When stacked block devices are in-use (e.g. md or dm), the recursive calls
[deliverable/linux.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <linux/auxvec.h> /* For AT_VECTOR_SIZE */
5
6 /*
7 * cloning flags:
8 */
9 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
10 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
11 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
12 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
13 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
14 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
15 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
16 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
17 #define CLONE_THREAD 0x00010000 /* Same thread group? */
18 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
19 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
20 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
21 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
22 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
23 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
24 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
25 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
26 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
27 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
28 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
29
30 /*
31 * Scheduling policies
32 */
33 #define SCHED_NORMAL 0
34 #define SCHED_FIFO 1
35 #define SCHED_RR 2
36 #define SCHED_BATCH 3
37
38 #ifdef __KERNEL__
39
40 struct sched_param {
41 int sched_priority;
42 };
43
44 #include <asm/param.h> /* for HZ */
45
46 #include <linux/capability.h>
47 #include <linux/threads.h>
48 #include <linux/kernel.h>
49 #include <linux/types.h>
50 #include <linux/timex.h>
51 #include <linux/jiffies.h>
52 #include <linux/rbtree.h>
53 #include <linux/thread_info.h>
54 #include <linux/cpumask.h>
55 #include <linux/errno.h>
56 #include <linux/nodemask.h>
57
58 #include <asm/system.h>
59 #include <asm/semaphore.h>
60 #include <asm/page.h>
61 #include <asm/ptrace.h>
62 #include <asm/mmu.h>
63 #include <asm/cputime.h>
64
65 #include <linux/smp.h>
66 #include <linux/sem.h>
67 #include <linux/signal.h>
68 #include <linux/securebits.h>
69 #include <linux/fs_struct.h>
70 #include <linux/compiler.h>
71 #include <linux/completion.h>
72 #include <linux/pid.h>
73 #include <linux/percpu.h>
74 #include <linux/topology.h>
75 #include <linux/seccomp.h>
76 #include <linux/rcupdate.h>
77 #include <linux/futex.h>
78 #include <linux/rtmutex.h>
79
80 #include <linux/time.h>
81 #include <linux/param.h>
82 #include <linux/resource.h>
83 #include <linux/timer.h>
84 #include <linux/hrtimer.h>
85 #include <linux/task_io_accounting.h>
86
87 #include <asm/processor.h>
88
89 struct exec_domain;
90 struct futex_pi_state;
91 struct bio;
92
93 /*
94 * List of flags we want to share for kernel threads,
95 * if only because they are not used by them anyway.
96 */
97 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
98
99 /*
100 * These are the constant used to fake the fixed-point load-average
101 * counting. Some notes:
102 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
103 * a load-average precision of 10 bits integer + 11 bits fractional
104 * - if you want to count load-averages more often, you need more
105 * precision, or rounding will get you. With 2-second counting freq,
106 * the EXP_n values would be 1981, 2034 and 2043 if still using only
107 * 11 bit fractions.
108 */
109 extern unsigned long avenrun[]; /* Load averages */
110
111 #define FSHIFT 11 /* nr of bits of precision */
112 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
113 #define LOAD_FREQ (5*HZ) /* 5 sec intervals */
114 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
115 #define EXP_5 2014 /* 1/exp(5sec/5min) */
116 #define EXP_15 2037 /* 1/exp(5sec/15min) */
117
118 #define CALC_LOAD(load,exp,n) \
119 load *= exp; \
120 load += n*(FIXED_1-exp); \
121 load >>= FSHIFT;
122
123 extern unsigned long total_forks;
124 extern int nr_threads;
125 DECLARE_PER_CPU(unsigned long, process_counts);
126 extern int nr_processes(void);
127 extern unsigned long nr_running(void);
128 extern unsigned long nr_uninterruptible(void);
129 extern unsigned long nr_active(void);
130 extern unsigned long nr_iowait(void);
131 extern unsigned long weighted_cpuload(const int cpu);
132
133
134 /*
135 * Task state bitmask. NOTE! These bits are also
136 * encoded in fs/proc/array.c: get_task_state().
137 *
138 * We have two separate sets of flags: task->state
139 * is about runnability, while task->exit_state are
140 * about the task exiting. Confusing, but this way
141 * modifying one set can't modify the other one by
142 * mistake.
143 */
144 #define TASK_RUNNING 0
145 #define TASK_INTERRUPTIBLE 1
146 #define TASK_UNINTERRUPTIBLE 2
147 #define TASK_STOPPED 4
148 #define TASK_TRACED 8
149 /* in tsk->exit_state */
150 #define EXIT_ZOMBIE 16
151 #define EXIT_DEAD 32
152 /* in tsk->state again */
153 #define TASK_NONINTERACTIVE 64
154 #define TASK_DEAD 128
155
156 #define __set_task_state(tsk, state_value) \
157 do { (tsk)->state = (state_value); } while (0)
158 #define set_task_state(tsk, state_value) \
159 set_mb((tsk)->state, (state_value))
160
161 /*
162 * set_current_state() includes a barrier so that the write of current->state
163 * is correctly serialised wrt the caller's subsequent test of whether to
164 * actually sleep:
165 *
166 * set_current_state(TASK_UNINTERRUPTIBLE);
167 * if (do_i_need_to_sleep())
168 * schedule();
169 *
170 * If the caller does not need such serialisation then use __set_current_state()
171 */
172 #define __set_current_state(state_value) \
173 do { current->state = (state_value); } while (0)
174 #define set_current_state(state_value) \
175 set_mb(current->state, (state_value))
176
177 /* Task command name length */
178 #define TASK_COMM_LEN 16
179
180 #include <linux/spinlock.h>
181
182 /*
183 * This serializes "schedule()" and also protects
184 * the run-queue from deletions/modifications (but
185 * _adding_ to the beginning of the run-queue has
186 * a separate lock).
187 */
188 extern rwlock_t tasklist_lock;
189 extern spinlock_t mmlist_lock;
190
191 struct task_struct;
192
193 extern void sched_init(void);
194 extern void sched_init_smp(void);
195 extern void init_idle(struct task_struct *idle, int cpu);
196
197 extern cpumask_t nohz_cpu_mask;
198 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
199 extern int select_nohz_load_balancer(int cpu);
200 #else
201 static inline int select_nohz_load_balancer(int cpu)
202 {
203 return 0;
204 }
205 #endif
206
207 /*
208 * Only dump TASK_* tasks. (0 for all tasks)
209 */
210 extern void show_state_filter(unsigned long state_filter);
211
212 static inline void show_state(void)
213 {
214 show_state_filter(0);
215 }
216
217 extern void show_regs(struct pt_regs *);
218
219 /*
220 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
221 * task), SP is the stack pointer of the first frame that should be shown in the back
222 * trace (or NULL if the entire call-chain of the task should be shown).
