memcg, oom: provide more precise dump info while memcg oom happening
[deliverable/linux.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <uapi/linux/sched.h>
5
6
7 struct sched_param {
8 int sched_priority;
9 };
10
11 #include <asm/param.h> /* for HZ */
12
13 #include <linux/capability.h>
14 #include <linux/threads.h>
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/timex.h>
18 #include <linux/jiffies.h>
19 #include <linux/rbtree.h>
20 #include <linux/thread_info.h>
21 #include <linux/cpumask.h>
22 #include <linux/errno.h>
23 #include <linux/nodemask.h>
24 #include <linux/mm_types.h>
25
26 #include <asm/page.h>
27 #include <asm/ptrace.h>
28 #include <asm/cputime.h>
29
30 #include <linux/smp.h>
31 #include <linux/sem.h>
32 #include <linux/signal.h>
33 #include <linux/compiler.h>
34 #include <linux/completion.h>
35 #include <linux/pid.h>
36 #include <linux/percpu.h>
37 #include <linux/topology.h>
38 #include <linux/proportions.h>
39 #include <linux/seccomp.h>
40 #include <linux/rcupdate.h>
41 #include <linux/rculist.h>
42 #include <linux/rtmutex.h>
43
44 #include <linux/time.h>
45 #include <linux/param.h>
46 #include <linux/resource.h>
47 #include <linux/timer.h>
48 #include <linux/hrtimer.h>
49 #include <linux/task_io_accounting.h>
50 #include <linux/latencytop.h>
51 #include <linux/cred.h>
52 #include <linux/llist.h>
53 #include <linux/uidgid.h>
54
55 #include <asm/processor.h>
56
57 struct exec_domain;
58 struct futex_pi_state;
59 struct robust_list_head;
60 struct bio_list;
61 struct fs_struct;
62 struct perf_event_context;
63 struct blk_plug;
64
65 /*
66 * List of flags we want to share for kernel threads,
67 * if only because they are not used by them anyway.
68 */
69 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
70
71 /*
72 * These are the constant used to fake the fixed-point load-average
73 * counting. Some notes:
74 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
75 * a load-average precision of 10 bits integer + 11 bits fractional
76 * - if you want to count load-averages more often, you need more
77 * precision, or rounding will get you. With 2-second counting freq,
78 * the EXP_n values would be 1981, 2034 and 2043 if still using only
79 * 11 bit fractions.
80 */
81 extern unsigned long avenrun[]; /* Load averages */
82 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
83
84 #define FSHIFT 11 /* nr of bits of precision */
85 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
86 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
87 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
88 #define EXP_5 2014 /* 1/exp(5sec/5min) */
89 #define EXP_15 2037 /* 1/exp(5sec/15min) */
90
91 #define CALC_LOAD(load,exp,n) \
92 load *= exp; \
93 load += n*(FIXED_1-exp); \
94 load >>= FSHIFT;
95
96 extern unsigned long total_forks;
97 extern int nr_threads;
98 DECLARE_PER_CPU(unsigned long, process_counts);
99 extern int nr_processes(void);
100 extern unsigned long nr_running(void);
101 extern unsigned long nr_uninterruptible(void);
102 extern unsigned long nr_iowait(void);
103 extern unsigned long nr_iowait_cpu(int cpu);
104 extern unsigned long this_cpu_load(void);
105
106
107 extern void calc_global_load(unsigned long ticks);
108 extern void update_cpu_load_nohz(void);
109
110 /* Notifier for when a task gets migrated to a new CPU */
111 struct task_migration_notifier {
112 struct task_struct *task;
113 int from_cpu;
114 int to_cpu;
115 };
116 extern void register_task_migration_notifier(struct notifier_block *n);
117
118 extern unsigned long get_parent_ip(unsigned long addr);
119
120 extern void dump_cpu_task(int cpu);
121
122 struct seq_file;
123 struct cfs_rq;
124 struct task_group;
125 #ifdef CONFIG_SCHED_DEBUG
126 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
127 extern void proc_sched_set_task(struct task_struct *p);
128 extern void
129 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
130 #else
131 static inline void
132 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
133 {
134 }
135 static inline void proc_sched_set_task(struct task_struct *p)
136 {
137 }
138 static inline void
139 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
140 {
141 }
142 #endif
143
144 /*
145 * Task state bitmask. NOTE! These bits are also
146 * encoded in fs/proc/array.c: get_task_state().
147 *
148 * We have two separate sets of flags: task->state
149 * is about runnability, while task->exit_state are
150 * about the task exiting. Confusing, but this way
151 * modifying one set can't modify the other one by
152 * mistake.
153 */
154 #define TASK_RUNNING 0
155 #define TASK_INTERRUPTIBLE 1
156 #define TASK_UNINTERRUPTIBLE 2
157 #define __TASK_STOPPED 4
158 #define __TASK_TRACED 8
159 /* in tsk->exit_state */
160 #define EXIT_ZOMBIE 16
161 #define EXIT_DEAD 32
162 /* in tsk->state again */
163 #define TASK_DEAD 64
164 #define TASK_WAKEKILL 128
165 #define TASK_WAKING 256
166 #define TASK_STATE_MAX 512
167
168 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW"
169
170 extern char ___assert_task_state[1 - 2*!!(
171 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
172
173 /* Convenience macros for the sake of set_task_state */
174 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
175 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
176 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
177
178 /* Convenience macros for the sake of wake_up */
179 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
180 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
181
182 /* get_task_state() */
183 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
184 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
185 __TASK_TRACED)
186
187 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
188 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
189 #define task_is_dead(task) ((task)->exit_state != 0)
190 #define task_is_stopped_or_traced(task) \
191 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
192 #define task_contributes_to_load(task) \
193 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
194 (task->flags & PF_FROZEN) == 0)
195
196 #define __set_task_state(tsk, state_value) \
197 do { (tsk)->state = (state_value); } while (0)
198 #define set_task_state(tsk, state_value) \
199 set_mb((tsk)->state, (state_value))
200
201 /*
202 * set_current_state() includes a barrier so that the write of current->state
203 * is correctly serialised wrt the caller's subsequent test of whether to
204 * actually sleep:
205 *
206 * set_current_state(TASK_UNINTERRUPTIBLE);
207 * if (do_i_need_to_sleep())
208 * schedule();
209 *
210 * If the caller does not need such serialisation then use __set_current_state()
211 */
212 #define __set_current_state(state_value) \
213 do { current->state = (state_value); } while (0)
214 #define set_current_state(state_value) \
215 set_mb(current->state, (state_value))
216
217 /* Task command name length */
218 #define TASK_COMM_LEN 16
219
220 #include <linux/spinlock.h>
221
222 /*
223 * This serializes "schedule()" and also protects
224 * the run-queue from deletions/modifications (but
225 * _adding_ to the beginning of the run-queue has
226 * a separate lock).
227 */
228 extern rwlock_t tasklist_lock;
229 extern spinlock_t mmlist_lock;
230
231 struct task_struct;
232
233 #ifdef CONFIG_PROVE_RCU
234 extern int lockdep_tasklist_lock_is_held(void);
235 #endif /* #ifdef CONFIG_PROVE_RCU */
236
237 extern void sched_init(void);
238 extern void sched_init_smp(void);
239 extern asmlinkage void schedule_tail(struct task_struct *prev);
240 extern void init_idle(struct task_struct *idle, int cpu);
241 extern void init_idle_bootup_task(struct task_struct *idle);
242
243 extern int runqueue_is_locked(int cpu);
244
245 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
246 extern void nohz_balance_enter_idle(int cpu);
247 extern void set_cpu_sd_state_idle(void);
248 extern int get_nohz_timer_target(void);
249 #else
250 static inline void nohz_balance_enter_idle(int cpu) { }
251 static inline void set_cpu_sd_state_idle(void) { }
252 #endif
253
254 /*
255 * Only dump TASK_* tasks. (0 for all tasks)
256 */
257 extern void show_state_filter(unsigned long state_filter);
258
259 static inline void show_state(void)
260 {
261 show_state_filter(0);
262 }
263
264 extern void show_regs(struct pt_regs *);
265
266 /*
267 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
268 * task), SP is the stack pointer of the first frame that should be shown in the back
269 * trace (or NULL if the entire call-chain of the task should be shown).
