Merge branch 'oprofile-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
29 #define CLONE_NEWNET 0x40000000 /* New network namespace */
30 #define CLONE_IO 0x80000000 /* Clone io context */
31
32 /*
33 * Scheduling policies
34 */
35 #define SCHED_NORMAL 0
36 #define SCHED_FIFO 1
37 #define SCHED_RR 2
38 #define SCHED_BATCH 3
39 /* SCHED_ISO: reserved but not implemented yet */
40 #define SCHED_IDLE 5
41
42 #ifdef __KERNEL__
43
44 struct sched_param {
45 int sched_priority;
46 };
47
48 #include <asm/param.h> /* for HZ */
49
50 #include <linux/capability.h>
51 #include <linux/threads.h>
52 #include <linux/kernel.h>
53 #include <linux/types.h>
54 #include <linux/timex.h>
55 #include <linux/jiffies.h>
56 #include <linux/rbtree.h>
57 #include <linux/thread_info.h>
58 #include <linux/cpumask.h>
59 #include <linux/errno.h>
60 #include <linux/nodemask.h>
61 #include <linux/mm_types.h>
62
63 #include <asm/system.h>
64 #include <asm/page.h>
65 #include <asm/ptrace.h>
66 #include <asm/cputime.h>
67
68 #include <linux/smp.h>
69 #include <linux/sem.h>
70 #include <linux/signal.h>
71 #include <linux/path.h>
72 #include <linux/compiler.h>
73 #include <linux/completion.h>
74 #include <linux/pid.h>
75 #include <linux/percpu.h>
76 #include <linux/topology.h>
77 #include <linux/proportions.h>
78 #include <linux/seccomp.h>
79 #include <linux/rcupdate.h>
80 #include <linux/rculist.h>
81 #include <linux/rtmutex.h>
82
83 #include <linux/time.h>
84 #include <linux/param.h>
85 #include <linux/resource.h>
86 #include <linux/timer.h>
87 #include <linux/hrtimer.h>
88 #include <linux/task_io_accounting.h>
89 #include <linux/kobject.h>
90 #include <linux/latencytop.h>
91 #include <linux/cred.h>
92
93 #include <asm/processor.h>
94
95 struct mem_cgroup;
96 struct exec_domain;
97 struct futex_pi_state;
98 struct robust_list_head;
99 struct bio;
100 struct bts_tracer;
101 struct fs_struct;
102
103 /*
104 * List of flags we want to share for kernel threads,
105 * if only because they are not used by them anyway.
106 */
107 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
108
109 /*
110 * These are the constant used to fake the fixed-point load-average
111 * counting. Some notes:
112 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
113 * a load-average precision of 10 bits integer + 11 bits fractional
114 * - if you want to count load-averages more often, you need more
115 * precision, or rounding will get you. With 2-second counting freq,
116 * the EXP_n values would be 1981, 2034 and 2043 if still using only
117 * 11 bit fractions.
118 */
119 extern unsigned long avenrun[]; /* Load averages */
120 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
121
122 #define FSHIFT 11 /* nr of bits of precision */
123 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
124 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
125 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
126 #define EXP_5 2014 /* 1/exp(5sec/5min) */
127 #define EXP_15 2037 /* 1/exp(5sec/15min) */
128
129 #define CALC_LOAD(load,exp,n) \
130 load *= exp; \
131 load += n*(FIXED_1-exp); \
132 load >>= FSHIFT;
133
134 extern unsigned long total_forks;
135 extern int nr_threads;
136 DECLARE_PER_CPU(unsigned long, process_counts);
137 extern int nr_processes(void);
138 extern unsigned long nr_running(void);
139 extern unsigned long nr_uninterruptible(void);
140 extern unsigned long nr_iowait(void);
141 extern void calc_global_load(void);
142
143 extern unsigned long get_parent_ip(unsigned long addr);
144
145 struct seq_file;
146 struct cfs_rq;
147 struct task_group;
148 #ifdef CONFIG_SCHED_DEBUG
149 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
150 extern void proc_sched_set_task(struct task_struct *p);
151 extern void
152 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
153 #else
154 static inline void
155 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
156 {
157 }
158 static inline void proc_sched_set_task(struct task_struct *p)
159 {
160 }
161 static inline void
162 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
163 {
164 }
165 #endif
166
167 extern unsigned long long time_sync_thresh;
168
169 /*
170 * Task state bitmask. NOTE! These bits are also
171 * encoded in fs/proc/array.c: get_task_state().
172 *
173 * We have two separate sets of flags: task->state
174 * is about runnability, while task->exit_state are
175 * about the task exiting. Confusing, but this way
176 * modifying one set can't modify the other one by
177 * mistake.
178 */
179 #define TASK_RUNNING 0
180 #define TASK_INTERRUPTIBLE 1
181 #define TASK_UNINTERRUPTIBLE 2
182 #define __TASK_STOPPED 4
183 #define __TASK_TRACED 8
184 /* in tsk->exit_state */
185 #define EXIT_ZOMBIE 16
186 #define EXIT_DEAD 32
187 /* in tsk->state again */
188 #define TASK_DEAD 64
189 #define TASK_WAKEKILL 128
190
191 /* Convenience macros for the sake of set_task_state */
192 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
193 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
194 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
195
196 /* Convenience macros for the sake of wake_up */
197 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
198 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
199
200 /* get_task_state() */
201 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
202 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
203 __TASK_TRACED)
204
205 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
206 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
207 #define task_is_stopped_or_traced(task) \
208 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
209 #define task_contributes_to_load(task) \
210 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
211 (task->flags & PF_FROZEN) == 0)
212
213 #define __set_task_state(tsk, state_value) \
214 do { (tsk)->state = (state_value); } while (0)
215 #define set_task_state(tsk, state_value) \
216 set_mb((tsk)->state, (state_value))
217
218 /*
219 * set_current_state() includes a barrier so that the write of current->state
220 * is correctly serialised wrt the caller's subsequent test of whether to
221 * actually sleep:
222 *
223 * set_current_state(TASK_UNINTERRUPTIBLE);
224 * if (do_i_need_to_sleep())
225 * schedule();
226 *
227 * If the caller does not need such serialisation then use __set_current_state()
228 */
229 #define __set_current_state(state_value) \
230 do { current->state = (state_value); } while (0)
231 #define set_current_state(state_value) \
232 set_mb(current->state, (state_value))
233
234 /* Task command name length */
235 #define TASK_COMM_LEN 16
236
237 #include <linux/spinlock.h>
238
239 /*
240 * This serializes "schedule()" and also protects
241 * the run-queue from deletions/modifications (but
242 * _adding_ to the beginning of the run-queue has
243 * a separate lock).
244 */
245 extern rwlock_t tasklist_lock;
246 extern spinlock_t mmlist_lock;
247
248 struct task_struct;
249
250 extern void sched_init(void);
251 extern void sched_init_smp(void);
252 extern asmlinkage void schedule_tail(struct task_struct *prev);
253 extern void init_idle(struct task_struct *idle, int cpu);
254 extern void init_idle_bootup_task(struct task_struct *idle);
255
256 extern int runqueue_is_locked(void);
257 extern void task_rq_unlock_wait(struct task_struct *p);
258
259 extern cpumask_var_t nohz_cpu_mask;
260 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
261 extern int select_nohz_load_balancer(int cpu);
262 #else
263 static inline int select_nohz_load_balancer(int cpu)
264 {
265 return 0;
266 }
267 #endif
268
269 /*
270 * Only dump TASK_* tasks. (0 for all tasks)
271 */
272 extern void show_state_filter(unsigned long state_filter);
273
274 static inline void show_state(void)
275 {
276 show_state_filter(0);
277 }
278
279 extern void show_regs(struct pt_regs *);
280
281 /*
282 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
283 * task), SP is the stack pointer of the first frame that should be shown in the back
284 * trace (or NULL if the entire call-chain of the task should be shown).
285 */
286 extern void show_stack(struct task_struct *task, unsigned long *sp);
287
288 void io_schedule(void);
289 long io_schedule_timeout(long timeout);
290
291 extern void cpu_init (void);
292 extern void trap_init(void);
293 extern void update_process_times(int user);
294 extern void scheduler_tick(void);
295
296 extern void sched_show_task(struct task_struct *p);
297
298 #ifdef CONFIG_DETECT_SOFTLOCKUP
299 extern void softlockup_tick(void);
300 extern void touch_softlockup_watchdog(void);
301 extern void touch_all_softlockup_watchdogs(void);
302 extern int proc_dosoftlockup_thresh(struct ctl_table *table, int write,
303 struct file *filp, void __user *buffer,
304 size_t *lenp, loff_t *ppos);
305 extern unsigned int softlockup_panic;
306 extern int softlockup_thresh;
307 #else
308 static inline void softlockup_tick(void)
309 {
310 }
311 static inline void touch_softlockup_watchdog(void)
312 {
313 }
314 static inline void touch_all_softlockup_watchdogs(void)
315 {
316 }
317 #endif
318
319 #ifdef CONFIG_DETECT_HUNG_TASK
320 extern unsigned int sysctl_hung_task_panic;
321 extern unsigned long sysctl_hung_task_check_count;
322 extern unsigned long sysctl_hung_task_timeout_secs;
323 extern unsigned long sysctl_hung_task_warnings;
324 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
325 struct file *filp, void __user *buffer,
326 size_t *lenp, loff_t *ppos);
327 #endif
328
329 /* Attach to any functions which should be ignored in wchan output. */
330 #define __sched __attribute__((__section__(".sched.text")))
331
332 /* Linker adds these: start and end of __sched functions */
333 extern char __sched_text_start[], __sched_text_end[];
334
335 /* Is this address in the __sched functions? */
336 extern int in_sched_functions(unsigned long addr);
337
338 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
339 extern signed long schedule_timeout(signed long timeout);
340 extern signed long schedule_timeout_interruptible(signed long timeout);
341 extern signed long schedule_timeout_killable(signed long timeout);
342 extern signed long schedule_timeout_uninterruptible(signed long timeout);
343 asmlinkage void __schedule(void);
344 asmlinkage void schedule(void);
345 extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner);
346
347 struct nsproxy;
348 struct user_namespace;
349
350 /* Maximum number of active map areas.. This is a random (large) number */
351 #define DEFAULT_MAX_MAP_COUNT 65536
352
353 extern int sysctl_max_map_count;
354
355 #include <linux/aio.h>
356
357 extern unsigned long
358 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
359 unsigned long, unsigned long);
360 extern unsigned long
361 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
362 unsigned long len, unsigned long pgoff,
363 unsigned long flags);
364 extern void arch_unmap_area(struct mm_struct *, unsigned long);
365 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
366
367 #if USE_SPLIT_PTLOCKS
368 /*
369 * The mm counters are not protected by its page_table_lock,
370 * so must be incremented atomically.
