PREEMPT_RCU
1776
1777 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1778 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1779
1780 static inline void rcu_copy_process(struct task_struct *p)
1781 {
1782 p->rcu_read_lock_nesting = 0;
1783 p->rcu_read_unlock_special = 0;
1784 #ifdef CONFIG_TREE_PREEMPT_RCU
1785 p->rcu_blocked_node = NULL;
1786 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1787 #ifdef CONFIG_RCU_BOOST
1788 p->rcu_boost_mutex = NULL;
1789 #endif /* #ifdef CONFIG_RCU_BOOST */
1790 INIT_LIST_HEAD(&p->rcu_node_entry);
1791 }
1792
1793 #else
1794
1795 static inline void rcu_copy_process(struct task_struct *p)
1796 {
1797 }
1798
1799 #endif
1800
1801 static inline void tsk_restore_flags(struct task_struct *task,
1802 unsigned long orig_flags, unsigned long flags)
1803 {
1804 task->flags &= ~flags;
1805 task->flags |= orig_flags & flags;
1806 }
1807
1808 #ifdef CONFIG_SMP
1809 extern void do_set_cpus_allowed(struct task_struct *p,
1810 const struct cpumask *new_mask);
1811
1812 extern int set_cpus_allowed_ptr(struct task_struct *p,
1813 const struct cpumask *new_mask);
1814 #else
1815 static inline void do_set_cpus_allowed(struct task_struct *p,
1816 const struct cpumask *new_mask)
1817 {
1818 }
1819 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1820 const struct cpumask *new_mask)
1821 {
1822 if (!cpumask_test_cpu(0, new_mask))
1823 return -EINVAL;
1824 return 0;
1825 }
1826 #endif
1827
1828 #ifdef CONFIG_NO_HZ_COMMON
1829 void calc_load_enter_idle(void);
1830 void calc_load_exit_idle(void);
1831 #else
1832 static inline void calc_load_enter_idle(void) { }
1833 static inline void calc_load_exit_idle(void) { }
1834 #endif /* CONFIG_NO_HZ_COMMON */
1835
1836 #ifndef CONFIG_CPUMASK_OFFSTACK
1837 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1838 {
1839 return set_cpus_allowed_ptr(p, &new_mask);
1840 }
1841 #endif
1842
1843 /*
1844 * Do not use outside of architecture code which knows its limitations.
1845 *
1846 * sched_clock() has no promise of monotonicity or bounded drift between
1847 * CPUs, use (which you should not) requires disabling IRQs.
1848 *
1849 * Please use one of the three interfaces below.
1850 */
1851 extern unsigned long long notrace sched_clock(void);
1852 /*
1853 * See the comment in kernel/sched/clock.c
1854 */
1855 extern u64 cpu_clock(int cpu);
1856 extern u64 local_clock(void);
1857 extern u64 sched_clock_cpu(int cpu);
1858
1859
1860 extern void sched_clock_init(void);
1861
1862 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1863 static inline void sched_clock_tick(void)
1864 {
1865 }
1866
1867 static inline void sched_clock_idle_sleep_event(void)
1868 {
1869 }
1870
1871 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1872 {
1873 }
1874 #else
1875 /*
1876 * Architectures can set this to 1 if they have specified
1877 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1878 * but then during bootup it turns out that sched_clock()
1879 * is reliable after all:
1880 */
1881 extern int sched_clock_stable;
1882
1883 extern void sched_clock_tick(void);
1884 extern void sched_clock_idle_sleep_event(void);
1885 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1886 #endif
1887
1888 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1889 /*
1890 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1891 * The reason for this explicit opt-in is not to have perf penalty with
1892 * slow sched_clocks.
