freezer: set PF_SUSPEND_TASK flag on tasks that call freeze_processes
[deliverable/linux.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <uapi/linux/sched.h>
5
6
7 struct sched_param {
8 int sched_priority;
9 };
10
11 #include <asm/param.h> /* for HZ */
12
13 #include <linux/capability.h>
14 #include <linux/threads.h>
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/timex.h>
18 #include <linux/jiffies.h>
19 #include <linux/rbtree.h>
20 #include <linux/thread_info.h>
21 #include <linux/cpumask.h>
22 #include <linux/errno.h>
23 #include <linux/nodemask.h>
24 #include <linux/mm_types.h>
25
26 #include <asm/page.h>
27 #include <asm/ptrace.h>
28 #include <asm/cputime.h>
29
30 #include <linux/smp.h>
31 #include <linux/sem.h>
32 #include <linux/signal.h>
33 #include <linux/compiler.h>
34 #include <linux/completion.h>
35 #include <linux/pid.h>
36 #include <linux/percpu.h>
37 #include <linux/topology.h>
38 #include <linux/proportions.h>
39 #include <linux/seccomp.h>
40 #include <linux/rcupdate.h>
41 #include <linux/rculist.h>
42 #include <linux/rtmutex.h>
43
44 #include <linux/time.h>
45 #include <linux/param.h>
46 #include <linux/resource.h>
47 #include <linux/timer.h>
48 #include <linux/hrtimer.h>
49 #include <linux/task_io_accounting.h>
50 #include <linux/latencytop.h>
51 #include <linux/cred.h>
52 #include <linux/llist.h>
53 #include <linux/uidgid.h>
54 #include <linux/gfp.h>
55
56 #include <asm/processor.h>
57
58 struct exec_domain;
59 struct futex_pi_state;
60 struct robust_list_head;
61 struct bio_list;
62 struct fs_struct;
63 struct perf_event_context;
64 struct blk_plug;
65
66 /*
67 * List of flags we want to share for kernel threads,
68 * if only because they are not used by them anyway.
69 */
70 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
71
72 /*
73 * These are the constant used to fake the fixed-point load-average
74 * counting. Some notes:
75 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
76 * a load-average precision of 10 bits integer + 11 bits fractional
77 * - if you want to count load-averages more often, you need more
78 * precision, or rounding will get you. With 2-second counting freq,
79 * the EXP_n values would be 1981, 2034 and 2043 if still using only
80 * 11 bit fractions.
81 */
82 extern unsigned long avenrun[]; /* Load averages */
83 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
84
85 #define FSHIFT 11 /* nr of bits of precision */
86 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
87 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
88 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
89 #define EXP_5 2014 /* 1/exp(5sec/5min) */
90 #define EXP_15 2037 /* 1/exp(5sec/15min) */
91
92 #define CALC_LOAD(load,exp,n) \
93 load *= exp; \
94 load += n*(FIXED_1-exp); \
95 load >>= FSHIFT;
96
97 extern unsigned long total_forks;
98 extern int nr_threads;
99 DECLARE_PER_CPU(unsigned long, process_counts);
100 extern int nr_processes(void);
101 extern unsigned long nr_running(void);
102 extern unsigned long nr_iowait(void);
103 extern unsigned long nr_iowait_cpu(int cpu);
104 extern unsigned long this_cpu_load(void);
105
106
107 extern void calc_global_load(unsigned long ticks);
108 extern void update_cpu_load_nohz(void);
109
110 /* Notifier for when a task gets migrated to a new CPU */
111 struct task_migration_notifier {
112 struct task_struct *task;
113 int from_cpu;
114 int to_cpu;
115 };
116 extern void register_task_migration_notifier(struct notifier_block *n);
117
118 extern unsigned long get_parent_ip(unsigned long addr);
119
120 extern void dump_cpu_task(int cpu);
121
122 struct seq_file;
123 struct cfs_rq;
124 struct task_group;
125 #ifdef CONFIG_SCHED_DEBUG
126 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
127 extern void proc_sched_set_task(struct task_struct *p);
128 extern void
129 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
130 #endif
131
132 /*
133 * Task state bitmask. NOTE! These bits are also
134 * encoded in fs/proc/array.c: get_task_state().
135 *
136 * We have two separate sets of flags: task->state
137 * is about runnability, while task->exit_state are
138 * about the task exiting. Confusing, but this way
139 * modifying one set can't modify the other one by
140 * mistake.
141 */
142 #define TASK_RUNNING 0
143 #define TASK_INTERRUPTIBLE 1
144 #define TASK_UNINTERRUPTIBLE 2
145 #define __TASK_STOPPED 4
146 #define __TASK_TRACED 8
147 /* in tsk->exit_state */
148 #define EXIT_ZOMBIE 16
149 #define EXIT_DEAD 32
150 /* in tsk->state again */
151 #define TASK_DEAD 64
152 #define TASK_WAKEKILL 128
153 #define TASK_WAKING 256
154 #define TASK_PARKED 512
155 #define TASK_STATE_MAX 1024
156
157 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
158
159 extern char ___assert_task_state[1 - 2*!!(
160 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
161
162 /* Convenience macros for the sake of set_task_state */
163 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
164 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
165 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
166
167 /* Convenience macros for the sake of wake_up */
168 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
169 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
170
171 /* get_task_state() */
172 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
173 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
174 __TASK_TRACED)
175
176 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
177 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
178 #define task_is_dead(task) ((task)->exit_state != 0)
179 #define task_is_stopped_or_traced(task) \
180 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
181 #define task_contributes_to_load(task) \
182 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
183 (task->flags & PF_FROZEN) == 0)
184
185 #define __set_task_state(tsk, state_value) \
186 do { (tsk)->state = (state_value); } while (0)
187 #define set_task_state(tsk, state_value) \
188 set_mb((tsk)->state, (state_value))
189
190 /*
191 * set_current_state() includes a barrier so that the write of current->state
192 * is correctly serialised wrt the caller's subsequent test of whether to
193 * actually sleep:
194 *
195 * set_current_state(TASK_UNINTERRUPTIBLE);
196 * if (do_i_need_to_sleep())
197 * schedule();
198 *
199 * If the caller does not need such serialisation then use __set_current_state()
200 */
201 #define __set_current_state(state_value) \
202 do { current->state = (state_value); } while (0)
203 #define set_current_state(state_value) \
204 set_mb(current->state, (state_value))
205
206 /* Task command name length */
207 #define TASK_COMM_LEN 16
208
209 #include <linux/spinlock.h>
210
211 /*
212 * This serializes "schedule()" and also protects
213 * the run-queue from deletions/modifications (but
214 * _adding_ to the beginning of the run-queue has
215 * a separate lock).
216 */
217 extern rwlock_t tasklist_lock;
218 extern spinlock_t mmlist_lock;
219
220 struct task_struct;
221
222 #ifdef CONFIG_PROVE_RCU
223 extern int lockdep_tasklist_lock_is_held(void);
224 #endif /* #ifdef CONFIG_PROVE_RCU */
225
226 extern void sched_init(void);
227 extern void sched_init_smp(void);
228 extern asmlinkage void schedule_tail(struct task_struct *prev);
229 extern void init_idle(struct task_struct *idle, int cpu);
230 extern void init_idle_bootup_task(struct task_struct *idle);
231
232 extern int runqueue_is_locked(int cpu);
233
234 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
235 extern void nohz_balance_enter_idle(int cpu);
236 extern void set_cpu_sd_state_idle(void);
237 extern int get_nohz_timer_target(void);
238 #else
239 static inline void nohz_balance_enter_idle(int cpu) { }
240 static inline void set_cpu_sd_state_idle(void) { }
241 #endif
242
243 /*
244 * Only dump TASK_* tasks. (0 for all tasks)
245 */
246 extern void show_state_filter(unsigned long state_filter);
247
248 static inline void show_state(void)
249 {
250 show_state_filter(0);
251 }
252
253 extern void show_regs(struct pt_regs *);
254
255 /*
256 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
257 * task), SP is the stack pointer of the first frame that should be shown in the back
258 * trace (or NULL if the entire call-chain of the task should be shown).