371 */
372 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
373 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
374 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
375 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
376 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
377
378 #else /* !USE_SPLIT_PTLOCKS */
379 /*
380 * The mm counters are protected by its page_table_lock,
381 * so can be incremented directly.
382 */
383 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
384 #define get_mm_counter(mm, member) ((mm)->_##member)
385 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
386 #define inc_mm_counter(mm, member) (mm)->_##member++
387 #define dec_mm_counter(mm, member) (mm)->_##member--
388
389 #endif /* !USE_SPLIT_PTLOCKS */
390
391 #define get_mm_rss(mm) \
392 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
393 #define update_hiwater_rss(mm) do { \
394 unsigned long _rss = get_mm_rss(mm); \
395 if ((mm)->hiwater_rss < _rss) \
396 (mm)->hiwater_rss = _rss; \
397 } while (0)
398 #define update_hiwater_vm(mm) do { \
399 if ((mm)->hiwater_vm < (mm)->total_vm) \
400 (mm)->hiwater_vm = (mm)->total_vm; \
401 } while (0)
402
403 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
404 {
405 return max(mm->hiwater_rss, get_mm_rss(mm));
406 }
407
408 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
409 {
410 return max(mm->hiwater_vm, mm->total_vm);
411 }
412
413 extern void set_dumpable(struct mm_struct *mm, int value);
414 extern int get_dumpable(struct mm_struct *mm);
415
416 /* mm flags */
417 /* dumpable bits */
418 #define MMF_DUMPABLE 0 /* core dump is permitted */
419 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
420 #define MMF_DUMPABLE_BITS 2
421
422 /* coredump filter bits */
423 #define MMF_DUMP_ANON_PRIVATE 2
424 #define MMF_DUMP_ANON_SHARED 3
425 #define MMF_DUMP_MAPPED_PRIVATE 4
426 #define MMF_DUMP_MAPPED_SHARED 5
427 #define MMF_DUMP_ELF_HEADERS 6
428 #define MMF_DUMP_HUGETLB_PRIVATE 7
429 #define MMF_DUMP_HUGETLB_SHARED 8
430 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
431 #define MMF_DUMP_FILTER_BITS 7
432 #define MMF_DUMP_FILTER_MASK \
433 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
434 #define MMF_DUMP_FILTER_DEFAULT \
435 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
436 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
437
438 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
439 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
440 #else
441 # define MMF_DUMP_MASK_DEFAULT_ELF 0
442 #endif
443
444 struct sighand_struct {
445 atomic_t count;
446 struct k_sigaction action[_NSIG];
447 spinlock_t siglock;
448 wait_queue_head_t signalfd_wqh;
449 };
450
451 struct pacct_struct {
452 int ac_flag;
453 long ac_exitcode;
454 unsigned long ac_mem;
455 cputime_t ac_utime, ac_stime;
456 unsigned long ac_minflt, ac_majflt;
457 };
458
459 /**
460 * struct task_cputime - collected CPU time counts
461 * @utime: time spent in user mode, in &cputime_t units
462 * @stime: time spent in kernel mode, in &cputime_t units
463 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
464 *
465 * This structure groups together three kinds of CPU time that are
466 * tracked for threads and thread groups. Most things considering
467 * CPU time want to group these counts together and treat all three
468 * of them in parallel.
469 */
470 struct task_cputime {
471 cputime_t utime;
472 cputime_t stime;
473 unsigned long long sum_exec_runtime;
474 };
475 /* Alternate field names when used to cache expirations. */
476 #define prof_exp stime
477 #define virt_exp utime
478 #define sched_exp sum_exec_runtime
479
480 #define INIT_CPUTIME \
481 (struct task_cputime) { \
482 .utime = cputime_zero, \
483 .stime = cputime_zero, \
484 .sum_exec_runtime = 0, \
485 }
486
487 /**
488 * struct thread_group_cputimer - thread group interval timer counts
489 * @cputime: thread group interval timers.
490 * @running: non-zero when there are timers running and
491 * @cputime receives updates.
492 * @lock: lock for fields in this struct.
493 *
494 * This structure contains the version of task_cputime, above, that is
495 * used for thread group CPU timer calculations.
496 */
497 struct thread_group_cputimer {
498 struct task_cputime cputime;
499 int running;
500 spinlock_t lock;
501 };
502
503 /*
504 * NOTE! "signal_struct" does not have it's own
505 * locking, because a shared signal_struct always
506 * implies a shared sighand_struct, so locking
507 * sighand_struct is always a proper superset of
508 * the locking of signal_struct.
509 */
510 struct signal_struct {
511 atomic_t count;
512 atomic_t live;
513
514 wait_queue_head_t wait_chldexit; /* for wait4() */
515
516 /* current thread group signal load-balancing target: */
517 struct task_struct *curr_target;
518
519 /* shared signal handling: */
520 struct sigpending shared_pending;
521
522 /* thread group exit support */
523 int group_exit_code;
524 /* overloaded:
525 * - notify group_exit_task when ->count is equal to notify_count
526 * - everyone except group_exit_task is stopped during signal delivery
527 * of fatal signals, group_exit_task processes the signal.
528 */
529 int notify_count;
530 struct task_struct *group_exit_task;
531
532 /* thread group stop support, overloads group_exit_code too */
533 int group_stop_count;
534 unsigned int flags; /* see SIGNAL_* flags below */
535
536 /* POSIX.1b Interval Timers */
537 struct list_head posix_timers;
538
539 /* ITIMER_REAL timer for the process */
540 struct hrtimer real_timer;
541 struct pid *leader_pid;
542 ktime_t it_real_incr;
543
544 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
545 cputime_t it_prof_expires, it_virt_expires;
546 cputime_t it_prof_incr, it_virt_incr;
547
548 /*
549 * Thread group totals for process CPU timers.
550 * See thread_group_cputimer(), et al, for details.
551 */
552 struct thread_group_cputimer cputimer;
553
554 /* Earliest-expiration cache. */
555 struct task_cputime cputime_expires;
556
557 struct list_head cpu_timers[3];
558
559 struct pid *tty_old_pgrp;
560
561 /* boolean value for session group leader */
562 int leader;
563
564 struct tty_struct *tty; /* NULL if no tty */
565
566 /*
567 * Cumulative resource counters for dead threads in the group,
568 * and for reaped dead child processes forked by this group.
569 * Live threads maintain their own counters and add to these
570 * in __exit_signal, except for the group leader.
571 */
572 cputime_t utime, stime, cutime, cstime;
573 cputime_t gtime;
574 cputime_t cgtime;
575 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
576 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
577 unsigned long inblock, oublock, cinblock, coublock;
578 struct task_io_accounting ioac;
579
580 /*
581 * Cumulative ns of schedule CPU time fo dead threads in the
582 * group, not including a zombie group leader, (This only differs
583 * from jiffies_to_ns(utime + stime) if sched_clock uses something
584 * other than jiffies.)
585 */
586 unsigned long long sum_sched_runtime;
587
588 /*
589 * We don't bother to synchronize most readers of this at all,
590 * because there is no reader checking a limit that actually needs
591 * to get both rlim_cur and rlim_max atomically, and either one
592 * alone is a single word that can safely be read normally.
593 * getrlimit/setrlimit use task_lock(current->group_leader) to
594 * protect this instead of the siglock, because they really
595 * have no need to disable irqs.
596 */
597 struct rlimit rlim[RLIM_NLIMITS];
598
599 #ifdef CONFIG_BSD_PROCESS_ACCT
600 struct pacct_struct pacct; /* per-process accounting information */
601 #endif
602 #ifdef CONFIG_TASKSTATS
603 struct taskstats *stats;
604 #endif
605 #ifdef CONFIG_AUDIT
606 unsigned audit_tty;
607 struct tty_audit_buf *tty_audit_buf;
608 #endif
609 };
610
611 /* Context switch must be unlocked if interrupts are to be enabled */
612 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
613 # define __ARCH_WANT_UNLOCKED_CTXSW
614 #endif
615
616 /*
617 * Bits in flags field of signal_struct.