270 */
271 extern void show_stack(struct task_struct *task, unsigned long *sp);
272
273 void io_schedule(void);
274 long io_schedule_timeout(long timeout);
275
276 extern void cpu_init (void);
277 extern void trap_init(void);
278 extern void update_process_times(int user);
279 extern void scheduler_tick(void);
280
281 extern void sched_show_task(struct task_struct *p);
282
283 #ifdef CONFIG_LOCKUP_DETECTOR
284 extern void touch_softlockup_watchdog(void);
285 extern void touch_softlockup_watchdog_sync(void);
286 extern void touch_all_softlockup_watchdogs(void);
287 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
288 void __user *buffer,
289 size_t *lenp, loff_t *ppos);
290 extern unsigned int softlockup_panic;
291 void lockup_detector_init(void);
292 #else
293 static inline void touch_softlockup_watchdog(void)
294 {
295 }
296 static inline void touch_softlockup_watchdog_sync(void)
297 {
298 }
299 static inline void touch_all_softlockup_watchdogs(void)
300 {
301 }
302 static inline void lockup_detector_init(void)
303 {
304 }
305 #endif
306
307 /* Attach to any functions which should be ignored in wchan output. */
308 #define __sched __attribute__((__section__(".sched.text")))
309
310 /* Linker adds these: start and end of __sched functions */
311 extern char __sched_text_start[], __sched_text_end[];
312
313 /* Is this address in the __sched functions? */
314 extern int in_sched_functions(unsigned long addr);
315
316 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
317 extern signed long schedule_timeout(signed long timeout);
318 extern signed long schedule_timeout_interruptible(signed long timeout);
319 extern signed long schedule_timeout_killable(signed long timeout);
320 extern signed long schedule_timeout_uninterruptible(signed long timeout);
321 asmlinkage void schedule(void);
322 extern void schedule_preempt_disabled(void);
323 extern int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner);
324
325 struct nsproxy;
326 struct user_namespace;
327
328 #include <linux/aio.h>
329
330 #ifdef CONFIG_MMU
331 extern void arch_pick_mmap_layout(struct mm_struct *mm);
332 extern unsigned long
333 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
334 unsigned long, unsigned long);
335 extern unsigned long
336 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
337 unsigned long len, unsigned long pgoff,
338 unsigned long flags);
339 extern void arch_unmap_area(struct mm_struct *, unsigned long);
340 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
341 #else
342 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
343 #endif
344
345
346 extern void set_dumpable(struct mm_struct *mm, int value);
347 extern int get_dumpable(struct mm_struct *mm);
348
349 /* get/set_dumpable() values */
350 #define SUID_DUMPABLE_DISABLED 0
351 #define SUID_DUMPABLE_ENABLED 1
352 #define SUID_DUMPABLE_SAFE 2
353
354 /* mm flags */
355 /* dumpable bits */
356 #define MMF_DUMPABLE 0 /* core dump is permitted */
357 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
358
359 #define MMF_DUMPABLE_BITS 2
360 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
361
362 /* coredump filter bits */
363 #define MMF_DUMP_ANON_PRIVATE 2
364 #define MMF_DUMP_ANON_SHARED 3
365 #define MMF_DUMP_MAPPED_PRIVATE 4
366 #define MMF_DUMP_MAPPED_SHARED 5
367 #define MMF_DUMP_ELF_HEADERS 6
368 #define MMF_DUMP_HUGETLB_PRIVATE 7
369 #define MMF_DUMP_HUGETLB_SHARED 8
370
371 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
372 #define MMF_DUMP_FILTER_BITS 7
373 #define MMF_DUMP_FILTER_MASK \
374 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
375 #define MMF_DUMP_FILTER_DEFAULT \
376 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
377 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
378
379 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
380 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
381 #else
382 # define MMF_DUMP_MASK_DEFAULT_ELF 0
383 #endif
384 /* leave room for more dump flags */
385 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
386 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
387 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
388
389 #define MMF_HAS_UPROBES 19 /* has uprobes */
390 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
391
392 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
393
394 struct sighand_struct {
395 atomic_t count;
396 struct k_sigaction action[_NSIG];
397 spinlock_t siglock;
398 wait_queue_head_t signalfd_wqh;
399 };
400
401 struct pacct_struct {
402 int ac_flag;
403 long ac_exitcode;
404 unsigned long ac_mem;
405 cputime_t ac_utime, ac_stime;
406 unsigned long ac_minflt, ac_majflt;
407 };
408
409 struct cpu_itimer {
410 cputime_t expires;
411 cputime_t incr;
412 u32 error;
413 u32 incr_error;
414 };
415
416 /**
417 * struct cputime - snaphsot of system and user cputime
418 * @utime: time spent in user mode
419 * @stime: time spent in system mode
420 *
421 * Gathers a generic snapshot of user and system time.
422 */
423 struct cputime {
424 cputime_t utime;
425 cputime_t stime;
426 };
427
428 /**
429 * struct task_cputime - collected CPU time counts
430 * @utime: time spent in user mode, in &cputime_t units
431 * @stime: time spent in kernel mode, in &cputime_t units
432 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
433 *
434 * This is an extension of struct cputime that includes the total runtime
435 * spent by the task from the scheduler point of view.
436 *
437 * As a result, this structure groups together three kinds of CPU time
438 * that are tracked for threads and thread groups. Most things considering
439 * CPU time want to group these counts together and treat all three
440 * of them in parallel.
441 */
442 struct task_cputime {
443 cputime_t utime;
444 cputime_t stime;
445 unsigned long long sum_exec_runtime;
446 };
447 /* Alternate field names when used to cache expirations. */
448 #define prof_exp stime
449 #define virt_exp utime
450 #define sched_exp sum_exec_runtime
451
452 #define INIT_CPUTIME \
453 (struct task_cputime) { \
454 .utime = 0, \
455 .stime = 0, \
456 .sum_exec_runtime = 0, \
457 }
458
459 /*
460 * Disable preemption until the scheduler is running.
461 * Reset by start_kernel()->sched_init()->init_idle().
462 *
463 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
464 * before the scheduler is active -- see should_resched().
465 */
466 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
467
468 /**
469 * struct thread_group_cputimer - thread group interval timer counts
470 * @cputime: thread group interval timers.
471 * @running: non-zero when there are timers running and
472 * @cputime receives updates.
473 * @lock: lock for fields in this struct.
474 *
475 * This structure contains the version of task_cputime, above, that is
476 * used for thread group CPU timer calculations.
477 */
478 struct thread_group_cputimer {
479 struct task_cputime cputime;
480 int running;
481 raw_spinlock_t lock;
482 };
483
484 #include <linux/rwsem.h>
485 struct autogroup;
486
487 /*
488 * NOTE! "signal_struct" does not have its own
489 * locking, because a shared signal_struct always
490 * implies a shared sighand_struct, so locking
491 * sighand_struct is always a proper superset of
492 * the locking of signal_struct.
493 */
494 struct signal_struct {
495 atomic_t sigcnt;
496 atomic_t live;
497 int nr_threads;
498
499 wait_queue_head_t wait_chldexit; /* for wait4() */
500
501 /* current thread group signal load-balancing target: */
502 struct task_struct *curr_target;
503
504 /* shared signal handling: */
505 struct sigpending shared_pending;
506
507 /* thread group exit support */
508 int group_exit_code;
509 /* overloaded:
510 * - notify group_exit_task when ->count is equal to notify_count
511 * - everyone except group_exit_task is stopped during signal delivery
512 * of fatal signals, group_exit_task processes the signal.
513 */
514 int notify_count;
515 struct task_struct *group_exit_task;
516
517 /* thread group stop support, overloads group_exit_code too */
518 int group_stop_count;
519 unsigned int flags; /* see SIGNAL_* flags below */
520
521 /*
522 * PR_SET_CHILD_SUBREAPER marks a process, like a service
523 * manager, to re-parent orphan (double-forking) child processes
524 * to this process instead of 'init'. The service manager is
525 * able to receive SIGCHLD signals and is able to investigate
526 * the process until it calls wait(). All children of this
527 * process will inherit a flag if they should look for a
528 * child_subreaper process at exit.
529 */
530 unsigned int is_child_subreaper:1;
531 unsigned int has_child_subreaper:1;
532
533 /* POSIX.1b Interval Timers */
534 struct list_head posix_timers;
535
536 /* ITIMER_REAL timer for the process */
537 struct hrtimer real_timer;
538 struct pid *leader_pid;
539 ktime_t it_real_incr;
540
541 /*
542 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
543 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
544 * values are defined to 0 and 1 respectively
545 */
546 struct cpu_itimer it[2];
547
548 /*
549 * Thread group totals for process CPU timers.
550 * See thread_group_cputimer(), et al, for details.
551 */
552 struct thread_group_cputimer cputimer;
553
554 /* Earliest-expiration cache. */
555 struct task_cputime cputime_expires;
556
557 struct list_head cpu_timers[3];
558
559 struct pid *tty_old_pgrp;
560
561 /* boolean value for session group leader */
562 int leader;
563
564 struct tty_struct *tty; /* NULL if no tty */
565
566 #ifdef CONFIG_SCHED_AUTOGROUP
567 struct autogroup *autogroup;
568 #endif
569 /*
570 * Cumulative resource counters for dead threads in the group,
571 * and for reaped dead child processes forked by this group.
572 * Live threads maintain their own counters and add to these
573 * in __exit_signal, except for the group leader.
574 */
575 cputime_t utime, stime, cutime, cstime;
576 cputime_t gtime;
577 cputime_t cgtime;
578 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
579 struct cputime prev_cputime;
580 #endif
581 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
582 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
583 unsigned long inblock, oublock, cinblock, coublock;
584 unsigned long maxrss, cmaxrss;
585 struct task_io_accounting ioac;
586
587 /*
588 * Cumulative ns of schedule CPU time fo dead threads in the
589 * group, not including a zombie group leader, (This only differs
590 * from jiffies_to_ns(utime + stime) if sched_clock uses something
591 * other than jiffies.)
592 */
593 unsigned long long sum_sched_runtime;
594
595 /*
596 * We don't bother to synchronize most readers of this at all,
597 * because there is no reader checking a limit that actually needs
598 * to get both rlim_cur and rlim_max atomically, and either one
599 * alone is a single word that can safely be read normally.
600 * getrlimit/setrlimit use task_lock(current->group_leader) to
601 * protect this instead of the siglock, because they really
602 * have no need to disable irqs.
603 */
604 struct rlimit rlim[RLIM_NLIMITS];
605
606 #ifdef CONFIG_BSD_PROCESS_ACCT
607 struct pacct_struct pacct; /* per-process accounting information */
608 #endif
609 #ifdef CONFIG_TASKSTATS
610 struct taskstats *stats;
611 #endif
612 #ifdef CONFIG_AUDIT
613 unsigned audit_tty;
614 struct tty_audit_buf *tty_audit_buf;
615 #endif
616 #ifdef CONFIG_CGROUPS
617 /*
618 * group_rwsem prevents new tasks from entering the threadgroup and
619 * member tasks from exiting,a more specifically, setting of
620 * PF_EXITING. fork and exit paths are protected with this rwsem
621 * using threadgroup_change_begin/end(). Users which require
622 * threadgroup to remain stable should use threadgroup_[un]lock()
623 * which also takes care of exec path. Currently, cgroup is the
624 * only user.
625 */
626 struct rw_semaphore group_rwsem;
627 #endif
628
629 oom_flags_t oom_flags;
630 short oom_score_adj; /* OOM kill score adjustment */
631 short oom_score_adj_min; /* OOM kill score adjustment min value.
632 * Only settable by CAP_SYS_RESOURCE. */
633
634 struct mutex cred_guard_mutex; /* guard against foreign influences on
635 * credential calculations
636 * (notably. ptrace) */
637 };
638
639 /*
640 * Bits in flags field of signal_struct.
641 */
642 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
643 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
644 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
645 /*
646 * Pending notifications to parent.
647 */
648 #define SIGNAL_CLD_STOPPED 0x00000010
649 #define SIGNAL_CLD_CONTINUED 0x00000020
650 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
651
652 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
653
654 /* If true, all threads except ->group_exit_task have pending SIGKILL */
655 static inline int signal_group_exit(const struct signal_struct *sig)
656 {
657 return (sig->flags & SIGNAL_GROUP_EXIT) ||
658 (sig->group_exit_task != NULL);
659 }
660
661 /*
662 * Some day this will be a full-fledged user tracking system..
