Merge remote-tracking branch 'asoc/topic/ac97' into asoc-fsl
[deliverable/linux.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <uapi/linux/sched.h>
5
6
7 struct sched_param {
8 int sched_priority;
9 };
10
11 #include <asm/param.h> /* for HZ */
12
13 #include <linux/capability.h>
14 #include <linux/threads.h>
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/timex.h>
18 #include <linux/jiffies.h>
19 #include <linux/rbtree.h>
20 #include <linux/thread_info.h>
21 #include <linux/cpumask.h>
22 #include <linux/errno.h>
23 #include <linux/nodemask.h>
24 #include <linux/mm_types.h>
25
26 #include <asm/page.h>
27 #include <asm/ptrace.h>
28 #include <asm/cputime.h>
29
30 #include <linux/smp.h>
31 #include <linux/sem.h>
32 #include <linux/signal.h>
33 #include <linux/compiler.h>
34 #include <linux/completion.h>
35 #include <linux/pid.h>
36 #include <linux/percpu.h>
37 #include <linux/topology.h>
38 #include <linux/proportions.h>
39 #include <linux/seccomp.h>
40 #include <linux/rcupdate.h>
41 #include <linux/rculist.h>
42 #include <linux/rtmutex.h>
43
44 #include <linux/time.h>
45 #include <linux/param.h>
46 #include <linux/resource.h>
47 #include <linux/timer.h>
48 #include <linux/hrtimer.h>
49 #include <linux/task_io_accounting.h>
50 #include <linux/latencytop.h>
51 #include <linux/cred.h>
52 #include <linux/llist.h>
53 #include <linux/uidgid.h>
54 #include <linux/gfp.h>
55
56 #include <asm/processor.h>
57
58 struct exec_domain;
59 struct futex_pi_state;
60 struct robust_list_head;
61 struct bio_list;
62 struct fs_struct;
63 struct perf_event_context;
64 struct blk_plug;
65
66 /*
67 * List of flags we want to share for kernel threads,
68 * if only because they are not used by them anyway.
69 */
70 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
71
72 /*
73 * These are the constant used to fake the fixed-point load-average
74 * counting. Some notes:
75 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
76 * a load-average precision of 10 bits integer + 11 bits fractional
77 * - if you want to count load-averages more often, you need more
78 * precision, or rounding will get you. With 2-second counting freq,
79 * the EXP_n values would be 1981, 2034 and 2043 if still using only
80 * 11 bit fractions.
81 */
82 extern unsigned long avenrun[]; /* Load averages */
83 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
84
85 #define FSHIFT 11 /* nr of bits of precision */
86 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
87 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
88 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
89 #define EXP_5 2014 /* 1/exp(5sec/5min) */
90 #define EXP_15 2037 /* 1/exp(5sec/15min) */
91
92 #define CALC_LOAD(load,exp,n) \
93 load *= exp; \
94 load += n*(FIXED_1-exp); \
95 load >>= FSHIFT;
96
97 extern unsigned long total_forks;
98 extern int nr_threads;
99 DECLARE_PER_CPU(unsigned long, process_counts);
100 extern int nr_processes(void);
101 extern unsigned long nr_running(void);
102 extern unsigned long nr_iowait(void);
103 extern unsigned long nr_iowait_cpu(int cpu);
104 extern unsigned long this_cpu_load(void);
105
106
107 extern void calc_global_load(unsigned long ticks);
108 extern void update_cpu_load_nohz(void);
109
110 /* Notifier for when a task gets migrated to a new CPU */
111 struct task_migration_notifier {
112 struct task_struct *task;
113 int from_cpu;
114 int to_cpu;
115 };
116 extern void register_task_migration_notifier(struct notifier_block *n);
117
118 extern unsigned long get_parent_ip(unsigned long addr);
119
120 extern void dump_cpu_task(int cpu);
121
122 struct seq_file;
123 struct cfs_rq;
124 struct task_group;
125 #ifdef CONFIG_SCHED_DEBUG
126 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
127 extern void proc_sched_set_task(struct task_struct *p);
128 extern void
129 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
130 #endif
131
132 /*
133 * Task state bitmask. NOTE! These bits are also
134 * encoded in fs/proc/array.c: get_task_state().
135 *
136 * We have two separate sets of flags: task->state
137 * is about runnability, while task->exit_state are
138 * about the task exiting. Confusing, but this way
139 * modifying one set can't modify the other one by
140 * mistake.