618 */
619 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
620 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
621 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
622 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
623 /*
624 * Pending notifications to parent.
625 */
626 #define SIGNAL_CLD_STOPPED 0x00000010
627 #define SIGNAL_CLD_CONTINUED 0x00000020
628 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
629
630 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
631
632 /* If true, all threads except ->group_exit_task have pending SIGKILL */
633 static inline int signal_group_exit(const struct signal_struct *sig)
634 {
635 return (sig->flags & SIGNAL_GROUP_EXIT) ||
636 (sig->group_exit_task != NULL);
637 }
638
639 /*
640 * Some day this will be a full-fledged user tracking system..
641 */
642 struct user_struct {
643 atomic_t __count; /* reference count */
644 atomic_t processes; /* How many processes does this user have? */
645 atomic_t files; /* How many open files does this user have? */
646 atomic_t sigpending; /* How many pending signals does this user have? */
647 #ifdef CONFIG_INOTIFY_USER
648 atomic_t inotify_watches; /* How many inotify watches does this user have? */
649 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
650 #endif
651 #ifdef CONFIG_EPOLL
652 atomic_t epoll_watches; /* The number of file descriptors currently watched */
653 #endif
654 #ifdef CONFIG_POSIX_MQUEUE
655 /* protected by mq_lock */
656 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
657 #endif
658 unsigned long locked_shm; /* How many pages of mlocked shm ? */
659
660 #ifdef CONFIG_KEYS
661 struct key *uid_keyring; /* UID specific keyring */
662 struct key *session_keyring; /* UID's default session keyring */
663 #endif
664
665 /* Hash table maintenance information */
666 struct hlist_node uidhash_node;
667 uid_t uid;
668 struct user_namespace *user_ns;
669
670 #ifdef CONFIG_USER_SCHED
671 struct task_group *tg;
672 #ifdef CONFIG_SYSFS
673 struct kobject kobj;
674 struct work_struct work;
675 #endif
676 #endif
677 };
678
679 extern int uids_sysfs_init(void);
680
681 extern struct user_struct *find_user(uid_t);
682
683 extern struct user_struct root_user;
684 #define INIT_USER (&root_user)
685
686
687 struct backing_dev_info;
688 struct reclaim_state;
689
690 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
691 struct sched_info {
692 /* cumulative counters */
693 unsigned long pcount; /* # of times run on this cpu */
694 unsigned long long run_delay; /* time spent waiting on a runqueue */
695
696 /* timestamps */
697 unsigned long long last_arrival,/* when we last ran on a cpu */
698 last_queued; /* when we were last queued to run */
699 #ifdef CONFIG_SCHEDSTATS
700 /* BKL stats */
701 unsigned int bkl_count;
702 #endif
703 };
704 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
705
706 #ifdef CONFIG_TASK_DELAY_ACCT
707 struct task_delay_info {
708 spinlock_t lock;
709 unsigned int flags; /* Private per-task flags */
710
711 /* For each stat XXX, add following, aligned appropriately
712 *
713 * struct timespec XXX_start, XXX_end;
714 * u64 XXX_delay;
715 * u32 XXX_count;
716 *
717 * Atomicity of updates to XXX_delay, XXX_count protected by
718 * single lock above (split into XXX_lock if contention is an issue).
719 */
720
721 /*
722 * XXX_count is incremented on every XXX operation, the delay
723 * associated with the operation is added to XXX_delay.
724 * XXX_delay contains the accumulated delay time in nanoseconds.
725 */
726 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
727 u64 blkio_delay; /* wait for sync block io completion */
728 u64 swapin_delay; /* wait for swapin block io completion */
729 u32 blkio_count; /* total count of the number of sync block */
730 /* io operations performed */
731 u32 swapin_count; /* total count of the number of swapin block */
732 /* io operations performed */
733
734 struct timespec freepages_start, freepages_end;
735 u64 freepages_delay; /* wait for memory reclaim */
736 u32 freepages_count; /* total count of memory reclaim */
737 };
738 #endif /* CONFIG_TASK_DELAY_ACCT */
739
740 static inline int sched_info_on(void)
741 {
742 #ifdef CONFIG_SCHEDSTATS
743 return 1;
744 #elif defined(CONFIG_TASK_DELAY_ACCT)
745 extern int delayacct_on;
746 return delayacct_on;
747 #else
748 return 0;
749 #endif
750 }
751
752 enum cpu_idle_type {
753 CPU_IDLE,
754 CPU_NOT_IDLE,
755 CPU_NEWLY_IDLE,
756 CPU_MAX_IDLE_TYPES
757 };
758
759 /*
760 * sched-domains (multiprocessor balancing) declarations:
761 */
762
763 /*
764 * Increase resolution of nice-level calculations:
765 */
766 #define SCHED_LOAD_SHIFT 10
767 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
768
769 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
770
771 #ifdef CONFIG_SMP
772 #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */
773 #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */
774 #define SD_BALANCE_EXEC 4 /* Balance on exec */
775 #define SD_BALANCE_FORK 8 /* Balance on fork, clone */
776 #define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */
777 #define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */
778 #define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */
779 #define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */
780 #define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */
781 #define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */
782 #define SD_SERIALIZE 1024 /* Only a single load balancing instance */
783 #define SD_WAKE_IDLE_FAR 2048 /* Gain latency sacrificing cache hit */
784
785 enum powersavings_balance_level {
786 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */
787 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package
788 * first for long running threads
789 */
790 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle
791 * cpu package for power savings
792 */
793 MAX_POWERSAVINGS_BALANCE_LEVELS
794 };
795
796 extern int sched_mc_power_savings, sched_smt_power_savings;
797
798 static inline int sd_balance_for_mc_power(void)
799 {
800 if (sched_smt_power_savings)
801 return SD_POWERSAVINGS_BALANCE;
802
803 return 0;
804 }
805
806 static inline int sd_balance_for_package_power(void)
807 {
808 if (sched_mc_power_savings | sched_smt_power_savings)
809 return SD_POWERSAVINGS_BALANCE;
810
811 return 0;
812 }
813
814 /*
815 * Optimise SD flags for power savings:
816 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings.
817 * Keep default SD flags if sched_{smt,mc}_power_saving=0
818 */
819
820 static inline int sd_power_saving_flags(void)
821 {
822 if (sched_mc_power_savings | sched_smt_power_savings)
823 return SD_BALANCE_NEWIDLE;
824
825 return 0;
826 }
827
828 struct sched_group {
829 struct sched_group *next; /* Must be a circular list */
830
831 /*
832 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
833 * single CPU. This is read only (except for setup, hotplug CPU).
834 * Note : Never change cpu_power without recompute its reciprocal
835 */
836 unsigned int __cpu_power;
837 /*
838 * reciprocal value of cpu_power to avoid expensive divides
839 * (see include/linux/reciprocal_div.h)
840 */
841 u32 reciprocal_cpu_power;
842
843 /*
844 * The CPUs this group covers.
845 *
846 * NOTE: this field is variable length. (Allocated dynamically
847 * by attaching extra space to the end of the structure,
848 * depending on how many CPUs the kernel has booted up with)
849 *
850 * It is also be embedded into static data structures at build
851 * time. (See 'struct static_sched_group' in kernel/sched.c)
852 */
853 unsigned long cpumask[0];
854 };
855
856 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
857 {
858 return to_cpumask(sg->cpumask);
859 }
860
861 enum sched_domain_level {
862 SD_LV_NONE = 0,
863 SD_LV_SIBLING,
864 SD_LV_MC,
865 SD_LV_CPU,
866 SD_LV_NODE,
867 SD_LV_ALLNODES,
868 SD_LV_MAX
869 };
870
871 struct sched_domain_attr {
872 int relax_domain_level;
873 };
874
875 #define SD_ATTR_INIT (struct sched_domain_attr) { \
876 .relax_domain_level = -1, \
877 }
878
879 struct sched_domain {
880 /* These fields must be setup */
881 struct sched_domain *parent; /* top domain must be null terminated */
882 struct sched_domain *child; /* bottom domain must be null terminated */
883 struct sched_group *groups; /* the balancing groups of the domain */
884 unsigned long min_interval; /* Minimum balance interval ms */
885 unsigned long max_interval; /* Maximum balance interval ms */
886 unsigned int busy_factor; /* less balancing by factor if busy */
887 unsigned int imbalance_pct; /* No balance until over watermark */
888 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
889 unsigned int busy_idx;
890 unsigned int idle_idx;
891 unsigned int newidle_idx;
892 unsigned int wake_idx;
893 unsigned int forkexec_idx;
894 int flags; /* See SD_* */
895 enum sched_domain_level level;
896
897 /* Runtime fields. */
898 unsigned long last_balance; /* init to jiffies. units in jiffies */
899 unsigned int balance_interval; /* initialise to 1. units in ms. */
900 unsigned int nr_balance_failed; /* initialise to 0 */
901
902 u64 last_update;
903
904 #ifdef CONFIG_SCHEDSTATS
905 /* load_balance() stats */
906 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
907 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
908 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
909 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
910 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
911 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
912 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
913 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
914
915 /* Active load balancing */
916 unsigned int alb_count;
917 unsigned int alb_failed;
918 unsigned int alb_pushed;
919
920 /* SD_BALANCE_EXEC stats */
921 unsigned int sbe_count;
922 unsigned int sbe_balanced;
923 unsigned int sbe_pushed;
924
925 /* SD_BALANCE_FORK stats */
926 unsigned int sbf_count;
927 unsigned int sbf_balanced;
928 unsigned int sbf_pushed;
929
930 /* try_to_wake_up() stats */
931 unsigned int ttwu_wake_remote;
932 unsigned int ttwu_move_affine;
933 unsigned int ttwu_move_balance;
934 #endif
935 #ifdef CONFIG_SCHED_DEBUG
936 char *name;
937 #endif
938
939 /*
940 * Span of all CPUs in this domain.