663 */
664 struct user_struct {
665 atomic_t __count; /* reference count */
666 atomic_t processes; /* How many processes does this user have? */
667 atomic_t files; /* How many open files does this user have? */
668 atomic_t sigpending; /* How many pending signals does this user have? */
669 #ifdef CONFIG_INOTIFY_USER
670 atomic_t inotify_watches; /* How many inotify watches does this user have? */
671 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
672 #endif
673 #ifdef CONFIG_FANOTIFY
674 atomic_t fanotify_listeners;
675 #endif
676 #ifdef CONFIG_EPOLL
677 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
678 #endif
679 #ifdef CONFIG_POSIX_MQUEUE
680 /* protected by mq_lock */
681 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
682 #endif
683 unsigned long locked_shm; /* How many pages of mlocked shm ? */
684
685 #ifdef CONFIG_KEYS
686 struct key *uid_keyring; /* UID specific keyring */
687 struct key *session_keyring; /* UID's default session keyring */
688 #endif
689
690 /* Hash table maintenance information */
691 struct hlist_node uidhash_node;
692 kuid_t uid;
693
694 #ifdef CONFIG_PERF_EVENTS
695 atomic_long_t locked_vm;
696 #endif
697 };
698
699 extern int uids_sysfs_init(void);
700
701 extern struct user_struct *find_user(kuid_t);
702
703 extern struct user_struct root_user;
704 #define INIT_USER (&root_user)
705
706
707 struct backing_dev_info;
708 struct reclaim_state;
709
710 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
711 struct sched_info {
712 /* cumulative counters */
713 unsigned long pcount; /* # of times run on this cpu */
714 unsigned long long run_delay; /* time spent waiting on a runqueue */
715
716 /* timestamps */
717 unsigned long long last_arrival,/* when we last ran on a cpu */
718 last_queued; /* when we were last queued to run */
719 };
720 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
721
722 #ifdef CONFIG_TASK_DELAY_ACCT
723 struct task_delay_info {
724 spinlock_t lock;
725 unsigned int flags; /* Private per-task flags */
726
727 /* For each stat XXX, add following, aligned appropriately
728 *
729 * struct timespec XXX_start, XXX_end;
730 * u64 XXX_delay;
731 * u32 XXX_count;
732 *
733 * Atomicity of updates to XXX_delay, XXX_count protected by
734 * single lock above (split into XXX_lock if contention is an issue).
735 */
736
737 /*
738 * XXX_count is incremented on every XXX operation, the delay
739 * associated with the operation is added to XXX_delay.
740 * XXX_delay contains the accumulated delay time in nanoseconds.
741 */
742 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
743 u64 blkio_delay; /* wait for sync block io completion */
744 u64 swapin_delay; /* wait for swapin block io completion */
745 u32 blkio_count; /* total count of the number of sync block */
746 /* io operations performed */
747 u32 swapin_count; /* total count of the number of swapin block */
748 /* io operations performed */
749
750 struct timespec freepages_start, freepages_end;
751 u64 freepages_delay; /* wait for memory reclaim */
752 u32 freepages_count; /* total count of memory reclaim */
753 };
754 #endif /* CONFIG_TASK_DELAY_ACCT */
755
756 static inline int sched_info_on(void)
757 {
758 #ifdef CONFIG_SCHEDSTATS
759 return 1;
760 #elif defined(CONFIG_TASK_DELAY_ACCT)
761 extern int delayacct_on;
762 return delayacct_on;
763 #else
764 return 0;
765 #endif
766 }
767
768 enum cpu_idle_type {
769 CPU_IDLE,
770 CPU_NOT_IDLE,
771 CPU_NEWLY_IDLE,
772 CPU_MAX_IDLE_TYPES
773 };
774
775 /*
776 * Increase resolution of nice-level calculations for 64-bit architectures.
777 * The extra resolution improves shares distribution and load balancing of
778 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
779 * hierarchies, especially on larger systems. This is not a user-visible change
780 * and does not change the user-interface for setting shares/weights.
781 *
782 * We increase resolution only if we have enough bits to allow this increased
783 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
784 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
785 * increased costs.
786 */
787 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
788 # define SCHED_LOAD_RESOLUTION 10
789 # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
790 # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
791 #else
792 # define SCHED_LOAD_RESOLUTION 0
793 # define scale_load(w) (w)
794 # define scale_load_down(w) (w)
795 #endif
796
797 #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
798 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
799
800 /*
801 * Increase resolution of cpu_power calculations
802 */
803 #define SCHED_POWER_SHIFT 10
804 #define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT)
805
806 /*
807 * sched-domains (multiprocessor balancing) declarations:
808 */
809 #ifdef CONFIG_SMP
810 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
811 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
812 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
813 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
814 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
815 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
816 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
817 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
818 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
819 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
820 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
821 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
822
823 extern int __weak arch_sd_sibiling_asym_packing(void);
824
825 struct sched_group_power {
826 atomic_t ref;
827 /*
828 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
829 * single CPU.
830 */
831 unsigned int power, power_orig;
832 unsigned long next_update;
833 /*
834 * Number of busy cpus in this group.
835 */
836 atomic_t nr_busy_cpus;
837
838 unsigned long cpumask[0]; /* iteration mask */
839 };
840
841 struct sched_group {
842 struct sched_group *next; /* Must be a circular list */
843 atomic_t ref;
844
845 unsigned int group_weight;
846 struct sched_group_power *sgp;
847
848 /*
849 * The CPUs this group covers.
850 *
851 * NOTE: this field is variable length. (Allocated dynamically
852 * by attaching extra space to the end of the structure,
853 * depending on how many CPUs the kernel has booted up with)
854 */
855 unsigned long cpumask[0];
856 };
857
858 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
859 {
860 return to_cpumask(sg->cpumask);
861 }
862
863 /*
864 * cpumask masking which cpus in the group are allowed to iterate up the domain
865 * tree.
866 */
867 static inline struct cpumask *sched_group_mask(struct sched_group *sg)
868 {
869 return to_cpumask(sg->sgp->cpumask);
870 }
871
872 /**
873 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
874 * @group: The group whose first cpu is to be returned.
875 */
876 static inline unsigned int group_first_cpu(struct sched_group *group)
877 {
878 return cpumask_first(sched_group_cpus(group));
879 }
880
881 struct sched_domain_attr {
882 int relax_domain_level;
883 };
884
885 #define SD_ATTR_INIT (struct sched_domain_attr) { \
886 .relax_domain_level = -1, \
887 }
888
889 extern int sched_domain_level_max;
890
891 struct sched_domain {
892 /* These fields must be setup */
893 struct sched_domain *parent; /* top domain must be null terminated */
894 struct sched_domain *child; /* bottom domain must be null terminated */
895 struct sched_group *groups; /* the balancing groups of the domain */
896 unsigned long min_interval; /* Minimum balance interval ms */
897 unsigned long max_interval; /* Maximum balance interval ms */
898 unsigned int busy_factor; /* less balancing by factor if busy */
899 unsigned int imbalance_pct; /* No balance until over watermark */
900 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
901 unsigned int busy_idx;
902 unsigned int idle_idx;
903 unsigned int newidle_idx;
904 unsigned int wake_idx;
905 unsigned int forkexec_idx;
906 unsigned int smt_gain;
907 int flags; /* See SD_* */
908 int level;
909
910 /* Runtime fields. */
911 unsigned long last_balance; /* init to jiffies. units in jiffies */
912 unsigned int balance_interval; /* initialise to 1. units in ms. */
913 unsigned int nr_balance_failed; /* initialise to 0 */
914
915 u64 last_update;
916
917 #ifdef CONFIG_SCHEDSTATS
918 /* load_balance() stats */
919 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
920 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
921 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
922 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
923 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
924 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
925 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
926 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
927
928 /* Active load balancing */
929 unsigned int alb_count;
930 unsigned int alb_failed;
931 unsigned int alb_pushed;
932
933 /* SD_BALANCE_EXEC stats */
934 unsigned int sbe_count;
935 unsigned int sbe_balanced;
936 unsigned int sbe_pushed;
937
938 /* SD_BALANCE_FORK stats */
939 unsigned int sbf_count;
940 unsigned int sbf_balanced;
941 unsigned int sbf_pushed;
942
943 /* try_to_wake_up() stats */
944 unsigned int ttwu_wake_remote;
945 unsigned int ttwu_move_affine;
946 unsigned int ttwu_move_balance;
947 #endif
948 #ifdef CONFIG_SCHED_DEBUG
949 char *name;
950 #endif
951 union {
952 void *private; /* used during construction */
953 struct rcu_head rcu; /* used during destruction */
954 };
955
956 unsigned int span_weight;
957 /*
958 * Span of all CPUs in this domain.
959 *
960 * NOTE: this field is variable length. (Allocated dynamically
961 * by attaching extra space to the end of the structure,
962 * depending on how many CPUs the kernel has booted up with)
963 */
964 unsigned long span[0];
965 };
966
967 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
968 {
969 return to_cpumask(sd->span);
970 }
971
972 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
973 struct sched_domain_attr *dattr_new);
974
975 /* Allocate an array of sched domains, for partition_sched_domains(). */
976 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
977 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
978
979 /* Test a flag in parent sched domain */
980 static inline int test_sd_parent(struct sched_domain *sd, int flag)
981 {
982 if (sd->parent && (sd->parent->flags & flag))
983 return 1;
984
985 return 0;
986 }
987
988 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
989 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
990
991 bool cpus_share_cache(int this_cpu, int that_cpu);
992
993 #else /* CONFIG_SMP */
994
995 struct sched_domain_attr;
996
997 static inline void
998 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
999 struct sched_domain_attr *dattr_new)
1000 {
1001 }
1002
1003 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1004 {
1005 return true;
1006 }
1007
1008 #endif /* !CONFIG_SMP */
1009
1010
1011 struct io_context; /* See blkdev.h */
1012
1013
1014 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1015 extern void prefetch_stack(struct task_struct *t);
1016 #else
1017 static inline void prefetch_stack(struct task_struct *t) { }
1018 #endif
1019
1020 struct audit_context; /* See audit.c */
1021 struct mempolicy;
1022 struct pipe_inode_info;
1023 struct uts_namespace;
1024
1025 struct rq;
1026 struct sched_domain;
1027
1028 /*
1029 * wake flags
1030 */
1031 #define WF_SYNC 0x01 /* waker goes to sleep after wakup */
1032 #define WF_FORK 0x02 /* child wakeup after fork */
1033 #define WF_MIGRATED 0x04 /* internal use, task got migrated */
1034
1035 #define ENQUEUE_WAKEUP 1
1036 #define ENQUEUE_HEAD 2
1037 #ifdef CONFIG_SMP
1038 #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
1039 #else
1040 #define ENQUEUE_WAKING 0
1041 #endif
1042
1043 #define DEQUEUE_SLEEP 1
1044
1045 struct sched_class {
1046 const struct sched_class *next;
1047
1048 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1049 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1050 void (*yield_task) (struct rq *rq);
1051 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1052
1053 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1054
1055 struct task_struct * (*pick_next_task) (struct rq *rq);
1056 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1057
1058 #ifdef CONFIG_SMP
1059 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
1060 void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
1061
1062 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1063 void (*post_schedule) (struct rq *this_rq);
1064 void (*task_waking) (struct task_struct *task);
1065 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1066
1067 void (*set_cpus_allowed)(struct task_struct *p,
1068 const struct cpumask *newmask);
1069
1070 void (*rq_online)(struct rq *rq);
1071 void (*rq_offline)(struct rq *rq);
1072 #endif
1073
1074 void (*set_curr_task) (struct rq *rq);
1075 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1076 void (*task_fork) (struct task_struct *p);
1077
1078 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1079 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1080 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1081 int oldprio);
1082
1083 unsigned int (*get_rr_interval) (struct rq *rq,
1084 struct task_struct *task);
1085
1086 #ifdef CONFIG_FAIR_GROUP_SCHED
1087 void (*task_move_group) (struct task_struct *p, int on_rq);
1088 #endif
1089 };
1090
1091 struct load_weight {
1092 unsigned long weight, inv_weight;
1093 };
1094
1095 struct sched_avg {
1096 /*
1097 * These sums represent an infinite geometric series and so are bound
1098 * above by 1024/(1-y). Thus we only need a u32 to store them for for all
1099 * choices of y < 1-2^(-32)*1024.