259 */
260 extern void show_stack(struct task_struct *task, unsigned long *sp);
261
262 void io_schedule(void);
263 long io_schedule_timeout(long timeout);
264
265 extern void cpu_init (void);
266 extern void trap_init(void);
267 extern void update_process_times(int user);
268 extern void scheduler_tick(void);
269
270 extern void sched_show_task(struct task_struct *p);
271
272 #ifdef CONFIG_LOCKUP_DETECTOR
273 extern void touch_softlockup_watchdog(void);
274 extern void touch_softlockup_watchdog_sync(void);
275 extern void touch_all_softlockup_watchdogs(void);
276 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
277 void __user *buffer,
278 size_t *lenp, loff_t *ppos);
279 extern unsigned int softlockup_panic;
280 void lockup_detector_init(void);
281 #else
282 static inline void touch_softlockup_watchdog(void)
283 {
284 }
285 static inline void touch_softlockup_watchdog_sync(void)
286 {
287 }
288 static inline void touch_all_softlockup_watchdogs(void)
289 {
290 }
291 static inline void lockup_detector_init(void)
292 {
293 }
294 #endif
295
296 /* Attach to any functions which should be ignored in wchan output. */
297 #define __sched __attribute__((__section__(".sched.text")))
298
299 /* Linker adds these: start and end of __sched functions */
300 extern char __sched_text_start[], __sched_text_end[];
301
302 /* Is this address in the __sched functions? */
303 extern int in_sched_functions(unsigned long addr);
304
305 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
306 extern signed long schedule_timeout(signed long timeout);
307 extern signed long schedule_timeout_interruptible(signed long timeout);
308 extern signed long schedule_timeout_killable(signed long timeout);
309 extern signed long schedule_timeout_uninterruptible(signed long timeout);
310 asmlinkage void schedule(void);
311 extern void schedule_preempt_disabled(void);
312
313 struct nsproxy;
314 struct user_namespace;
315
316 #ifdef CONFIG_MMU
317 extern void arch_pick_mmap_layout(struct mm_struct *mm);
318 extern unsigned long
319 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
320 unsigned long, unsigned long);
321 extern unsigned long
322 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
323 unsigned long len, unsigned long pgoff,
324 unsigned long flags);
325 #else
326 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
327 #endif
328
329
330 extern void set_dumpable(struct mm_struct *mm, int value);
331 extern int get_dumpable(struct mm_struct *mm);
332
333 /* mm flags */
334 /* dumpable bits */
335 #define MMF_DUMPABLE 0 /* core dump is permitted */
336 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
337
338 #define MMF_DUMPABLE_BITS 2
339 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
340
341 /* coredump filter bits */
342 #define MMF_DUMP_ANON_PRIVATE 2
343 #define MMF_DUMP_ANON_SHARED 3
344 #define MMF_DUMP_MAPPED_PRIVATE 4
345 #define MMF_DUMP_MAPPED_SHARED 5
346 #define MMF_DUMP_ELF_HEADERS 6
347 #define MMF_DUMP_HUGETLB_PRIVATE 7
348 #define MMF_DUMP_HUGETLB_SHARED 8
349
350 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
351 #define MMF_DUMP_FILTER_BITS 7
352 #define MMF_DUMP_FILTER_MASK \
353 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
354 #define MMF_DUMP_FILTER_DEFAULT \
355 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
356 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
357
358 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
359 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
360 #else
361 # define MMF_DUMP_MASK_DEFAULT_ELF 0
362 #endif
363 /* leave room for more dump flags */
364 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
365 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
366 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
367
368 #define MMF_HAS_UPROBES 19 /* has uprobes */
369 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
370
371 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
372
373 struct sighand_struct {
374 atomic_t count;
375 struct k_sigaction action[_NSIG];
376 spinlock_t siglock;
377 wait_queue_head_t signalfd_wqh;
378 };
379
380 struct pacct_struct {
381 int ac_flag;
382 long ac_exitcode;
383 unsigned long ac_mem;
384 cputime_t ac_utime, ac_stime;
385 unsigned long ac_minflt, ac_majflt;
386 };
387
388 struct cpu_itimer {
389 cputime_t expires;
390 cputime_t incr;
391 u32 error;
392 u32 incr_error;
393 };
394
395 /**
396 * struct cputime - snaphsot of system and user cputime
397 * @utime: time spent in user mode
398 * @stime: time spent in system mode
399 *
400 * Gathers a generic snapshot of user and system time.
401 */
402 struct cputime {
403 cputime_t utime;
404 cputime_t stime;
405 };
406
407 /**
408 * struct task_cputime - collected CPU time counts
409 * @utime: time spent in user mode, in &cputime_t units
410 * @stime: time spent in kernel mode, in &cputime_t units
411 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
412 *
413 * This is an extension of struct cputime that includes the total runtime
414 * spent by the task from the scheduler point of view.
415 *
416 * As a result, this structure groups together three kinds of CPU time
417 * that are tracked for threads and thread groups. Most things considering
418 * CPU time want to group these counts together and treat all three
419 * of them in parallel.
420 */
421 struct task_cputime {
422 cputime_t utime;
423 cputime_t stime;
424 unsigned long long sum_exec_runtime;
425 };
426 /* Alternate field names when used to cache expirations. */
427 #define prof_exp stime
428 #define virt_exp utime
429 #define sched_exp sum_exec_runtime
430
431 #define INIT_CPUTIME \
432 (struct task_cputime) { \
433 .utime = 0, \
434 .stime = 0, \
435 .sum_exec_runtime = 0, \
436 }
437
438 /*
439 * Disable preemption until the scheduler is running.
440 * Reset by start_kernel()->sched_init()->init_idle().
441 *
442 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
443 * before the scheduler is active -- see should_resched().
444 */
445 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
446
447 /**
448 * struct thread_group_cputimer - thread group interval timer counts
449 * @cputime: thread group interval timers.
450 * @running: non-zero when there are timers running and
451 * @cputime receives updates.
452 * @lock: lock for fields in this struct.
453 *
454 * This structure contains the version of task_cputime, above, that is
455 * used for thread group CPU timer calculations.
456 */
457 struct thread_group_cputimer {
458 struct task_cputime cputime;
459 int running;
460 raw_spinlock_t lock;
461 };
462
463 #include <linux/rwsem.h>
464 struct autogroup;
465
466 /*
467 * NOTE! "signal_struct" does not have its own
468 * locking, because a shared signal_struct always
469 * implies a shared sighand_struct, so locking
470 * sighand_struct is always a proper superset of
471 * the locking of signal_struct.
472 */
473 struct signal_struct {
474 atomic_t sigcnt;
475 atomic_t live;
476 int nr_threads;
477
478 wait_queue_head_t wait_chldexit; /* for wait4() */
479
480 /* current thread group signal load-balancing target: */
481 struct task_struct *curr_target;
482
483 /* shared signal handling: */
484 struct sigpending shared_pending;
485
486 /* thread group exit support */
487 int group_exit_code;
488 /* overloaded:
489 * - notify group_exit_task when ->count is equal to notify_count
490 * - everyone except group_exit_task is stopped during signal delivery
491 * of fatal signals, group_exit_task processes the signal.
492 */
493 int notify_count;
494 struct task_struct *group_exit_task;
495
496 /* thread group stop support, overloads group_exit_code too */
497 int group_stop_count;
498 unsigned int flags; /* see SIGNAL_* flags below */
499
500 /*
501 * PR_SET_CHILD_SUBREAPER marks a process, like a service
502 * manager, to re-parent orphan (double-forking) child processes
503 * to this process instead of 'init'. The service manager is
504 * able to receive SIGCHLD signals and is able to investigate
505 * the process until it calls wait(). All children of this
506 * process will inherit a flag if they should look for a
507 * child_subreaper process at exit.
508 */
509 unsigned int is_child_subreaper:1;
510 unsigned int has_child_subreaper:1;
511
512 /* POSIX.1b Interval Timers */
513 int posix_timer_id;
514 struct list_head posix_timers;
515
516 /* ITIMER_REAL timer for the process */
517 struct hrtimer real_timer;
518 struct pid *leader_pid;
519 ktime_t it_real_incr;
520
521 /*
522 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
523 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
524 * values are defined to 0 and 1 respectively
525 */
526 struct cpu_itimer it[2];
527
528 /*
529 * Thread group totals for process CPU timers.
530 * See thread_group_cputimer(), et al, for details.
531 */
532 struct thread_group_cputimer cputimer;
533
534 /* Earliest-expiration cache. */
535 struct task_cputime cputime_expires;
536
537 struct list_head cpu_timers[3];
538
539 struct pid *tty_old_pgrp;
540
541 /* boolean value for session group leader */
542 int leader;
543
544 struct tty_struct *tty; /* NULL if no tty */
545
546 #ifdef CONFIG_SCHED_AUTOGROUP
547 struct autogroup *autogroup;
548 #endif
549 /*
550 * Cumulative resource counters for dead threads in the group,
551 * and for reaped dead child processes forked by this group.
552 * Live threads maintain their own counters and add to these
553 * in __exit_signal, except for the group leader.
554 */
555 cputime_t utime, stime, cutime, cstime;
556 cputime_t gtime;
557 cputime_t cgtime;
558 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
559 struct cputime prev_cputime;
560 #endif
561 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
562 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
563 unsigned long inblock, oublock, cinblock, coublock;
564 unsigned long maxrss, cmaxrss;
565 struct task_io_accounting ioac;
566
567 /*
568 * Cumulative ns of schedule CPU time fo dead threads in the
569 * group, not including a zombie group leader, (This only differs
570 * from jiffies_to_ns(utime + stime) if sched_clock uses something
571 * other than jiffies.)
572 */
573 unsigned long long sum_sched_runtime;
574
575 /*
576 * We don't bother to synchronize most readers of this at all,
577 * because there is no reader checking a limit that actually needs
578 * to get both rlim_cur and rlim_max atomically, and either one
579 * alone is a single word that can safely be read normally.
580 * getrlimit/setrlimit use task_lock(current->group_leader) to
581 * protect this instead of the siglock, because they really
582 * have no need to disable irqs.
583 */
584 struct rlimit rlim[RLIM_NLIMITS];
585
586 #ifdef CONFIG_BSD_PROCESS_ACCT
587 struct pacct_struct pacct; /* per-process accounting information */
588 #endif
589 #ifdef CONFIG_TASKSTATS
590 struct taskstats *stats;
591 #endif
592 #ifdef CONFIG_AUDIT
593 unsigned audit_tty;
594 unsigned audit_tty_log_passwd;
595 struct tty_audit_buf *tty_audit_buf;
596 #endif
597 #ifdef CONFIG_CGROUPS
598 /*
599 * group_rwsem prevents new tasks from entering the threadgroup and
600 * member tasks from exiting,a more specifically, setting of
601 * PF_EXITING. fork and exit paths are protected with this rwsem
602 * using threadgroup_change_begin/end(). Users which require
603 * threadgroup to remain stable should use threadgroup_[un]lock()
604 * which also takes care of exec path. Currently, cgroup is the
605 * only user.
606 */
607 struct rw_semaphore group_rwsem;
608 #endif
609
610 oom_flags_t oom_flags;
611 short oom_score_adj; /* OOM kill score adjustment */
612 short oom_score_adj_min; /* OOM kill score adjustment min value.
613 * Only settable by CAP_SYS_RESOURCE. */
614
615 struct mutex cred_guard_mutex; /* guard against foreign influences on
616 * credential calculations
617 * (notably. ptrace) */
618 };
619
620 /*
621 * Bits in flags field of signal_struct.
622 */
623 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
624 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
625 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
626 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
627 /*
628 * Pending notifications to parent.
629 */
630 #define SIGNAL_CLD_STOPPED 0x00000010
631 #define SIGNAL_CLD_CONTINUED 0x00000020
632 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
633
634 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
635
636 /* If true, all threads except ->group_exit_task have pending SIGKILL */
637 static inline int signal_group_exit(const struct signal_struct *sig)
638 {
639 return (sig->flags & SIGNAL_GROUP_EXIT) ||
640 (sig->group_exit_task != NULL);
641 }
642
643 /*
644 * Some day this will be a full-fledged user tracking system..