223 */
224 extern void show_stack(struct task_struct *task, unsigned long *sp);
225
226 void io_schedule(void);
227 long io_schedule_timeout(long timeout);
228
229 extern void cpu_init (void);
230 extern void trap_init(void);
231 extern void update_process_times(int user);
232 extern void scheduler_tick(void);
233
234 #ifdef CONFIG_DETECT_SOFTLOCKUP
235 extern void softlockup_tick(void);
236 extern void spawn_softlockup_task(void);
237 extern void touch_softlockup_watchdog(void);
238 extern void touch_all_softlockup_watchdogs(void);
239 #else
240 static inline void softlockup_tick(void)
241 {
242 }
243 static inline void spawn_softlockup_task(void)
244 {
245 }
246 static inline void touch_softlockup_watchdog(void)
247 {
248 }
249 static inline void touch_all_softlockup_watchdogs(void)
250 {
251 }
252 #endif
253
254
255 /* Attach to any functions which should be ignored in wchan output. */
256 #define __sched __attribute__((__section__(".sched.text")))
257 /* Is this address in the __sched functions? */
258 extern int in_sched_functions(unsigned long addr);
259
260 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
261 extern signed long FASTCALL(schedule_timeout(signed long timeout));
262 extern signed long schedule_timeout_interruptible(signed long timeout);
263 extern signed long schedule_timeout_uninterruptible(signed long timeout);
264 asmlinkage void schedule(void);
265
266 struct nsproxy;
267
268 /* Maximum number of active map areas.. This is a random (large) number */
269 #define DEFAULT_MAX_MAP_COUNT 65536
270
271 extern int sysctl_max_map_count;
272
273 #include <linux/aio.h>
274
275 extern unsigned long
276 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
277 unsigned long, unsigned long);
278 extern unsigned long
279 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
280 unsigned long len, unsigned long pgoff,
281 unsigned long flags);
282 extern void arch_unmap_area(struct mm_struct *, unsigned long);
283 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
284
285 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
286 /*
287 * The mm counters are not protected by its page_table_lock,
288 * so must be incremented atomically.
289 */
290 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
291 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
292 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
293 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
294 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
295 typedef atomic_long_t mm_counter_t;
296
297 #else /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
298 /*
299 * The mm counters are protected by its page_table_lock,
300 * so can be incremented directly.
301 */
302 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
303 #define get_mm_counter(mm, member) ((mm)->_##member)
304 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
305 #define inc_mm_counter(mm, member) (mm)->_##member++
306 #define dec_mm_counter(mm, member) (mm)->_##member--
307 typedef unsigned long mm_counter_t;
308
309 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
310
311 #define get_mm_rss(mm) \
312 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
313 #define update_hiwater_rss(mm) do { \
314 unsigned long _rss = get_mm_rss(mm); \
315 if ((mm)->hiwater_rss < _rss) \
316 (mm)->hiwater_rss = _rss; \
317 } while (0)
318 #define update_hiwater_vm(mm) do { \
319 if ((mm)->hiwater_vm < (mm)->total_vm) \
320 (mm)->hiwater_vm = (mm)->total_vm; \
321 } while (0)
322
323 struct mm_struct {
324 struct vm_area_struct * mmap; /* list of VMAs */
325 struct rb_root mm_rb;
326 struct vm_area_struct * mmap_cache; /* last find_vma result */
327 unsigned long (*get_unmapped_area) (struct file *filp,
328 unsigned long addr, unsigned long len,
329 unsigned long pgoff, unsigned long flags);
330 void (*unmap_area) (struct mm_struct *mm, unsigned long addr);
331 unsigned long mmap_base; /* base of mmap area */
332 unsigned long task_size; /* size of task vm space */
333 unsigned long cached_hole_size; /* if non-zero, the largest hole below free_area_cache */
334 unsigned long free_area_cache; /* first hole of size cached_hole_size or larger */
335 pgd_t * pgd;
336 atomic_t mm_users; /* How many users with user space? */
337 atomic_t mm_count; /* How many references to "struct mm_struct" (users count as 1) */
338 int map_count; /* number of VMAs */
339 struct rw_semaphore mmap_sem;
340 spinlock_t page_table_lock; /* Protects page tables and some counters */
341
342 struct list_head mmlist; /* List of maybe swapped mm's. These are globally strung
343 * together off init_mm.mmlist, and are protected
344 * by mmlist_lock
345 */
346
347 /* Special counters, in some configurations protected by the
348 * page_table_lock, in other configurations by being atomic.
349 */
350 mm_counter_t _file_rss;
351 mm_counter_t _anon_rss;
352
353 unsigned long hiwater_rss; /* High-watermark of RSS usage */
354 unsigned long hiwater_vm; /* High-water virtual memory usage */
355
356 unsigned long total_vm, locked_vm, shared_vm, exec_vm;
357 unsigned long stack_vm, reserved_vm, def_flags, nr_ptes;
358 unsigned long start_code, end_code, start_data, end_data;
359 unsigned long start_brk, brk, start_stack;
360 unsigned long arg_start, arg_end, env_start, env_end;
361
362 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
363
364 cpumask_t cpu_vm_mask;
365
366 /* Architecture-specific MM context */
367 mm_context_t context;
368
369 /* Swap token stuff */
370 /*
371 * Last value of global fault stamp as seen by this process.
372 * In other words, this value gives an indication of how long
373 * it has been since this task got the token.
374 * Look at mm/thrash.c
375 */
376 unsigned int faultstamp;
377 unsigned int token_priority;
378 unsigned int last_interval;
379
380 unsigned char dumpable:2;
381
382 /* coredumping support */
383 int core_waiters;
384 struct completion *core_startup_done, core_done;
385
386 /* aio bits */
387 rwlock_t ioctx_list_lock;
388 struct kioctx *ioctx_list;
389 };
390
391 struct sighand_struct {
392 atomic_t count;
393 struct k_sigaction action[_NSIG];
394 spinlock_t siglock;
395 };
396
397 struct pacct_struct {
398 int ac_flag;
399 long ac_exitcode;
400 unsigned long ac_mem;
401 cputime_t ac_utime, ac_stime;
402 unsigned long ac_minflt, ac_majflt;
403 };
404
405 /*
406 * NOTE! "signal_struct" does not have it's own
407 * locking, because a shared signal_struct always
408 * implies a shared sighand_struct, so locking
409 * sighand_struct is always a proper superset of
410 * the locking of signal_struct.
411 */
412 struct signal_struct {
413 atomic_t count;
414 atomic_t live;
415
416 wait_queue_head_t wait_chldexit; /* for wait4() */
417
418 /* current thread group signal load-balancing target: */
419 struct task_struct *curr_target;
420
421 /* shared signal handling: */
422 struct sigpending shared_pending;
423
424 /* thread group exit support */
425 int group_exit_code;
426 /* overloaded:
427 * - notify group_exit_task when ->count is equal to notify_count
428 * - everyone except group_exit_task is stopped during signal delivery
429 * of fatal signals, group_exit_task processes the signal.