1100 */
1101 u32 runnable_avg_sum, runnable_avg_period;
1102 u64 last_runnable_update;
1103 s64 decay_count;
1104 unsigned long load_avg_contrib;
1105 };
1106
1107 #ifdef CONFIG_SCHEDSTATS
1108 struct sched_statistics {
1109 u64 wait_start;
1110 u64 wait_max;
1111 u64 wait_count;
1112 u64 wait_sum;
1113 u64 iowait_count;
1114 u64 iowait_sum;
1115
1116 u64 sleep_start;
1117 u64 sleep_max;
1118 s64 sum_sleep_runtime;
1119
1120 u64 block_start;
1121 u64 block_max;
1122 u64 exec_max;
1123 u64 slice_max;
1124
1125 u64 nr_migrations_cold;
1126 u64 nr_failed_migrations_affine;
1127 u64 nr_failed_migrations_running;
1128 u64 nr_failed_migrations_hot;
1129 u64 nr_forced_migrations;
1130
1131 u64 nr_wakeups;
1132 u64 nr_wakeups_sync;
1133 u64 nr_wakeups_migrate;
1134 u64 nr_wakeups_local;
1135 u64 nr_wakeups_remote;
1136 u64 nr_wakeups_affine;
1137 u64 nr_wakeups_affine_attempts;
1138 u64 nr_wakeups_passive;
1139 u64 nr_wakeups_idle;
1140 };
1141 #endif
1142
1143 struct sched_entity {
1144 struct load_weight load; /* for load-balancing */
1145 struct rb_node run_node;
1146 struct list_head group_node;
1147 unsigned int on_rq;
1148
1149 u64 exec_start;
1150 u64 sum_exec_runtime;
1151 u64 vruntime;
1152 u64 prev_sum_exec_runtime;
1153
1154 u64 nr_migrations;
1155
1156 #ifdef CONFIG_SCHEDSTATS
1157 struct sched_statistics statistics;
1158 #endif
1159
1160 #ifdef CONFIG_FAIR_GROUP_SCHED
1161 struct sched_entity *parent;
1162 /* rq on which this entity is (to be) queued: */
1163 struct cfs_rq *cfs_rq;
1164 /* rq "owned" by this entity/group: */
1165 struct cfs_rq *my_q;
1166 #endif
1167
1168 /*
1169 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
1170 * removed when useful for applications beyond shares distribution (e.g.
1171 * load-balance).
1172 */
1173 #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1174 /* Per-entity load-tracking */
1175 struct sched_avg avg;
1176 #endif
1177 };
1178
1179 struct sched_rt_entity {
1180 struct list_head run_list;
1181 unsigned long timeout;
1182 unsigned long watchdog_stamp;
1183 unsigned int time_slice;
1184
1185 struct sched_rt_entity *back;
1186 #ifdef CONFIG_RT_GROUP_SCHED
1187 struct sched_rt_entity *parent;
1188 /* rq on which this entity is (to be) queued: */
1189 struct rt_rq *rt_rq;
1190 /* rq "owned" by this entity/group: */
1191 struct rt_rq *my_q;
1192 #endif
1193 };
1194
1195
1196 struct rcu_node;
1197
1198 enum perf_event_task_context {
1199 perf_invalid_context = -1,
1200 perf_hw_context = 0,
1201 perf_sw_context,
1202 perf_nr_task_contexts,
1203 };
1204
1205 struct task_struct {
1206 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1207 void *stack;
1208 atomic_t usage;
1209 unsigned int flags; /* per process flags, defined below */
1210 unsigned int ptrace;
1211
1212 #ifdef CONFIG_SMP
1213 struct llist_node wake_entry;
1214 int on_cpu;
1215 #endif
1216 int on_rq;
1217
1218 int prio, static_prio, normal_prio;
1219 unsigned int rt_priority;
1220 const struct sched_class *sched_class;
1221 struct sched_entity se;
1222 struct sched_rt_entity rt;
1223 #ifdef CONFIG_CGROUP_SCHED
1224 struct task_group *sched_task_group;
1225 #endif
1226
1227 #ifdef CONFIG_PREEMPT_NOTIFIERS
1228 /* list of struct preempt_notifier: */
1229 struct hlist_head preempt_notifiers;
1230 #endif
1231
1232 /*
1233 * fpu_counter contains the number of consecutive context switches
1234 * that the FPU is used. If this is over a threshold, the lazy fpu
1235 * saving becomes unlazy to save the trap. This is an unsigned char
1236 * so that after 256 times the counter wraps and the behavior turns
1237 * lazy again; this to deal with bursty apps that only use FPU for
1238 * a short time
1239 */
1240 unsigned char fpu_counter;
1241 #ifdef CONFIG_BLK_DEV_IO_TRACE
1242 unsigned int btrace_seq;
1243 #endif
1244
1245 unsigned int policy;
1246 int nr_cpus_allowed;
1247 cpumask_t cpus_allowed;
1248
1249 #ifdef CONFIG_PREEMPT_RCU
1250 int rcu_read_lock_nesting;
1251 char rcu_read_unlock_special;
1252 struct list_head rcu_node_entry;
1253 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1254 #ifdef CONFIG_TREE_PREEMPT_RCU
1255 struct rcu_node *rcu_blocked_node;
1256 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1257 #ifdef CONFIG_RCU_BOOST
1258 struct rt_mutex *rcu_boost_mutex;
1259 #endif /* #ifdef CONFIG_RCU_BOOST */
1260
1261 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1262 struct sched_info sched_info;
1263 #endif
1264
1265 struct list_head tasks;
1266 #ifdef CONFIG_SMP
1267 struct plist_node pushable_tasks;
1268 #endif
1269
1270 struct mm_struct *mm, *active_mm;
1271 #ifdef CONFIG_COMPAT_BRK
1272 unsigned brk_randomized:1;
1273 #endif
1274 #if defined(SPLIT_RSS_COUNTING)
1275 struct task_rss_stat rss_stat;
1276 #endif
1277 /* task state */
1278 int exit_state;
1279 int exit_code, exit_signal;
1280 int pdeath_signal; /* The signal sent when the parent dies */
1281 unsigned int jobctl; /* JOBCTL_*, siglock protected */
1282 /* ??? */
1283 unsigned int personality;
1284 unsigned did_exec:1;
1285 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1286 * execve */
1287 unsigned in_iowait:1;
1288
1289 /* task may not gain privileges */
1290 unsigned no_new_privs:1;
1291
1292 /* Revert to default priority/policy when forking */
1293 unsigned sched_reset_on_fork:1;
1294 unsigned sched_contributes_to_load:1;
1295
1296 pid_t pid;
1297 pid_t tgid;
1298
1299 #ifdef CONFIG_CC_STACKPROTECTOR
1300 /* Canary value for the -fstack-protector gcc feature */
1301 unsigned long stack_canary;
1302 #endif
1303 /*
1304 * pointers to (original) parent process, youngest child, younger sibling,
1305 * older sibling, respectively. (p->father can be replaced with
1306 * p->real_parent->pid)
1307 */
1308 struct task_struct __rcu *real_parent; /* real parent process */
1309 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1310 /*
1311 * children/sibling forms the list of my natural children
1312 */
1313 struct list_head children; /* list of my children */
1314 struct list_head sibling; /* linkage in my parent's children list */
1315 struct task_struct *group_leader; /* threadgroup leader */
1316
1317 /*
1318 * ptraced is the list of tasks this task is using ptrace on.
1319 * This includes both natural children and PTRACE_ATTACH targets.