645 */
646 struct user_struct {
647 atomic_t __count; /* reference count */
648 atomic_t processes; /* How many processes does this user have? */
649 atomic_t files; /* How many open files does this user have? */
650 atomic_t sigpending; /* How many pending signals does this user have? */
651 #ifdef CONFIG_INOTIFY_USER
652 atomic_t inotify_watches; /* How many inotify watches does this user have? */
653 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
654 #endif
655 #ifdef CONFIG_FANOTIFY
656 atomic_t fanotify_listeners;
657 #endif
658 #ifdef CONFIG_EPOLL
659 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
660 #endif
661 #ifdef CONFIG_POSIX_MQUEUE
662 /* protected by mq_lock */
663 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
664 #endif
665 unsigned long locked_shm; /* How many pages of mlocked shm ? */
666
667 #ifdef CONFIG_KEYS
668 struct key *uid_keyring; /* UID specific keyring */
669 struct key *session_keyring; /* UID's default session keyring */
670 #endif
671
672 /* Hash table maintenance information */
673 struct hlist_node uidhash_node;
674 kuid_t uid;
675
676 #ifdef CONFIG_PERF_EVENTS
677 atomic_long_t locked_vm;
678 #endif
679 };
680
681 extern int uids_sysfs_init(void);
682
683 extern struct user_struct *find_user(kuid_t);
684
685 extern struct user_struct root_user;
686 #define INIT_USER (&root_user)
687
688
689 struct backing_dev_info;
690 struct reclaim_state;
691
692 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
693 struct sched_info {
694 /* cumulative counters */
695 unsigned long pcount; /* # of times run on this cpu */
696 unsigned long long run_delay; /* time spent waiting on a runqueue */
697
698 /* timestamps */
699 unsigned long long last_arrival,/* when we last ran on a cpu */
700 last_queued; /* when we were last queued to run */
701 };
702 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
703
704 #ifdef CONFIG_TASK_DELAY_ACCT
705 struct task_delay_info {
706 spinlock_t lock;
707 unsigned int flags; /* Private per-task flags */
708
709 /* For each stat XXX, add following, aligned appropriately
710 *
711 * struct timespec XXX_start, XXX_end;
712 * u64 XXX_delay;
713 * u32 XXX_count;
714 *
715 * Atomicity of updates to XXX_delay, XXX_count protected by
716 * single lock above (split into XXX_lock if contention is an issue).
717 */
718
719 /*
720 * XXX_count is incremented on every XXX operation, the delay
721 * associated with the operation is added to XXX_delay.
722 * XXX_delay contains the accumulated delay time in nanoseconds.
723 */
724 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
725 u64 blkio_delay; /* wait for sync block io completion */
726 u64 swapin_delay; /* wait for swapin block io completion */
727 u32 blkio_count; /* total count of the number of sync block */
728 /* io operations performed */
729 u32 swapin_count; /* total count of the number of swapin block */
730 /* io operations performed */
731
732 struct timespec freepages_start, freepages_end;
733 u64 freepages_delay; /* wait for memory reclaim */
734 u32 freepages_count; /* total count of memory reclaim */
735 };
736 #endif /* CONFIG_TASK_DELAY_ACCT */
737
738 static inline int sched_info_on(void)
739 {
740 #ifdef CONFIG_SCHEDSTATS
741 return 1;
742 #elif defined(CONFIG_TASK_DELAY_ACCT)
743 extern int delayacct_on;
744 return delayacct_on;
745 #else
746 return 0;
747 #endif
748 }
749
750 enum cpu_idle_type {
751 CPU_IDLE,
752 CPU_NOT_IDLE,
753 CPU_NEWLY_IDLE,
754 CPU_MAX_IDLE_TYPES
755 };
756
757 /*
758 * Increase resolution of cpu_power calculations
759 */
760 #define SCHED_POWER_SHIFT 10
761 #define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT)
762
763 /*
764 * sched-domains (multiprocessor balancing) declarations:
765 */
766 #ifdef CONFIG_SMP
767 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
768 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
769 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
770 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
771 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
772 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
773 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
774 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
775 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
776 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
777 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
778 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
779
780 extern int __weak arch_sd_sibiling_asym_packing(void);
781
782 struct sched_domain_attr {
783 int relax_domain_level;
784 };
785
786 #define SD_ATTR_INIT (struct sched_domain_attr) { \
787 .relax_domain_level = -1, \
788 }
789
790 extern int sched_domain_level_max;
791
792 struct sched_group;
793
794 struct sched_domain {
795 /* These fields must be setup */
796 struct sched_domain *parent; /* top domain must be null terminated */
797 struct sched_domain *child; /* bottom domain must be null terminated */
798 struct sched_group *groups; /* the balancing groups of the domain */
799 unsigned long min_interval; /* Minimum balance interval ms */
800 unsigned long max_interval; /* Maximum balance interval ms */
801 unsigned int busy_factor; /* less balancing by factor if busy */
802 unsigned int imbalance_pct; /* No balance until over watermark */
803 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
804 unsigned int busy_idx;
805 unsigned int idle_idx;
806 unsigned int newidle_idx;
807 unsigned int wake_idx;
808 unsigned int forkexec_idx;
809 unsigned int smt_gain;
810
811 int nohz_idle; /* NOHZ IDLE status */
812 int flags; /* See SD_* */
813 int level;
814
815 /* Runtime fields. */
816 unsigned long last_balance; /* init to jiffies. units in jiffies */
817 unsigned int balance_interval; /* initialise to 1. units in ms. */
818 unsigned int nr_balance_failed; /* initialise to 0 */
819
820 u64 last_update;
821
822 #ifdef CONFIG_SCHEDSTATS
823 /* load_balance() stats */
824 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
825 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
826 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
827 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
828 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
829 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
830 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
831 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
832
833 /* Active load balancing */
834 unsigned int alb_count;
835 unsigned int alb_failed;
836 unsigned int alb_pushed;
837
838 /* SD_BALANCE_EXEC stats */
839 unsigned int sbe_count;
840 unsigned int sbe_balanced;
841 unsigned int sbe_pushed;
842
843 /* SD_BALANCE_FORK stats */
844 unsigned int sbf_count;
845 unsigned int sbf_balanced;
846 unsigned int sbf_pushed;
847
848 /* try_to_wake_up() stats */
849 unsigned int ttwu_wake_remote;
850 unsigned int ttwu_move_affine;
851 unsigned int ttwu_move_balance;
852 #endif
853 #ifdef CONFIG_SCHED_DEBUG
854 char *name;
855 #endif
856 union {
857 void *private; /* used during construction */
858 struct rcu_head rcu; /* used during destruction */
859 };
860
861 unsigned int span_weight;
862 /*
863 * Span of all CPUs in this domain.
864 *
865 * NOTE: this field is variable length. (Allocated dynamically
866 * by attaching extra space to the end of the structure,
867 * depending on how many CPUs the kernel has booted up with)
868 */
869 unsigned long span[0];
870 };
871
872 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
873 {
874 return to_cpumask(sd->span);
875 }
876
877 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
878 struct sched_domain_attr *dattr_new);
879
880 /* Allocate an array of sched domains, for partition_sched_domains(). */
881 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
882 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
883
884 bool cpus_share_cache(int this_cpu, int that_cpu);
885
886 #else /* CONFIG_SMP */
887
888 struct sched_domain_attr;
889
890 static inline void
891 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
892 struct sched_domain_attr *dattr_new)
893 {
894 }
895
896 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
897 {
898 return true;
899 }
900
901 #endif /* !CONFIG_SMP */
902
903
904 struct io_context; /* See blkdev.h */
905
906
907 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
908 extern void prefetch_stack(struct task_struct *t);
909 #else
910 static inline void prefetch_stack(struct task_struct *t) { }
911 #endif
912
913 struct audit_context; /* See audit.c */
914 struct mempolicy;
915 struct pipe_inode_info;
916 struct uts_namespace;
917
918 struct load_weight {
919 unsigned long weight, inv_weight;
920 };
921
922 struct sched_avg {
923 /*
924 * These sums represent an infinite geometric series and so are bound
925 * above by 1024/(1-y). Thus we only need a u32 to store them for all
926 * choices of y < 1-2^(-32)*1024.