141 */
142 #define TASK_RUNNING 0
143 #define TASK_INTERRUPTIBLE 1
144 #define TASK_UNINTERRUPTIBLE 2
145 #define __TASK_STOPPED 4
146 #define __TASK_TRACED 8
147 /* in tsk->exit_state */
148 #define EXIT_ZOMBIE 16
149 #define EXIT_DEAD 32
150 /* in tsk->state again */
151 #define TASK_DEAD 64
152 #define TASK_WAKEKILL 128
153 #define TASK_WAKING 256
154 #define TASK_PARKED 512
155 #define TASK_STATE_MAX 1024
156
157 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
158
159 extern char ___assert_task_state[1 - 2*!!(
160 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
161
162 /* Convenience macros for the sake of set_task_state */
163 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
164 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
165 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
166
167 /* Convenience macros for the sake of wake_up */
168 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
169 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
170
171 /* get_task_state() */
172 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
173 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
174 __TASK_TRACED)
175
176 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
177 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
178 #define task_is_dead(task) ((task)->exit_state != 0)
179 #define task_is_stopped_or_traced(task) \
180 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
181 #define task_contributes_to_load(task) \
182 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
183 (task->flags & PF_FROZEN) == 0)
184
185 #define __set_task_state(tsk, state_value) \
186 do { (tsk)->state = (state_value); } while (0)
187 #define set_task_state(tsk, state_value) \
188 set_mb((tsk)->state, (state_value))
189
190 /*
191 * set_current_state() includes a barrier so that the write of current->state
192 * is correctly serialised wrt the caller's subsequent test of whether to
193 * actually sleep:
194 *
195 * set_current_state(TASK_UNINTERRUPTIBLE);
196 * if (do_i_need_to_sleep())
197 * schedule();
198 *
199 * If the caller does not need such serialisation then use __set_current_state()
200 */
201 #define __set_current_state(state_value) \
202 do { current->state = (state_value); } while (0)
203 #define set_current_state(state_value) \
204 set_mb(current->state, (state_value))
205
206 /* Task command name length */
207 #define TASK_COMM_LEN 16
208
209 #include <linux/spinlock.h>
210
211 /*
212 * This serializes "schedule()" and also protects
213 * the run-queue from deletions/modifications (but
214 * _adding_ to the beginning of the run-queue has
215 * a separate lock).
216 */
217 extern rwlock_t tasklist_lock;
218 extern spinlock_t mmlist_lock;
219
220 struct task_struct;
221
222 #ifdef CONFIG_PROVE_RCU
223 extern int lockdep_tasklist_lock_is_held(void);
224 #endif /* #ifdef CONFIG_PROVE_RCU */
225
226 extern void sched_init(void);
227 extern void sched_init_smp(void);
228 extern asmlinkage void schedule_tail(struct task_struct *prev);
229 extern void init_idle(struct task_struct *idle, int cpu);
230 extern void init_idle_bootup_task(struct task_struct *idle);
231
232 extern int runqueue_is_locked(int cpu);
233
234 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
235 extern void nohz_balance_enter_idle(int cpu);
236 extern void set_cpu_sd_state_idle(void);
237 extern int get_nohz_timer_target(void);
238 #else
239 static inline void nohz_balance_enter_idle(int cpu) { }
240 static inline void set_cpu_sd_state_idle(void) { }
241 #endif
242
243 /*
244 * Only dump TASK_* tasks. (0 for all tasks)
245 */
246 extern void show_state_filter(unsigned long state_filter);
247
248 static inline void show_state(void)
249 {
250 show_state_filter(0);
251 }
252
253 extern void show_regs(struct pt_regs *);
254
255 /*
256 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
257 * task), SP is the stack pointer of the first frame that should be shown in the back
258 * trace (or NULL if the entire call-chain of the task should be shown).
259 */
260 extern void show_stack(struct task_struct *task, unsigned long *sp);
261
262 void io_schedule(void);
263 long io_schedule_timeout(long timeout);
264
265 extern void cpu_init (void);
266 extern void trap_init(void);
267 extern void update_process_times(int user);
268 extern void scheduler_tick(void);
269
270 extern void sched_show_task(struct task_struct *p);
271
272 #ifdef CONFIG_LOCKUP_DETECTOR
273 extern void touch_softlockup_watchdog(void);
274 extern void touch_softlockup_watchdog_sync(void);
275 extern void touch_all_softlockup_watchdogs(void);
276 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
277 void __user *buffer,
278 size_t *lenp, loff_t *ppos);
279 extern unsigned int softlockup_panic;
280 void lockup_detector_init(void);
281 #else
282 static inline void touch_softlockup_watchdog(void)
283 {
284 }
285 static inline void touch_softlockup_watchdog_sync(void)
286 {
287 }
288 static inline void touch_all_softlockup_watchdogs(void)
289 {
290 }
291 static inline void lockup_detector_init(void)
292 {
293 }
294 #endif
295
296 /* Attach to any functions which should be ignored in wchan output. */
297 #define __sched __attribute__((__section__(".sched.text")))
298
299 /* Linker adds these: start and end of __sched functions */
300 extern char __sched_text_start[], __sched_text_end[];
301
302 /* Is this address in the __sched functions? */
303 extern int in_sched_functions(unsigned long addr);
304
305 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
306 extern signed long schedule_timeout(signed long timeout);
307 extern signed long schedule_timeout_interruptible(signed long timeout);
308 extern signed long schedule_timeout_killable(signed long timeout);
309 extern signed long schedule_timeout_uninterruptible(signed long timeout);