1320 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1321 */
1322 struct list_head ptraced;
1323 struct list_head ptrace_entry;
1324
1325 /* PID/PID hash table linkage. */
1326 struct pid_link pids[PIDTYPE_MAX];
1327 struct list_head thread_group;
1328
1329 struct completion *vfork_done; /* for vfork() */
1330 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1331 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1332
1333 cputime_t utime, stime, utimescaled, stimescaled;
1334 cputime_t gtime;
1335 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1336 struct cputime prev_cputime;
1337 #endif
1338 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1339 seqlock_t vtime_seqlock;
1340 unsigned long long vtime_snap;
1341 enum {
1342 VTIME_SLEEPING = 0,
1343 VTIME_USER,
1344 VTIME_SYS,
1345 } vtime_snap_whence;
1346 #endif
1347 unsigned long nvcsw, nivcsw; /* context switch counts */
1348 struct timespec start_time; /* monotonic time */
1349 struct timespec real_start_time; /* boot based time */
1350 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1351 unsigned long min_flt, maj_flt;
1352
1353 struct task_cputime cputime_expires;
1354 struct list_head cpu_timers[3];
1355
1356 /* process credentials */
1357 const struct cred __rcu *real_cred; /* objective and real subjective task
1358 * credentials (COW) */
1359 const struct cred __rcu *cred; /* effective (overridable) subjective task
1360 * credentials (COW) */
1361 char comm[TASK_COMM_LEN]; /* executable name excluding path
1362 - access with [gs]et_task_comm (which lock
1363 it with task_lock())
1364 - initialized normally by setup_new_exec */
1365 /* file system info */
1366 int link_count, total_link_count;
1367 #ifdef CONFIG_SYSVIPC
1368 /* ipc stuff */
1369 struct sysv_sem sysvsem;
1370 #endif
1371 #ifdef CONFIG_DETECT_HUNG_TASK
1372 /* hung task detection */
1373 unsigned long last_switch_count;
1374 #endif
1375 /* CPU-specific state of this task */
1376 struct thread_struct thread;
1377 /* filesystem information */
1378 struct fs_struct *fs;
1379 /* open file information */
1380 struct files_struct *files;
1381 /* namespaces */
1382 struct nsproxy *nsproxy;
1383 /* signal handlers */
1384 struct signal_struct *signal;
1385 struct sighand_struct *sighand;
1386
1387 sigset_t blocked, real_blocked;
1388 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1389 struct sigpending pending;
1390
1391 unsigned long sas_ss_sp;
1392 size_t sas_ss_size;
1393 int (*notifier)(void *priv);
1394 void *notifier_data;
1395 sigset_t *notifier_mask;
1396 struct callback_head *task_works;
1397
1398 struct audit_context *audit_context;
1399 #ifdef CONFIG_AUDITSYSCALL
1400 kuid_t loginuid;
1401 unsigned int sessionid;
1402 #endif
1403 struct seccomp seccomp;
1404
1405 /* Thread group tracking */
1406 u32 parent_exec_id;
1407 u32 self_exec_id;
1408 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1409 * mempolicy */
1410 spinlock_t alloc_lock;
1411
1412 /* Protection of the PI data structures: */
1413 raw_spinlock_t pi_lock;
1414
1415 #ifdef CONFIG_RT_MUTEXES
1416 /* PI waiters blocked on a rt_mutex held by this task */
1417 struct plist_head pi_waiters;
1418 /* Deadlock detection and priority inheritance handling */
1419 struct rt_mutex_waiter *pi_blocked_on;
1420 #endif
1421
1422 #ifdef CONFIG_DEBUG_MUTEXES
1423 /* mutex deadlock detection */
1424 struct mutex_waiter *blocked_on;
1425 #endif
1426 #ifdef CONFIG_TRACE_IRQFLAGS
1427 unsigned int irq_events;
1428 unsigned long hardirq_enable_ip;
1429 unsigned long hardirq_disable_ip;
1430 unsigned int hardirq_enable_event;
1431 unsigned int hardirq_disable_event;
1432 int hardirqs_enabled;
1433 int hardirq_context;
1434 unsigned long softirq_disable_ip;
1435 unsigned long softirq_enable_ip;
1436 unsigned int softirq_disable_event;
1437 unsigned int softirq_enable_event;
1438 int softirqs_enabled;
1439 int softirq_context;
1440 #endif
1441 #ifdef CONFIG_LOCKDEP
1442 # define MAX_LOCK_DEPTH 48UL
1443 u64 curr_chain_key;
1444 int lockdep_depth;
1445 unsigned int lockdep_recursion;
1446 struct held_lock held_locks[MAX_LOCK_DEPTH];
1447 gfp_t lockdep_reclaim_gfp;
1448 #endif
1449
1450 /* journalling filesystem info */
1451 void *journal_info;
1452
1453 /* stacked block device info */
1454 struct bio_list *bio_list;
1455
1456 #ifdef CONFIG_BLOCK
1457 /* stack plugging */
1458 struct blk_plug *plug;
1459 #endif
1460
1461 /* VM state */
1462 struct reclaim_state *reclaim_state;
1463
1464 struct backing_dev_info *backing_dev_info;
1465
1466 struct io_context *io_context;
1467
1468 unsigned long ptrace_message;
1469 siginfo_t *last_siginfo; /* For ptrace use. */
1470 struct task_io_accounting ioac;
1471 #if defined(CONFIG_TASK_XACCT)
1472 u64 acct_rss_mem1; /* accumulated rss usage */
1473 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1474 cputime_t acct_timexpd; /* stime + utime since last update */
1475 #endif
1476 #ifdef CONFIG_CPUSETS
1477 nodemask_t mems_allowed; /* Protected by alloc_lock */
1478 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
1479 int cpuset_mem_spread_rotor;
1480 int cpuset_slab_spread_rotor;
1481 #endif
1482 #ifdef CONFIG_CGROUPS
1483 /* Control Group info protected by css_set_lock */
1484 struct css_set __rcu *cgroups;
1485 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1486 struct list_head cg_list;
1487 #endif
1488 #ifdef CONFIG_FUTEX
1489 struct robust_list_head __user *robust_list;
1490 #ifdef CONFIG_COMPAT
1491 struct compat_robust_list_head __user *compat_robust_list;
1492 #endif
1493 struct list_head pi_state_list;
1494 struct futex_pi_state *pi_state_cache;
1495 #endif
1496 #ifdef CONFIG_PERF_EVENTS
1497 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1498 struct mutex perf_event_mutex;
1499 struct list_head perf_event_list;
1500 #endif
1501 #ifdef CONFIG_NUMA
1502 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1503 short il_next;
1504 short pref_node_fork;
1505 #endif
1506 #ifdef CONFIG_NUMA_BALANCING
1507 int numa_scan_seq;
1508 int numa_migrate_seq;
1509 unsigned int numa_scan_period;
1510 u64 node_stamp; /* migration stamp */
1511 struct callback_head numa_work;
1512 #endif /* CONFIG_NUMA_BALANCING */
1513
1514 struct rcu_head rcu;
1515
1516 /*
1517 * cache last used pipe for splice
1518 */
1519 struct pipe_inode_info *splice_pipe;
1520
1521 struct page_frag task_frag;
1522
1523 #ifdef CONFIG_TASK_DELAY_ACCT
1524 struct task_delay_info *delays;
1525 #endif
1526 #ifdef CONFIG_FAULT_INJECTION
1527 int make_it_fail;
1528 #endif
1529 /*
1530 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1531 * balance_dirty_pages() for some dirty throttling pause
1532 */
1533 int nr_dirtied;
1534 int nr_dirtied_pause;
1535 unsigned long dirty_paused_when; /* start of a write-and-pause period */
1536
1537 #ifdef CONFIG_LATENCYTOP
1538 int latency_record_count;
1539 struct latency_record latency_record[LT_SAVECOUNT];
1540 #endif
1541 /*
1542 * time slack values; these are used to round up poll() and
1543 * select() etc timeout values. These are in nanoseconds.
1544 */
1545 unsigned long timer_slack_ns;
1546 unsigned long default_timer_slack_ns;
1547
1548 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1549 /* Index of current stored address in ret_stack */
1550 int curr_ret_stack;
1551 /* Stack of return addresses for return function tracing */
1552 struct ftrace_ret_stack *ret_stack;
1553 /* time stamp for last schedule */
1554 unsigned long long ftrace_timestamp;
1555 /*
1556 * Number of functions that haven't been traced
1557 * because of depth overrun.
1558 */
1559 atomic_t trace_overrun;
1560 /* Pause for the tracing */
1561 atomic_t tracing_graph_pause;
1562 #endif
1563 #ifdef CONFIG_TRACING
1564 /* state flags for use by tracers */
1565 unsigned long trace;
1566 /* bitmask and counter of trace recursion */
1567 unsigned long trace_recursion;
1568 #endif /* CONFIG_TRACING */
1569 #ifdef CONFIG_MEMCG /* memcg uses this to do batch job */
1570 struct memcg_batch_info {
1571 int do_batch; /* incremented when batch uncharge started */
1572 struct mem_cgroup *memcg; /* target memcg of uncharge */
1573 unsigned long nr_pages; /* uncharged usage */
1574 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1575 } memcg_batch;
1576 unsigned int memcg_kmem_skip_account;
1577 #endif
1578 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1579 atomic_t ptrace_bp_refcnt;
1580 #endif
1581 #ifdef CONFIG_UPROBES
1582 struct uprobe_task *utask;
1583 #endif
1584 };
1585
1586 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1587 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1588
1589 #ifdef CONFIG_NUMA_BALANCING
1590 extern void task_numa_fault(int node, int pages, bool migrated);
1591 extern void set_numabalancing_state(bool enabled);
1592 #else
1593 static inline void task_numa_fault(int node, int pages, bool migrated)
1594 {
1595 }
1596 static inline void set_numabalancing_state(bool enabled)
1597 {
1598 }
1599 #endif
1600
1601 static inline struct pid *task_pid(struct task_struct *task)
1602 {
1603 return task->pids[PIDTYPE_PID].pid;
1604 }
1605
1606 static inline struct pid *task_tgid(struct task_struct *task)
1607 {
1608 return task->group_leader->pids[PIDTYPE_PID].pid;
1609 }
1610
1611 /*
1612 * Without tasklist or rcu lock it is not safe to dereference
1613 * the result of task_pgrp/task_session even if task == current,
1614 * we can race with another thread doing sys_setsid/sys_setpgid.
1615 */
1616 static inline struct pid *task_pgrp(struct task_struct *task)
1617 {
1618 return task->group_leader->pids[PIDTYPE_PGID].pid;
1619 }
1620
1621 static inline struct pid *task_session(struct task_struct *task)
1622 {
1623 return task->group_leader->pids[PIDTYPE_SID].pid;
1624 }
1625
1626 struct pid_namespace;
1627
1628 /*
1629 * the helpers to get the task's different pids as they are seen
1630 * from various namespaces
1631 *
1632 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1633 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1634 * current.
1635 * task_xid_nr_ns() : id seen from the ns specified;
1636 *
1637 * set_task_vxid() : assigns a virtual id to a task;
1638 *
1639 * see also pid_nr() etc in include/linux/pid.h
1640 */
1641 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1642 struct pid_namespace *ns);
1643
1644 static inline pid_t task_pid_nr(struct task_struct *tsk)
1645 {
1646 return tsk->pid;
1647 }
1648
1649 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1650 struct pid_namespace *ns)
1651 {
1652 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1653 }
1654
1655 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1656 {
1657 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1658 }
1659
1660
1661 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1662 {
1663 return tsk->tgid;
1664 }
1665
1666 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1667
1668 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1669 {
1670 return pid_vnr(task_tgid(tsk));
1671 }
1672
1673
1674 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1675 struct pid_namespace *ns)
1676 {
1677 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1678 }
1679
1680 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1681 {
1682 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1683 }
1684
1685
1686 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1687 struct pid_namespace *ns)
1688 {
1689 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1690 }
1691
1692 static inline pid_t task_session_vnr(struct task_struct *tsk)
1693 {
1694 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1695 }
1696
1697 /* obsolete, do not use */
1698 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1699 {
1700 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1701 }
1702
1703 /**
1704 * pid_alive - check that a task structure is not stale
1705 * @p: Task structure to be checked.