927 */
928 u32 runnable_avg_sum, runnable_avg_period;
929 u64 last_runnable_update;
930 s64 decay_count;
931 unsigned long load_avg_contrib;
932 };
933
934 #ifdef CONFIG_SCHEDSTATS
935 struct sched_statistics {
936 u64 wait_start;
937 u64 wait_max;
938 u64 wait_count;
939 u64 wait_sum;
940 u64 iowait_count;
941 u64 iowait_sum;
942
943 u64 sleep_start;
944 u64 sleep_max;
945 s64 sum_sleep_runtime;
946
947 u64 block_start;
948 u64 block_max;
949 u64 exec_max;
950 u64 slice_max;
951
952 u64 nr_migrations_cold;
953 u64 nr_failed_migrations_affine;
954 u64 nr_failed_migrations_running;
955 u64 nr_failed_migrations_hot;
956 u64 nr_forced_migrations;
957
958 u64 nr_wakeups;
959 u64 nr_wakeups_sync;
960 u64 nr_wakeups_migrate;
961 u64 nr_wakeups_local;
962 u64 nr_wakeups_remote;
963 u64 nr_wakeups_affine;
964 u64 nr_wakeups_affine_attempts;
965 u64 nr_wakeups_passive;
966 u64 nr_wakeups_idle;
967 };
968 #endif
969
970 struct sched_entity {
971 struct load_weight load; /* for load-balancing */
972 struct rb_node run_node;
973 struct list_head group_node;
974 unsigned int on_rq;
975
976 u64 exec_start;
977 u64 sum_exec_runtime;
978 u64 vruntime;
979 u64 prev_sum_exec_runtime;
980
981 u64 nr_migrations;
982
983 #ifdef CONFIG_SCHEDSTATS
984 struct sched_statistics statistics;
985 #endif
986
987 #ifdef CONFIG_FAIR_GROUP_SCHED
988 struct sched_entity *parent;
989 /* rq on which this entity is (to be) queued: */
990 struct cfs_rq *cfs_rq;
991 /* rq "owned" by this entity/group: */
992 struct cfs_rq *my_q;
993 #endif
994
995 #ifdef CONFIG_SMP
996 /* Per-entity load-tracking */
997 struct sched_avg avg;
998 #endif
999 };
1000
1001 struct sched_rt_entity {
1002 struct list_head run_list;
1003 unsigned long timeout;
1004 unsigned long watchdog_stamp;
1005 unsigned int time_slice;
1006
1007 struct sched_rt_entity *back;
1008 #ifdef CONFIG_RT_GROUP_SCHED
1009 struct sched_rt_entity *parent;
1010 /* rq on which this entity is (to be) queued: */
1011 struct rt_rq *rt_rq;
1012 /* rq "owned" by this entity/group: */
1013 struct rt_rq *my_q;
1014 #endif
1015 };
1016
1017
1018 struct rcu_node;
1019
1020 enum perf_event_task_context {
1021 perf_invalid_context = -1,
1022 perf_hw_context = 0,
1023 perf_sw_context,
1024 perf_nr_task_contexts,
1025 };
1026
1027 struct task_struct {
1028 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1029 void *stack;
1030 atomic_t usage;
1031 unsigned int flags; /* per process flags, defined below */
1032 unsigned int ptrace;
1033
1034 #ifdef CONFIG_SMP
1035 struct llist_node wake_entry;
1036 int on_cpu;
1037 #endif
1038 int on_rq;
1039
1040 int prio, static_prio, normal_prio;
1041 unsigned int rt_priority;
1042 const struct sched_class *sched_class;
1043 struct sched_entity se;
1044 struct sched_rt_entity rt;
1045 #ifdef CONFIG_CGROUP_SCHED
1046 struct task_group *sched_task_group;
1047 #endif
1048
1049 #ifdef CONFIG_PREEMPT_NOTIFIERS
1050 /* list of struct preempt_notifier: */
1051 struct hlist_head preempt_notifiers;
1052 #endif
1053
1054 /*
1055 * fpu_counter contains the number of consecutive context switches
1056 * that the FPU is used. If this is over a threshold, the lazy fpu
1057 * saving becomes unlazy to save the trap. This is an unsigned char
1058 * so that after 256 times the counter wraps and the behavior turns
1059 * lazy again; this to deal with bursty apps that only use FPU for
1060 * a short time
1061 */
1062 unsigned char fpu_counter;
1063 #ifdef CONFIG_BLK_DEV_IO_TRACE
1064 unsigned int btrace_seq;
1065 #endif
1066
1067 unsigned int policy;
1068 int nr_cpus_allowed;
1069 cpumask_t cpus_allowed;
1070
1071 #ifdef CONFIG_PREEMPT_RCU
1072 int rcu_read_lock_nesting;
1073 char rcu_read_unlock_special;
1074 struct list_head rcu_node_entry;
1075 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1076 #ifdef CONFIG_TREE_PREEMPT_RCU
1077 struct rcu_node *rcu_blocked_node;
1078 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1079 #ifdef CONFIG_RCU_BOOST
1080 struct rt_mutex *rcu_boost_mutex;
1081 #endif /* #ifdef CONFIG_RCU_BOOST */
1082
1083 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1084 struct sched_info sched_info;
1085 #endif
1086
1087 struct list_head tasks;
1088 #ifdef CONFIG_SMP
1089 struct plist_node pushable_tasks;
1090 #endif
1091
1092 struct mm_struct *mm, *active_mm;
1093 #ifdef CONFIG_COMPAT_BRK
1094 unsigned brk_randomized:1;
1095 #endif
1096 #if defined(SPLIT_RSS_COUNTING)
1097 struct task_rss_stat rss_stat;
1098 #endif
1099 /* task state */
1100 int exit_state;
1101 int exit_code, exit_signal;
1102 int pdeath_signal; /* The signal sent when the parent dies */
1103 unsigned int jobctl; /* JOBCTL_*, siglock protected */
1104
1105 /* Used for emulating ABI behavior of previous Linux versions */
1106 unsigned int personality;
1107
1108 unsigned did_exec:1;
1109 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1110 * execve */
1111 unsigned in_iowait:1;
1112
1113 /* task may not gain privileges */
1114 unsigned no_new_privs:1;
1115
1116 /* Revert to default priority/policy when forking */
1117 unsigned sched_reset_on_fork:1;
1118 unsigned sched_contributes_to_load:1;
1119
1120 pid_t pid;
1121 pid_t tgid;
1122
1123 #ifdef CONFIG_CC_STACKPROTECTOR
1124 /* Canary value for the -fstack-protector gcc feature */
1125 unsigned long stack_canary;
1126 #endif
1127 /*
1128 * pointers to (original) parent process, youngest child, younger sibling,
1129 * older sibling, respectively. (p->father can be replaced with
1130 * p->real_parent->pid)
1131 */
1132 struct task_struct __rcu *real_parent; /* real parent process */
1133 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1134 /*
1135 * children/sibling forms the list of my natural children
1136 */
1137 struct list_head children; /* list of my children */
1138 struct list_head sibling; /* linkage in my parent's children list */
1139 struct task_struct *group_leader; /* threadgroup leader */
1140
1141 /*
1142 * ptraced is the list of tasks this task is using ptrace on.
1143 * This includes both natural children and PTRACE_ATTACH targets.
1144 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1145 */
1146 struct list_head ptraced;
1147 struct list_head ptrace_entry;
1148
1149 /* PID/PID hash table linkage. */
1150 struct pid_link pids[PIDTYPE_MAX];
1151 struct list_head thread_group;
1152
1153 struct completion *vfork_done; /* for vfork() */
1154 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1155 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1156
1157 cputime_t utime, stime, utimescaled, stimescaled;
1158 cputime_t gtime;
1159 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1160 struct cputime prev_cputime;
1161 #endif
1162 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1163 seqlock_t vtime_seqlock;
1164 unsigned long long vtime_snap;
1165 enum {
1166 VTIME_SLEEPING = 0,
1167 VTIME_USER,
1168 VTIME_SYS,
1169 } vtime_snap_whence;
1170 #endif
1171 unsigned long nvcsw, nivcsw; /* context switch counts */
1172 struct timespec start_time; /* monotonic time */
1173 struct timespec real_start_time; /* boot based time */
1174 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1175 unsigned long min_flt, maj_flt;
1176
1177 struct task_cputime cputime_expires;
1178 struct list_head cpu_timers[3];
1179
1180 /* process credentials */
1181 const struct cred __rcu *real_cred; /* objective and real subjective task
1182 * credentials (COW) */
1183 const struct cred __rcu *cred; /* effective (overridable) subjective task
1184 * credentials (COW) */
1185 char comm[TASK_COMM_LEN]; /* executable name excluding path
1186 - access with [gs]et_task_comm (which lock
1187 it with task_lock())
1188 - initialized normally by setup_new_exec */
1189 /* file system info */
1190 int link_count, total_link_count;
1191 #ifdef CONFIG_SYSVIPC
1192 /* ipc stuff */
1193 struct sysv_sem sysvsem;
1194 #endif
1195 #ifdef CONFIG_DETECT_HUNG_TASK
1196 /* hung task detection */
1197 unsigned long last_switch_count;
1198 #endif
1199 /* CPU-specific state of this task */
1200 struct thread_struct thread;
1201 /* filesystem information */
1202 struct fs_struct *fs;
1203 /* open file information */
1204 struct files_struct *files;
1205 /* namespaces */
1206 struct nsproxy *nsproxy;
1207 /* signal handlers */
1208 struct signal_struct *signal;
1209 struct sighand_struct *sighand;
1210
1211 sigset_t blocked, real_blocked;
1212 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1213 struct sigpending pending;
1214
1215 unsigned long sas_ss_sp;
1216 size_t sas_ss_size;
1217 int (*notifier)(void *priv);
1218 void *notifier_data;
1219 sigset_t *notifier_mask;
1220 struct callback_head *task_works;
1221
1222 struct audit_context *audit_context;
1223 #ifdef CONFIG_AUDITSYSCALL
1224 kuid_t loginuid;
1225 unsigned int sessionid;
1226 #endif
1227 struct seccomp seccomp;
1228
1229 /* Thread group tracking */
1230 u32 parent_exec_id;
1231 u32 self_exec_id;
1232 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1233 * mempolicy */
1234 spinlock_t alloc_lock;
1235
1236 /* Protection of the PI data structures: */
1237 raw_spinlock_t pi_lock;
1238
1239 #ifdef CONFIG_RT_MUTEXES
1240 /* PI waiters blocked on a rt_mutex held by this task */
1241 struct plist_head pi_waiters;
1242 /* Deadlock detection and priority inheritance handling */
1243 struct rt_mutex_waiter *pi_blocked_on;
1244 #endif
1245
1246 #ifdef CONFIG_DEBUG_MUTEXES
1247 /* mutex deadlock detection */
1248 struct mutex_waiter *blocked_on;
1249 #endif
1250 #ifdef CONFIG_TRACE_IRQFLAGS
1251 unsigned int irq_events;
1252 unsigned long hardirq_enable_ip;
1253 unsigned long hardirq_disable_ip;
1254 unsigned int hardirq_enable_event;
1255 unsigned int hardirq_disable_event;
1256 int hardirqs_enabled;
1257 int hardirq_context;
1258 unsigned long softirq_disable_ip;
1259 unsigned long softirq_enable_ip;
1260 unsigned int softirq_disable_event;
1261 unsigned int softirq_enable_event;
1262 int softirqs_enabled;
1263 int softirq_context;
1264 #endif
1265 #ifdef CONFIG_LOCKDEP
1266 # define MAX_LOCK_DEPTH 48UL
1267 u64 curr_chain_key;
1268 int lockdep_depth;
1269 unsigned int lockdep_recursion;
1270 struct held_lock held_locks[MAX_LOCK_DEPTH];
1271 gfp_t lockdep_reclaim_gfp;
1272 #endif
1273
1274 /* journalling filesystem info */
1275 void *journal_info;
1276
1277 /* stacked block device info */
1278 struct bio_list *bio_list;
1279
1280 #ifdef CONFIG_BLOCK
1281 /* stack plugging */
1282 struct blk_plug *plug;
1283 #endif
1284
1285 /* VM state */
1286 struct reclaim_state *reclaim_state;
1287
1288 struct backing_dev_info *backing_dev_info;
1289
1290 struct io_context *io_context;
1291
1292 unsigned long ptrace_message;
1293 siginfo_t *last_siginfo; /* For ptrace use. */
1294 struct task_io_accounting ioac;
1295 #if defined(CONFIG_TASK_XACCT)
1296 u64 acct_rss_mem1; /* accumulated rss usage */
1297 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1298 cputime_t acct_timexpd; /* stime + utime since last update */
1299 #endif
1300 #ifdef CONFIG_CPUSETS