430 */
431 struct task_struct *group_exit_task;
432 int notify_count;
433
434 /* thread group stop support, overloads group_exit_code too */
435 int group_stop_count;
436 unsigned int flags; /* see SIGNAL_* flags below */
437
438 /* POSIX.1b Interval Timers */
439 struct list_head posix_timers;
440
441 /* ITIMER_REAL timer for the process */
442 struct hrtimer real_timer;
443 struct task_struct *tsk;
444 ktime_t it_real_incr;
445
446 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
447 cputime_t it_prof_expires, it_virt_expires;
448 cputime_t it_prof_incr, it_virt_incr;
449
450 /* job control IDs */
451 pid_t pgrp;
452 struct pid *tty_old_pgrp;
453
454 union {
455 pid_t session __deprecated;
456 pid_t __session;
457 };
458
459 /* boolean value for session group leader */
460 int leader;
461
462 struct tty_struct *tty; /* NULL if no tty */
463
464 /*
465 * Cumulative resource counters for dead threads in the group,
466 * and for reaped dead child processes forked by this group.
467 * Live threads maintain their own counters and add to these
468 * in __exit_signal, except for the group leader.
469 */
470 cputime_t utime, stime, cutime, cstime;
471 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
472 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
473
474 /*
475 * Cumulative ns of scheduled CPU time for dead threads in the
476 * group, not including a zombie group leader. (This only differs
477 * from jiffies_to_ns(utime + stime) if sched_clock uses something
478 * other than jiffies.)
479 */
480 unsigned long long sched_time;
481
482 /*
483 * We don't bother to synchronize most readers of this at all,
484 * because there is no reader checking a limit that actually needs
485 * to get both rlim_cur and rlim_max atomically, and either one
486 * alone is a single word that can safely be read normally.
487 * getrlimit/setrlimit use task_lock(current->group_leader) to
488 * protect this instead of the siglock, because they really
489 * have no need to disable irqs.
490 */
491 struct rlimit rlim[RLIM_NLIMITS];
492
493 struct list_head cpu_timers[3];
494
495 /* keep the process-shared keyrings here so that they do the right
496 * thing in threads created with CLONE_THREAD */
497 #ifdef CONFIG_KEYS
498 struct key *session_keyring; /* keyring inherited over fork */
499 struct key *process_keyring; /* keyring private to this process */
500 #endif
501 #ifdef CONFIG_BSD_PROCESS_ACCT
502 struct pacct_struct pacct; /* per-process accounting information */
503 #endif
504 #ifdef CONFIG_TASKSTATS
505 struct taskstats *stats;
506 #endif
507 };
508
509 /* Context switch must be unlocked if interrupts are to be enabled */
510 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
511 # define __ARCH_WANT_UNLOCKED_CTXSW
512 #endif
513
514 /*
515 * Bits in flags field of signal_struct.
516 */
517 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
518 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
519 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
520 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
521
522
523 /*
524 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
525 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
526 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
527 * values are inverted: lower p->prio value means higher priority.
528 *
529 * The MAX_USER_RT_PRIO value allows the actual maximum
530 * RT priority to be separate from the value exported to
531 * user-space. This allows kernel threads to set their
532 * priority to a value higher than any user task. Note:
533 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
534 */
535
536 #define MAX_USER_RT_PRIO 100
537 #define MAX_RT_PRIO MAX_USER_RT_PRIO
538
539 #define MAX_PRIO (MAX_RT_PRIO + 40)
540
541 #define rt_prio(prio) unlikely((prio) < MAX_RT_PRIO)
542 #define rt_task(p) rt_prio((p)->prio)
543 #define batch_task(p) (unlikely((p)->policy == SCHED_BATCH))
544 #define is_rt_policy(p) ((p) != SCHED_NORMAL && (p) != SCHED_BATCH)
545 #define has_rt_policy(p) unlikely(is_rt_policy((p)->policy))
546
547 /*
548 * Some day this will be a full-fledged user tracking system..
549 */
550 struct user_struct {
551 atomic_t __count; /* reference count */
552 atomic_t processes; /* How many processes does this user have? */
553 atomic_t files; /* How many open files does this user have? */
554 atomic_t sigpending; /* How many pending signals does this user have? */
555 #ifdef CONFIG_INOTIFY_USER
556 atomic_t inotify_watches; /* How many inotify watches does this user have? */
557 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
558 #endif
559 /* protected by mq_lock */
560 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
561 unsigned long locked_shm; /* How many pages of mlocked shm ? */
562
563 #ifdef CONFIG_KEYS
564 struct key *uid_keyring; /* UID specific keyring */
565 struct key *session_keyring; /* UID's default session keyring */
566 #endif
567
568 /* Hash table maintenance information */
569 struct list_head uidhash_list;
570 uid_t uid;
571 };
572
573 extern struct user_struct *find_user(uid_t);
574
575 extern struct user_struct root_user;
576 #define INIT_USER (&root_user)
577
578 struct backing_dev_info;
579 struct reclaim_state;
580
581 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
582 struct sched_info {
583 /* cumulative counters */
584 unsigned long cpu_time, /* time spent on the cpu */
585 run_delay, /* time spent waiting on a runqueue */
586 pcnt; /* # of timeslices run on this cpu */
587
588 /* timestamps */
589 unsigned long last_arrival, /* when we last ran on a cpu */
590 last_queued; /* when we were last queued to run */
591 };
592 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
593
594 #ifdef CONFIG_SCHEDSTATS
595 extern const struct file_operations proc_schedstat_operations;
596 #endif /* CONFIG_SCHEDSTATS */
597
598 #ifdef CONFIG_TASK_DELAY_ACCT
599 struct task_delay_info {
600 spinlock_t lock;
601 unsigned int flags; /* Private per-task flags */
602
603 /* For each stat XXX, add following, aligned appropriately
604 *
605 * struct timespec XXX_start, XXX_end;
606 * u64 XXX_delay;
607 * u32 XXX_count;
608 *
609 * Atomicity of updates to XXX_delay, XXX_count protected by
610 * single lock above (split into XXX_lock if contention is an issue).
611 */
612
613 /*
614 * XXX_count is incremented on every XXX operation, the delay
615 * associated with the operation is added to XXX_delay.
616 * XXX_delay contains the accumulated delay time in nanoseconds.
617 */
618 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
619 u64 blkio_delay; /* wait for sync block io completion */
620 u64 swapin_delay; /* wait for swapin block io completion */
621 u32 blkio_count; /* total count of the number of sync block */
622 /* io operations performed */
623 u32 swapin_count; /* total count of the number of swapin block */
624 /* io operations performed */
625 };
626 #endif /* CONFIG_TASK_DELAY_ACCT */
627
628 static inline int sched_info_on(void)
629 {
630 #ifdef CONFIG_SCHEDSTATS
631 return 1;
632 #elif defined(CONFIG_TASK_DELAY_ACCT)
633 extern int delayacct_on;
634 return delayacct_on;
635 #else
636 return 0;
637 #endif
638 }
639
640 enum idle_type
641 {
642 SCHED_IDLE,
643 NOT_IDLE,
644 NEWLY_IDLE,
645 MAX_IDLE_TYPES
646 };
647
648 /*
649 * sched-domains (multiprocessor balancing) declarations:
650 */
651 #define SCHED_LOAD_SCALE 128UL /* increase resolution of load */
652
653 #ifdef CONFIG_SMP
654 #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */
655 #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */
656 #define SD_BALANCE_EXEC 4 /* Balance on exec */
657 #define SD_BALANCE_FORK 8 /* Balance on fork, clone */
658 #define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */
659 #define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */
660 #define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */
661 #define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */
662 #define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */
663 #define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */
664 #define SD_SERIALIZE 1024 /* Only a single load balancing instance */
665
666 #define BALANCE_FOR_MC_POWER \
667 (sched_smt_power_savings ? SD_POWERSAVINGS_BALANCE : 0)
668
669 #define BALANCE_FOR_PKG_POWER \
670 ((sched_mc_power_savings || sched_smt_power_savings) ? \
671 SD_POWERSAVINGS_BALANCE : 0)
672
673 #define test_sd_parent(sd, flag) ((sd->parent && \
674 (sd->parent->flags & flag)) ? 1 : 0)
675
676
677 struct sched_group {
678 struct sched_group *next; /* Must be a circular list */
679 cpumask_t cpumask;
680
681 /*
682 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
683 * single CPU. This is read only (except for setup, hotplug CPU).