310 asmlinkage void schedule(void);
311 extern void schedule_preempt_disabled(void);
312
313 struct nsproxy;
314 struct user_namespace;
315
316 #ifdef CONFIG_MMU
317 extern unsigned long mmap_legacy_base(void);
318 extern void arch_pick_mmap_layout(struct mm_struct *mm);
319 extern unsigned long
320 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
321 unsigned long, unsigned long);
322 extern unsigned long
323 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
324 unsigned long len, unsigned long pgoff,
325 unsigned long flags);
326 #else
327 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
328 #endif
329
330
331 extern void set_dumpable(struct mm_struct *mm, int value);
332 extern int get_dumpable(struct mm_struct *mm);
333
334 /* mm flags */
335 /* dumpable bits */
336 #define MMF_DUMPABLE 0 /* core dump is permitted */
337 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
338
339 #define MMF_DUMPABLE_BITS 2
340 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
341
342 /* coredump filter bits */
343 #define MMF_DUMP_ANON_PRIVATE 2
344 #define MMF_DUMP_ANON_SHARED 3
345 #define MMF_DUMP_MAPPED_PRIVATE 4
346 #define MMF_DUMP_MAPPED_SHARED 5
347 #define MMF_DUMP_ELF_HEADERS 6
348 #define MMF_DUMP_HUGETLB_PRIVATE 7
349 #define MMF_DUMP_HUGETLB_SHARED 8
350
351 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
352 #define MMF_DUMP_FILTER_BITS 7
353 #define MMF_DUMP_FILTER_MASK \
354 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
355 #define MMF_DUMP_FILTER_DEFAULT \
356 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
357 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
358
359 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
360 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
361 #else
362 # define MMF_DUMP_MASK_DEFAULT_ELF 0
363 #endif
364 /* leave room for more dump flags */
365 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
366 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
367 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
368
369 #define MMF_HAS_UPROBES 19 /* has uprobes */
370 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
371
372 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
373
374 struct sighand_struct {
375 atomic_t count;
376 struct k_sigaction action[_NSIG];
377 spinlock_t siglock;
378 wait_queue_head_t signalfd_wqh;
379 };
380
381 struct pacct_struct {
382 int ac_flag;
383 long ac_exitcode;
384 unsigned long ac_mem;
385 cputime_t ac_utime, ac_stime;
386 unsigned long ac_minflt, ac_majflt;
387 };
388
389 struct cpu_itimer {
390 cputime_t expires;
391 cputime_t incr;
392 u32 error;
393 u32 incr_error;
394 };
395
396 /**
397 * struct cputime - snaphsot of system and user cputime
398 * @utime: time spent in user mode
399 * @stime: time spent in system mode
400 *
401 * Gathers a generic snapshot of user and system time.
402 */
403 struct cputime {
404 cputime_t utime;
405 cputime_t stime;
406 };
407
408 /**
409 * struct task_cputime - collected CPU time counts
410 * @utime: time spent in user mode, in &cputime_t units
411 * @stime: time spent in kernel mode, in &cputime_t units
412 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
413 *
414 * This is an extension of struct cputime that includes the total runtime
415 * spent by the task from the scheduler point of view.
416 *
417 * As a result, this structure groups together three kinds of CPU time
418 * that are tracked for threads and thread groups. Most things considering
419 * CPU time want to group these counts together and treat all three
420 * of them in parallel.
421 */
422 struct task_cputime {
423 cputime_t utime;
424 cputime_t stime;
425 unsigned long long sum_exec_runtime;
426 };
427 /* Alternate field names when used to cache expirations. */
428 #define prof_exp stime
429 #define virt_exp utime
430 #define sched_exp sum_exec_runtime
431
432 #define INIT_CPUTIME \
433 (struct task_cputime) { \
434 .utime = 0, \
435 .stime = 0, \
436 .sum_exec_runtime = 0, \
437 }
438
439 /*
440 * Disable preemption until the scheduler is running.
441 * Reset by start_kernel()->sched_init()->init_idle().
442 *
443 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
444 * before the scheduler is active -- see should_resched().
445 */
446 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
447
448 /**
449 * struct thread_group_cputimer - thread group interval timer counts
450 * @cputime: thread group interval timers.
451 * @running: non-zero when there are timers running and
452 * @cputime receives updates.
453 * @lock: lock for fields in this struct.
454 *
455 * This structure contains the version of task_cputime, above, that is
456 * used for thread group CPU timer calculations.
457 */
458 struct thread_group_cputimer {
459 struct task_cputime cputime;
460 int running;
461 raw_spinlock_t lock;
462 };
463
464 #include <linux/rwsem.h>
465 struct autogroup;
466
467 /*
468 * NOTE! "signal_struct" does not have its own
469 * locking, because a shared signal_struct always
470 * implies a shared sighand_struct, so locking
471 * sighand_struct is always a proper superset of
472 * the locking of signal_struct.
473 */
474 struct signal_struct {
475 atomic_t sigcnt;
476 atomic_t live;
477 int nr_threads;
478
479 wait_queue_head_t wait_chldexit; /* for wait4() */
480
481 /* current thread group signal load-balancing target: */
482 struct task_struct *curr_target;
483
484 /* shared signal handling: */
485 struct sigpending shared_pending;
486
487 /* thread group exit support */
488 int group_exit_code;
489 /* overloaded:
490 * - notify group_exit_task when ->count is equal to notify_count
491 * - everyone except group_exit_task is stopped during signal delivery
492 * of fatal signals, group_exit_task processes the signal.