1301 nodemask_t mems_allowed; /* Protected by alloc_lock */
1302 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
1303 int cpuset_mem_spread_rotor;
1304 int cpuset_slab_spread_rotor;
1305 #endif
1306 #ifdef CONFIG_CGROUPS
1307 /* Control Group info protected by css_set_lock */
1308 struct css_set __rcu *cgroups;
1309 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1310 struct list_head cg_list;
1311 #endif
1312 #ifdef CONFIG_FUTEX
1313 struct robust_list_head __user *robust_list;
1314 #ifdef CONFIG_COMPAT
1315 struct compat_robust_list_head __user *compat_robust_list;
1316 #endif
1317 struct list_head pi_state_list;
1318 struct futex_pi_state *pi_state_cache;
1319 #endif
1320 #ifdef CONFIG_PERF_EVENTS
1321 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1322 struct mutex perf_event_mutex;
1323 struct list_head perf_event_list;
1324 #endif
1325 #ifdef CONFIG_NUMA
1326 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1327 short il_next;
1328 short pref_node_fork;
1329 #endif
1330 #ifdef CONFIG_NUMA_BALANCING
1331 int numa_scan_seq;
1332 int numa_migrate_seq;
1333 unsigned int numa_scan_period;
1334 u64 node_stamp; /* migration stamp */
1335 struct callback_head numa_work;
1336 #endif /* CONFIG_NUMA_BALANCING */
1337
1338 struct rcu_head rcu;
1339
1340 /*
1341 * cache last used pipe for splice
1342 */
1343 struct pipe_inode_info *splice_pipe;
1344
1345 struct page_frag task_frag;
1346
1347 #ifdef CONFIG_TASK_DELAY_ACCT
1348 struct task_delay_info *delays;
1349 #endif
1350 #ifdef CONFIG_FAULT_INJECTION
1351 int make_it_fail;
1352 #endif
1353 /*
1354 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1355 * balance_dirty_pages() for some dirty throttling pause
1356 */
1357 int nr_dirtied;
1358 int nr_dirtied_pause;
1359 unsigned long dirty_paused_when; /* start of a write-and-pause period */
1360
1361 #ifdef CONFIG_LATENCYTOP
1362 int latency_record_count;
1363 struct latency_record latency_record[LT_SAVECOUNT];
1364 #endif
1365 /*
1366 * time slack values; these are used to round up poll() and
1367 * select() etc timeout values. These are in nanoseconds.
1368 */
1369 unsigned long timer_slack_ns;
1370 unsigned long default_timer_slack_ns;
1371
1372 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1373 /* Index of current stored address in ret_stack */
1374 int curr_ret_stack;
1375 /* Stack of return addresses for return function tracing */
1376 struct ftrace_ret_stack *ret_stack;
1377 /* time stamp for last schedule */
1378 unsigned long long ftrace_timestamp;
1379 /*
1380 * Number of functions that haven't been traced
1381 * because of depth overrun.
1382 */
1383 atomic_t trace_overrun;
1384 /* Pause for the tracing */
1385 atomic_t tracing_graph_pause;
1386 #endif
1387 #ifdef CONFIG_TRACING
1388 /* state flags for use by tracers */
1389 unsigned long trace;
1390 /* bitmask and counter of trace recursion */
1391 unsigned long trace_recursion;
1392 #endif /* CONFIG_TRACING */
1393 #ifdef CONFIG_MEMCG /* memcg uses this to do batch job */
1394 struct memcg_batch_info {
1395 int do_batch; /* incremented when batch uncharge started */
1396 struct mem_cgroup *memcg; /* target memcg of uncharge */
1397 unsigned long nr_pages; /* uncharged usage */
1398 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1399 } memcg_batch;
1400 unsigned int memcg_kmem_skip_account;
1401 #endif
1402 #ifdef CONFIG_UPROBES
1403 struct uprobe_task *utask;
1404 #endif
1405 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1406 unsigned int sequential_io;
1407 unsigned int sequential_io_avg;
1408 #endif
1409 };
1410
1411 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1412 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1413
1414 #ifdef CONFIG_NUMA_BALANCING
1415 extern void task_numa_fault(int node, int pages, bool migrated);
1416 extern void set_numabalancing_state(bool enabled);
1417 #else
1418 static inline void task_numa_fault(int node, int pages, bool migrated)
1419 {
1420 }
1421 static inline void set_numabalancing_state(bool enabled)
1422 {
1423 }
1424 #endif
1425
1426 static inline struct pid *task_pid(struct task_struct *task)
1427 {
1428 return task->pids[PIDTYPE_PID].pid;
1429 }
1430
1431 static inline struct pid *task_tgid(struct task_struct *task)
1432 {
1433 return task->group_leader->pids[PIDTYPE_PID].pid;
1434 }
1435
1436 /*
1437 * Without tasklist or rcu lock it is not safe to dereference
1438 * the result of task_pgrp/task_session even if task == current,
1439 * we can race with another thread doing sys_setsid/sys_setpgid.
1440 */
1441 static inline struct pid *task_pgrp(struct task_struct *task)
1442 {
1443 return task->group_leader->pids[PIDTYPE_PGID].pid;
1444 }
1445
1446 static inline struct pid *task_session(struct task_struct *task)
1447 {
1448 return task->group_leader->pids[PIDTYPE_SID].pid;
1449 }
1450
1451 struct pid_namespace;
1452
1453 /*
1454 * the helpers to get the task's different pids as they are seen
1455 * from various namespaces
1456 *
1457 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1458 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1459 * current.
1460 * task_xid_nr_ns() : id seen from the ns specified;
1461 *
1462 * set_task_vxid() : assigns a virtual id to a task;
1463 *
1464 * see also pid_nr() etc in include/linux/pid.h
1465 */
1466 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1467 struct pid_namespace *ns);
1468
1469 static inline pid_t task_pid_nr(struct task_struct *tsk)
1470 {
1471 return tsk->pid;
1472 }
1473
1474 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1475 struct pid_namespace *ns)
1476 {
1477 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1478 }
1479
1480 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1481 {
1482 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1483 }
1484
1485
1486 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1487 {
1488 return tsk->tgid;
1489 }
1490
1491 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1492
1493 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1494 {
1495 return pid_vnr(task_tgid(tsk));
1496 }
1497
1498
1499 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1500 struct pid_namespace *ns)
1501 {
1502 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1503 }
1504
1505 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1506 {
1507 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1508 }
1509
1510
1511 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1512 struct pid_namespace *ns)
1513 {
1514 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1515 }
1516
1517 static inline pid_t task_session_vnr(struct task_struct *tsk)
1518 {
1519 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1520 }
1521
1522 /* obsolete, do not use */
1523 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1524 {
1525 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1526 }
1527
1528 /**
1529 * pid_alive - check that a task structure is not stale
1530 * @p: Task structure to be checked.
1531 *
1532 * Test if a process is not yet dead (at most zombie state)
1533 * If pid_alive fails, then pointers within the task structure
1534 * can be stale and must not be dereferenced.
1535 */
1536 static inline int pid_alive(struct task_struct *p)
1537 {
1538 return p->pids[PIDTYPE_PID].pid != NULL;
1539 }
1540
1541 /**
1542 * is_global_init - check if a task structure is init
1543 * @tsk: Task structure to be checked.
1544 *
1545 * Check if a task structure is the first user space task the kernel created.
1546 */
1547 static inline int is_global_init(struct task_struct *tsk)
1548 {
1549 return tsk->pid == 1;
1550 }
1551
1552 extern struct pid *cad_pid;
1553
1554 extern void free_task(struct task_struct *tsk);
1555 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1556
1557 extern void __put_task_struct(struct task_struct *t);
1558
1559 static inline void put_task_struct(struct task_struct *t)
1560 {
1561 if (atomic_dec_and_test(&t->usage))
1562 __put_task_struct(t);
1563 }
1564
1565 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1566 extern void task_cputime(struct task_struct *t,
1567 cputime_t *utime, cputime_t *stime);
1568 extern void task_cputime_scaled(struct task_struct *t,
1569 cputime_t *utimescaled, cputime_t *stimescaled);
1570 extern cputime_t task_gtime(struct task_struct *t);
1571 #else
1572 static inline void task_cputime(struct task_struct *t,
1573 cputime_t *utime, cputime_t *stime)
1574 {
1575 if (utime)
1576 *utime = t->utime;
1577 if (stime)
1578 *stime = t->stime;
1579 }
1580
1581 static inline void task_cputime_scaled(struct task_struct *t,
1582 cputime_t *utimescaled,
1583 cputime_t *stimescaled)
1584 {
1585 if (utimescaled)
1586 *utimescaled = t->utimescaled;
1587 if (stimescaled)
1588 *stimescaled = t->stimescaled;
1589 }
1590
1591 static inline cputime_t task_gtime(struct task_struct *t)
1592 {
1593 return t->gtime;
1594 }
1595 #endif
1596 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1597 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1598
1599 /*
1600 * Per process flags
1601 */
1602 #define PF_EXITING 0x00000004 /* getting shut down */
1603 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1604 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1605 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1606 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1607 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1608 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1609 #define PF_DUMPCORE 0x00000200 /* dumped core */
1610 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1611 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1612 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1613 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1614 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1615 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1616 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1617 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1618 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1619 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1620 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1621 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1622 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1623 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1624 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1625 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1626 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
1627 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1628 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1629 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1630 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1631 #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
1632
1633 /*
1634 * Only the _current_ task can read/write to tsk->flags, but other
1635 * tasks can access tsk->flags in readonly mode for example
1636 * with tsk_used_math (like during threaded core dumping).