684 * Note : Never change cpu_power without recompute its reciprocal
685 */
686 unsigned int __cpu_power;
687 /*
688 * reciprocal value of cpu_power to avoid expensive divides
689 * (see include/linux/reciprocal_div.h)
690 */
691 u32 reciprocal_cpu_power;
692 };
693
694 struct sched_domain {
695 /* These fields must be setup */
696 struct sched_domain *parent; /* top domain must be null terminated */
697 struct sched_domain *child; /* bottom domain must be null terminated */
698 struct sched_group *groups; /* the balancing groups of the domain */
699 cpumask_t span; /* span of all CPUs in this domain */
700 unsigned long min_interval; /* Minimum balance interval ms */
701 unsigned long max_interval; /* Maximum balance interval ms */
702 unsigned int busy_factor; /* less balancing by factor if busy */
703 unsigned int imbalance_pct; /* No balance until over watermark */
704 unsigned long long cache_hot_time; /* Task considered cache hot (ns) */
705 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
706 unsigned int busy_idx;
707 unsigned int idle_idx;
708 unsigned int newidle_idx;
709 unsigned int wake_idx;
710 unsigned int forkexec_idx;
711 int flags; /* See SD_* */
712
713 /* Runtime fields. */
714 unsigned long last_balance; /* init to jiffies. units in jiffies */
715 unsigned int balance_interval; /* initialise to 1. units in ms. */
716 unsigned int nr_balance_failed; /* initialise to 0 */
717
718 #ifdef CONFIG_SCHEDSTATS
719 /* load_balance() stats */
720 unsigned long lb_cnt[MAX_IDLE_TYPES];
721 unsigned long lb_failed[MAX_IDLE_TYPES];
722 unsigned long lb_balanced[MAX_IDLE_TYPES];
723 unsigned long lb_imbalance[MAX_IDLE_TYPES];
724 unsigned long lb_gained[MAX_IDLE_TYPES];
725 unsigned long lb_hot_gained[MAX_IDLE_TYPES];
726 unsigned long lb_nobusyg[MAX_IDLE_TYPES];
727 unsigned long lb_nobusyq[MAX_IDLE_TYPES];
728
729 /* Active load balancing */
730 unsigned long alb_cnt;
731 unsigned long alb_failed;
732 unsigned long alb_pushed;
733
734 /* SD_BALANCE_EXEC stats */
735 unsigned long sbe_cnt;
736 unsigned long sbe_balanced;
737 unsigned long sbe_pushed;
738
739 /* SD_BALANCE_FORK stats */
740 unsigned long sbf_cnt;
741 unsigned long sbf_balanced;
742 unsigned long sbf_pushed;
743
744 /* try_to_wake_up() stats */
745 unsigned long ttwu_wake_remote;
746 unsigned long ttwu_move_affine;
747 unsigned long ttwu_move_balance;
748 #endif
749 };
750
751 extern int partition_sched_domains(cpumask_t *partition1,
752 cpumask_t *partition2);
753
754 /*
755 * Maximum cache size the migration-costs auto-tuning code will
756 * search from:
757 */
758 extern unsigned int max_cache_size;
759
760 #endif /* CONFIG_SMP */
761
762
763 struct io_context; /* See blkdev.h */
764 struct cpuset;
765
766 #define NGROUPS_SMALL 32
767 #define NGROUPS_PER_BLOCK ((int)(PAGE_SIZE / sizeof(gid_t)))
768 struct group_info {
769 int ngroups;
770 atomic_t usage;
771 gid_t small_block[NGROUPS_SMALL];
772 int nblocks;
773 gid_t *blocks[0];
774 };
775
776 /*
777 * get_group_info() must be called with the owning task locked (via task_lock())
778 * when task != current. The reason being that the vast majority of callers are
779 * looking at current->group_info, which can not be changed except by the
780 * current task. Changing current->group_info requires the task lock, too.
781 */
782 #define get_group_info(group_info) do { \
783 atomic_inc(&(group_info)->usage); \
784 } while (0)
785
786 #define put_group_info(group_info) do { \
787 if (atomic_dec_and_test(&(group_info)->usage)) \
788 groups_free(group_info); \
789 } while (0)
790
791 extern struct group_info *groups_alloc(int gidsetsize);
792 extern void groups_free(struct group_info *group_info);
793 extern int set_current_groups(struct group_info *group_info);
794 extern int groups_search(struct group_info *group_info, gid_t grp);
795 /* access the groups "array" with this macro */
796 #define GROUP_AT(gi, i) \
797 ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK])
798
799 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
800 extern void prefetch_stack(struct task_struct *t);
801 #else
802 static inline void prefetch_stack(struct task_struct *t) { }
803 #endif
804
805 struct audit_context; /* See audit.c */
806 struct mempolicy;
807 struct pipe_inode_info;
808 struct uts_namespace;
809
810 enum sleep_type {
811 SLEEP_NORMAL,
812 SLEEP_NONINTERACTIVE,
813 SLEEP_INTERACTIVE,
814 SLEEP_INTERRUPTED,
815 };
816
817 struct prio_array;
818
819 struct task_struct {
820 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
821 void *stack;
822 atomic_t usage;
823 unsigned int flags; /* per process flags, defined below */
824 unsigned int ptrace;
825
826 int lock_depth; /* BKL lock depth */
827
828 #ifdef CONFIG_SMP
829 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
830 int oncpu;
831 #endif
832 #endif
833 int load_weight; /* for niceness load balancing purposes */
834 int prio, static_prio, normal_prio;
835 struct list_head run_list;
836 struct prio_array *array;
837
838 unsigned short ioprio;
839 #ifdef CONFIG_BLK_DEV_IO_TRACE
840 unsigned int btrace_seq;
841 #endif
842 unsigned long sleep_avg;
843 unsigned long long timestamp, last_ran;
844 unsigned long long sched_time; /* sched_clock time spent running */
845 enum sleep_type sleep_type;
846
847 unsigned int policy;
848 cpumask_t cpus_allowed;
849 unsigned int time_slice, first_time_slice;
850
851 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
852 struct sched_info sched_info;
853 #endif
854
855 struct list_head tasks;
856 /*
857 * ptrace_list/ptrace_children forms the list of my children
858 * that were stolen by a ptracer.