941 *
942 * NOTE: this field is variable length. (Allocated dynamically
943 * by attaching extra space to the end of the structure,
944 * depending on how many CPUs the kernel has booted up with)
945 *
946 * It is also be embedded into static data structures at build
947 * time. (See 'struct static_sched_domain' in kernel/sched.c)
948 */
949 unsigned long span[0];
950 };
951
952 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
953 {
954 return to_cpumask(sd->span);
955 }
956
957 extern void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
958 struct sched_domain_attr *dattr_new);
959
960 /* Test a flag in parent sched domain */
961 static inline int test_sd_parent(struct sched_domain *sd, int flag)
962 {
963 if (sd->parent && (sd->parent->flags & flag))
964 return 1;
965
966 return 0;
967 }
968
969 #else /* CONFIG_SMP */
970
971 struct sched_domain_attr;
972
973 static inline void
974 partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
975 struct sched_domain_attr *dattr_new)
976 {
977 }
978 #endif /* !CONFIG_SMP */
979
980 struct io_context; /* See blkdev.h */
981
982
983 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
984 extern void prefetch_stack(struct task_struct *t);
985 #else
986 static inline void prefetch_stack(struct task_struct *t) { }
987 #endif
988
989 struct audit_context; /* See audit.c */
990 struct mempolicy;
991 struct pipe_inode_info;
992 struct uts_namespace;
993
994 struct rq;
995 struct sched_domain;
996
997 struct sched_class {
998 const struct sched_class *next;
999
1000 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
1001 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
1002 void (*yield_task) (struct rq *rq);
1003
1004 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int sync);
1005
1006 struct task_struct * (*pick_next_task) (struct rq *rq);
1007 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1008
1009 #ifdef CONFIG_SMP
1010 int (*select_task_rq)(struct task_struct *p, int sync);
1011
1012 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
1013 struct rq *busiest, unsigned long max_load_move,
1014 struct sched_domain *sd, enum cpu_idle_type idle,
1015 int *all_pinned, int *this_best_prio);
1016
1017 int (*move_one_task) (struct rq *this_rq, int this_cpu,
1018 struct rq *busiest, struct sched_domain *sd,
1019 enum cpu_idle_type idle);
1020 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1021 int (*needs_post_schedule) (struct rq *this_rq);
1022 void (*post_schedule) (struct rq *this_rq);
1023 void (*task_wake_up) (struct rq *this_rq, struct task_struct *task);
1024
1025 void (*set_cpus_allowed)(struct task_struct *p,
1026 const struct cpumask *newmask);
1027
1028 void (*rq_online)(struct rq *rq);
1029 void (*rq_offline)(struct rq *rq);
1030 #endif
1031
1032 void (*set_curr_task) (struct rq *rq);
1033 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1034 void (*task_new) (struct rq *rq, struct task_struct *p);
1035
1036 void (*switched_from) (struct rq *this_rq, struct task_struct *task,
1037 int running);
1038 void (*switched_to) (struct rq *this_rq, struct task_struct *task,
1039 int running);
1040 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1041 int oldprio, int running);
1042
1043 #ifdef CONFIG_FAIR_GROUP_SCHED
1044 void (*moved_group) (struct task_struct *p);
1045 #endif
1046 };
1047
1048 struct load_weight {
1049 unsigned long weight, inv_weight;
1050 };
1051
1052 /*
1053 * CFS stats for a schedulable entity (task, task-group etc)
1054 *
1055 * Current field usage histogram:
1056 *
1057 * 4 se->block_start
1058 * 4 se->run_node
1059 * 4 se->sleep_start
1060 * 6 se->load.weight
1061 */
1062 struct sched_entity {
1063 struct load_weight load; /* for load-balancing */
1064 struct rb_node run_node;
1065 struct list_head group_node;
1066 unsigned int on_rq;
1067
1068 u64 exec_start;
1069 u64 sum_exec_runtime;
1070 u64 vruntime;
1071 u64 prev_sum_exec_runtime;
1072
1073 u64 last_wakeup;
1074 u64 avg_overlap;
1075
1076 u64 start_runtime;
1077 u64 avg_wakeup;
1078 u64 nr_migrations;
1079
1080 #ifdef CONFIG_SCHEDSTATS
1081 u64 wait_start;
1082 u64 wait_max;
1083 u64 wait_count;
1084 u64 wait_sum;
1085
1086 u64 sleep_start;
1087 u64 sleep_max;
1088 s64 sum_sleep_runtime;
1089
1090 u64 block_start;
1091 u64 block_max;
1092 u64 exec_max;
1093 u64 slice_max;
1094
1095 u64 nr_migrations_cold;
1096 u64 nr_failed_migrations_affine;
1097 u64 nr_failed_migrations_running;
1098 u64 nr_failed_migrations_hot;
1099 u64 nr_forced_migrations;
1100 u64 nr_forced2_migrations;
1101
1102 u64 nr_wakeups;
1103 u64 nr_wakeups_sync;
1104 u64 nr_wakeups_migrate;
1105 u64 nr_wakeups_local;
1106 u64 nr_wakeups_remote;
1107 u64 nr_wakeups_affine;
1108 u64 nr_wakeups_affine_attempts;
1109 u64 nr_wakeups_passive;
1110 u64 nr_wakeups_idle;
1111 #endif
1112
1113 #ifdef CONFIG_FAIR_GROUP_SCHED
1114 struct sched_entity *parent;
1115 /* rq on which this entity is (to be) queued: */
1116 struct cfs_rq *cfs_rq;
1117 /* rq "owned" by this entity/group: */
1118 struct cfs_rq *my_q;
1119 #endif
1120 };
1121
1122 struct sched_rt_entity {
1123 struct list_head run_list;
1124 unsigned long timeout;
1125 unsigned int time_slice;
1126 int nr_cpus_allowed;
1127
1128 struct sched_rt_entity *back;
1129 #ifdef CONFIG_RT_GROUP_SCHED
1130 struct sched_rt_entity *parent;
1131 /* rq on which this entity is (to be) queued: */
1132 struct rt_rq *rt_rq;
1133 /* rq "owned" by this entity/group: */
1134 struct rt_rq *my_q;
1135 #endif
1136 };
1137
1138 struct task_struct {
1139 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1140 void *stack;
1141 atomic_t usage;
1142 unsigned int flags; /* per process flags, defined below */
1143 unsigned int ptrace;
1144
1145 int lock_depth; /* BKL lock depth */
1146
1147 #ifdef CONFIG_SMP
1148 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1149 int oncpu;
1150 #endif
1151 #endif
1152
1153 int prio, static_prio, normal_prio;
1154 unsigned int rt_priority;
1155 const struct sched_class *sched_class;
1156 struct sched_entity se;
1157 struct sched_rt_entity rt;
1158
1159 #ifdef CONFIG_PREEMPT_NOTIFIERS
1160 /* list of struct preempt_notifier: */
1161 struct hlist_head preempt_notifiers;
1162 #endif
1163
1164 /*
1165 * fpu_counter contains the number of consecutive context switches
1166 * that the FPU is used. If this is over a threshold, the lazy fpu
1167 * saving becomes unlazy to save the trap. This is an unsigned char
1168 * so that after 256 times the counter wraps and the behavior turns
1169 * lazy again; this to deal with bursty apps that only use FPU for
1170 * a short time
1171 */
1172 unsigned char fpu_counter;
1173 s8 oomkilladj; /* OOM kill score adjustment (bit shift). */
1174 #ifdef CONFIG_BLK_DEV_IO_TRACE
1175 unsigned int btrace_seq;
1176 #endif
1177
1178 unsigned int policy;
1179 cpumask_t cpus_allowed;
1180
1181 #ifdef CONFIG_PREEMPT_RCU
1182 int rcu_read_lock_nesting;
1183 int rcu_flipctr_idx;
1184 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1185
1186 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1187 struct sched_info sched_info;
1188 #endif
1189
1190 struct list_head tasks;
1191 struct plist_node pushable_tasks;
1192
1193 struct mm_struct *mm, *active_mm;
1194
1195 /* task state */
1196 struct linux_binfmt *binfmt;
1197 int exit_state;
1198 int exit_code, exit_signal;
1199 int pdeath_signal; /* The signal sent when the parent dies */
1200 /* ??? */
1201 unsigned int personality;
1202 unsigned did_exec:1;
1203 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1204 * execve */
1205 pid_t pid;
1206 pid_t tgid;
1207
1208 /* Canary value for the -fstack-protector gcc feature */
1209 unsigned long stack_canary;
1210
1211 /*
1212 * pointers to (original) parent process, youngest child, younger sibling,
1213 * older sibling, respectively. (p->father can be replaced with
1214 * p->real_parent->pid)
1215 */
1216 struct task_struct *real_parent; /* real parent process */
1217 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1218 /*
1219 * children/sibling forms the list of my natural children
1220 */
1221 struct list_head children; /* list of my children */
1222 struct list_head sibling; /* linkage in my parent's children list */
1223 struct task_struct *group_leader; /* threadgroup leader */
1224
1225 /*
1226 * ptraced is the list of tasks this task is using ptrace on.