1637 * There is however an exception to this rule during ptrace
1638 * or during fork: the ptracer task is allowed to write to the
1639 * child->flags of its traced child (same goes for fork, the parent
1640 * can write to the child->flags), because we're guaranteed the
1641 * child is not running and in turn not changing child->flags
1642 * at the same time the parent does it.
1643 */
1644 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1645 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1646 #define clear_used_math() clear_stopped_child_used_math(current)
1647 #define set_used_math() set_stopped_child_used_math(current)
1648 #define conditional_stopped_child_used_math(condition, child) \
1649 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1650 #define conditional_used_math(condition) \
1651 conditional_stopped_child_used_math(condition, current)
1652 #define copy_to_stopped_child_used_math(child) \
1653 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1654 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1655 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1656 #define used_math() tsk_used_math(current)
1657
1658 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags */
1659 static inline gfp_t memalloc_noio_flags(gfp_t flags)
1660 {
1661 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
1662 flags &= ~__GFP_IO;
1663 return flags;
1664 }
1665
1666 static inline unsigned int memalloc_noio_save(void)
1667 {
1668 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
1669 current->flags |= PF_MEMALLOC_NOIO;
1670 return flags;
1671 }
1672
1673 static inline void memalloc_noio_restore(unsigned int flags)
1674 {
1675 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
1676 }
1677
1678 /*
1679 * task->jobctl flags
1680 */
1681 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
1682
1683 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
1684 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
1685 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
1686 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
1687 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
1688 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
1689 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
1690
1691 #define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT)
1692 #define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT)
1693 #define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT)
1694 #define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT)
1695 #define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT)
1696 #define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT)
1697 #define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT)
1698
1699 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1700 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1701
1702 extern bool task_set_jobctl_pending(struct task_struct *task,
1703 unsigned int mask);
1704 extern void task_clear_jobctl_trapping(struct task_struct *task);
1705 extern void task_clear_jobctl_pending(struct task_struct *task,
1706 unsigned int mask);
1707
1708 #ifdef CONFIG_PREEMPT_RCU
1709
1710 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1711 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1712
1713 static inline void rcu_copy_process(struct task_struct *p)
1714 {
1715 p->rcu_read_lock_nesting = 0;
1716 p->rcu_read_unlock_special = 0;
1717 #ifdef CONFIG_TREE_PREEMPT_RCU
1718 p->rcu_blocked_node = NULL;
1719 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1720 #ifdef CONFIG_RCU_BOOST
1721 p->rcu_boost_mutex = NULL;
1722 #endif /* #ifdef CONFIG_RCU_BOOST */
1723 INIT_LIST_HEAD(&p->rcu_node_entry);
1724 }
1725
1726 #else
1727
1728 static inline void rcu_copy_process(struct task_struct *p)
1729 {
1730 }
1731
1732 #endif
1733
1734 static inline void tsk_restore_flags(struct task_struct *task,
1735 unsigned long orig_flags, unsigned long flags)
1736 {
1737 task->flags &= ~flags;
1738 task->flags |= orig_flags & flags;
1739 }
1740
1741 #ifdef CONFIG_SMP
1742 extern void do_set_cpus_allowed(struct task_struct *p,
1743 const struct cpumask *new_mask);
1744
1745 extern int set_cpus_allowed_ptr(struct task_struct *p,
1746 const struct cpumask *new_mask);
1747 #else
1748 static inline void do_set_cpus_allowed(struct task_struct *p,
1749 const struct cpumask *new_mask)
1750 {
1751 }
1752 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1753 const struct cpumask *new_mask)
1754 {
1755 if (!cpumask_test_cpu(0, new_mask))
1756 return -EINVAL;
1757 return 0;
1758 }
1759 #endif
1760
1761 #ifdef CONFIG_NO_HZ_COMMON
1762 void calc_load_enter_idle(void);
1763 void calc_load_exit_idle(void);
1764 #else
1765 static inline void calc_load_enter_idle(void) { }
1766 static inline void calc_load_exit_idle(void) { }
1767 #endif /* CONFIG_NO_HZ_COMMON */
1768
1769 #ifndef CONFIG_CPUMASK_OFFSTACK
1770 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1771 {
1772 return set_cpus_allowed_ptr(p, &new_mask);
1773 }
1774 #endif
1775
1776 /*
1777 * Do not use outside of architecture code which knows its limitations.
1778 *
1779 * sched_clock() has no promise of monotonicity or bounded drift between
1780 * CPUs, use (which you should not) requires disabling IRQs.
1781 *
1782 * Please use one of the three interfaces below.
1783 */
1784 extern unsigned long long notrace sched_clock(void);
1785 /*
1786 * See the comment in kernel/sched/clock.c
1787 */
1788 extern u64 cpu_clock(int cpu);
1789 extern u64 local_clock(void);
1790 extern u64 sched_clock_cpu(int cpu);
1791
1792
1793 extern void sched_clock_init(void);
1794
1795 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1796 static inline void sched_clock_tick(void)
1797 {
1798 }
1799
1800 static inline void sched_clock_idle_sleep_event(void)
1801 {
1802 }
1803
1804 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1805 {
1806 }
1807 #else
1808 /*
1809 * Architectures can set this to 1 if they have specified
1810 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1811 * but then during bootup it turns out that sched_clock()
1812 * is reliable after all:
1813 */
1814 extern int sched_clock_stable;
1815
1816 extern void sched_clock_tick(void);
1817 extern void sched_clock_idle_sleep_event(void);
1818 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1819 #endif
1820
1821 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1822 /*
1823 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1824 * The reason for this explicit opt-in is not to have perf penalty with
1825 * slow sched_clocks.
1826 */
1827 extern void enable_sched_clock_irqtime(void);
1828 extern void disable_sched_clock_irqtime(void);
1829 #else
1830 static inline void enable_sched_clock_irqtime(void) {}
1831 static inline void disable_sched_clock_irqtime(void) {}
1832 #endif
1833
1834 extern unsigned long long
1835 task_sched_runtime(struct task_struct *task);
1836
1837 /* sched_exec is called by processes performing an exec */
1838 #ifdef CONFIG_SMP
1839 extern void sched_exec(void);
1840 #else
1841 #define sched_exec() {}
1842 #endif
1843
1844 extern void sched_clock_idle_sleep_event(void);
1845 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1846
1847 #ifdef CONFIG_HOTPLUG_CPU
1848 extern void idle_task_exit(void);
1849 #else
1850 static inline void idle_task_exit(void) {}
1851 #endif
1852
1853 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
1854 extern void wake_up_nohz_cpu(int cpu);
1855 #else
1856 static inline void wake_up_nohz_cpu(int cpu) { }
1857 #endif
1858
1859 #ifdef CONFIG_NO_HZ_FULL
1860 extern bool sched_can_stop_tick(void);
1861 extern u64 scheduler_tick_max_deferment(void);
1862 #else
1863 static inline bool sched_can_stop_tick(void) { return false; }
1864 #endif
1865
1866 #ifdef CONFIG_SCHED_AUTOGROUP
1867 extern void sched_autogroup_create_attach(struct task_struct *p);
1868 extern void sched_autogroup_detach(struct task_struct *p);
1869 extern void sched_autogroup_fork(struct signal_struct *sig);
1870 extern void sched_autogroup_exit(struct signal_struct *sig);
1871 #ifdef CONFIG_PROC_FS
1872 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
1873 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
1874 #endif
1875 #else
1876 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
1877 static inline void sched_autogroup_detach(struct task_struct *p) { }
1878 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
1879 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
1880 #endif
1881
1882 extern bool yield_to(struct task_struct *p, bool preempt);
1883 extern void set_user_nice(struct task_struct *p, long nice);
1884 extern int task_prio(const struct task_struct *p);
1885 extern int task_nice(const struct task_struct *p);
1886 extern int can_nice(const struct task_struct *p, const int nice);
1887 extern int task_curr(const struct task_struct *p);
1888 extern int idle_cpu(int cpu);
1889 extern int sched_setscheduler(struct task_struct *, int,
1890 const struct sched_param *);
1891 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1892 const struct sched_param *);
1893 extern struct task_struct *idle_task(int cpu);
1894 /**
1895 * is_idle_task - is the specified task an idle task?
1896 * @p: the task in question.
1897 */
1898 static inline bool is_idle_task(const struct task_struct *p)
1899 {
1900 return p->pid == 0;
1901 }
1902 extern struct task_struct *curr_task(int cpu);
1903 extern void set_curr_task(int cpu, struct task_struct *p);
1904
1905 void yield(void);
1906
1907 /*
1908 * The default (Linux) execution domain.