859 */
860 struct list_head ptrace_children;
861 struct list_head ptrace_list;
862
863 struct mm_struct *mm, *active_mm;
864
865 /* task state */
866 struct linux_binfmt *binfmt;
867 int exit_state;
868 int exit_code, exit_signal;
869 int pdeath_signal; /* The signal sent when the parent dies */
870 /* ??? */
871 unsigned int personality;
872 unsigned did_exec:1;
873 pid_t pid;
874 pid_t tgid;
875
876 #ifdef CONFIG_CC_STACKPROTECTOR
877 /* Canary value for the -fstack-protector gcc feature */
878 unsigned long stack_canary;
879 #endif
880 /*
881 * pointers to (original) parent process, youngest child, younger sibling,
882 * older sibling, respectively. (p->father can be replaced with
883 * p->parent->pid)
884 */
885 struct task_struct *real_parent; /* real parent process (when being debugged) */
886 struct task_struct *parent; /* parent process */
887 /*
888 * children/sibling forms the list of my children plus the
889 * tasks I'm ptracing.
890 */
891 struct list_head children; /* list of my children */
892 struct list_head sibling; /* linkage in my parent's children list */
893 struct task_struct *group_leader; /* threadgroup leader */
894
895 /* PID/PID hash table linkage. */
896 struct pid_link pids[PIDTYPE_MAX];
897 struct list_head thread_group;
898
899 struct completion *vfork_done; /* for vfork() */
900 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
901 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
902
903 unsigned int rt_priority;
904 cputime_t utime, stime;
905 unsigned long nvcsw, nivcsw; /* context switch counts */
906 struct timespec start_time;
907 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
908 unsigned long min_flt, maj_flt;
909
910 cputime_t it_prof_expires, it_virt_expires;
911 unsigned long long it_sched_expires;
912 struct list_head cpu_timers[3];
913
914 /* process credentials */
915 uid_t uid,euid,suid,fsuid;
916 gid_t gid,egid,sgid,fsgid;
917 struct group_info *group_info;
918 kernel_cap_t cap_effective, cap_inheritable, cap_permitted;
919 unsigned keep_capabilities:1;
920 struct user_struct *user;
921 #ifdef CONFIG_KEYS
922 struct key *request_key_auth; /* assumed request_key authority */
923 struct key *thread_keyring; /* keyring private to this thread */
924 unsigned char jit_keyring; /* default keyring to attach requested keys to */
925 #endif
926 /*
927 * fpu_counter contains the number of consecutive context switches
928 * that the FPU is used. If this is over a threshold, the lazy fpu
929 * saving becomes unlazy to save the trap. This is an unsigned char
930 * so that after 256 times the counter wraps and the behavior turns
931 * lazy again; this to deal with bursty apps that only use FPU for
932 * a short time
933 */
934 unsigned char fpu_counter;
935 int oomkilladj; /* OOM kill score adjustment (bit shift). */
936 char comm[TASK_COMM_LEN]; /* executable name excluding path
937 - access with [gs]et_task_comm (which lock
938 it with task_lock())
939 - initialized normally by flush_old_exec */
940 /* file system info */
941 int link_count, total_link_count;
942 #ifdef CONFIG_SYSVIPC
943 /* ipc stuff */
944 struct sysv_sem sysvsem;
945 #endif
946 /* CPU-specific state of this task */
947 struct thread_struct thread;
948 /* filesystem information */
949 struct fs_struct *fs;
950 /* open file information */
951 struct files_struct *files;
952 /* namespaces */
953 struct nsproxy *nsproxy;
954 /* signal handlers */
955 struct signal_struct *signal;
956 struct sighand_struct *sighand;
957
958 sigset_t blocked, real_blocked;
959 sigset_t saved_sigmask; /* To be restored with TIF_RESTORE_SIGMASK */
960 struct sigpending pending;
961
962 unsigned long sas_ss_sp;
963 size_t sas_ss_size;
964 int (*notifier)(void *priv);
965 void *notifier_data;
966 sigset_t *notifier_mask;
967
968 void *security;
969 struct audit_context *audit_context;
970 seccomp_t seccomp;
971
972 /* Thread group tracking */
973 u32 parent_exec_id;
974 u32 self_exec_id;
975 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
976 spinlock_t alloc_lock;
977
978 /* Protection of the PI data structures: */
979 spinlock_t pi_lock;
980
981 #ifdef CONFIG_RT_MUTEXES
982 /* PI waiters blocked on a rt_mutex held by this task */
983 struct plist_head pi_waiters;
984 /* Deadlock detection and priority inheritance handling */
985 struct rt_mutex_waiter *pi_blocked_on;
986 #endif
987
988 #ifdef CONFIG_DEBUG_MUTEXES
989 /* mutex deadlock detection */
990 struct mutex_waiter *blocked_on;
991 #endif
992 #ifdef CONFIG_TRACE_IRQFLAGS
993 unsigned int irq_events;
994 int hardirqs_enabled;
995 unsigned long hardirq_enable_ip;
996 unsigned int hardirq_enable_event;
997 unsigned long hardirq_disable_ip;
998 unsigned int hardirq_disable_event;
999 int softirqs_enabled;
1000 unsigned long softirq_disable_ip;
1001 unsigned int softirq_disable_event;
1002 unsigned long softirq_enable_ip;
1003 unsigned int softirq_enable_event;
1004 int hardirq_context;
1005 int softirq_context;
1006 #endif
1007 #ifdef CONFIG_LOCKDEP
1008 # define MAX_LOCK_DEPTH 30UL
1009 u64 curr_chain_key;
1010 int lockdep_depth;
1011 struct held_lock held_locks[MAX_LOCK_DEPTH];
1012 unsigned int lockdep_recursion;
1013 #endif
1014
1015 /* journalling filesystem info */
1016 void *journal_info;
1017
1018 /* stacked block device info */
1019 struct bio *bio_list, **bio_tail;
1020
1021 /* VM state */
1022 struct reclaim_state *reclaim_state;
1023
1024 struct backing_dev_info *backing_dev_info;
1025
1026 struct io_context *io_context;
1027
1028 unsigned long ptrace_message;
1029 siginfo_t *last_siginfo; /* For ptrace use. */
1030 /*
1031 * current io wait handle: wait queue entry to use for io waits
1032 * If this thread is processing aio, this points at the waitqueue
1033 * inside the currently handled kiocb. It may be NULL (i.e. default
1034 * to a stack based synchronous wait) if its doing sync IO.