1227 * This includes both natural children and PTRACE_ATTACH targets.
1228 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1229 */
1230 struct list_head ptraced;
1231 struct list_head ptrace_entry;
1232
1233 #ifdef CONFIG_X86_PTRACE_BTS
1234 /*
1235 * This is the tracer handle for the ptrace BTS extension.
1236 * This field actually belongs to the ptracer task.
1237 */
1238 struct bts_tracer *bts;
1239 /*
1240 * The buffer to hold the BTS data.
1241 */
1242 void *bts_buffer;
1243 size_t bts_size;
1244 #endif /* CONFIG_X86_PTRACE_BTS */
1245
1246 /* PID/PID hash table linkage. */
1247 struct pid_link pids[PIDTYPE_MAX];
1248 struct list_head thread_group;
1249
1250 struct completion *vfork_done; /* for vfork() */
1251 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1252 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1253
1254 cputime_t utime, stime, utimescaled, stimescaled;
1255 cputime_t gtime;
1256 cputime_t prev_utime, prev_stime;
1257 unsigned long nvcsw, nivcsw; /* context switch counts */
1258 struct timespec start_time; /* monotonic time */
1259 struct timespec real_start_time; /* boot based time */
1260 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1261 unsigned long min_flt, maj_flt;
1262
1263 struct task_cputime cputime_expires;
1264 struct list_head cpu_timers[3];
1265
1266 /* process credentials */
1267 const struct cred *real_cred; /* objective and real subjective task
1268 * credentials (COW) */
1269 const struct cred *cred; /* effective (overridable) subjective task
1270 * credentials (COW) */
1271 struct mutex cred_exec_mutex; /* execve vs ptrace cred calculation mutex */
1272
1273 char comm[TASK_COMM_LEN]; /* executable name excluding path
1274 - access with [gs]et_task_comm (which lock
1275 it with task_lock())
1276 - initialized normally by flush_old_exec */
1277 /* file system info */
1278 int link_count, total_link_count;
1279 #ifdef CONFIG_SYSVIPC
1280 /* ipc stuff */
1281 struct sysv_sem sysvsem;
1282 #endif
1283 #ifdef CONFIG_DETECT_HUNG_TASK
1284 /* hung task detection */
1285 unsigned long last_switch_count;
1286 #endif
1287 /* CPU-specific state of this task */
1288 struct thread_struct thread;
1289 /* filesystem information */
1290 struct fs_struct *fs;
1291 /* open file information */
1292 struct files_struct *files;
1293 /* namespaces */
1294 struct nsproxy *nsproxy;
1295 /* signal handlers */
1296 struct signal_struct *signal;
1297 struct sighand_struct *sighand;
1298
1299 sigset_t blocked, real_blocked;
1300 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1301 struct sigpending pending;
1302
1303 unsigned long sas_ss_sp;
1304 size_t sas_ss_size;
1305 int (*notifier)(void *priv);
1306 void *notifier_data;
1307 sigset_t *notifier_mask;
1308 struct audit_context *audit_context;
1309 #ifdef CONFIG_AUDITSYSCALL
1310 uid_t loginuid;
1311 unsigned int sessionid;
1312 #endif
1313 seccomp_t seccomp;
1314
1315 /* Thread group tracking */
1316 u32 parent_exec_id;
1317 u32 self_exec_id;
1318 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
1319 spinlock_t alloc_lock;
1320
1321 #ifdef CONFIG_GENERIC_HARDIRQS
1322 /* IRQ handler threads */
1323 struct irqaction *irqaction;
1324 #endif
1325
1326 /* Protection of the PI data structures: */
1327 spinlock_t pi_lock;
1328
1329 #ifdef CONFIG_RT_MUTEXES
1330 /* PI waiters blocked on a rt_mutex held by this task */
1331 struct plist_head pi_waiters;
1332 /* Deadlock detection and priority inheritance handling */
1333 struct rt_mutex_waiter *pi_blocked_on;
1334 #endif
1335
1336 #ifdef CONFIG_DEBUG_MUTEXES
1337 /* mutex deadlock detection */
1338 struct mutex_waiter *blocked_on;
1339 #endif
1340 #ifdef CONFIG_TRACE_IRQFLAGS
1341 unsigned int irq_events;
1342 int hardirqs_enabled;
1343 unsigned long hardirq_enable_ip;
1344 unsigned int hardirq_enable_event;
1345 unsigned long hardirq_disable_ip;
1346 unsigned int hardirq_disable_event;
1347 int softirqs_enabled;
1348 unsigned long softirq_disable_ip;
1349 unsigned int softirq_disable_event;
1350 unsigned long softirq_enable_ip;
1351 unsigned int softirq_enable_event;
1352 int hardirq_context;
1353 int softirq_context;
1354 #endif
1355 #ifdef CONFIG_LOCKDEP
1356 # define MAX_LOCK_DEPTH 48UL
1357 u64 curr_chain_key;
1358 int lockdep_depth;
1359 unsigned int lockdep_recursion;
1360 struct held_lock held_locks[MAX_LOCK_DEPTH];
1361 gfp_t lockdep_reclaim_gfp;
1362 #endif
1363
1364 /* journalling filesystem info */
1365 void *journal_info;
1366
1367 /* stacked block device info */
1368 struct bio *bio_list, **bio_tail;
1369
1370 /* VM state */
1371 struct reclaim_state *reclaim_state;
1372
1373 struct backing_dev_info *backing_dev_info;
1374
1375 struct io_context *io_context;
1376
1377 unsigned long ptrace_message;
1378 siginfo_t *last_siginfo; /* For ptrace use. */
1379 struct task_io_accounting ioac;
1380 #if defined(CONFIG_TASK_XACCT)
1381 u64 acct_rss_mem1; /* accumulated rss usage */
1382 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1383 cputime_t acct_timexpd; /* stime + utime since last update */
1384 #endif
1385 #ifdef CONFIG_CPUSETS
1386 nodemask_t mems_allowed;
1387 int cpuset_mems_generation;
1388 int cpuset_mem_spread_rotor;
1389 #endif
1390 #ifdef CONFIG_CGROUPS
1391 /* Control Group info protected by css_set_lock */
1392 struct css_set *cgroups;
1393 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1394 struct list_head cg_list;
1395 #endif
1396 #ifdef CONFIG_FUTEX
1397 struct robust_list_head __user *robust_list;
1398 #ifdef CONFIG_COMPAT
1399 struct compat_robust_list_head __user *compat_robust_list;
1400 #endif
1401 struct list_head pi_state_list;
1402 struct futex_pi_state *pi_state_cache;
1403 #endif
1404 #ifdef CONFIG_NUMA
1405 struct mempolicy *mempolicy;
1406 short il_next;
1407 #endif
1408 atomic_t fs_excl; /* holding fs exclusive resources */
1409 struct rcu_head rcu;
1410
1411 /*
1412 * cache last used pipe for splice
1413 */
1414 struct pipe_inode_info *splice_pipe;
1415 #ifdef CONFIG_TASK_DELAY_ACCT
1416 struct task_delay_info *delays;
1417 #endif
1418 #ifdef CONFIG_FAULT_INJECTION
1419 int make_it_fail;
1420 #endif
1421 struct prop_local_single dirties;
1422 #ifdef CONFIG_LATENCYTOP
1423 int latency_record_count;
1424 struct latency_record latency_record[LT_SAVECOUNT];
1425 #endif
1426 /*
1427 * time slack values; these are used to round up poll() and
1428 * select() etc timeout values. These are in nanoseconds.
1429 */
1430 unsigned long timer_slack_ns;
1431 unsigned long default_timer_slack_ns;
1432
1433 struct list_head *scm_work_list;
1434 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1435 /* Index of current stored adress in ret_stack */
1436 int curr_ret_stack;
1437 /* Stack of return addresses for return function tracing */
1438 struct ftrace_ret_stack *ret_stack;
1439 /* time stamp for last schedule */
1440 unsigned long long ftrace_timestamp;
1441 /*
1442 * Number of functions that haven't been traced
1443 * because of depth overrun.
1444 */
1445 atomic_t trace_overrun;
1446 /* Pause for the tracing */
1447 atomic_t tracing_graph_pause;
1448 #endif
1449 #ifdef CONFIG_TRACING
1450 /* state flags for use by tracers */
1451 unsigned long trace;
1452 #endif
1453 };
1454
1455 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1456 #define tsk_cpumask(tsk) (&(tsk)->cpus_allowed)
1457
1458 /*
1459 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1460 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1461 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1462 * values are inverted: lower p->prio value means higher priority.