493 */
494 int notify_count;
495 struct task_struct *group_exit_task;
496
497 /* thread group stop support, overloads group_exit_code too */
498 int group_stop_count;
499 unsigned int flags; /* see SIGNAL_* flags below */
500
501 /*
502 * PR_SET_CHILD_SUBREAPER marks a process, like a service
503 * manager, to re-parent orphan (double-forking) child processes
504 * to this process instead of 'init'. The service manager is
505 * able to receive SIGCHLD signals and is able to investigate
506 * the process until it calls wait(). All children of this
507 * process will inherit a flag if they should look for a
508 * child_subreaper process at exit.
509 */
510 unsigned int is_child_subreaper:1;
511 unsigned int has_child_subreaper:1;
512
513 /* POSIX.1b Interval Timers */
514 int posix_timer_id;
515 struct list_head posix_timers;
516
517 /* ITIMER_REAL timer for the process */
518 struct hrtimer real_timer;
519 struct pid *leader_pid;
520 ktime_t it_real_incr;
521
522 /*
523 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
524 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
525 * values are defined to 0 and 1 respectively
526 */
527 struct cpu_itimer it[2];
528
529 /*
530 * Thread group totals for process CPU timers.
531 * See thread_group_cputimer(), et al, for details.
532 */
533 struct thread_group_cputimer cputimer;
534
535 /* Earliest-expiration cache. */
536 struct task_cputime cputime_expires;
537
538 struct list_head cpu_timers[3];
539
540 struct pid *tty_old_pgrp;
541
542 /* boolean value for session group leader */
543 int leader;
544
545 struct tty_struct *tty; /* NULL if no tty */
546
547 #ifdef CONFIG_SCHED_AUTOGROUP
548 struct autogroup *autogroup;
549 #endif
550 /*
551 * Cumulative resource counters for dead threads in the group,
552 * and for reaped dead child processes forked by this group.
553 * Live threads maintain their own counters and add to these
554 * in __exit_signal, except for the group leader.
555 */
556 cputime_t utime, stime, cutime, cstime;
557 cputime_t gtime;
558 cputime_t cgtime;
559 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
560 struct cputime prev_cputime;
561 #endif
562 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
563 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
564 unsigned long inblock, oublock, cinblock, coublock;
565 unsigned long maxrss, cmaxrss;
566 struct task_io_accounting ioac;
567
568 /*
569 * Cumulative ns of schedule CPU time fo dead threads in the
570 * group, not including a zombie group leader, (This only differs
571 * from jiffies_to_ns(utime + stime) if sched_clock uses something
572 * other than jiffies.)
573 */
574 unsigned long long sum_sched_runtime;
575
576 /*
577 * We don't bother to synchronize most readers of this at all,
578 * because there is no reader checking a limit that actually needs
579 * to get both rlim_cur and rlim_max atomically, and either one
580 * alone is a single word that can safely be read normally.
581 * getrlimit/setrlimit use task_lock(current->group_leader) to
582 * protect this instead of the siglock, because they really
583 * have no need to disable irqs.
584 */
585 struct rlimit rlim[RLIM_NLIMITS];
586
587 #ifdef CONFIG_BSD_PROCESS_ACCT
588 struct pacct_struct pacct; /* per-process accounting information */
589 #endif
590 #ifdef CONFIG_TASKSTATS
591 struct taskstats *stats;
592 #endif
593 #ifdef CONFIG_AUDIT
594 unsigned audit_tty;
595 unsigned audit_tty_log_passwd;
596 struct tty_audit_buf *tty_audit_buf;
597 #endif
598 #ifdef CONFIG_CGROUPS
599 /*
600 * group_rwsem prevents new tasks from entering the threadgroup and
601 * member tasks from exiting,a more specifically, setting of
602 * PF_EXITING. fork and exit paths are protected with this rwsem
603 * using threadgroup_change_begin/end(). Users which require
604 * threadgroup to remain stable should use threadgroup_[un]lock()
605 * which also takes care of exec path. Currently, cgroup is the
606 * only user.
607 */
608 struct rw_semaphore group_rwsem;
609 #endif
610
611 oom_flags_t oom_flags;
612 short oom_score_adj; /* OOM kill score adjustment */
613 short oom_score_adj_min; /* OOM kill score adjustment min value.
614 * Only settable by CAP_SYS_RESOURCE. */
615
616 struct mutex cred_guard_mutex; /* guard against foreign influences on
617 * credential calculations
618 * (notably. ptrace) */
619 };
620
621 /*
622 * Bits in flags field of signal_struct.
623 */
624 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
625 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
626 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
627 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
628 /*
629 * Pending notifications to parent.
630 */
631 #define SIGNAL_CLD_STOPPED 0x00000010
632 #define SIGNAL_CLD_CONTINUED 0x00000020
633 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
634
635 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
636
637 /* If true, all threads except ->group_exit_task have pending SIGKILL */
638 static inline int signal_group_exit(const struct signal_struct *sig)
639 {
640 return (sig->flags & SIGNAL_GROUP_EXIT) ||
641 (sig->group_exit_task != NULL);
642 }
643
644 /*
645 * Some day this will be a full-fledged user tracking system..