1035 */
1036 wait_queue_t *io_wait;
1037 #ifdef CONFIG_TASK_XACCT
1038 /* i/o counters(bytes read/written, #syscalls */
1039 u64 rchar, wchar, syscr, syscw;
1040 #endif
1041 struct task_io_accounting ioac;
1042 #if defined(CONFIG_TASK_XACCT)
1043 u64 acct_rss_mem1; /* accumulated rss usage */
1044 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1045 cputime_t acct_stimexpd;/* stime since last update */
1046 #endif
1047 #ifdef CONFIG_NUMA
1048 struct mempolicy *mempolicy;
1049 short il_next;
1050 #endif
1051 #ifdef CONFIG_CPUSETS
1052 struct cpuset *cpuset;
1053 nodemask_t mems_allowed;
1054 int cpuset_mems_generation;
1055 int cpuset_mem_spread_rotor;
1056 #endif
1057 struct robust_list_head __user *robust_list;
1058 #ifdef CONFIG_COMPAT
1059 struct compat_robust_list_head __user *compat_robust_list;
1060 #endif
1061 struct list_head pi_state_list;
1062 struct futex_pi_state *pi_state_cache;
1063
1064 atomic_t fs_excl; /* holding fs exclusive resources */
1065 struct rcu_head rcu;
1066
1067 /*
1068 * cache last used pipe for splice
1069 */
1070 struct pipe_inode_info *splice_pipe;
1071 #ifdef CONFIG_TASK_DELAY_ACCT
1072 struct task_delay_info *delays;
1073 #endif
1074 #ifdef CONFIG_FAULT_INJECTION
1075 int make_it_fail;
1076 #endif
1077 };
1078
1079 static inline pid_t process_group(struct task_struct *tsk)
1080 {
1081 return tsk->signal->pgrp;
1082 }
1083
1084 static inline pid_t signal_session(struct signal_struct *sig)
1085 {
1086 return sig->__session;
1087 }
1088
1089 static inline pid_t process_session(struct task_struct *tsk)
1090 {
1091 return signal_session(tsk->signal);
1092 }
1093
1094 static inline void set_signal_session(struct signal_struct *sig, pid_t session)
1095 {
1096 sig->__session = session;
1097 }
1098
1099 static inline struct pid *task_pid(struct task_struct *task)
1100 {
1101 return task->pids[PIDTYPE_PID].pid;
1102 }
1103
1104 static inline struct pid *task_tgid(struct task_struct *task)
1105 {
1106 return task->group_leader->pids[PIDTYPE_PID].pid;
1107 }
1108
1109 static inline struct pid *task_pgrp(struct task_struct *task)
1110 {
1111 return task->group_leader->pids[PIDTYPE_PGID].pid;
1112 }
1113
1114 static inline struct pid *task_session(struct task_struct *task)
1115 {
1116 return task->group_leader->pids[PIDTYPE_SID].pid;
1117 }
1118
1119 /**
1120 * pid_alive - check that a task structure is not stale
1121 * @p: Task structure to be checked.
1122 *
1123 * Test if a process is not yet dead (at most zombie state)
1124 * If pid_alive fails, then pointers within the task structure
1125 * can be stale and must not be dereferenced.
1126 */
1127 static inline int pid_alive(struct task_struct *p)
1128 {
1129 return p->pids[PIDTYPE_PID].pid != NULL;
1130 }
1131
1132 /**
1133 * is_init - check if a task structure is init
1134 * @tsk: Task structure to be checked.
1135 *
1136 * Check if a task structure is the first user space task the kernel created.
1137 */
1138 static inline int is_init(struct task_struct *tsk)
1139 {
1140 return tsk->pid == 1;
1141 }
1142
1143 extern struct pid *cad_pid;
1144
1145 extern void free_task(struct task_struct *tsk);
1146 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1147
1148 extern void __put_task_struct(struct task_struct *t);
1149
1150 static inline void put_task_struct(struct task_struct *t)
1151 {
1152 if (atomic_dec_and_test(&t->usage))
1153 __put_task_struct(t);
1154 }
1155
1156 /*
1157 * Per process flags
1158 */
1159 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1160 /* Not implemented yet, only for 486*/
1161 #define PF_STARTING 0x00000002 /* being created */
1162 #define PF_EXITING 0x00000004 /* getting shut down */
1163 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1164 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1165 #define PF_DUMPCORE 0x00000200 /* dumped core */
1166 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1167 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1168 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1169 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1170 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1171 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1172 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1173 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1174 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */
1175 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1176 #define PF_BORROWED_MM 0x00200000 /* I am a kthread doing use_mm */
1177 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1178 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1179 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1180 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1181 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1182 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1183
1184 /*
1185 * Only the _current_ task can read/write to tsk->flags, but other
1186 * tasks can access tsk->flags in readonly mode for example
1187 * with tsk_used_math (like during threaded core dumping).
1188 * There is however an exception to this rule during ptrace
1189 * or during fork: the ptracer task is allowed to write to the
1190 * child->flags of its traced child (same goes for fork, the parent
1191 * can write to the child->flags), because we're guaranteed the
1192 * child is not running and in turn not changing child->flags
1193 * at the same time the parent does it.
1194 */
1195 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1196 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1197 #define clear_used_math() clear_stopped_child_used_math(current)
1198 #define set_used_math() set_stopped_child_used_math(current)
1199 #define conditional_stopped_child_used_math(condition, child) \
1200 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1201 #define conditional_used_math(condition) \
1202 conditional_stopped_child_used_math(condition, current)
1203 #define copy_to_stopped_child_used_math(child) \
1204 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1205 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1206 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1207 #define used_math() tsk_used_math(current)
1208
1209 #ifdef CONFIG_SMP
1210 extern int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask);
1211 #else
1212 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1213 {
1214 if (!cpu_isset(0, new_mask))
1215 return -EINVAL;
1216 return 0;
1217 }
1218 #endif
1219
1220 extern unsigned long long sched_clock(void);
1221 extern unsigned long long
1222 current_sched_time(const struct task_struct *current_task);
1223
1224 /* sched_exec is called by processes performing an exec */
1225 #ifdef CONFIG_SMP
1226 extern void sched_exec(void);
1227 #else
1228 #define sched_exec() {}
1229 #endif
1230
1231 #ifdef CONFIG_HOTPLUG_CPU
1232 extern void idle_task_exit(void);
1233 #else
1234 static inline void idle_task_exit(void) {}
1235 #endif
1236
1237 extern void sched_idle_next(void);
1238
1239 #ifdef CONFIG_RT_MUTEXES
1240 extern int rt_mutex_getprio(struct task_struct *p);
1241 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1242 extern void rt_mutex_adjust_pi(struct task_struct *p);
1243 #else
1244 static inline int rt_mutex_getprio(struct task_struct *p)
1245 {
1246 return p->normal_prio;
1247 }
1248 # define rt_mutex_adjust_pi(p) do { } while (0)
1249 #endif
1250
1251 extern void set_user_nice(struct task_struct *p, long nice);
1252 extern int task_prio(const struct task_struct *p);
1253 extern int task_nice(const struct task_struct *p);
1254 extern int can_nice(const struct task_struct *p, const int nice);
1255 extern int task_curr(const struct task_struct *p);
1256 extern int idle_cpu(int cpu);
1257 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1258 extern struct task_struct *idle_task(int cpu);
1259 extern struct task_struct *curr_task(int cpu);
1260 extern void set_curr_task(int cpu, struct task_struct *p);
1261
1262 void yield(void);
1263
1264 /*
1265 * The default (Linux) execution domain.