1893 */
1894 extern void enable_sched_clock_irqtime(void);
1895 extern void disable_sched_clock_irqtime(void);
1896 #else
1897 static inline void enable_sched_clock_irqtime(void) {}
1898 static inline void disable_sched_clock_irqtime(void) {}
1899 #endif
1900
1901 extern unsigned long long
1902 task_sched_runtime(struct task_struct *task);
1903
1904 /* sched_exec is called by processes performing an exec */
1905 #ifdef CONFIG_SMP
1906 extern void sched_exec(void);
1907 #else
1908 #define sched_exec() {}
1909 #endif
1910
1911 extern void sched_clock_idle_sleep_event(void);
1912 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1913
1914 #ifdef CONFIG_HOTPLUG_CPU
1915 extern void idle_task_exit(void);
1916 #else
1917 static inline void idle_task_exit(void) {}
1918 #endif
1919
1920 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
1921 extern void wake_up_nohz_cpu(int cpu);
1922 #else
1923 static inline void wake_up_nohz_cpu(int cpu) { }
1924 #endif
1925
1926 #ifdef CONFIG_NO_HZ_FULL
1927 extern bool sched_can_stop_tick(void);
1928 extern u64 scheduler_tick_max_deferment(void);
1929 #else
1930 static inline bool sched_can_stop_tick(void) { return false; }
1931 #endif
1932
1933 #ifdef CONFIG_SCHED_AUTOGROUP
1934 extern void sched_autogroup_create_attach(struct task_struct *p);
1935 extern void sched_autogroup_detach(struct task_struct *p);
1936 extern void sched_autogroup_fork(struct signal_struct *sig);
1937 extern void sched_autogroup_exit(struct signal_struct *sig);
1938 #ifdef CONFIG_PROC_FS
1939 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
1940 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
1941 #endif
1942 #else
1943 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
1944 static inline void sched_autogroup_detach(struct task_struct *p) { }
1945 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
1946 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
1947 #endif
1948
1949 extern bool yield_to(struct task_struct *p, bool preempt);
1950 extern void set_user_nice(struct task_struct *p, long nice);
1951 extern int task_prio(const struct task_struct *p);
1952 extern int task_nice(const struct task_struct *p);
1953 extern int can_nice(const struct task_struct *p, const int nice);
1954 extern int task_curr(const struct task_struct *p);
1955 extern int idle_cpu(int cpu);
1956 extern int sched_setscheduler(struct task_struct *, int,
1957 const struct sched_param *);
1958 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1959 const struct sched_param *);
1960 extern struct task_struct *idle_task(int cpu);
1961 /**
1962 * is_idle_task - is the specified task an idle task?
1963 * @p: the task in question.
1964 *
1965 * Return: 1 if @p is an idle task. 0 otherwise.
1966 */
1967 static inline bool is_idle_task(const struct task_struct *p)
1968 {
1969 return p->pid == 0;
1970 }
1971 extern struct task_struct *curr_task(int cpu);
1972 extern void set_curr_task(int cpu, struct task_struct *p);
1973
1974 void yield(void);
1975
1976 /*
1977 * The default (Linux) execution domain.
1978 */
1979 extern struct exec_domain default_exec_domain;
1980
1981 union thread_union {
1982 struct thread_info thread_info;
1983 unsigned long stack[THREAD_SIZE/sizeof(long)];
1984 };
1985
1986 #ifndef __HAVE_ARCH_KSTACK_END
1987 static inline int kstack_end(void *addr)
1988 {
1989 /* Reliable end of stack detection:
1990 * Some APM bios versions misalign the stack
1991 */
1992 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1993 }
1994 #endif
1995
1996 extern union thread_union init_thread_union;
1997 extern struct task_struct init_task;
1998
1999 extern struct mm_struct init_mm;
2000
2001 extern struct pid_namespace init_pid_ns;
2002
2003 /*
2004 * find a task by one of its numerical ids
2005 *
2006 * find_task_by_pid_ns():
2007 * finds a task by its pid in the specified namespace
2008 * find_task_by_vpid():
2009 * finds a task by its virtual pid
2010 *
2011 * see also find_vpid() etc in include/linux/pid.h
2012 */
2013
2014 extern struct task_struct *find_task_by_vpid(pid_t nr);
2015 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2016 struct pid_namespace *ns);
2017
2018 /* per-UID process charging. */
2019 extern struct user_struct * alloc_uid(kuid_t);
2020 static inline struct user_struct *get_uid(struct user_struct *u)
2021 {
2022 atomic_inc(&u->__count);
2023 return u;
2024 }
2025 extern void free_uid(struct user_struct *);
2026
2027 #include <asm/current.h>
2028
2029 extern void xtime_update(unsigned long ticks);
2030
2031 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2032 extern int wake_up_process(struct task_struct *tsk);