1706 *
1707 * Test if a process is not yet dead (at most zombie state)
1708 * If pid_alive fails, then pointers within the task structure
1709 * can be stale and must not be dereferenced.
1710 */
1711 static inline int pid_alive(struct task_struct *p)
1712 {
1713 return p->pids[PIDTYPE_PID].pid != NULL;
1714 }
1715
1716 /**
1717 * is_global_init - check if a task structure is init
1718 * @tsk: Task structure to be checked.
1719 *
1720 * Check if a task structure is the first user space task the kernel created.
1721 */
1722 static inline int is_global_init(struct task_struct *tsk)
1723 {
1724 return tsk->pid == 1;
1725 }
1726
1727 extern struct pid *cad_pid;
1728
1729 extern void free_task(struct task_struct *tsk);
1730 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1731
1732 extern void __put_task_struct(struct task_struct *t);
1733
1734 static inline void put_task_struct(struct task_struct *t)
1735 {
1736 if (atomic_dec_and_test(&t->usage))
1737 __put_task_struct(t);
1738 }
1739
1740 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1741 extern void task_cputime(struct task_struct *t,
1742 cputime_t *utime, cputime_t *stime);
1743 extern void task_cputime_scaled(struct task_struct *t,
1744 cputime_t *utimescaled, cputime_t *stimescaled);
1745 extern cputime_t task_gtime(struct task_struct *t);
1746 #else
1747 static inline void task_cputime(struct task_struct *t,
1748 cputime_t *utime, cputime_t *stime)
1749 {
1750 if (utime)
1751 *utime = t->utime;
1752 if (stime)
1753 *stime = t->stime;
1754 }
1755
1756 static inline void task_cputime_scaled(struct task_struct *t,
1757 cputime_t *utimescaled,
1758 cputime_t *stimescaled)
1759 {
1760 if (utimescaled)
1761 *utimescaled = t->utimescaled;
1762 if (stimescaled)
1763 *stimescaled = t->stimescaled;
1764 }
1765
1766 static inline cputime_t task_gtime(struct task_struct *t)
1767 {
1768 return t->gtime;
1769 }
1770 #endif
1771 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1772 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1773
1774 /*
1775 * Per process flags
1776 */
1777 #define PF_EXITING 0x00000004 /* getting shut down */
1778 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1779 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1780 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1781 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1782 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1783 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1784 #define PF_DUMPCORE 0x00000200 /* dumped core */
1785 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1786 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1787 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1788 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1789 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1790 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1791 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1792 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1793 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1794 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1795 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1796 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1797 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1798 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1799 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1800 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1801 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1802 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1803 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1804 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1805
1806 /*
1807 * Only the _current_ task can read/write to tsk->flags, but other
1808 * tasks can access tsk->flags in readonly mode for example
1809 * with tsk_used_math (like during threaded core dumping).
1810 * There is however an exception to this rule during ptrace
1811 * or during fork: the ptracer task is allowed to write to the
1812 * child->flags of its traced child (same goes for fork, the parent
1813 * can write to the child->flags), because we're guaranteed the
1814 * child is not running and in turn not changing child->flags
1815 * at the same time the parent does it.
1816 */
1817 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1818 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1819 #define clear_used_math() clear_stopped_child_used_math(current)
1820 #define set_used_math() set_stopped_child_used_math(current)
1821 #define conditional_stopped_child_used_math(condition, child) \
1822 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1823 #define conditional_used_math(condition) \
1824 conditional_stopped_child_used_math(condition, current)
1825 #define copy_to_stopped_child_used_math(child) \
1826 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1827 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1828 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1829 #define used_math() tsk_used_math(current)
1830
1831 /*
1832 * task->jobctl flags
1833 */
1834 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
1835
1836 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
1837 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
1838 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
1839 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
1840 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
1841 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
1842 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
1843
1844 #define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT)
1845 #define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT)
1846 #define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT)
1847 #define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT)
1848 #define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT)
1849 #define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT)
1850 #define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT)
1851
1852 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1853 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1854
1855 extern bool task_set_jobctl_pending(struct task_struct *task,
1856 unsigned int mask);
1857 extern void task_clear_jobctl_trapping(struct task_struct *task);
1858 extern void task_clear_jobctl_pending(struct task_struct *task,
1859 unsigned int mask);
1860
1861 #ifdef CONFIG_PREEMPT_RCU
1862
1863 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1864 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1865
1866 static inline void rcu_copy_process(struct task_struct *p)
1867 {
1868 p->rcu_read_lock_nesting = 0;
1869 p->rcu_read_unlock_special = 0;
1870 #ifdef CONFIG_TREE_PREEMPT_RCU
1871 p->rcu_blocked_node = NULL;
1872 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1873 #ifdef CONFIG_RCU_BOOST
1874 p->rcu_boost_mutex = NULL;
1875 #endif /* #ifdef CONFIG_RCU_BOOST */
1876 INIT_LIST_HEAD(&p->rcu_node_entry);
1877 }
1878
1879 #else
1880
1881 static inline void rcu_copy_process(struct task_struct *p)
1882 {
1883 }
1884
1885 #endif
1886
1887 static inline void tsk_restore_flags(struct task_struct *task,
1888 unsigned long orig_flags, unsigned long flags)
1889 {
1890 task->flags &= ~flags;
1891 task->flags |= orig_flags & flags;
1892 }
1893
1894 #ifdef CONFIG_SMP
1895 extern void do_set_cpus_allowed(struct task_struct *p,
1896 const struct cpumask *new_mask);
1897
1898 extern int set_cpus_allowed_ptr(struct task_struct *p,
1899 const struct cpumask *new_mask);
1900 #else
1901 static inline void do_set_cpus_allowed(struct task_struct *p,
1902 const struct cpumask *new_mask)
1903 {
1904 }
1905 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1906 const struct cpumask *new_mask)
1907 {
1908 if (!cpumask_test_cpu(0, new_mask))
1909 return -EINVAL;
1910 return 0;
1911 }
1912 #endif
1913
1914 #ifdef CONFIG_NO_HZ
1915 void calc_load_enter_idle(void);
1916 void calc_load_exit_idle(void);
1917 #else
1918 static inline void calc_load_enter_idle(void) { }
1919 static inline void calc_load_exit_idle(void) { }
1920 #endif /* CONFIG_NO_HZ */
1921
1922 #ifndef CONFIG_CPUMASK_OFFSTACK
1923 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1924 {
1925 return set_cpus_allowed_ptr(p, &new_mask);
1926 }
1927 #endif
1928
1929 /*
1930 * Do not use outside of architecture code which knows its limitations.
1931 *
1932 * sched_clock() has no promise of monotonicity or bounded drift between
1933 * CPUs, use (which you should not) requires disabling IRQs.
1934 *
1935 * Please use one of the three interfaces below.
1936 */
1937 extern unsigned long long notrace sched_clock(void);
1938 /*
1939 * See the comment in kernel/sched/clock.c
1940 */
1941 extern u64 cpu_clock(int cpu);
1942 extern u64 local_clock(void);
1943 extern u64 sched_clock_cpu(int cpu);
1944
1945
1946 extern void sched_clock_init(void);
1947
1948 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1949 static inline void sched_clock_tick(void)
1950 {
1951 }
1952
1953 static inline void sched_clock_idle_sleep_event(void)
1954 {
1955 }
1956
1957 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1958 {
1959 }
1960 #else
1961 /*
1962 * Architectures can set this to 1 if they have specified
1963 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1964 * but then during bootup it turns out that sched_clock()
1965 * is reliable after all:
1966 */
1967 extern int sched_clock_stable;
1968
1969 extern void sched_clock_tick(void);
1970 extern void sched_clock_idle_sleep_event(void);
1971 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1972 #endif
1973
1974 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1975 /*
1976 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1977 * The reason for this explicit opt-in is not to have perf penalty with
1978 * slow sched_clocks.
1979 */
1980 extern void enable_sched_clock_irqtime(void);
1981 extern void disable_sched_clock_irqtime(void);
1982 #else
1983 static inline void enable_sched_clock_irqtime(void) {}
1984 static inline void disable_sched_clock_irqtime(void) {}
1985 #endif
1986
1987 extern unsigned long long
1988 task_sched_runtime(struct task_struct *task);
1989
1990 /* sched_exec is called by processes performing an exec */
1991 #ifdef CONFIG_SMP
1992 extern void sched_exec(void);
1993 #else
1994 #define sched_exec() {}
1995 #endif
1996
1997 extern void sched_clock_idle_sleep_event(void);
1998 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1999
2000 #ifdef CONFIG_HOTPLUG_CPU
2001 extern void idle_task_exit(void);
2002 #else
2003 static inline void idle_task_exit(void) {}
2004 #endif
2005
2006 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
2007 extern void wake_up_idle_cpu(int cpu);
2008 #else
2009 static inline void wake_up_idle_cpu(int cpu) { }
2010 #endif
2011
2012 #ifdef CONFIG_SCHED_AUTOGROUP
2013 extern void sched_autogroup_create_attach(struct task_struct *p);
2014 extern void sched_autogroup_detach(struct task_struct *p);
2015 extern void sched_autogroup_fork(struct signal_struct *sig);
2016 extern void sched_autogroup_exit(struct signal_struct *sig);
2017 #ifdef CONFIG_PROC_FS
2018 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2019 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2020 #endif
2021 #else
2022 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2023 static inline void sched_autogroup_detach(struct task_struct *p) { }
2024 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2025 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2026 #endif
2027
2028 extern bool yield_to(struct task_struct *p, bool preempt);
2029 extern void set_user_nice(struct task_struct *p, long nice);
2030 extern int task_prio(const struct task_struct *p);
2031 extern int task_nice(const struct task_struct *p);
2032 extern int can_nice(const struct task_struct *p, const int nice);
2033 extern int task_curr(const struct task_struct *p);
2034 extern int idle_cpu(int cpu);
2035 extern int sched_setscheduler(struct task_struct *, int,
2036 const struct sched_param *);
2037 extern int sched_setscheduler_nocheck(struct task_struct *, int,
2038 const struct sched_param *);
2039 extern struct task_struct *idle_task(int cpu);
2040 /**
2041 * is_idle_task - is the specified task an idle task?
2042 * @p: the task in question.