1463 *
1464 * The MAX_USER_RT_PRIO value allows the actual maximum
1465 * RT priority to be separate from the value exported to
1466 * user-space. This allows kernel threads to set their
1467 * priority to a value higher than any user task. Note:
1468 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1469 */
1470
1471 #define MAX_USER_RT_PRIO 100
1472 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1473
1474 #define MAX_PRIO (MAX_RT_PRIO + 40)
1475 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1476
1477 static inline int rt_prio(int prio)
1478 {
1479 if (unlikely(prio < MAX_RT_PRIO))
1480 return 1;
1481 return 0;
1482 }
1483
1484 static inline int rt_task(struct task_struct *p)
1485 {
1486 return rt_prio(p->prio);
1487 }
1488
1489 static inline struct pid *task_pid(struct task_struct *task)
1490 {
1491 return task->pids[PIDTYPE_PID].pid;
1492 }
1493
1494 static inline struct pid *task_tgid(struct task_struct *task)
1495 {
1496 return task->group_leader->pids[PIDTYPE_PID].pid;
1497 }
1498
1499 /*
1500 * Without tasklist or rcu lock it is not safe to dereference
1501 * the result of task_pgrp/task_session even if task == current,
1502 * we can race with another thread doing sys_setsid/sys_setpgid.
1503 */
1504 static inline struct pid *task_pgrp(struct task_struct *task)
1505 {
1506 return task->group_leader->pids[PIDTYPE_PGID].pid;
1507 }
1508
1509 static inline struct pid *task_session(struct task_struct *task)
1510 {
1511 return task->group_leader->pids[PIDTYPE_SID].pid;
1512 }
1513
1514 struct pid_namespace;
1515
1516 /*
1517 * the helpers to get the task's different pids as they are seen
1518 * from various namespaces
1519 *
1520 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1521 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1522 * current.
1523 * task_xid_nr_ns() : id seen from the ns specified;
1524 *
1525 * set_task_vxid() : assigns a virtual id to a task;
1526 *
1527 * see also pid_nr() etc in include/linux/pid.h
1528 */
1529 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1530 struct pid_namespace *ns);
1531
1532 static inline pid_t task_pid_nr(struct task_struct *tsk)
1533 {
1534 return tsk->pid;
1535 }
1536
1537 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1538 struct pid_namespace *ns)
1539 {
1540 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1541 }
1542
1543 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1544 {
1545 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1546 }
1547
1548
1549 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1550 {
1551 return tsk->tgid;
1552 }
1553
1554 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1555
1556 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1557 {
1558 return pid_vnr(task_tgid(tsk));
1559 }
1560
1561
1562 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1563 struct pid_namespace *ns)
1564 {
1565 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1566 }
1567
1568 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1569 {
1570 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1571 }
1572
1573
1574 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1575 struct pid_namespace *ns)
1576 {
1577 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1578 }
1579
1580 static inline pid_t task_session_vnr(struct task_struct *tsk)
1581 {
1582 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1583 }
1584
1585 /* obsolete, do not use */
1586 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1587 {
1588 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1589 }
1590
1591 /**
1592 * pid_alive - check that a task structure is not stale
1593 * @p: Task structure to be checked.
1594 *
1595 * Test if a process is not yet dead (at most zombie state)
1596 * If pid_alive fails, then pointers within the task structure
1597 * can be stale and must not be dereferenced.
1598 */
1599 static inline int pid_alive(struct task_struct *p)
1600 {
1601 return p->pids[PIDTYPE_PID].pid != NULL;
1602 }
1603
1604 /**
1605 * is_global_init - check if a task structure is init
1606 * @tsk: Task structure to be checked.
1607 *
1608 * Check if a task structure is the first user space task the kernel created.
1609 */
1610 static inline int is_global_init(struct task_struct *tsk)
1611 {
1612 return tsk->pid == 1;
1613 }
1614
1615 /*
1616 * is_container_init:
1617 * check whether in the task is init in its own pid namespace.
1618 */
1619 extern int is_container_init(struct task_struct *tsk);
1620
1621 extern struct pid *cad_pid;
1622
1623 extern void free_task(struct task_struct *tsk);
1624 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1625
1626 extern void __put_task_struct(struct task_struct *t);
1627
1628 static inline void put_task_struct(struct task_struct *t)
1629 {
1630 if (atomic_dec_and_test(&t->usage))
1631 __put_task_struct(t);
1632 }
1633
1634 extern cputime_t task_utime(struct task_struct *p);
1635 extern cputime_t task_stime(struct task_struct *p);
1636 extern cputime_t task_gtime(struct task_struct *p);
1637
1638 /*
1639 * Per process flags
1640 */
1641 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1642 /* Not implemented yet, only for 486*/
1643 #define PF_STARTING 0x00000002 /* being created */
1644 #define PF_EXITING 0x00000004 /* getting shut down */
1645 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1646 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1647 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1648 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1649 #define PF_DUMPCORE 0x00000200 /* dumped core */
1650 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1651 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1652 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1653 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1654 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1655 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1656 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1657 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1658 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */
1659 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1660 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1661 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1662 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1663 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1664 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1665 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1666 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1667 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1668 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1669 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */
1670
1671 /*
1672 * Only the _current_ task can read/write to tsk->flags, but other
1673 * tasks can access tsk->flags in readonly mode for example
1674 * with tsk_used_math (like during threaded core dumping).
1675 * There is however an exception to this rule during ptrace
1676 * or during fork: the ptracer task is allowed to write to the
1677 * child->flags of its traced child (same goes for fork, the parent
1678 * can write to the child->flags), because we're guaranteed the
1679 * child is not running and in turn not changing child->flags
1680 * at the same time the parent does it.
1681 */
1682 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1683 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1684 #define clear_used_math() clear_stopped_child_used_math(current)
1685 #define set_used_math() set_stopped_child_used_math(current)
1686 #define conditional_stopped_child_used_math(condition, child) \
1687 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1688 #define conditional_used_math(condition) \
1689 conditional_stopped_child_used_math(condition, current)
1690 #define copy_to_stopped_child_used_math(child) \
1691 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1692 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1693 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1694 #define used_math() tsk_used_math(current)
1695
1696 #ifdef CONFIG_SMP
1697 extern int set_cpus_allowed_ptr(struct task_struct *p,
1698 const struct cpumask *new_mask);
1699 #else
1700 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1701 const struct cpumask *new_mask)
1702 {
1703 if (!cpumask_test_cpu(0, new_mask))
1704 return -EINVAL;
1705 return 0;
1706 }
1707 #endif
1708 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1709 {
1710 return set_cpus_allowed_ptr(p, &new_mask);
1711 }
1712
1713 /*
1714 * Architectures can set this to 1 if they have specified
1715 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1716 * but then during bootup it turns out that sched_clock()
1717 * is reliable after all:
1718 */
1719 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1720 extern int sched_clock_stable;
1721 #endif
1722
1723 extern unsigned long long sched_clock(void);
1724
1725 extern void sched_clock_init(void);
1726 extern u64 sched_clock_cpu(int cpu);
1727
1728 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1729 static inline void sched_clock_tick(void)
1730 {
1731 }
1732
1733 static inline void sched_clock_idle_sleep_event(void)
1734 {
1735 }
1736
1737 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1738 {
1739 }
1740 #else
1741 extern void sched_clock_tick(void);
1742 extern void sched_clock_idle_sleep_event(void);
1743 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1744 #endif
1745
1746 /*
1747 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1748 * clock constructed from sched_clock():
1749 */
1750 extern unsigned long long cpu_clock(int cpu);
1751
1752 extern unsigned long long
1753 task_sched_runtime(struct task_struct *task);
1754 extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1755
1756 /* sched_exec is called by processes performing an exec */
1757 #ifdef CONFIG_SMP
1758 extern void sched_exec(void);
1759 #else
1760 #define sched_exec() {}
1761 #endif
1762
1763 extern void sched_clock_idle_sleep_event(void);
1764 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1765
1766 #ifdef CONFIG_HOTPLUG_CPU
1767 extern void idle_task_exit(void);
1768 #else
1769 static inline void idle_task_exit(void) {}
1770 #endif
1771
1772 extern void sched_idle_next(void);
1773
1774 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1775 extern void wake_up_idle_cpu(int cpu);
1776 #else
1777 static inline void wake_up_idle_cpu(int cpu) { }
1778 #endif
1779
1780 extern unsigned int sysctl_sched_latency;
1781 extern unsigned int sysctl_sched_min_granularity;
1782 extern unsigned int sysctl_sched_wakeup_granularity;
1783 extern unsigned int sysctl_sched_shares_ratelimit;
1784 extern unsigned int sysctl_sched_shares_thresh;
1785 #ifdef CONFIG_SCHED_DEBUG
1786 extern unsigned int sysctl_sched_child_runs_first;
1787 extern unsigned int sysctl_sched_features;
1788 extern unsigned int sysctl_sched_migration_cost;
1789 extern unsigned int sysctl_sched_nr_migrate;
1790
1791 int sched_nr_latency_handler(struct ctl_table *table, int write,
1792 struct file *file, void __user *buffer, size_t *length,
1793 loff_t *ppos);
1794 #endif
1795 extern unsigned int sysctl_sched_rt_period;
1796 extern int sysctl_sched_rt_runtime;
1797
1798 int sched_rt_handler(struct ctl_table *table, int write,
1799 struct file *filp, void __user *buffer, size_t *lenp,
1800 loff_t *ppos);
1801
1802 extern unsigned int sysctl_sched_compat_yield;
1803
1804 #ifdef CONFIG_RT_MUTEXES
1805 extern int rt_mutex_getprio(struct task_struct *p);
1806 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1807 extern void rt_mutex_adjust_pi(struct task_struct *p);
1808 #else
1809 static inline int rt_mutex_getprio(struct task_struct *p)
1810 {
1811 return p->normal_prio;
1812 }
1813 # define rt_mutex_adjust_pi(p) do { } while (0)
1814 #endif
1815
1816 extern void set_user_nice(struct task_struct *p, long nice);
1817 extern int task_prio(const struct task_struct *p);
1818 extern int task_nice(const struct task_struct *p);
1819 extern int can_nice(const struct task_struct *p, const int nice);
1820 extern int task_curr(const struct task_struct *p);
1821 extern int idle_cpu(int cpu);
1822 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1823 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1824 struct sched_param *);
1825 extern struct task_struct *idle_task(int cpu);
1826 extern struct task_struct *curr_task(int cpu);
1827 extern void set_curr_task(int cpu, struct task_struct *p);
1828
1829 void yield(void);
1830
1831 /*
1832 * The default (Linux) execution domain.