1909 */
1910 extern struct exec_domain default_exec_domain;
1911
1912 union thread_union {
1913 struct thread_info thread_info;
1914 unsigned long stack[THREAD_SIZE/sizeof(long)];
1915 };
1916
1917 #ifndef __HAVE_ARCH_KSTACK_END
1918 static inline int kstack_end(void *addr)
1919 {
1920 /* Reliable end of stack detection:
1921 * Some APM bios versions misalign the stack
1922 */
1923 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1924 }
1925 #endif
1926
1927 extern union thread_union init_thread_union;
1928 extern struct task_struct init_task;
1929
1930 extern struct mm_struct init_mm;
1931
1932 extern struct pid_namespace init_pid_ns;
1933
1934 /*
1935 * find a task by one of its numerical ids
1936 *
1937 * find_task_by_pid_ns():
1938 * finds a task by its pid in the specified namespace
1939 * find_task_by_vpid():
1940 * finds a task by its virtual pid
1941 *
1942 * see also find_vpid() etc in include/linux/pid.h
1943 */
1944
1945 extern struct task_struct *find_task_by_vpid(pid_t nr);
1946 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1947 struct pid_namespace *ns);
1948
1949 /* per-UID process charging. */
1950 extern struct user_struct * alloc_uid(kuid_t);
1951 static inline struct user_struct *get_uid(struct user_struct *u)
1952 {
1953 atomic_inc(&u->__count);
1954 return u;
1955 }
1956 extern void free_uid(struct user_struct *);
1957
1958 #include <asm/current.h>
1959
1960 extern void xtime_update(unsigned long ticks);
1961
1962 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1963 extern int wake_up_process(struct task_struct *tsk);
1964 extern void wake_up_new_task(struct task_struct *tsk);
1965 #ifdef CONFIG_SMP
1966 extern void kick_process(struct task_struct *tsk);
1967 #else
1968 static inline void kick_process(struct task_struct *tsk) { }
1969 #endif
1970 extern void sched_fork(struct task_struct *p);
1971 extern void sched_dead(struct task_struct *p);
1972
1973 extern void proc_caches_init(void);
1974 extern void flush_signals(struct task_struct *);
1975 extern void __flush_signals(struct task_struct *);
1976 extern void ignore_signals(struct task_struct *);
1977 extern void flush_signal_handlers(struct task_struct *, int force_default);
1978 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1979
1980 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1981 {
1982 unsigned long flags;
1983 int ret;
1984
1985 spin_lock_irqsave(&tsk->sighand->siglock, flags);
1986 ret = dequeue_signal(tsk, mask, info);
1987 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1988
1989 return ret;
1990 }
1991
1992 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1993 sigset_t *mask);
1994 extern void unblock_all_signals(void);
1995 extern void release_task(struct task_struct * p);
1996 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1997 extern int force_sigsegv(int, struct task_struct *);
1998 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1999 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2000 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2001 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2002 const struct cred *, u32);
2003 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2004 extern int kill_pid(struct pid *pid, int sig, int priv);
2005 extern int kill_proc_info(int, struct siginfo *, pid_t);
2006 extern __must_check bool do_notify_parent(struct task_struct *, int);
2007 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2008 extern void force_sig(int, struct task_struct *);
2009 extern int send_sig(int, struct task_struct *, int);
2010 extern int zap_other_threads(struct task_struct *p);
2011 extern struct sigqueue *sigqueue_alloc(void);
2012 extern void sigqueue_free(struct sigqueue *);
2013 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2014 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2015
2016 static inline void restore_saved_sigmask(void)
2017 {
2018 if (test_and_clear_restore_sigmask())
2019 __set_current_blocked(&current->saved_sigmask);
2020 }
2021
2022 static inline sigset_t *sigmask_to_save(void)
2023 {
2024 sigset_t *res = &current->blocked;
2025 if (unlikely(test_restore_sigmask()))
2026 res = &current->saved_sigmask;
2027 return res;
2028 }
2029
2030 static inline int kill_cad_pid(int sig, int priv)
2031 {
2032 return kill_pid(cad_pid, sig, priv);
2033 }
2034
2035 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2036 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2037 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2038 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2039
2040 /*
2041 * True if we are on the alternate signal stack.
2042 */
2043 static inline int on_sig_stack(unsigned long sp)
2044 {
2045 #ifdef CONFIG_STACK_GROWSUP
2046 return sp >= current->sas_ss_sp &&
2047 sp - current->sas_ss_sp < current->sas_ss_size;
2048 #else
2049 return sp > current->sas_ss_sp &&
2050 sp - current->sas_ss_sp <= current->sas_ss_size;
2051 #endif
2052 }
2053
2054 static inline int sas_ss_flags(unsigned long sp)
2055 {
2056 return (current->sas_ss_size == 0 ? SS_DISABLE
2057 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2058 }
2059
2060 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2061 {
2062 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2063 #ifdef CONFIG_STACK_GROWSUP
2064 return current->sas_ss_sp;
2065 #else
2066 return current->sas_ss_sp + current->sas_ss_size;
2067 #endif
2068 return sp;
2069 }
2070
2071 /*
2072 * Routines for handling mm_structs
2073 */
2074 extern struct mm_struct * mm_alloc(void);
2075
2076 /* mmdrop drops the mm and the page tables */
2077 extern void __mmdrop(struct mm_struct *);
2078 static inline void mmdrop(struct mm_struct * mm)
2079 {
2080 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2081 __mmdrop(mm);
2082 }
2083
2084 /* mmput gets rid of the mappings and all user-space */
2085 extern void mmput(struct mm_struct *);
2086 /* Grab a reference to a task's mm, if it is not already going away */
2087 extern struct mm_struct *get_task_mm(struct task_struct *task);
2088 /*
2089 * Grab a reference to a task's mm, if it is not already going away
2090 * and ptrace_may_access with the mode parameter passed to it
2091 * succeeds.
2092 */
2093 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2094 /* Remove the current tasks stale references to the old mm_struct */
2095 extern void mm_release(struct task_struct *, struct mm_struct *);
2096 /* Allocate a new mm structure and copy contents from tsk->mm */
2097 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2098
2099 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2100 struct task_struct *);
2101 extern void flush_thread(void);
2102 extern void exit_thread(void);
2103
2104 extern void exit_files(struct task_struct *);
2105 extern void __cleanup_sighand(struct sighand_struct *);
2106
2107 extern void exit_itimers(struct signal_struct *);
2108 extern void flush_itimer_signals(void);
2109
2110 extern void do_group_exit(int);
2111
2112 extern int allow_signal(int);
2113 extern int disallow_signal(int);
2114
2115 extern int do_execve(const char *,
2116 const char __user * const __user *,
2117 const char __user * const __user *);
2118 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2119 struct task_struct *fork_idle(int);
2120 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2121
2122 extern void set_task_comm(struct task_struct *tsk, char *from);
2123 extern char *get_task_comm(char *to, struct task_struct *tsk);
2124
2125 #ifdef CONFIG_SMP
2126 void scheduler_ipi(void);
2127 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2128 #else
2129 static inline void scheduler_ipi(void) { }
2130 static inline unsigned long wait_task_inactive(struct task_struct *p,
2131 long match_state)
2132 {
2133 return 1;
2134 }
2135 #endif
2136
2137 #define next_task(p) \
2138 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2139
2140 #define for_each_process(p) \
2141 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2142
2143 extern bool current_is_single_threaded(void);
2144
2145 /*
2146 * Careful: do_each_thread/while_each_thread is a double loop so
2147 * 'break' will not work as expected - use goto instead.
2148 */
2149 #define do_each_thread(g, t) \
2150 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2151
2152 #define while_each_thread(g, t) \
2153 while ((t = next_thread(t)) != g)
2154
2155 static inline int get_nr_threads(struct task_struct *tsk)
2156 {
2157 return tsk->signal->nr_threads;
2158 }
2159
2160 static inline bool thread_group_leader(struct task_struct *p)
2161 {
2162 return p->exit_signal >= 0;
2163 }
2164
2165 /* Do to the insanities of de_thread it is possible for a process
2166 * to have the pid of the thread group leader without actually being
2167 * the thread group leader. For iteration through the pids in proc
2168 * all we care about is that we have a task with the appropriate
2169 * pid, we don't actually care if we have the right task.
2170 */
2171 static inline int has_group_leader_pid(struct task_struct *p)
2172 {
2173 return p->pid == p->tgid;
2174 }
2175
2176 static inline
2177 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2178 {
2179 return p1->tgid == p2->tgid;
2180 }
2181
2182 static inline struct task_struct *next_thread(const struct task_struct *p)
2183 {
2184 return list_entry_rcu(p->thread_group.next,
2185 struct task_struct, thread_group);
2186 }
2187
2188 static inline int thread_group_empty(struct task_struct *p)
2189 {
2190 return list_empty(&p->thread_group);
2191 }
2192
2193 #define delay_group_leader(p) \
2194 (thread_group_leader(p) && !thread_group_empty(p))
2195
2196 /*
2197 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2198 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2199 * pins the final release of task.io_context. Also protects ->cpuset and
2200 * ->cgroup.subsys[]. And ->vfork_done.
2201 *
2202 * Nests both inside and outside of read_lock(&tasklist_lock).
2203 * It must not be nested with write_lock_irq(&tasklist_lock),
2204 * neither inside nor outside.
2205 */
2206 static inline void task_lock(struct task_struct *p)
2207 {
2208 spin_lock(&p->alloc_lock);
2209 }
2210
2211 static inline void task_unlock(struct task_struct *p)
2212 {
2213 spin_unlock(&p->alloc_lock);
2214 }
2215
2216 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2217 unsigned long *flags);
2218
2219 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2220 unsigned long *flags)
2221 {
2222 struct sighand_struct *ret;
2223
2224 ret = __lock_task_sighand(tsk, flags);
2225 (void)__cond_lock(&tsk->sighand->siglock, ret);
2226 return ret;
2227 }
2228
2229 static inline void unlock_task_sighand(struct task_struct *tsk,
2230 unsigned long *flags)
2231 {
2232 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2233 }
2234
2235 #ifdef CONFIG_CGROUPS
2236 static inline void threadgroup_change_begin(struct task_struct *tsk)
2237 {
2238 down_read(&tsk->signal->group_rwsem);
2239 }
2240 static inline void threadgroup_change_end(struct task_struct *tsk)
2241 {
2242 up_read(&tsk->signal->group_rwsem);
2243 }
2244
2245 /**
2246 * threadgroup_lock - lock threadgroup
2247 * @tsk: member task of the threadgroup to lock
2248 *
2249 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter
2250 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2251 * change ->group_leader/pid. This is useful for cases where the threadgroup
2252 * needs to stay stable across blockable operations.
2253 *
2254 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2255 * synchronization. While held, no new task will be added to threadgroup
2256 * and no existing live task will have its PF_EXITING set.
2257 *
2258 * de_thread() does threadgroup_change_{begin|end}() when a non-leader
2259 * sub-thread becomes a new leader.