2033 extern void wake_up_new_task(struct task_struct *tsk);
2034 #ifdef CONFIG_SMP
2035 extern void kick_process(struct task_struct *tsk);
2036 #else
2037 static inline void kick_process(struct task_struct *tsk) { }
2038 #endif
2039 extern void sched_fork(unsigned long clone_flags, struct task_struct *p);
2040 extern void sched_dead(struct task_struct *p);
2041
2042 extern void proc_caches_init(void);
2043 extern void flush_signals(struct task_struct *);
2044 extern void __flush_signals(struct task_struct *);
2045 extern void ignore_signals(struct task_struct *);
2046 extern void flush_signal_handlers(struct task_struct *, int force_default);
2047 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2048
2049 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2050 {
2051 unsigned long flags;
2052 int ret;
2053
2054 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2055 ret = dequeue_signal(tsk, mask, info);
2056 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2057
2058 return ret;
2059 }
2060
2061 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2062 sigset_t *mask);
2063 extern void unblock_all_signals(void);
2064 extern void release_task(struct task_struct * p);
2065 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2066 extern int force_sigsegv(int, struct task_struct *);
2067 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2068 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2069 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2070 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2071 const struct cred *, u32);
2072 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2073 extern int kill_pid(struct pid *pid, int sig, int priv);
2074 extern int kill_proc_info(int, struct siginfo *, pid_t);
2075 extern __must_check bool do_notify_parent(struct task_struct *, int);
2076 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2077 extern void force_sig(int, struct task_struct *);
2078 extern int send_sig(int, struct task_struct *, int);
2079 extern int zap_other_threads(struct task_struct *p);
2080 extern struct sigqueue *sigqueue_alloc(void);
2081 extern void sigqueue_free(struct sigqueue *);
2082 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2083 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2084
2085 static inline void restore_saved_sigmask(void)
2086 {
2087 if (test_and_clear_restore_sigmask())
2088 __set_current_blocked(&current->saved_sigmask);
2089 }
2090
2091 static inline sigset_t *sigmask_to_save(void)
2092 {
2093 sigset_t *res = &current->blocked;
2094 if (unlikely(test_restore_sigmask()))
2095 res = &current->saved_sigmask;
2096 return res;
2097 }
2098
2099 static inline int kill_cad_pid(int sig, int priv)
2100 {
2101 return kill_pid(cad_pid, sig, priv);
2102 }
2103
2104 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2105 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2106 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2107 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2108
2109 /*
2110 * True if we are on the alternate signal stack.
2111 */
2112 static inline int on_sig_stack(unsigned long sp)
2113 {
2114 #ifdef CONFIG_STACK_GROWSUP
2115 return sp >= current->sas_ss_sp &&
2116 sp - current->sas_ss_sp < current->sas_ss_size;
2117 #else
2118 return sp > current->sas_ss_sp &&
2119 sp - current->sas_ss_sp <= current->sas_ss_size;
2120 #endif
2121 }
2122
2123 static inline int sas_ss_flags(unsigned long sp)
2124 {
2125 return (current->sas_ss_size == 0 ? SS_DISABLE
2126 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2127 }
2128
2129 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2130 {
2131 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2132 #ifdef CONFIG_STACK_GROWSUP
2133 return current->sas_ss_sp;
2134 #else
2135 return current->sas_ss_sp + current->sas_ss_size;
2136 #endif
2137 return sp;
2138 }
2139
2140 /*
2141 * Routines for handling mm_structs
2142 */
2143 extern struct mm_struct * mm_alloc(void);
2144
2145 /* mmdrop drops the mm and the page tables */
2146 extern void __mmdrop(struct mm_struct *);
2147 static inline void mmdrop(struct mm_struct * mm)
2148 {
2149 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2150 __mmdrop(mm);
2151 }
2152
2153 /* mmput gets rid of the mappings and all user-space */
2154 extern void mmput(struct mm_struct *);
2155 /* Grab a reference to a task's mm, if it is not already going away */
2156 extern struct mm_struct *get_task_mm(struct task_struct *task);
2157 /*
2158 * Grab a reference to a task's mm, if it is not already going away
2159 * and ptrace_may_access with the mode parameter passed to it
2160 * succeeds.