1833 */
1834 extern struct exec_domain default_exec_domain;
1835
1836 union thread_union {
1837 struct thread_info thread_info;
1838 unsigned long stack[THREAD_SIZE/sizeof(long)];
1839 };
1840
1841 #ifndef __HAVE_ARCH_KSTACK_END
1842 static inline int kstack_end(void *addr)
1843 {
1844 /* Reliable end of stack detection:
1845 * Some APM bios versions misalign the stack
1846 */
1847 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1848 }
1849 #endif
1850
1851 extern union thread_union init_thread_union;
1852 extern struct task_struct init_task;
1853
1854 extern struct mm_struct init_mm;
1855
1856 extern struct pid_namespace init_pid_ns;
1857
1858 /*
1859 * find a task by one of its numerical ids
1860 *
1861 * find_task_by_pid_type_ns():
1862 * it is the most generic call - it finds a task by all id,
1863 * type and namespace specified
1864 * find_task_by_pid_ns():
1865 * finds a task by its pid in the specified namespace
1866 * find_task_by_vpid():
1867 * finds a task by its virtual pid
1868 *
1869 * see also find_vpid() etc in include/linux/pid.h
1870 */
1871
1872 extern struct task_struct *find_task_by_pid_type_ns(int type, int pid,
1873 struct pid_namespace *ns);
1874
1875 extern struct task_struct *find_task_by_vpid(pid_t nr);
1876 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1877 struct pid_namespace *ns);
1878
1879 extern void __set_special_pids(struct pid *pid);
1880
1881 /* per-UID process charging. */
1882 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1883 static inline struct user_struct *get_uid(struct user_struct *u)
1884 {
1885 atomic_inc(&u->__count);
1886 return u;
1887 }
1888 extern void free_uid(struct user_struct *);
1889 extern void release_uids(struct user_namespace *ns);
1890
1891 #include <asm/current.h>
1892
1893 extern void do_timer(unsigned long ticks);
1894
1895 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1896 extern int wake_up_process(struct task_struct *tsk);
1897 extern void wake_up_new_task(struct task_struct *tsk,
1898 unsigned long clone_flags);
1899 #ifdef CONFIG_SMP
1900 extern void kick_process(struct task_struct *tsk);
1901 #else
1902 static inline void kick_process(struct task_struct *tsk) { }
1903 #endif
1904 extern void sched_fork(struct task_struct *p, int clone_flags);
1905 extern void sched_dead(struct task_struct *p);
1906
1907 extern void proc_caches_init(void);
1908 extern void flush_signals(struct task_struct *);
1909 extern void ignore_signals(struct task_struct *);
1910 extern void flush_signal_handlers(struct task_struct *, int force_default);
1911 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1912
1913 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1914 {
1915 unsigned long flags;
1916 int ret;
1917
1918 spin_lock_irqsave(&tsk->sighand->siglock, flags);
1919 ret = dequeue_signal(tsk, mask, info);
1920 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1921
1922 return ret;
1923 }
1924
1925 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1926 sigset_t *mask);
1927 extern void unblock_all_signals(void);
1928 extern void release_task(struct task_struct * p);
1929 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1930 extern int force_sigsegv(int, struct task_struct *);
1931 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1932 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1933 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
1934 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
1935 extern int kill_pgrp(struct pid *pid, int sig, int priv);
1936 extern int kill_pid(struct pid *pid, int sig, int priv);
1937 extern int kill_proc_info(int, struct siginfo *, pid_t);
1938 extern int do_notify_parent(struct task_struct *, int);
1939 extern void force_sig(int, struct task_struct *);
1940 extern void force_sig_specific(int, struct task_struct *);
1941 extern int send_sig(int, struct task_struct *, int);
1942 extern void zap_other_threads(struct task_struct *p);
1943 extern struct sigqueue *sigqueue_alloc(void);
1944 extern void sigqueue_free(struct sigqueue *);
1945 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
1946 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1947 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1948
1949 static inline int kill_cad_pid(int sig, int priv)
1950 {
1951 return kill_pid(cad_pid, sig, priv);
1952 }
1953
1954 /* These can be the second arg to send_sig_info/send_group_sig_info. */
1955 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
1956 #define SEND_SIG_PRIV ((struct siginfo *) 1)
1957 #define SEND_SIG_FORCED ((struct siginfo *) 2)
1958
1959 static inline int is_si_special(const struct siginfo *info)
1960 {
1961 return info <= SEND_SIG_FORCED;
1962 }
1963
1964 /* True if we are on the alternate signal stack. */
1965
1966 static inline int on_sig_stack(unsigned long sp)
1967 {
1968 return (sp - current->sas_ss_sp < current->sas_ss_size);
1969 }
1970
1971 static inline int sas_ss_flags(unsigned long sp)
1972 {
1973 return (current->sas_ss_size == 0 ? SS_DISABLE
1974 : on_sig_stack(sp) ? SS_ONSTACK : 0);
1975 }
1976
1977 /*
1978 * Routines for handling mm_structs
1979 */
1980 extern struct mm_struct * mm_alloc(void);
1981
1982 /* mmdrop drops the mm and the page tables */
1983 extern void __mmdrop(struct mm_struct *);
1984 static inline void mmdrop(struct mm_struct * mm)
1985 {
1986 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1987 __mmdrop(mm);
1988 }
1989
1990 /* mmput gets rid of the mappings and all user-space */
1991 extern void mmput(struct mm_struct *);
1992 /* Grab a reference to a task's mm, if it is not already going away */
1993 extern struct mm_struct *get_task_mm(struct task_struct *task);
1994 /* Remove the current tasks stale references to the old mm_struct */
1995 extern void mm_release(struct task_struct *, struct mm_struct *);
1996 /* Allocate a new mm structure and copy contents from tsk->mm */
1997 extern struct mm_struct *dup_mm(struct task_struct *tsk);
1998
1999 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2000 struct task_struct *, struct pt_regs *);
2001 extern void flush_thread(void);
2002 extern void exit_thread(void);
2003
2004 extern void exit_files(struct task_struct *);
2005 extern void __cleanup_signal(struct signal_struct *);
2006 extern void __cleanup_sighand(struct sighand_struct *);
2007
2008 extern void exit_itimers(struct signal_struct *);
2009 extern void flush_itimer_signals(void);
2010
2011 extern NORET_TYPE void do_group_exit(int);
2012
2013 extern void daemonize(const char *, ...);
2014 extern int allow_signal(int);
2015 extern int disallow_signal(int);
2016
2017 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
2018 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2019 struct task_struct *fork_idle(int);
2020
2021 extern void set_task_comm(struct task_struct *tsk, char *from);
2022 extern char *get_task_comm(char *to, struct task_struct *tsk);
2023
2024 #ifdef CONFIG_SMP
2025 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2026 #else
2027 static inline unsigned long wait_task_inactive(struct task_struct *p,
2028 long match_state)
2029 {
2030 return 1;
2031 }
2032 #endif
2033
2034 #define next_task(p) \
2035 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2036
2037 #define for_each_process(p) \
2038 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2039
2040 extern bool is_single_threaded(struct task_struct *);
2041
2042 /*
2043 * Careful: do_each_thread/while_each_thread is a double loop so
2044 * 'break' will not work as expected - use goto instead.
2045 */
2046 #define do_each_thread(g, t) \
2047 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2048
2049 #define while_each_thread(g, t) \
2050 while ((t = next_thread(t)) != g)
2051
2052 /* de_thread depends on thread_group_leader not being a pid based check */
2053 #define thread_group_leader(p) (p == p->group_leader)
2054
2055 /* Do to the insanities of de_thread it is possible for a process
2056 * to have the pid of the thread group leader without actually being
2057 * the thread group leader. For iteration through the pids in proc
2058 * all we care about is that we have a task with the appropriate
2059 * pid, we don't actually care if we have the right task.
2060 */
2061 static inline int has_group_leader_pid(struct task_struct *p)
2062 {
2063 return p->pid == p->tgid;
2064 }
2065
2066 static inline
2067 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2068 {
2069 return p1->tgid == p2->tgid;
2070 }
2071
2072 static inline struct task_struct *next_thread(const struct task_struct *p)
2073 {
2074 return list_entry_rcu(p->thread_group.next,
2075 struct task_struct, thread_group);
2076 }
2077
2078 static inline int thread_group_empty(struct task_struct *p)
2079 {
2080 return list_empty(&p->thread_group);
2081 }
2082
2083 #define delay_group_leader(p) \
2084 (thread_group_leader(p) && !thread_group_empty(p))
2085
2086 static inline int task_detached(struct task_struct *p)
2087 {
2088 return p->exit_signal == -1;
2089 }
2090
2091 /*
2092 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2093 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2094 * pins the final release of task.io_context. Also protects ->cpuset and
2095 * ->cgroup.subsys[].