2260 */
2261 static inline void threadgroup_lock(struct task_struct *tsk)
2262 {
2263 down_write(&tsk->signal->group_rwsem);
2264 }
2265
2266 /**
2267 * threadgroup_unlock - unlock threadgroup
2268 * @tsk: member task of the threadgroup to unlock
2269 *
2270 * Reverse threadgroup_lock().
2271 */
2272 static inline void threadgroup_unlock(struct task_struct *tsk)
2273 {
2274 up_write(&tsk->signal->group_rwsem);
2275 }
2276 #else
2277 static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2278 static inline void threadgroup_change_end(struct task_struct *tsk) {}
2279 static inline void threadgroup_lock(struct task_struct *tsk) {}
2280 static inline void threadgroup_unlock(struct task_struct *tsk) {}
2281 #endif
2282
2283 #ifndef __HAVE_THREAD_FUNCTIONS
2284
2285 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2286 #define task_stack_page(task) ((task)->stack)
2287
2288 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2289 {
2290 *task_thread_info(p) = *task_thread_info(org);
2291 task_thread_info(p)->task = p;
2292 }
2293
2294 static inline unsigned long *end_of_stack(struct task_struct *p)
2295 {
2296 return (unsigned long *)(task_thread_info(p) + 1);
2297 }
2298
2299 #endif
2300
2301 static inline int object_is_on_stack(void *obj)
2302 {
2303 void *stack = task_stack_page(current);
2304
2305 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2306 }
2307
2308 extern void thread_info_cache_init(void);
2309
2310 #ifdef CONFIG_DEBUG_STACK_USAGE
2311 static inline unsigned long stack_not_used(struct task_struct *p)
2312 {
2313 unsigned long *n = end_of_stack(p);
2314
2315 do { /* Skip over canary */
2316 n++;
2317 } while (!*n);
2318
2319 return (unsigned long)n - (unsigned long)end_of_stack(p);
2320 }
2321 #endif
2322
2323 /* set thread flags in other task's structures
2324 * - see asm/thread_info.h for TIF_xxxx flags available
2325 */
2326 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2327 {
2328 set_ti_thread_flag(task_thread_info(tsk), flag);
2329 }
2330
2331 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2332 {
2333 clear_ti_thread_flag(task_thread_info(tsk), flag);
2334 }
2335
2336 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2337 {
2338 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2339 }
2340
2341 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2342 {
2343 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2344 }
2345
2346 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2347 {
2348 return test_ti_thread_flag(task_thread_info(tsk), flag);
2349 }
2350
2351 static inline void set_tsk_need_resched(struct task_struct *tsk)
2352 {
2353 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2354 }
2355
2356 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2357 {
2358 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2359 }
2360
2361 static inline int test_tsk_need_resched(struct task_struct *tsk)
2362 {
2363 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2364 }
2365
2366 static inline int restart_syscall(void)
2367 {
2368 set_tsk_thread_flag(current, TIF_SIGPENDING);
2369 return -ERESTARTNOINTR;
2370 }
2371
2372 static inline int signal_pending(struct task_struct *p)
2373 {
2374 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2375 }
2376
2377 static inline int __fatal_signal_pending(struct task_struct *p)
2378 {
2379 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2380 }
2381
2382 static inline int fatal_signal_pending(struct task_struct *p)
2383 {
2384 return signal_pending(p) && __fatal_signal_pending(p);
2385 }
2386
2387 static inline int signal_pending_state(long state, struct task_struct *p)
2388 {
2389 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2390 return 0;
2391 if (!signal_pending(p))
2392 return 0;
2393
2394 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2395 }
2396
2397 static inline int need_resched(void)
2398 {
2399 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2400 }
2401
2402 /*
2403 * cond_resched() and cond_resched_lock(): latency reduction via
2404 * explicit rescheduling in places that are safe. The return
2405 * value indicates whether a reschedule was done in fact.
2406 * cond_resched_lock() will drop the spinlock before scheduling,
2407 * cond_resched_softirq() will enable bhs before scheduling.
2408 */
2409 extern int _cond_resched(void);
2410
2411 #define cond_resched() ({ \
2412 __might_sleep(__FILE__, __LINE__, 0); \
2413 _cond_resched(); \
2414 })
2415
2416 extern int __cond_resched_lock(spinlock_t *lock);
2417
2418 #ifdef CONFIG_PREEMPT_COUNT
2419 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2420 #else
2421 #define PREEMPT_LOCK_OFFSET 0
2422 #endif
2423
2424 #define cond_resched_lock(lock) ({ \
2425 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2426 __cond_resched_lock(lock); \
2427 })
2428
2429 extern int __cond_resched_softirq(void);
2430
2431 #define cond_resched_softirq() ({ \
2432 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2433 __cond_resched_softirq(); \
2434 })
2435
2436 static inline void cond_resched_rcu(void)
2437 {
2438 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2439 rcu_read_unlock();
2440 cond_resched();
2441 rcu_read_lock();
2442 #endif
2443 }
2444
2445 /*
2446 * Does a critical section need to be broken due to another
2447 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2448 * but a general need for low latency)
2449 */
2450 static inline int spin_needbreak(spinlock_t *lock)
2451 {
2452 #ifdef CONFIG_PREEMPT
2453 return spin_is_contended(lock);
2454 #else
2455 return 0;
2456 #endif
2457 }
2458
2459 /*
2460 * Idle thread specific functions to determine the need_resched
2461 * polling state. We have two versions, one based on TS_POLLING in
2462 * thread_info.status and one based on TIF_POLLING_NRFLAG in
2463 * thread_info.flags
2464 */
2465 #ifdef TS_POLLING
2466 static inline int tsk_is_polling(struct task_struct *p)
2467 {
2468 return task_thread_info(p)->status & TS_POLLING;
2469 }
2470 static inline void current_set_polling(void)
2471 {
2472 current_thread_info()->status |= TS_POLLING;
2473 }
2474
2475 static inline void current_clr_polling(void)
2476 {
2477 current_thread_info()->status &= ~TS_POLLING;
2478 smp_mb__after_clear_bit();
2479 }
2480 #elif defined(TIF_POLLING_NRFLAG)
2481 static inline int tsk_is_polling(struct task_struct *p)
2482 {
2483 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2484 }
2485 static inline void current_set_polling(void)
2486 {
2487 set_thread_flag(TIF_POLLING_NRFLAG);
2488 }
2489
2490 static inline void current_clr_polling(void)
2491 {
2492 clear_thread_flag(TIF_POLLING_NRFLAG);
2493 }
2494 #else
2495 static inline int tsk_is_polling(struct task_struct *p) { return 0; }
2496 static inline void current_set_polling(void) { }
2497 static inline void current_clr_polling(void) { }
2498 #endif
2499
2500 /*
2501 * Thread group CPU time accounting.
2502 */
2503 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2504 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2505
2506 static inline void thread_group_cputime_init(struct signal_struct *sig)
2507 {
2508 raw_spin_lock_init(&sig->cputimer.lock);
2509 }
2510
2511 /*
2512 * Reevaluate whether the task has signals pending delivery.
2513 * Wake the task if so.
2514 * This is required every time the blocked sigset_t changes.
2515 * callers must hold sighand->siglock.
2516 */
2517 extern void recalc_sigpending_and_wake(struct task_struct *t);
2518 extern void recalc_sigpending(void);
2519
2520 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
2521
2522 static inline void signal_wake_up(struct task_struct *t, bool resume)
2523 {
2524 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
2525 }
2526 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
2527 {
2528 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
2529 }
2530
2531 /*
2532 * Wrappers for p->thread_info->cpu access. No-op on UP.
2533 */
2534 #ifdef CONFIG_SMP
2535
2536 static inline unsigned int task_cpu(const struct task_struct *p)
2537 {
2538 return task_thread_info(p)->cpu;
2539 }
2540
2541 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2542
2543 #else
2544
2545 static inline unsigned int task_cpu(const struct task_struct *p)
2546 {
2547 return 0;
2548 }
2549
2550 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2551 {
2552 }
2553
2554 #endif /* CONFIG_SMP */
2555
2556 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2557 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2558
2559 #ifdef CONFIG_CGROUP_SCHED
2560 extern struct task_group root_task_group;
2561 #endif /* CONFIG_CGROUP_SCHED */
2562
2563 extern int task_can_switch_user(struct user_struct *up,
2564 struct task_struct *tsk);
2565
2566 #ifdef CONFIG_TASK_XACCT
2567 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2568 {
2569 tsk->ioac.rchar += amt;
2570 }
2571
2572 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2573 {
2574 tsk->ioac.wchar += amt;
2575 }
2576
2577 static inline void inc_syscr(struct task_struct *tsk)
2578 {
2579 tsk->ioac.syscr++;
2580 }
2581
2582 static inline void inc_syscw(struct task_struct *tsk)
2583 {
2584 tsk->ioac.syscw++;
2585 }
2586 #else
2587 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2588 {
2589 }
2590
2591 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2592 {
2593 }
2594
2595 static inline void inc_syscr(struct task_struct *tsk)
2596 {
2597 }
2598
2599 static inline void inc_syscw(struct task_struct *tsk)
2600 {
2601 }
2602 #endif
2603
2604 #ifndef TASK_SIZE_OF
2605 #define TASK_SIZE_OF(tsk) TASK_SIZE
2606 #endif
2607
2608 #ifdef CONFIG_MM_OWNER
2609 extern void mm_update_next_owner(struct mm_struct *mm);
2610 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2611 #else
2612 static inline void mm_update_next_owner(struct mm_struct *mm)
2613 {
2614 }
2615
2616 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2617 {
2618 }
2619 #endif /* CONFIG_MM_OWNER */
2620
2621 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2622 unsigned int limit)
2623 {
2624 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2625 }
2626
2627 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2628 unsigned int limit)
2629 {
2630 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2631 }
2632
2633 static inline unsigned long rlimit(unsigned int limit)
2634 {
2635 return task_rlimit(current, limit);
2636 }
2637
2638 static inline unsigned long rlimit_max(unsigned int limit)
2639 {
2640 return task_rlimit_max(current, limit);
2641 }
2642
2643 #endif
This page took 0.14442 seconds and 5 git commands to generate.