2161 */
2162 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2163 /* Remove the current tasks stale references to the old mm_struct */
2164 extern void mm_release(struct task_struct *, struct mm_struct *);
2165 /* Allocate a new mm structure and copy contents from tsk->mm */
2166 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2167
2168 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2169 struct task_struct *);
2170 extern void flush_thread(void);
2171 extern void exit_thread(void);
2172
2173 extern void exit_files(struct task_struct *);
2174 extern void __cleanup_sighand(struct sighand_struct *);
2175
2176 extern void exit_itimers(struct signal_struct *);
2177 extern void flush_itimer_signals(void);
2178
2179 extern void do_group_exit(int);
2180
2181 extern int allow_signal(int);
2182 extern int disallow_signal(int);
2183
2184 extern int do_execve(const char *,
2185 const char __user * const __user *,
2186 const char __user * const __user *);
2187 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2188 struct task_struct *fork_idle(int);
2189 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2190
2191 extern void set_task_comm(struct task_struct *tsk, char *from);
2192 extern char *get_task_comm(char *to, struct task_struct *tsk);
2193
2194 #ifdef CONFIG_SMP
2195 void scheduler_ipi(void);
2196 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2197 #else
2198 static inline void scheduler_ipi(void) { }
2199 static inline unsigned long wait_task_inactive(struct task_struct *p,
2200 long match_state)
2201 {
2202 return 1;
2203 }
2204 #endif
2205
2206 #define next_task(p) \
2207 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2208
2209 #define for_each_process(p) \
2210 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2211
2212 extern bool current_is_single_threaded(void);
2213
2214 /*
2215 * Careful: do_each_thread/while_each_thread is a double loop so
2216 * 'break' will not work as expected - use goto instead.
2217 */
2218 #define do_each_thread(g, t) \
2219 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2220
2221 #define while_each_thread(g, t) \
2222 while ((t = next_thread(t)) != g)
2223
2224 static inline int get_nr_threads(struct task_struct *tsk)
2225 {
2226 return tsk->signal->nr_threads;
2227 }
2228
2229 static inline bool thread_group_leader(struct task_struct *p)
2230 {
2231 return p->exit_signal >= 0;
2232 }
2233
2234 /* Do to the insanities of de_thread it is possible for a process
2235 * to have the pid of the thread group leader without actually being
2236 * the thread group leader. For iteration through the pids in proc
2237 * all we care about is that we have a task with the appropriate
2238 * pid, we don't actually care if we have the right task.
2239 */
2240 static inline bool has_group_leader_pid(struct task_struct *p)
2241 {
2242 return task_pid(p) == p->signal->leader_pid;
2243 }
2244
2245 static inline
2246 bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
2247 {
2248 return p1->signal == p2->signal;
2249 }
2250
2251 static inline struct task_struct *next_thread(const struct task_struct *p)
2252 {
2253 return list_entry_rcu(p->thread_group.next,
2254 struct task_struct, thread_group);
2255 }
2256
2257 static inline int thread_group_empty(struct task_struct *p)
2258 {
2259 return list_empty(&p->thread_group);
2260 }
2261
2262 #define delay_group_leader(p) \
2263 (thread_group_leader(p) && !thread_group_empty(p))
2264
2265 /*
2266 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2267 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2268 * pins the final release of task.io_context. Also protects ->cpuset and
2269 * ->cgroup.subsys[]. And ->vfork_done.
2270 *
2271 * Nests both inside and outside of read_lock(&tasklist_lock).
2272 * It must not be nested with write_lock_irq(&tasklist_lock),
2273 * neither inside nor outside.
2274 */
2275 static inline void task_lock(struct task_struct *p)
2276 {
2277 spin_lock(&p->alloc_lock);
2278 }
2279
2280 static inline void task_unlock(struct task_struct *p)
2281 {
2282 spin_unlock(&p->alloc_lock);
2283 }
2284
2285 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2286 unsigned long *flags);
2287
2288 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2289 unsigned long *flags)
2290 {
2291 struct sighand_struct *ret;
2292
2293 ret = __lock_task_sighand(tsk, flags);
2294 (void)__cond_lock(&tsk->sighand->siglock, ret);
2295 return ret;
2296 }
2297
2298 static inline void unlock_task_sighand(struct task_struct *tsk,
2299 unsigned long *flags)
2300 {
2301 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2302 }
2303
2304 #ifdef CONFIG_CGROUPS
2305 static inline void threadgroup_change_begin(struct task_struct *tsk)
2306 {
2307 down_read(&tsk->signal->group_rwsem);
2308 }
2309 static inline void threadgroup_change_end(struct task_struct *tsk)
2310 {
2311 up_read(&tsk->signal->group_rwsem);
2312 }
2313
2314 /**
2315 * threadgroup_lock - lock threadgroup
2316 * @tsk: member task of the threadgroup to lock
2317 *
2318 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter
2319 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2320 * change ->group_leader/pid. This is useful for cases where the threadgroup
2321 * needs to stay stable across blockable operations.