2043 */
2044 static inline bool is_idle_task(const struct task_struct *p)
2045 {
2046 return p->pid == 0;
2047 }
2048 extern struct task_struct *curr_task(int cpu);
2049 extern void set_curr_task(int cpu, struct task_struct *p);
2050
2051 void yield(void);
2052
2053 /*
2054 * The default (Linux) execution domain.
2055 */
2056 extern struct exec_domain default_exec_domain;
2057
2058 union thread_union {
2059 struct thread_info thread_info;
2060 unsigned long stack[THREAD_SIZE/sizeof(long)];
2061 };
2062
2063 #ifndef __HAVE_ARCH_KSTACK_END
2064 static inline int kstack_end(void *addr)
2065 {
2066 /* Reliable end of stack detection:
2067 * Some APM bios versions misalign the stack
2068 */
2069 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2070 }
2071 #endif
2072
2073 extern union thread_union init_thread_union;
2074 extern struct task_struct init_task;
2075
2076 extern struct mm_struct init_mm;
2077
2078 extern struct pid_namespace init_pid_ns;
2079
2080 /*
2081 * find a task by one of its numerical ids
2082 *
2083 * find_task_by_pid_ns():
2084 * finds a task by its pid in the specified namespace
2085 * find_task_by_vpid():
2086 * finds a task by its virtual pid
2087 *
2088 * see also find_vpid() etc in include/linux/pid.h
2089 */
2090
2091 extern struct task_struct *find_task_by_vpid(pid_t nr);
2092 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2093 struct pid_namespace *ns);
2094
2095 extern void __set_special_pids(struct pid *pid);
2096
2097 /* per-UID process charging. */
2098 extern struct user_struct * alloc_uid(kuid_t);
2099 static inline struct user_struct *get_uid(struct user_struct *u)
2100 {
2101 atomic_inc(&u->__count);
2102 return u;
2103 }
2104 extern void free_uid(struct user_struct *);
2105
2106 #include <asm/current.h>
2107
2108 extern void xtime_update(unsigned long ticks);
2109
2110 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2111 extern int wake_up_process(struct task_struct *tsk);
2112 extern void wake_up_new_task(struct task_struct *tsk);
2113 #ifdef CONFIG_SMP
2114 extern void kick_process(struct task_struct *tsk);
2115 #else
2116 static inline void kick_process(struct task_struct *tsk) { }
2117 #endif
2118 extern void sched_fork(struct task_struct *p);
2119 extern void sched_dead(struct task_struct *p);
2120
2121 extern void proc_caches_init(void);
2122 extern void flush_signals(struct task_struct *);
2123 extern void __flush_signals(struct task_struct *);
2124 extern void ignore_signals(struct task_struct *);
2125 extern void flush_signal_handlers(struct task_struct *, int force_default);
2126 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2127
2128 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2129 {
2130 unsigned long flags;
2131 int ret;
2132
2133 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2134 ret = dequeue_signal(tsk, mask, info);
2135 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2136
2137 return ret;
2138 }
2139
2140 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2141 sigset_t *mask);
2142 extern void unblock_all_signals(void);
2143 extern void release_task(struct task_struct * p);
2144 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2145 extern int force_sigsegv(int, struct task_struct *);
2146 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2147 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2148 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2149 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2150 const struct cred *, u32);
2151 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2152 extern int kill_pid(struct pid *pid, int sig, int priv);
2153 extern int kill_proc_info(int, struct siginfo *, pid_t);
2154 extern __must_check bool do_notify_parent(struct task_struct *, int);
2155 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2156 extern void force_sig(int, struct task_struct *);
2157 extern int send_sig(int, struct task_struct *, int);
2158 extern int zap_other_threads(struct task_struct *p);
2159 extern struct sigqueue *sigqueue_alloc(void);
2160 extern void sigqueue_free(struct sigqueue *);
2161 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2162 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2163 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2164
2165 static inline void restore_saved_sigmask(void)
2166 {
2167 if (test_and_clear_restore_sigmask())
2168 __set_current_blocked(&current->saved_sigmask);
2169 }
2170
2171 static inline sigset_t *sigmask_to_save(void)
2172 {
2173 sigset_t *res = &current->blocked;
2174 if (unlikely(test_restore_sigmask()))
2175 res = &current->saved_sigmask;
2176 return res;
2177 }
2178
2179 static inline int kill_cad_pid(int sig, int priv)
2180 {
2181 return kill_pid(cad_pid, sig, priv);
2182 }
2183
2184 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2185 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2186 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2187 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2188
2189 /*
2190 * True if we are on the alternate signal stack.
2191 */
2192 static inline int on_sig_stack(unsigned long sp)
2193 {
2194 #ifdef CONFIG_STACK_GROWSUP
2195 return sp >= current->sas_ss_sp &&
2196 sp - current->sas_ss_sp < current->sas_ss_size;
2197 #else
2198 return sp > current->sas_ss_sp &&
2199 sp - current->sas_ss_sp <= current->sas_ss_size;
2200 #endif
2201 }
2202
2203 static inline int sas_ss_flags(unsigned long sp)
2204 {
2205 return (current->sas_ss_size == 0 ? SS_DISABLE
2206 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2207 }
2208
2209 /*
2210 * Routines for handling mm_structs
2211 */
2212 extern struct mm_struct * mm_alloc(void);
2213
2214 /* mmdrop drops the mm and the page tables */
2215 extern void __mmdrop(struct mm_struct *);
2216 static inline void mmdrop(struct mm_struct * mm)
2217 {
2218 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2219 __mmdrop(mm);
2220 }
2221
2222 /* mmput gets rid of the mappings and all user-space */
2223 extern void mmput(struct mm_struct *);
2224 /* Grab a reference to a task's mm, if it is not already going away */
2225 extern struct mm_struct *get_task_mm(struct task_struct *task);
2226 /*
2227 * Grab a reference to a task's mm, if it is not already going away
2228 * and ptrace_may_access with the mode parameter passed to it
2229 * succeeds.
2230 */
2231 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2232 /* Remove the current tasks stale references to the old mm_struct */
2233 extern void mm_release(struct task_struct *, struct mm_struct *);
2234 /* Allocate a new mm structure and copy contents from tsk->mm */
2235 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2236
2237 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2238 struct task_struct *);
2239 extern void flush_thread(void);
2240 extern void exit_thread(void);
2241
2242 extern void exit_files(struct task_struct *);
2243 extern void __cleanup_sighand(struct sighand_struct *);
2244
2245 extern void exit_itimers(struct signal_struct *);
2246 extern void flush_itimer_signals(void);
2247
2248 extern void do_group_exit(int);
2249
2250 extern int allow_signal(int);
2251 extern int disallow_signal(int);
2252
2253 extern int do_execve(const char *,
2254 const char __user * const __user *,
2255 const char __user * const __user *);
2256 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2257 struct task_struct *fork_idle(int);
2258 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2259
2260 extern void set_task_comm(struct task_struct *tsk, char *from);
2261 extern char *get_task_comm(char *to, struct task_struct *tsk);
2262
2263 #ifdef CONFIG_SMP
2264 void scheduler_ipi(void);
2265 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2266 #else
2267 static inline void scheduler_ipi(void) { }
2268 static inline unsigned long wait_task_inactive(struct task_struct *p,
2269 long match_state)
2270 {
2271 return 1;
2272 }
2273 #endif
2274
2275 #define next_task(p) \
2276 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2277
2278 #define for_each_process(p) \
2279 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2280
2281 extern bool current_is_single_threaded(void);
2282
2283 /*
2284 * Careful: do_each_thread/while_each_thread is a double loop so
2285 * 'break' will not work as expected - use goto instead.
2286 */
2287 #define do_each_thread(g, t) \
2288 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2289
2290 #define while_each_thread(g, t) \
2291 while ((t = next_thread(t)) != g)
2292
2293 static inline int get_nr_threads(struct task_struct *tsk)
2294 {
2295 return tsk->signal->nr_threads;
2296 }
2297
2298 static inline bool thread_group_leader(struct task_struct *p)
2299 {
2300 return p->exit_signal >= 0;
2301 }
2302
2303 /* Do to the insanities of de_thread it is possible for a process
2304 * to have the pid of the thread group leader without actually being
2305 * the thread group leader. For iteration through the pids in proc
2306 * all we care about is that we have a task with the appropriate
2307 * pid, we don't actually care if we have the right task.
2308 */
2309 static inline int has_group_leader_pid(struct task_struct *p)
2310 {
2311 return p->pid == p->tgid;
2312 }
2313
2314 static inline
2315 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2316 {
2317 return p1->tgid == p2->tgid;
2318 }
2319
2320 static inline struct task_struct *next_thread(const struct task_struct *p)
2321 {
2322 return list_entry_rcu(p->thread_group.next,
2323 struct task_struct, thread_group);
2324 }
2325
2326 static inline int thread_group_empty(struct task_struct *p)
2327 {
2328 return list_empty(&p->thread_group);
2329 }
2330
2331 #define delay_group_leader(p) \
2332 (thread_group_leader(p) && !thread_group_empty(p))
2333
2334 /*
2335 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2336 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2337 * pins the final release of task.io_context. Also protects ->cpuset and
2338 * ->cgroup.subsys[]. And ->vfork_done.
2339 *
2340 * Nests both inside and outside of read_lock(&tasklist_lock).
2341 * It must not be nested with write_lock_irq(&tasklist_lock),
2342 * neither inside nor outside.
2343 */
2344 static inline void task_lock(struct task_struct *p)
2345 {
2346 spin_lock(&p->alloc_lock);
2347 }
2348
2349 static inline void task_unlock(struct task_struct *p)
2350 {
2351 spin_unlock(&p->alloc_lock);
2352 }
2353
2354 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2355 unsigned long *flags);
2356
2357 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2358 unsigned long *flags)
2359 {
2360 struct sighand_struct *ret;
2361
2362 ret = __lock_task_sighand(tsk, flags);
2363 (void)__cond_lock(&tsk->sighand->siglock, ret);
2364 return ret;
2365 }
2366
2367 static inline void unlock_task_sighand(struct task_struct *tsk,
2368 unsigned long *flags)
2369 {
2370 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2371 }
2372
2373 #ifdef CONFIG_CGROUPS
2374 static inline void threadgroup_change_begin(struct task_struct *tsk)
2375 {
2376 down_read(&tsk->signal->group_rwsem);
2377 }
2378 static inline void threadgroup_change_end(struct task_struct *tsk)
2379 {
2380 up_read(&tsk->signal->group_rwsem);
2381 }
2382
2383 /**
2384 * threadgroup_lock - lock threadgroup
2385 * @tsk: member task of the threadgroup to lock
2386 *
2387 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter
2388 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2389 * perform exec. This is useful for cases where the threadgroup needs to
2390 * stay stable across blockable operations.