646 */
647 struct user_struct {
648 atomic_t __count; /* reference count */
649 atomic_t processes; /* How many processes does this user have? */
650 atomic_t files; /* How many open files does this user have? */
651 atomic_t sigpending; /* How many pending signals does this user have? */
652 #ifdef CONFIG_INOTIFY_USER
653 atomic_t inotify_watches; /* How many inotify watches does this user have? */
654 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
655 #endif
656 #ifdef CONFIG_FANOTIFY
657 atomic_t fanotify_listeners;
658 #endif
659 #ifdef CONFIG_EPOLL
660 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
661 #endif
662 #ifdef CONFIG_POSIX_MQUEUE
663 /* protected by mq_lock */
664 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
665 #endif
666 unsigned long locked_shm; /* How many pages of mlocked shm ? */
667
668 #ifdef CONFIG_KEYS
669 struct key *uid_keyring; /* UID specific keyring */
670 struct key *session_keyring; /* UID's default session keyring */
671 #endif
672
673 /* Hash table maintenance information */
674 struct hlist_node uidhash_node;
675 kuid_t uid;
676
677 #ifdef CONFIG_PERF_EVENTS
678 atomic_long_t locked_vm;
679 #endif
680 };
681
682 extern int uids_sysfs_init(void);
683
684 extern struct user_struct *find_user(kuid_t);
685
686 extern struct user_struct root_user;
687 #define INIT_USER (&root_user)
688
689
690 struct backing_dev_info;
691 struct reclaim_state;
692
693 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
694 struct sched_info {
695 /* cumulative counters */
696 unsigned long pcount; /* # of times run on this cpu */
697 unsigned long long run_delay; /* time spent waiting on a runqueue */
698
699 /* timestamps */
700 unsigned long long last_arrival,/* when we last ran on a cpu */
701 last_queued; /* when we were last queued to run */
702 };
703 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
704
705 #ifdef CONFIG_TASK_DELAY_ACCT
706 struct task_delay_info {
707 spinlock_t lock;
708 unsigned int flags; /* Private per-task flags */
709
710 /* For each stat XXX, add following, aligned appropriately
711 *
712 * struct timespec XXX_start, XXX_end;
713 * u64 XXX_delay;
714 * u32 XXX_count;
715 *
716 * Atomicity of updates to XXX_delay, XXX_count protected by
717 * single lock above (split into XXX_lock if contention is an issue).
718 */
719
720 /*
721 * XXX_count is incremented on every XXX operation, the delay
722 * associated with the operation is added to XXX_delay.
723 * XXX_delay contains the accumulated delay time in nanoseconds.
724 */
725 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
726 u64 blkio_delay; /* wait for sync block io completion */
727 u64 swapin_delay; /* wait for swapin block io completion */
728 u32 blkio_count; /* total count of the number of sync block */
729 /* io operations performed */
730 u32 swapin_count; /* total count of the number of swapin block */
731 /* io operations performed */
732
733 struct timespec freepages_start, freepages_end;
734 u64 freepages_delay; /* wait for memory reclaim */
735 u32 freepages_count; /* total count of memory reclaim */
736 };
737 #endif /* CONFIG_TASK_DELAY_ACCT */
738
739 static inline int sched_info_on(void)
740 {
741 #ifdef CONFIG_SCHEDSTATS
742 return 1;
743 #elif defined(CONFIG_TASK_DELAY_ACCT)
744 extern int delayacct_on;
745 return delayacct_on;
746 #else
747 return 0;
748 #endif
749 }
750
751 enum cpu_idle_type {
752 CPU_IDLE,
753 CPU_NOT_IDLE,
754 CPU_NEWLY_IDLE,
755 CPU_MAX_IDLE_TYPES
756 };
757
758 /*
759 * Increase resolution of cpu_power calculations
760 */
761 #define SCHED_POWER_SHIFT 10
762 #define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT)
763
764 /*
765 * sched-domains (multiprocessor balancing) declarations:
766 */
767 #ifdef CONFIG_SMP
768 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
769 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
770 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
771 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
772 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
773 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
774 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
775 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
776 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
777 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
778 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
779 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
780
781 extern int __weak arch_sd_sibiling_asym_packing(void);
782
783 struct sched_domain_attr {
784 int relax_domain_level;
785 };
786
787 #define SD_ATTR_INIT (struct sched_domain_attr) { \
788 .relax_domain_level = -1, \
789 }
790
791 extern int sched_domain_level_max;
792
793 struct sched_group;
794
795 struct sched_domain {
796 /* These fields must be setup */
797 struct sched_domain *parent; /* top domain must be null terminated */
798 struct sched_domain *child; /* bottom domain must be null terminated */