2322 *
2323 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2324 * synchronization. While held, no new task will be added to threadgroup
2325 * and no existing live task will have its PF_EXITING set.
2326 *
2327 * de_thread() does threadgroup_change_{begin|end}() when a non-leader
2328 * sub-thread becomes a new leader.
2329 */
2330 static inline void threadgroup_lock(struct task_struct *tsk)
2331 {
2332 down_write(&tsk->signal->group_rwsem);
2333 }
2334
2335 /**
2336 * threadgroup_unlock - unlock threadgroup
2337 * @tsk: member task of the threadgroup to unlock
2338 *
2339 * Reverse threadgroup_lock().
2340 */
2341 static inline void threadgroup_unlock(struct task_struct *tsk)
2342 {
2343 up_write(&tsk->signal->group_rwsem);
2344 }
2345 #else
2346 static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2347 static inline void threadgroup_change_end(struct task_struct *tsk) {}
2348 static inline void threadgroup_lock(struct task_struct *tsk) {}
2349 static inline void threadgroup_unlock(struct task_struct *tsk) {}
2350 #endif
2351
2352 #ifndef __HAVE_THREAD_FUNCTIONS
2353
2354 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2355 #define task_stack_page(task) ((task)->stack)
2356
2357 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2358 {
2359 *task_thread_info(p) = *task_thread_info(org);
2360 task_thread_info(p)->task = p;
2361 }
2362
2363 static inline unsigned long *end_of_stack(struct task_struct *p)
2364 {
2365 return (unsigned long *)(task_thread_info(p) + 1);
2366 }
2367
2368 #endif
2369
2370 static inline int object_is_on_stack(void *obj)
2371 {
2372 void *stack = task_stack_page(current);
2373
2374 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2375 }
2376
2377 extern void thread_info_cache_init(void);
2378
2379 #ifdef CONFIG_DEBUG_STACK_USAGE
2380 static inline unsigned long stack_not_used(struct task_struct *p)
2381 {
2382 unsigned long *n = end_of_stack(p);
2383
2384 do { /* Skip over canary */
2385 n++;
2386 } while (!*n);
2387
2388 return (unsigned long)n - (unsigned long)end_of_stack(p);
2389 }
2390 #endif
2391
2392 /* set thread flags in other task's structures
2393 * - see asm/thread_info.h for TIF_xxxx flags available
2394 */
2395 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2396 {
2397 set_ti_thread_flag(task_thread_info(tsk), flag);
2398 }
2399
2400 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2401 {
2402 clear_ti_thread_flag(task_thread_info(tsk), flag);
2403 }
2404
2405 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2406 {
2407 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2408 }
2409
2410 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2411 {
2412 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2413 }
2414
2415 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2416 {
2417 return test_ti_thread_flag(task_thread_info(tsk), flag);
2418 }
2419
2420 static inline void set_tsk_need_resched(struct task_struct *tsk)
2421 {
2422 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2423 }
2424
2425 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2426 {
2427 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2428 }
2429
2430 static inline int test_tsk_need_resched(struct task_struct *tsk)
2431 {
2432 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2433 }
2434
2435 static inline int restart_syscall(void)
2436 {
2437 set_tsk_thread_flag(current, TIF_SIGPENDING);
2438 return -ERESTARTNOINTR;
2439 }
2440
2441 static inline int signal_pending(struct task_struct *p)
2442 {
2443 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2444 }
2445
2446 static inline int __fatal_signal_pending(struct task_struct *p)
2447 {
2448 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2449 }
2450
2451 static inline int fatal_signal_pending(struct task_struct *p)
2452 {
2453 return signal_pending(p) && __fatal_signal_pending(p);
2454 }
2455
2456 static inline int signal_pending_state(long state, struct task_struct *p)
2457 {
2458 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2459 return 0;
2460 if (!signal_pending(p))
2461 return 0;
2462
2463 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2464 }
2465
2466 /*
2467 * cond_resched() and cond_resched_lock(): latency reduction via
2468 * explicit rescheduling in places that are safe. The return
2469 * value indicates whether a reschedule was done in fact.