2096 *
2097 * Nests both inside and outside of read_lock(&tasklist_lock).
2098 * It must not be nested with write_lock_irq(&tasklist_lock),
2099 * neither inside nor outside.
2100 */
2101 static inline void task_lock(struct task_struct *p)
2102 {
2103 spin_lock(&p->alloc_lock);
2104 }
2105
2106 static inline void task_unlock(struct task_struct *p)
2107 {
2108 spin_unlock(&p->alloc_lock);
2109 }
2110
2111 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2112 unsigned long *flags);
2113
2114 static inline void unlock_task_sighand(struct task_struct *tsk,
2115 unsigned long *flags)
2116 {
2117 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2118 }
2119
2120 #ifndef __HAVE_THREAD_FUNCTIONS
2121
2122 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2123 #define task_stack_page(task) ((task)->stack)
2124
2125 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2126 {
2127 *task_thread_info(p) = *task_thread_info(org);
2128 task_thread_info(p)->task = p;
2129 }
2130
2131 static inline unsigned long *end_of_stack(struct task_struct *p)
2132 {
2133 return (unsigned long *)(task_thread_info(p) + 1);
2134 }
2135
2136 #endif
2137
2138 static inline int object_is_on_stack(void *obj)
2139 {
2140 void *stack = task_stack_page(current);
2141
2142 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2143 }
2144
2145 extern void thread_info_cache_init(void);
2146
2147 #ifdef CONFIG_DEBUG_STACK_USAGE
2148 static inline unsigned long stack_not_used(struct task_struct *p)
2149 {
2150 unsigned long *n = end_of_stack(p);
2151
2152 do { /* Skip over canary */
2153 n++;
2154 } while (!*n);
2155
2156 return (unsigned long)n - (unsigned long)end_of_stack(p);
2157 }
2158 #endif
2159
2160 /* set thread flags in other task's structures
2161 * - see asm/thread_info.h for TIF_xxxx flags available
2162 */
2163 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2164 {
2165 set_ti_thread_flag(task_thread_info(tsk), flag);
2166 }
2167
2168 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2169 {
2170 clear_ti_thread_flag(task_thread_info(tsk), flag);
2171 }
2172
2173 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2174 {
2175 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2176 }
2177
2178 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2179 {
2180 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2181 }
2182
2183 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2184 {
2185 return test_ti_thread_flag(task_thread_info(tsk), flag);
2186 }
2187
2188 static inline void set_tsk_need_resched(struct task_struct *tsk)
2189 {
2190 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2191 }
2192
2193 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2194 {
2195 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2196 }
2197
2198 static inline int test_tsk_need_resched(struct task_struct *tsk)
2199 {
2200 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2201 }
2202
2203 static inline int signal_pending(struct task_struct *p)
2204 {
2205 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2206 }
2207
2208 extern int __fatal_signal_pending(struct task_struct *p);
2209
2210 static inline int fatal_signal_pending(struct task_struct *p)
2211 {
2212 return signal_pending(p) && __fatal_signal_pending(p);
2213 }
2214
2215 static inline int signal_pending_state(long state, struct task_struct *p)
2216 {
2217 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2218 return 0;
2219 if (!signal_pending(p))
2220 return 0;
2221
2222 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2223 }
2224
2225 static inline int need_resched(void)
2226 {
2227 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2228 }
2229
2230 /*
2231 * cond_resched() and cond_resched_lock(): latency reduction via
2232 * explicit rescheduling in places that are safe. The return
2233 * value indicates whether a reschedule was done in fact.
2234 * cond_resched_lock() will drop the spinlock before scheduling,
2235 * cond_resched_softirq() will enable bhs before scheduling.
2236 */
2237 extern int _cond_resched(void);
2238 #ifdef CONFIG_PREEMPT_BKL
2239 static inline int cond_resched(void)
2240 {
2241 return 0;
2242 }
2243 #else
2244 static inline int cond_resched(void)
2245 {
2246 return _cond_resched();
2247 }
2248 #endif
2249 extern int cond_resched_lock(spinlock_t * lock);
2250 extern int cond_resched_softirq(void);
2251 static inline int cond_resched_bkl(void)
2252 {
2253 return _cond_resched();
2254 }
2255
2256 /*
2257 * Does a critical section need to be broken due to another
2258 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2259 * but a general need for low latency)
2260 */
2261 static inline int spin_needbreak(spinlock_t *lock)
2262 {
2263 #ifdef CONFIG_PREEMPT
2264 return spin_is_contended(lock);
2265 #else
2266 return 0;
2267 #endif
2268 }
2269
2270 /*
2271 * Thread group CPU time accounting.
2272 */
2273 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2274 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2275
2276 static inline void thread_group_cputime_init(struct signal_struct *sig)
2277 {
2278 sig->cputimer.cputime = INIT_CPUTIME;
2279 spin_lock_init(&sig->cputimer.lock);
2280 sig->cputimer.running = 0;
2281 }
2282
2283 static inline void thread_group_cputime_free(struct signal_struct *sig)
2284 {
2285 }
2286
2287 /*
2288 * Reevaluate whether the task has signals pending delivery.
2289 * Wake the task if so.
2290 * This is required every time the blocked sigset_t changes.
2291 * callers must hold sighand->siglock.
2292 */
2293 extern void recalc_sigpending_and_wake(struct task_struct *t);
2294 extern void recalc_sigpending(void);
2295
2296 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2297
2298 /*
2299 * Wrappers for p->thread_info->cpu access. No-op on UP.
2300 */
2301 #ifdef CONFIG_SMP
2302
2303 static inline unsigned int task_cpu(const struct task_struct *p)
2304 {
2305 return task_thread_info(p)->cpu;
2306 }
2307
2308 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2309
2310 #else
2311
2312 static inline unsigned int task_cpu(const struct task_struct *p)
2313 {
2314 return 0;
2315 }
2316
2317 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2318 {
2319 }
2320
2321 #endif /* CONFIG_SMP */
2322
2323 extern void arch_pick_mmap_layout(struct mm_struct *mm);
2324
2325 #ifdef CONFIG_TRACING
2326 extern void
2327 __trace_special(void *__tr, void *__data,
2328 unsigned long arg1, unsigned long arg2, unsigned long arg3);
2329 #else
2330 static inline void
2331 __trace_special(void *__tr, void *__data,
2332 unsigned long arg1, unsigned long arg2, unsigned long arg3)
2333 {
2334 }
2335 #endif
2336
2337 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2338 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2339
2340 extern void normalize_rt_tasks(void);
2341
2342 #ifdef CONFIG_GROUP_SCHED
2343
2344 extern struct task_group init_task_group;
2345 #ifdef CONFIG_USER_SCHED
2346 extern struct task_group root_task_group;
2347 extern void set_tg_uid(struct user_struct *user);
2348 #endif
2349
2350 extern struct task_group *sched_create_group(struct task_group *parent);
2351 extern void sched_destroy_group(struct task_group *tg);
2352 extern void sched_move_task(struct task_struct *tsk);
2353 #ifdef CONFIG_FAIR_GROUP_SCHED
2354 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2355 extern unsigned long sched_group_shares(struct task_group *tg);
2356 #endif
2357 #ifdef CONFIG_RT_GROUP_SCHED
2358 extern int sched_group_set_rt_runtime(struct task_group *tg,
2359 long rt_runtime_us);
2360 extern long sched_group_rt_runtime(struct task_group *tg);
2361 extern int sched_group_set_rt_period(struct task_group *tg,
2362 long rt_period_us);
2363 extern long sched_group_rt_period(struct task_group *tg);
2364 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2365 #endif
2366 #endif
2367
2368 extern int task_can_switch_user(struct user_struct *up,
2369 struct task_struct *tsk);
2370
2371 #ifdef CONFIG_TASK_XACCT
2372 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2373 {
2374 tsk->ioac.rchar += amt;
2375 }
2376
2377 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2378 {
2379 tsk->ioac.wchar += amt;
2380 }
2381
2382 static inline void inc_syscr(struct task_struct *tsk)
2383 {
2384 tsk->ioac.syscr++;
2385 }
2386
2387 static inline void inc_syscw(struct task_struct *tsk)
2388 {
2389 tsk->ioac.syscw++;
2390 }
2391 #else
2392 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2393 {
2394 }
2395
2396 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2397 {
2398 }
2399
2400 static inline void inc_syscr(struct task_struct *tsk)
2401 {
2402 }
2403
2404 static inline void inc_syscw(struct task_struct *tsk)
2405 {
2406 }
2407 #endif
2408
2409 #ifndef TASK_SIZE_OF
2410 #define TASK_SIZE_OF(tsk) TASK_SIZE
2411 #endif
2412
2413 #ifdef CONFIG_MM_OWNER
2414 extern void mm_update_next_owner(struct mm_struct *mm);
2415 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2416 #else
2417 static inline void mm_update_next_owner(struct mm_struct *mm)
2418 {
2419 }
2420
2421 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2422 {
2423 }
2424 #endif /* CONFIG_MM_OWNER */
2425
2426 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
2427
2428 #endif /* __KERNEL__ */
2429
2430 #endif
This page took 0.089746 seconds and 5 git commands to generate.