799 struct sched_group *groups; /* the balancing groups of the domain */
800 unsigned long min_interval; /* Minimum balance interval ms */
801 unsigned long max_interval; /* Maximum balance interval ms */
802 unsigned int busy_factor; /* less balancing by factor if busy */
803 unsigned int imbalance_pct; /* No balance until over watermark */
804 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
805 unsigned int busy_idx;
806 unsigned int idle_idx;
807 unsigned int newidle_idx;
808 unsigned int wake_idx;
809 unsigned int forkexec_idx;
810 unsigned int smt_gain;
811
812 int nohz_idle; /* NOHZ IDLE status */
813 int flags; /* See SD_* */
814 int level;
815
816 /* Runtime fields. */
817 unsigned long last_balance; /* init to jiffies. units in jiffies */
818 unsigned int balance_interval; /* initialise to 1. units in ms. */
819 unsigned int nr_balance_failed; /* initialise to 0 */
820
821 u64 last_update;
822
823 #ifdef CONFIG_SCHEDSTATS
824 /* load_balance() stats */
825 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
826 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
827 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
828 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
829 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
830 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
831 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
832 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
833
834 /* Active load balancing */
835 unsigned int alb_count;
836 unsigned int alb_failed;
837 unsigned int alb_pushed;
838
839 /* SD_BALANCE_EXEC stats */
840 unsigned int sbe_count;
841 unsigned int sbe_balanced;
842 unsigned int sbe_pushed;
843
844 /* SD_BALANCE_FORK stats */
845 unsigned int sbf_count;
846 unsigned int sbf_balanced;
847 unsigned int sbf_pushed;
848
849 /* try_to_wake_up() stats */
850 unsigned int ttwu_wake_remote;
851 unsigned int ttwu_move_affine;
852 unsigned int ttwu_move_balance;
853 #endif
854 #ifdef CONFIG_SCHED_DEBUG
855 char *name;
856 #endif
857 union {
858 void *private; /* used during construction */
859 struct rcu_head rcu; /* used during destruction */
860 };
861
862 unsigned int span_weight;
863 /*
864 * Span of all CPUs in this domain.
865 *
866 * NOTE: this field is variable length. (Allocated dynamically
867 * by attaching extra space to the end of the structure,
868 * depending on how many CPUs the kernel has booted up with)
869 */
870 unsigned long span[0];
871 };
872
873 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
874 {
875 return to_cpumask(sd->span);
876 }
877
878 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
879 struct sched_domain_attr *dattr_new);
880
881 /* Allocate an array of sched domains, for partition_sched_domains(). */
882 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
883 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
884
885 bool cpus_share_cache(int this_cpu, int that_cpu);
886
887 #else /* CONFIG_SMP */
888
889 struct sched_domain_attr;
890
891 static inline void
892 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
893 struct sched_domain_attr *dattr_new)
894 {
895 }
896
897 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
898 {
899 return true;
900 }
901
902 #endif /* !CONFIG_SMP */
903
904
905 struct io_context; /* See blkdev.h */
906
907
908 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
909 extern void prefetch_stack(struct task_struct *t);
910 #else
911 static inline void prefetch_stack(struct task_struct *t) { }
912 #endif
913
914 struct audit_context; /* See audit.c */
915 struct mempolicy;
916 struct pipe_inode_info;
917 struct uts_namespace;
918
919 struct load_weight {
920 unsigned long weight, inv_weight;
921 };
922
923 struct sched_avg {
924 /*
925 * These sums represent an infinite geometric series and so are bound
926 * above by 1024/(1-y). Thus we only need a u32 to store them for all
927 * choices of y < 1-2^(-32)*1024.
928 */
929 u32 runnable_avg_sum, runnable_avg_period;
930 u64 last_runnable_update;
931 s64 decay_count;
932 unsigned long load_avg_contrib;
933 };
934
935 #ifdef CONFIG_SCHEDSTATS
936 struct sched_statistics {
937 u64 wait_start;
938 u64 wait_max;
939 u64 wait_count;
940 u64 wait_sum;
941 u64 iowait_count;
942 u64 iowait_sum;
943
944 u64 sleep_start;
945 u64 sleep_max;
946 s64 sum_sleep_runtime;
947
948 u64 block_start;
949 u64 block_max;
950 u64 exec_max;
951 u64 slice_max;
952
953 u64 nr_migrations_cold;
954 u64 nr_failed_migrations_affine;
955 u64 nr_failed_migrations_running;
956 u64 nr_failed_migrations_hot;
957 u64 nr_forced_migrations;
958
959 u64 nr_wakeups;
960 u64 nr_wakeups_sync;
961 u64 nr_wakeups_migrate;
962 u64 nr_wakeups_local;
963 u64 nr_wakeups_remote;
964 u64 nr_wakeups_affine;
965 u64 nr_wakeups_affine_attempts;
966 u64 nr_wakeups_passive;
967 u64 nr_wakeups_idle;
968 };
969 #endif
970
971 struct sched_entity {
972 struct load_weight load; /* for load-balancing */