1266 */
1267 extern struct exec_domain default_exec_domain;
1268
1269 union thread_union {
1270 struct thread_info thread_info;
1271 unsigned long stack[THREAD_SIZE/sizeof(long)];
1272 };
1273
1274 #ifndef __HAVE_ARCH_KSTACK_END
1275 static inline int kstack_end(void *addr)
1276 {
1277 /* Reliable end of stack detection:
1278 * Some APM bios versions misalign the stack
1279 */
1280 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1281 }
1282 #endif
1283
1284 extern union thread_union init_thread_union;
1285 extern struct task_struct init_task;
1286
1287 extern struct mm_struct init_mm;
1288
1289 #define find_task_by_pid(nr) find_task_by_pid_type(PIDTYPE_PID, nr)
1290 extern struct task_struct *find_task_by_pid_type(int type, int pid);
1291 extern void __set_special_pids(pid_t session, pid_t pgrp);
1292
1293 /* per-UID process charging. */
1294 extern struct user_struct * alloc_uid(uid_t);
1295 static inline struct user_struct *get_uid(struct user_struct *u)
1296 {
1297 atomic_inc(&u->__count);
1298 return u;
1299 }
1300 extern void free_uid(struct user_struct *);
1301 extern void switch_uid(struct user_struct *);
1302
1303 #include <asm/current.h>
1304
1305 extern void do_timer(unsigned long ticks);
1306
1307 extern int FASTCALL(wake_up_state(struct task_struct * tsk, unsigned int state));
1308 extern int FASTCALL(wake_up_process(struct task_struct * tsk));
1309 extern void FASTCALL(wake_up_new_task(struct task_struct * tsk,
1310 unsigned long clone_flags));
1311 #ifdef CONFIG_SMP
1312 extern void kick_process(struct task_struct *tsk);
1313 #else
1314 static inline void kick_process(struct task_struct *tsk) { }
1315 #endif
1316 extern void FASTCALL(sched_fork(struct task_struct * p, int clone_flags));
1317 extern void FASTCALL(sched_exit(struct task_struct * p));
1318
1319 extern int in_group_p(gid_t);
1320 extern int in_egroup_p(gid_t);
1321
1322 extern void proc_caches_init(void);
1323 extern void flush_signals(struct task_struct *);
1324 extern void ignore_signals(struct task_struct *);
1325 extern void flush_signal_handlers(struct task_struct *, int force_default);
1326 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1327
1328 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1329 {
1330 unsigned long flags;
1331 int ret;
1332
1333 spin_lock_irqsave(&tsk->sighand->siglock, flags);
1334 ret = dequeue_signal(tsk, mask, info);
1335 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1336
1337 return ret;
1338 }
1339
1340 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1341 sigset_t *mask);
1342 extern void unblock_all_signals(void);
1343 extern void release_task(struct task_struct * p);
1344 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1345 extern int send_group_sig_info(int, struct siginfo *, struct task_struct *);
1346 extern int force_sigsegv(int, struct task_struct *);
1347 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1348 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1349 extern int kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1350 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
1351 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
1352 extern int kill_pgrp(struct pid *pid, int sig, int priv);
1353 extern int kill_pid(struct pid *pid, int sig, int priv);
1354 extern int kill_proc_info(int, struct siginfo *, pid_t);
1355 extern void do_notify_parent(struct task_struct *, int);
1356 extern void force_sig(int, struct task_struct *);
1357 extern void force_sig_specific(int, struct task_struct *);
1358 extern int send_sig(int, struct task_struct *, int);
1359 extern void zap_other_threads(struct task_struct *p);
1360 extern int kill_proc(pid_t, int, int);
1361 extern struct sigqueue *sigqueue_alloc(void);
1362 extern void sigqueue_free(struct sigqueue *);
1363 extern int send_sigqueue(int, struct sigqueue *, struct task_struct *);
1364 extern int send_group_sigqueue(int, struct sigqueue *, struct task_struct *);
1365 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1366 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1367
1368 static inline int kill_cad_pid(int sig, int priv)
1369 {
1370 return kill_pid(cad_pid, sig, priv);
1371 }
1372
1373 /* These can be the second arg to send_sig_info/send_group_sig_info. */
1374 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
1375 #define SEND_SIG_PRIV ((struct siginfo *) 1)
1376 #define SEND_SIG_FORCED ((struct siginfo *) 2)
1377
1378 static inline int is_si_special(const struct siginfo *info)
1379 {
1380 return info <= SEND_SIG_FORCED;
1381 }
1382
1383 /* True if we are on the alternate signal stack. */
1384
1385 static inline int on_sig_stack(unsigned long sp)
1386 {
1387 return (sp - current->sas_ss_sp < current->sas_ss_size);
1388 }
1389
1390 static inline int sas_ss_flags(unsigned long sp)
1391 {
1392 return (current->sas_ss_size == 0 ? SS_DISABLE
1393 : on_sig_stack(sp) ? SS_ONSTACK : 0);
1394 }
1395
1396 /*
1397 * Routines for handling mm_structs
1398 */
1399 extern struct mm_struct * mm_alloc(void);
1400
1401 /* mmdrop drops the mm and the page tables */
1402 extern void FASTCALL(__mmdrop(struct mm_struct *));
1403 static inline void mmdrop(struct mm_struct * mm)
1404 {
1405 if (atomic_dec_and_test(&mm->mm_count))
1406 __mmdrop(mm);
1407 }
1408
1409 /* mmput gets rid of the mappings and all user-space */
1410 extern void mmput(struct mm_struct *);
1411 /* Grab a reference to a task's mm, if it is not already going away */
1412 extern struct mm_struct *get_task_mm(struct task_struct *task);
1413 /* Remove the current tasks stale references to the old mm_struct */
1414 extern void mm_release(struct task_struct *, struct mm_struct *);
1415
1416 extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
1417 extern void flush_thread(void);
1418 extern void exit_thread(void);
1419
1420 extern void exit_files(struct task_struct *);
1421 extern void __cleanup_signal(struct signal_struct *);
1422 extern void __cleanup_sighand(struct sighand_struct *);
1423 extern void exit_itimers(struct signal_struct *);
1424
1425 extern NORET_TYPE void do_group_exit(int);
1426
1427 extern void daemonize(const char *, ...);
1428 extern int allow_signal(int);
1429 extern int disallow_signal(int);
1430
1431 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
1432 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
1433 struct task_struct *fork_idle(int);
1434
1435 extern void set_task_comm(struct task_struct *tsk, char *from);
1436 extern void get_task_comm(char *to, struct task_struct *tsk);
1437
1438 #ifdef CONFIG_SMP
1439 extern void wait_task_inactive(struct task_struct * p);
1440 #else
1441 #define wait_task_inactive(p) do { } while (0)
1442 #endif
1443
1444 #define remove_parent(p) list_del_init(&(p)->sibling)
1445 #define add_parent(p) list_add_tail(&(p)->sibling,&(p)->parent->children)
1446
1447 #define next_task(p) list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks)
1448
1449 #define for_each_process(p) \
1450 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
1451
1452 /*
1453 * Careful: do_each_thread/while_each_thread is a double loop so
1454 * 'break' will not work as expected - use goto instead.