2470 * cond_resched_lock() will drop the spinlock before scheduling,
2471 * cond_resched_softirq() will enable bhs before scheduling.
2472 */
2473 extern int _cond_resched(void);
2474
2475 #define cond_resched() ({ \
2476 __might_sleep(__FILE__, __LINE__, 0); \
2477 _cond_resched(); \
2478 })
2479
2480 extern int __cond_resched_lock(spinlock_t *lock);
2481
2482 #ifdef CONFIG_PREEMPT_COUNT
2483 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2484 #else
2485 #define PREEMPT_LOCK_OFFSET 0
2486 #endif
2487
2488 #define cond_resched_lock(lock) ({ \
2489 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2490 __cond_resched_lock(lock); \
2491 })
2492
2493 extern int __cond_resched_softirq(void);
2494
2495 #define cond_resched_softirq() ({ \
2496 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2497 __cond_resched_softirq(); \
2498 })
2499
2500 static inline void cond_resched_rcu(void)
2501 {
2502 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2503 rcu_read_unlock();
2504 cond_resched();
2505 rcu_read_lock();
2506 #endif
2507 }
2508
2509 /*
2510 * Does a critical section need to be broken due to another
2511 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2512 * but a general need for low latency)
2513 */
2514 static inline int spin_needbreak(spinlock_t *lock)
2515 {
2516 #ifdef CONFIG_PREEMPT
2517 return spin_is_contended(lock);
2518 #else
2519 return 0;
2520 #endif
2521 }
2522
2523 /*
2524 * Idle thread specific functions to determine the need_resched
2525 * polling state. We have two versions, one based on TS_POLLING in
2526 * thread_info.status and one based on TIF_POLLING_NRFLAG in
2527 * thread_info.flags
2528 */
2529 #ifdef TS_POLLING
2530 static inline int tsk_is_polling(struct task_struct *p)
2531 {
2532 return task_thread_info(p)->status & TS_POLLING;
2533 }
2534 static inline void __current_set_polling(void)
2535 {
2536 current_thread_info()->status |= TS_POLLING;
2537 }
2538
2539 static inline bool __must_check current_set_polling_and_test(void)
2540 {
2541 __current_set_polling();
2542
2543 /*
2544 * Polling state must be visible before we test NEED_RESCHED,
2545 * paired by resched_task()
2546 */
2547 smp_mb();
2548
2549 return unlikely(tif_need_resched());
2550 }
2551
2552 static inline void __current_clr_polling(void)
2553 {
2554 current_thread_info()->status &= ~TS_POLLING;
2555 }
2556
2557 static inline bool __must_check current_clr_polling_and_test(void)
2558 {
2559 __current_clr_polling();
2560
2561 /*
2562 * Polling state must be visible before we test NEED_RESCHED,
2563 * paired by resched_task()
2564 */
2565 smp_mb();
2566
2567 return unlikely(tif_need_resched());
2568 }
2569 #elif defined(TIF_POLLING_NRFLAG)
2570 static inline int tsk_is_polling(struct task_struct *p)
2571 {
2572 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2573 }
2574
2575 static inline void __current_set_polling(void)
2576 {
2577 set_thread_flag(TIF_POLLING_NRFLAG);
2578 }
2579
2580 static inline bool __must_check current_set_polling_and_test(void)
2581 {
2582 __current_set_polling();
2583
2584 /*
2585 * Polling state must be visible before we test NEED_RESCHED,
2586 * paired by resched_task()
2587 *
2588 * XXX: assumes set/clear bit are identical barrier wise.