973 struct rb_node run_node;
974 struct list_head group_node;
975 unsigned int on_rq;
976
977 u64 exec_start;
978 u64 sum_exec_runtime;
979 u64 vruntime;
980 u64 prev_sum_exec_runtime;
981
982 u64 nr_migrations;
983
984 #ifdef CONFIG_SCHEDSTATS
985 struct sched_statistics statistics;
986 #endif
987
988 #ifdef CONFIG_FAIR_GROUP_SCHED
989 struct sched_entity *parent;
990 /* rq on which this entity is (to be) queued: */
991 struct cfs_rq *cfs_rq;
992 /* rq "owned" by this entity/group: */
993 struct cfs_rq *my_q;
994 #endif
995
996 #ifdef CONFIG_SMP
997 /* Per-entity load-tracking */
998 struct sched_avg avg;
999 #endif
1000 };
1001
1002 struct sched_rt_entity {
1003 struct list_head run_list;
1004 unsigned long timeout;
1005 unsigned long watchdog_stamp;
1006 unsigned int time_slice;
1007
1008 struct sched_rt_entity *back;
1009 #ifdef CONFIG_RT_GROUP_SCHED
1010 struct sched_rt_entity *parent;
1011 /* rq on which this entity is (to be) queued: */
1012 struct rt_rq *rt_rq;
1013 /* rq "owned" by this entity/group: */
1014 struct rt_rq *my_q;
1015 #endif
1016 };
1017
1018
1019 struct rcu_node;
1020
1021 enum perf_event_task_context {
1022 perf_invalid_context = -1,
1023 perf_hw_context = 0,
1024 perf_sw_context,
1025 perf_nr_task_contexts,
1026 };
1027
1028 struct task_struct {
1029 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1030 void *stack;
1031 atomic_t usage;
1032 unsigned int flags; /* per process flags, defined below */
1033 unsigned int ptrace;
1034
1035 #ifdef CONFIG_SMP
1036 struct llist_node wake_entry;
1037 int on_cpu;
1038 #endif
1039 int on_rq;
1040
1041 int prio, static_prio, normal_prio;
1042 unsigned int rt_priority;
1043 const struct sched_class *sched_class;
1044 struct sched_entity se;
1045 struct sched_rt_entity rt;
1046 #ifdef CONFIG_CGROUP_SCHED
1047 struct task_group *sched_task_group;
1048 #endif
1049
1050 #ifdef CONFIG_PREEMPT_NOTIFIERS
1051 /* list of struct preempt_notifier: */
1052 struct hlist_head preempt_notifiers;
1053 #endif
1054
1055 /*
1056 * fpu_counter contains the number of consecutive context switches
1057 * that the FPU is used. If this is over a threshold, the lazy fpu
1058 * saving becomes unlazy to save the trap. This is an unsigned char
1059 * so that after 256 times the counter wraps and the behavior turns
1060 * lazy again; this to deal with bursty apps that only use FPU for
1061 * a short time
1062 */
1063 unsigned char fpu_counter;
1064 #ifdef CONFIG_BLK_DEV_IO_TRACE
1065 unsigned int btrace_seq;
1066 #endif
1067
1068 unsigned int policy;
1069 int nr_cpus_allowed;
1070 cpumask_t cpus_allowed;
1071
1072 #ifdef CONFIG_PREEMPT_RCU
1073 int rcu_read_lock_nesting;
1074 char rcu_read_unlock_special;
1075 struct list_head rcu_node_entry;
1076 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1077 #ifdef CONFIG_TREE_PREEMPT_RCU
1078 struct rcu_node *rcu_blocked_node;
1079 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1080 #ifdef CONFIG_RCU_BOOST
1081 struct rt_mutex *rcu_boost_mutex;
1082 #endif /* #ifdef CONFIG_RCU_BOOST */
1083
1084 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1085 struct sched_info sched_info;
1086 #endif
1087
1088 struct list_head tasks;
1089 #ifdef CONFIG_SMP
1090 struct plist_node pushable_tasks;
1091 #endif
1092
1093 struct mm_struct *mm, *active_mm;
1094 #ifdef CONFIG_COMPAT_BRK
1095 unsigned brk_randomized:1;
1096 #endif
1097 #if defined(SPLIT_RSS_COUNTING)
1098 struct task_rss_stat rss_stat;
1099 #endif
1100 /* task state */
1101 int exit_state;
1102 int exit_code, exit_signal;
1103 int pdeath_signal; /* The signal sent when the parent dies */
1104 unsigned int jobctl; /* JOBCTL_*, siglock protected */
1105
1106 /* Used for emulating ABI behavior of previous Linux versions */
1107 unsigned int personality;
1108
1109 unsigned did_exec:1;
1110 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1111 * execve */
1112 unsigned in_iowait:1;
1113
1114 /* task may not gain privileges */
1115 unsigned no_new_privs:1;
1116
1117 /* Revert to default priority/policy when forking */
1118 unsigned sched_reset_on_fork:1;
1119 unsigned sched_contributes_to_load:1;
1120
1121 pid_t pid;
1122 pid_t tgid;
1123
1124 #ifdef CONFIG_CC_STACKPROTECTOR
1125 /* Canary value for the -fstack-protector gcc feature */
1126 unsigned long stack_canary;
1127 #endif
1128 /*
1129 * pointers to (original) parent process, youngest child, younger sibling,
1130 * older sibling, respectively. (p->father can be replaced with
1131 * p->real_parent->pid)
1132 */
1133 struct task_struct __rcu *real_parent; /* real parent process */
1134 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1135 /*
1136 * children/sibling forms the list of my natural children
1137 */
1138 struct list_head children; /* list of my children */
1139 struct list_head sibling; /* linkage in my parent's children list */
1140 struct task_struct *group_leader; /* threadgroup leader */
1141
1142 /*
1143 * ptraced is the list of tasks this task is using ptrace on.