2391 *
2392 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2393 * synchronization. While held, no new task will be added to threadgroup
2394 * and no existing live task will have its PF_EXITING set.
2395 *
2396 * During exec, a task goes and puts its thread group through unusual
2397 * changes. After de-threading, exclusive access is assumed to resources
2398 * which are usually shared by tasks in the same group - e.g. sighand may
2399 * be replaced with a new one. Also, the exec'ing task takes over group
2400 * leader role including its pid. Exclude these changes while locked by
2401 * grabbing cred_guard_mutex which is used to synchronize exec path.
2402 */
2403 static inline void threadgroup_lock(struct task_struct *tsk)
2404 {
2405 /*
2406 * exec uses exit for de-threading nesting group_rwsem inside
2407 * cred_guard_mutex. Grab cred_guard_mutex first.
2408 */
2409 mutex_lock(&tsk->signal->cred_guard_mutex);
2410 down_write(&tsk->signal->group_rwsem);
2411 }
2412
2413 /**
2414 * threadgroup_unlock - unlock threadgroup
2415 * @tsk: member task of the threadgroup to unlock
2416 *
2417 * Reverse threadgroup_lock().
2418 */
2419 static inline void threadgroup_unlock(struct task_struct *tsk)
2420 {
2421 up_write(&tsk->signal->group_rwsem);
2422 mutex_unlock(&tsk->signal->cred_guard_mutex);
2423 }
2424 #else
2425 static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2426 static inline void threadgroup_change_end(struct task_struct *tsk) {}
2427 static inline void threadgroup_lock(struct task_struct *tsk) {}
2428 static inline void threadgroup_unlock(struct task_struct *tsk) {}
2429 #endif
2430
2431 #ifndef __HAVE_THREAD_FUNCTIONS
2432
2433 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2434 #define task_stack_page(task) ((task)->stack)
2435
2436 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2437 {
2438 *task_thread_info(p) = *task_thread_info(org);
2439 task_thread_info(p)->task = p;
2440 }
2441
2442 static inline unsigned long *end_of_stack(struct task_struct *p)
2443 {
2444 return (unsigned long *)(task_thread_info(p) + 1);
2445 }
2446
2447 #endif
2448
2449 static inline int object_is_on_stack(void *obj)
2450 {
2451 void *stack = task_stack_page(current);
2452
2453 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2454 }
2455
2456 extern void thread_info_cache_init(void);
2457
2458 #ifdef CONFIG_DEBUG_STACK_USAGE
2459 static inline unsigned long stack_not_used(struct task_struct *p)
2460 {
2461 unsigned long *n = end_of_stack(p);
2462
2463 do { /* Skip over canary */
2464 n++;
2465 } while (!*n);
2466
2467 return (unsigned long)n - (unsigned long)end_of_stack(p);
2468 }
2469 #endif
2470
2471 /* set thread flags in other task's structures
2472 * - see asm/thread_info.h for TIF_xxxx flags available
2473 */
2474 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2475 {
2476 set_ti_thread_flag(task_thread_info(tsk), flag);
2477 }
2478
2479 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2480 {
2481 clear_ti_thread_flag(task_thread_info(tsk), flag);
2482 }
2483
2484 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2485 {
2486 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2487 }
2488
2489 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2490 {
2491 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2492 }
2493
2494 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2495 {
2496 return test_ti_thread_flag(task_thread_info(tsk), flag);
2497 }
2498
2499 static inline void set_tsk_need_resched(struct task_struct *tsk)
2500 {
2501 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2502 }
2503
2504 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2505 {
2506 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2507 }
2508
2509 static inline int test_tsk_need_resched(struct task_struct *tsk)
2510 {
2511 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2512 }
2513
2514 static inline int restart_syscall(void)
2515 {
2516 set_tsk_thread_flag(current, TIF_SIGPENDING);
2517 return -ERESTARTNOINTR;
2518 }
2519
2520 static inline int signal_pending(struct task_struct *p)
2521 {
2522 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2523 }
2524
2525 static inline int __fatal_signal_pending(struct task_struct *p)
2526 {
2527 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2528 }
2529
2530 static inline int fatal_signal_pending(struct task_struct *p)
2531 {
2532 return signal_pending(p) && __fatal_signal_pending(p);
2533 }
2534
2535 static inline int signal_pending_state(long state, struct task_struct *p)
2536 {
2537 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2538 return 0;
2539 if (!signal_pending(p))
2540 return 0;
2541
2542 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2543 }
2544
2545 static inline int need_resched(void)
2546 {
2547 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2548 }
2549
2550 /*
2551 * cond_resched() and cond_resched_lock(): latency reduction via
2552 * explicit rescheduling in places that are safe. The return
2553 * value indicates whether a reschedule was done in fact.
2554 * cond_resched_lock() will drop the spinlock before scheduling,
2555 * cond_resched_softirq() will enable bhs before scheduling.
2556 */
2557 extern int _cond_resched(void);
2558
2559 #define cond_resched() ({ \
2560 __might_sleep(__FILE__, __LINE__, 0); \
2561 _cond_resched(); \
2562 })
2563
2564 extern int __cond_resched_lock(spinlock_t *lock);
2565
2566 #ifdef CONFIG_PREEMPT_COUNT
2567 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2568 #else
2569 #define PREEMPT_LOCK_OFFSET 0
2570 #endif
2571
2572 #define cond_resched_lock(lock) ({ \
2573 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2574 __cond_resched_lock(lock); \
2575 })
2576
2577 extern int __cond_resched_softirq(void);
2578
2579 #define cond_resched_softirq() ({ \
2580 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2581 __cond_resched_softirq(); \
2582 })
2583
2584 /*
2585 * Does a critical section need to be broken due to another
2586 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2587 * but a general need for low latency)
2588 */
2589 static inline int spin_needbreak(spinlock_t *lock)
2590 {
2591 #ifdef CONFIG_PREEMPT
2592 return spin_is_contended(lock);
2593 #else
2594 return 0;
2595 #endif
2596 }
2597
2598 /*
2599 * Thread group CPU time accounting.
2600 */
2601 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2602 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2603
2604 static inline void thread_group_cputime_init(struct signal_struct *sig)
2605 {
2606 raw_spin_lock_init(&sig->cputimer.lock);
2607 }
2608
2609 /*
2610 * Reevaluate whether the task has signals pending delivery.
2611 * Wake the task if so.
2612 * This is required every time the blocked sigset_t changes.
2613 * callers must hold sighand->siglock.
2614 */
2615 extern void recalc_sigpending_and_wake(struct task_struct *t);
2616 extern void recalc_sigpending(void);
2617
2618 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
2619
2620 static inline void signal_wake_up(struct task_struct *t, bool resume)
2621 {
2622 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
2623 }
2624 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
2625 {
2626 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
2627 }
2628
2629 /*
2630 * Wrappers for p->thread_info->cpu access. No-op on UP.
2631 */
2632 #ifdef CONFIG_SMP
2633
2634 static inline unsigned int task_cpu(const struct task_struct *p)
2635 {
2636 return task_thread_info(p)->cpu;
2637 }
2638
2639 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2640
2641 #else
2642
2643 static inline unsigned int task_cpu(const struct task_struct *p)
2644 {
2645 return 0;
2646 }
2647
2648 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2649 {
2650 }
2651
2652 #endif /* CONFIG_SMP */
2653
2654 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2655 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2656
2657 #ifdef CONFIG_CGROUP_SCHED
2658
2659 extern struct task_group root_task_group;
2660
2661 extern struct task_group *sched_create_group(struct task_group *parent);
2662 extern void sched_online_group(struct task_group *tg,
2663 struct task_group *parent);
2664 extern void sched_destroy_group(struct task_group *tg);
2665 extern void sched_offline_group(struct task_group *tg);
2666 extern void sched_move_task(struct task_struct *tsk);
2667 #ifdef CONFIG_FAIR_GROUP_SCHED
2668 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2669 extern unsigned long sched_group_shares(struct task_group *tg);
2670 #endif
2671 #ifdef CONFIG_RT_GROUP_SCHED
2672 extern int sched_group_set_rt_runtime(struct task_group *tg,
2673 long rt_runtime_us);
2674 extern long sched_group_rt_runtime(struct task_group *tg);
2675 extern int sched_group_set_rt_period(struct task_group *tg,
2676 long rt_period_us);
2677 extern long sched_group_rt_period(struct task_group *tg);
2678 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2679 #endif
2680 #endif /* CONFIG_CGROUP_SCHED */
2681
2682 extern int task_can_switch_user(struct user_struct *up,
2683 struct task_struct *tsk);
2684
2685 #ifdef CONFIG_TASK_XACCT
2686 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2687 {
2688 tsk->ioac.rchar += amt;
2689 }
2690
2691 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2692 {
2693 tsk->ioac.wchar += amt;
2694 }
2695
2696 static inline void inc_syscr(struct task_struct *tsk)
2697 {
2698 tsk->ioac.syscr++;
2699 }
2700
2701 static inline void inc_syscw(struct task_struct *tsk)
2702 {
2703 tsk->ioac.syscw++;
2704 }
2705 #else
2706 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2707 {
2708 }
2709
2710 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2711 {
2712 }
2713
2714 static inline void inc_syscr(struct task_struct *tsk)
2715 {
2716 }
2717
2718 static inline void inc_syscw(struct task_struct *tsk)
2719 {
2720 }
2721 #endif
2722
2723 #ifndef TASK_SIZE_OF
2724 #define TASK_SIZE_OF(tsk) TASK_SIZE
2725 #endif
2726
2727 #ifdef CONFIG_MM_OWNER
2728 extern void mm_update_next_owner(struct mm_struct *mm);
2729 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2730 #else
2731 static inline void mm_update_next_owner(struct mm_struct *mm)
2732 {
2733 }
2734
2735 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2736 {
2737 }
2738 #endif /* CONFIG_MM_OWNER */
2739
2740 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2741 unsigned int limit)
2742 {
2743 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2744 }
2745
2746 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2747 unsigned int limit)
2748 {
2749 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2750 }
2751
2752 static inline unsigned long rlimit(unsigned int limit)
2753 {
2754 return task_rlimit(current, limit);
2755 }
2756
2757 static inline unsigned long rlimit_max(unsigned int limit)
2758 {
2759 return task_rlimit_max(current, limit);
2760 }
2761
2762 #endif
This page took 0.089452 seconds and 5 git commands to generate.