1455 */
1456 #define do_each_thread(g, t) \
1457 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
1458
1459 #define while_each_thread(g, t) \
1460 while ((t = next_thread(t)) != g)
1461
1462 /* de_thread depends on thread_group_leader not being a pid based check */
1463 #define thread_group_leader(p) (p == p->group_leader)
1464
1465 /* Do to the insanities of de_thread it is possible for a process
1466 * to have the pid of the thread group leader without actually being
1467 * the thread group leader. For iteration through the pids in proc
1468 * all we care about is that we have a task with the appropriate
1469 * pid, we don't actually care if we have the right task.
1470 */
1471 static inline int has_group_leader_pid(struct task_struct *p)
1472 {
1473 return p->pid == p->tgid;
1474 }
1475
1476 static inline struct task_struct *next_thread(const struct task_struct *p)
1477 {
1478 return list_entry(rcu_dereference(p->thread_group.next),
1479 struct task_struct, thread_group);
1480 }
1481
1482 static inline int thread_group_empty(struct task_struct *p)
1483 {
1484 return list_empty(&p->thread_group);
1485 }
1486
1487 #define delay_group_leader(p) \
1488 (thread_group_leader(p) && !thread_group_empty(p))
1489
1490 /*
1491 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
1492 * subscriptions and synchronises with wait4(). Also used in procfs. Also
1493 * pins the final release of task.io_context. Also protects ->cpuset.
1494 *
1495 * Nests both inside and outside of read_lock(&tasklist_lock).
1496 * It must not be nested with write_lock_irq(&tasklist_lock),
1497 * neither inside nor outside.
1498 */
1499 static inline void task_lock(struct task_struct *p)
1500 {
1501 spin_lock(&p->alloc_lock);
1502 }
1503
1504 static inline void task_unlock(struct task_struct *p)
1505 {
1506 spin_unlock(&p->alloc_lock);
1507 }
1508
1509 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
1510 unsigned long *flags);
1511
1512 static inline void unlock_task_sighand(struct task_struct *tsk,
1513 unsigned long *flags)
1514 {
1515 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
1516 }
1517
1518 #ifndef __HAVE_THREAD_FUNCTIONS
1519
1520 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
1521 #define task_stack_page(task) ((task)->stack)
1522
1523 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
1524 {
1525 *task_thread_info(p) = *task_thread_info(org);
1526 task_thread_info(p)->task = p;
1527 }
1528
1529 static inline unsigned long *end_of_stack(struct task_struct *p)
1530 {
1531 return (unsigned long *)(task_thread_info(p) + 1);
1532 }
1533
1534 #endif
1535
1536 /* set thread flags in other task's structures
1537 * - see asm/thread_info.h for TIF_xxxx flags available
1538 */
1539 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1540 {
1541 set_ti_thread_flag(task_thread_info(tsk), flag);
1542 }
1543
1544 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1545 {
1546 clear_ti_thread_flag(task_thread_info(tsk), flag);
1547 }
1548
1549 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1550 {
1551 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1552 }
1553
1554 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1555 {
1556 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1557 }
1558
1559 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1560 {
1561 return test_ti_thread_flag(task_thread_info(tsk), flag);
1562 }
1563
1564 static inline void set_tsk_need_resched(struct task_struct *tsk)
1565 {
1566 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1567 }
1568
1569 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1570 {
1571 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1572 }
1573
1574 static inline int signal_pending(struct task_struct *p)
1575 {
1576 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
1577 }
1578
1579 static inline int need_resched(void)
1580 {
1581 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
1582 }
1583
1584 /*
1585 * cond_resched() and cond_resched_lock(): latency reduction via
1586 * explicit rescheduling in places that are safe. The return
1587 * value indicates whether a reschedule was done in fact.
1588 * cond_resched_lock() will drop the spinlock before scheduling,
1589 * cond_resched_softirq() will enable bhs before scheduling.
1590 */
1591 extern int cond_resched(void);
1592 extern int cond_resched_lock(spinlock_t * lock);
1593 extern int cond_resched_softirq(void);
1594
1595 /*
1596 * Does a critical section need to be broken due to another
1597 * task waiting?:
1598 */
1599 #if defined(CONFIG_PREEMPT) && defined(CONFIG_SMP)
1600 # define need_lockbreak(lock) ((lock)->break_lock)
1601 #else
1602 # define need_lockbreak(lock) 0
1603 #endif
1604
1605 /*
1606 * Does a critical section need to be broken due to another
1607 * task waiting or preemption being signalled:
1608 */
1609 static inline int lock_need_resched(spinlock_t *lock)
1610 {
1611 if (need_lockbreak(lock) || need_resched())
1612 return 1;
1613 return 0;
1614 }
1615
1616 /* Reevaluate whether the task has signals pending delivery.
1617 This is required every time the blocked sigset_t changes.
1618 callers must hold sighand->siglock. */
1619
1620 extern FASTCALL(void recalc_sigpending_tsk(struct task_struct *t));
1621 extern void recalc_sigpending(void);
1622
1623 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
1624
1625 /*
1626 * Wrappers for p->thread_info->cpu access. No-op on UP.
1627 */
1628 #ifdef CONFIG_SMP
1629
1630 static inline unsigned int task_cpu(const struct task_struct *p)
1631 {
1632 return task_thread_info(p)->cpu;
1633 }
1634
1635 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1636 {
1637 task_thread_info(p)->cpu = cpu;
1638 }
1639
1640 #else
1641
1642 static inline unsigned int task_cpu(const struct task_struct *p)
1643 {
1644 return 0;
1645 }
1646
1647 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1648 {
1649 }
1650
1651 #endif /* CONFIG_SMP */
1652
1653 #ifdef HAVE_ARCH_PICK_MMAP_LAYOUT
1654 extern void arch_pick_mmap_layout(struct mm_struct *mm);
1655 #else
1656 static inline void arch_pick_mmap_layout(struct mm_struct *mm)
1657 {
1658 mm->mmap_base = TASK_UNMAPPED_BASE;
1659 mm->get_unmapped_area = arch_get_unmapped_area;
1660 mm->unmap_area = arch_unmap_area;
1661 }
1662 #endif
1663
1664 extern long sched_setaffinity(pid_t pid, cpumask_t new_mask);
1665 extern long sched_getaffinity(pid_t pid, cpumask_t *mask);
1666
1667 extern int sched_mc_power_savings, sched_smt_power_savings;
1668
1669 extern void normalize_rt_tasks(void);
1670
1671 #ifdef CONFIG_TASK_XACCT
1672 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
1673 {
1674 tsk->rchar += amt;
1675 }
1676
1677 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
1678 {
1679 tsk->wchar += amt;
1680 }
1681
1682 static inline void inc_syscr(struct task_struct *tsk)
1683 {
1684 tsk->syscr++;
1685 }
1686
1687 static inline void inc_syscw(struct task_struct *tsk)
1688 {
1689 tsk->syscw++;
1690 }
1691 #else
1692 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
1693 {
1694 }
1695
1696 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
1697 {
1698 }
1699
1700 static inline void inc_syscr(struct task_struct *tsk)
1701 {
1702 }
1703
1704 static inline void inc_syscw(struct task_struct *tsk)
1705 {
1706 }
1707 #endif
1708
1709 #endif /* __KERNEL__ */
1710
1711 #endif
This page took 0.070168 seconds and 5 git commands to generate.