2589 */
2590 smp_mb__after_clear_bit();
2591
2592 return unlikely(tif_need_resched());
2593 }
2594
2595 static inline void __current_clr_polling(void)
2596 {
2597 clear_thread_flag(TIF_POLLING_NRFLAG);
2598 }
2599
2600 static inline bool __must_check current_clr_polling_and_test(void)
2601 {
2602 __current_clr_polling();
2603
2604 /*
2605 * Polling state must be visible before we test NEED_RESCHED,
2606 * paired by resched_task()
2607 */
2608 smp_mb__after_clear_bit();
2609
2610 return unlikely(tif_need_resched());
2611 }
2612
2613 #else
2614 static inline int tsk_is_polling(struct task_struct *p) { return 0; }
2615 static inline void __current_set_polling(void) { }
2616 static inline void __current_clr_polling(void) { }
2617
2618 static inline bool __must_check current_set_polling_and_test(void)
2619 {
2620 return unlikely(tif_need_resched());
2621 }
2622 static inline bool __must_check current_clr_polling_and_test(void)
2623 {
2624 return unlikely(tif_need_resched());
2625 }
2626 #endif
2627
2628 static __always_inline bool need_resched(void)
2629 {
2630 return unlikely(tif_need_resched());
2631 }
2632
2633 /*
2634 * Thread group CPU time accounting.
2635 */
2636 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2637 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2638
2639 static inline void thread_group_cputime_init(struct signal_struct *sig)
2640 {
2641 raw_spin_lock_init(&sig->cputimer.lock);
2642 }
2643
2644 /*
2645 * Reevaluate whether the task has signals pending delivery.
2646 * Wake the task if so.
2647 * This is required every time the blocked sigset_t changes.
2648 * callers must hold sighand->siglock.
2649 */
2650 extern void recalc_sigpending_and_wake(struct task_struct *t);
2651 extern void recalc_sigpending(void);
2652
2653 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
2654
2655 static inline void signal_wake_up(struct task_struct *t, bool resume)
2656 {
2657 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
2658 }
2659 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
2660 {
2661 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
2662 }
2663
2664 /*
2665 * Wrappers for p->thread_info->cpu access. No-op on UP.
2666 */
2667 #ifdef CONFIG_SMP
2668
2669 static inline unsigned int task_cpu(const struct task_struct *p)
2670 {
2671 return task_thread_info(p)->cpu;
2672 }
2673
2674 static inline int task_node(const struct task_struct *p)
2675 {
2676 return cpu_to_node(task_cpu(p));
2677 }
2678
2679 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2680
2681 #else
2682
2683 static inline unsigned int task_cpu(const struct task_struct *p)
2684 {
2685 return 0;
2686 }
2687
2688 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2689 {
2690 }
2691
2692 #endif /* CONFIG_SMP */
2693
2694 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2695 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2696
2697 #ifdef CONFIG_CGROUP_SCHED
2698 extern struct task_group root_task_group;
2699 #endif /* CONFIG_CGROUP_SCHED */
2700
2701 extern int task_can_switch_user(struct user_struct *up,
2702 struct task_struct *tsk);
2703
2704 #ifdef CONFIG_TASK_XACCT
2705 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2706 {
2707 tsk->ioac.rchar += amt;
2708 }
2709
2710 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2711 {
2712 tsk->ioac.wchar += amt;
2713 }
2714
2715 static inline void inc_syscr(struct task_struct *tsk)
2716 {
2717 tsk->ioac.syscr++;
2718 }
2719
2720 static inline void inc_syscw(struct task_struct *tsk)
2721 {
2722 tsk->ioac.syscw++;
2723 }
2724 #else
2725 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2726 {
2727 }
2728
2729 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2730 {
2731 }
2732
2733 static inline void inc_syscr(struct task_struct *tsk)
2734 {
2735 }
2736
2737 static inline void inc_syscw(struct task_struct *tsk)
2738 {
2739 }
2740 #endif
2741
2742 #ifndef TASK_SIZE_OF
2743 #define TASK_SIZE_OF(tsk) TASK_SIZE
2744 #endif
2745
2746 #ifdef CONFIG_MM_OWNER
2747 extern void mm_update_next_owner(struct mm_struct *mm);
2748 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2749 #else
2750 static inline void mm_update_next_owner(struct mm_struct *mm)
2751 {
2752 }
2753
2754 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2755 {
2756 }
2757 #endif /* CONFIG_MM_OWNER */
2758
2759 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2760 unsigned int limit)
2761 {
2762 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2763 }
2764
2765 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2766 unsigned int limit)
2767 {
2768 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2769 }
2770
2771 static inline unsigned long rlimit(unsigned int limit)
2772 {
2773 return task_rlimit(current, limit);
2774 }
2775
2776 static inline unsigned long rlimit_max(unsigned int limit)
2777 {
2778 return task_rlimit_max(current, limit);
2779 }
2780
2781 #endif
This page took 0.091946 seconds and 5 git commands to generate.