1144 * This includes both natural children and PTRACE_ATTACH targets.
1145 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1146 */
1147 struct list_head ptraced;
1148 struct list_head ptrace_entry;
1149
1150 /* PID/PID hash table linkage. */
1151 struct pid_link pids[PIDTYPE_MAX];
1152 struct list_head thread_group;
1153
1154 struct completion *vfork_done; /* for vfork() */
1155 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1156 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1157
1158 cputime_t utime, stime, utimescaled, stimescaled;
1159 cputime_t gtime;
1160 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1161 struct cputime prev_cputime;
1162 #endif
1163 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1164 seqlock_t vtime_seqlock;
1165 unsigned long long vtime_snap;
1166 enum {
1167 VTIME_SLEEPING = 0,
1168 VTIME_USER,
1169 VTIME_SYS,
1170 } vtime_snap_whence;
1171 #endif
1172 unsigned long nvcsw, nivcsw; /* context switch counts */
1173 struct timespec start_time; /* monotonic time */
1174 struct timespec real_start_time; /* boot based time */
1175 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1176 unsigned long min_flt, maj_flt;
1177
1178 struct task_cputime cputime_expires;
1179 struct list_head cpu_timers[3];
1180
1181 /* process credentials */
1182 const struct cred __rcu *real_cred; /* objective and real subjective task
1183 * credentials (COW) */
1184 const struct cred __rcu *cred; /* effective (overridable) subjective task
1185 * credentials (COW) */
1186 char comm[TASK_COMM_LEN]; /* executable name excluding path
1187 - access with [gs]et_task_comm (which lock
1188 it with task_lock())
1189 - initialized normally by setup_new_exec */
1190 /* file system info */
1191 int link_count, total_link_count;
1192 #ifdef CONFIG_SYSVIPC
1193 /* ipc stuff */
1194 struct sysv_sem sysvsem;
1195 #endif
1196 #ifdef CONFIG_DETECT_HUNG_TASK
1197 /* hung task detection */
1198 unsigned long last_switch_count;
1199 #endif
1200 /* CPU-specific state of this task */
1201 struct thread_struct thread;
1202 /* filesystem information */
1203 struct fs_struct *fs;
1204 /* open file information */
1205 struct files_struct *files;
1206 /* namespaces */
1207 struct nsproxy *nsproxy;
1208 /* signal handlers */
1209 struct signal_struct *signal;
1210 struct sighand_struct *sighand;
1211
1212 sigset_t blocked, real_blocked;
1213 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1214 struct sigpending pending;
1215
1216 unsigned long sas_ss_sp;
1217 size_t sas_ss_size;
1218 int (*notifier)(void *priv);
1219 void *notifier_data;
1220 sigset_t *notifier_mask;
1221 struct callback_head *task_works;
1222
1223 struct audit_context *audit_context;
1224 #ifdef CONFIG_AUDITSYSCALL
1225 kuid_t loginuid;
1226 unsigned int sessionid;
1227 #endif
1228 struct seccomp seccomp;
1229
1230 /* Thread group tracking */
1231 u32 parent_exec_id;
1232 u32 self_exec_id;
1233 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1234 * mempolicy */
1235 spinlock_t alloc_lock;
1236
1237 /* Protection of the PI data structures: */
1238 raw_spinlock_t pi_lock;
1239
1240 #ifdef CONFIG_RT_MUTEXES
1241 /* PI waiters blocked on a rt_mutex held by this task */
1242 struct plist_head pi_waiters;
1243 /* Deadlock detection and priority inheritance handling */
1244 struct rt_mutex_waiter *pi_blocked_on;
1245 #endif
1246
1247 #ifdef CONFIG_DEBUG_MUTEXES
1248 /* mutex deadlock detection */
1249 struct mutex_waiter *blocked_on;
1250 #endif
1251 #ifdef CONFIG_TRACE_IRQFLAGS
1252 unsigned int irq_events;
1253 unsigned long hardirq_enable_ip;
1254 unsigned long hardirq_disable_ip;
1255 unsigned int hardirq_enable_event;
1256 unsigned int hardirq_disable_event;
1257 int hardirqs_enabled;
1258 int hardirq_context;
1259 unsigned long softirq_disable_ip;
1260 unsigned long softirq_enable_ip;
1261 unsigned int softirq_disable_event;
1262 unsigned int softirq_enable_event;
1263 int softirqs_enabled;
1264 int softirq_context;
1265 #endif
1266 #ifdef CONFIG_LOCKDEP
1267 # define MAX_LOCK_DEPTH 48UL
1268 u64 curr_chain_key;
1269 int lockdep_depth;
1270 unsigned int lockdep_recursion;
1271 struct held_lock held_locks[MAX_LOCK_DEPTH];
1272 gfp_t lockdep_reclaim_gfp;
1273 #endif
1274
1275 /* journalling filesystem info */
1276 void *journal_info;
1277
1278 /* stacked block device info */
1279 struct bio_list *bio_list;
1280
1281 #ifdef CONFIG_BLOCK
1282 /* stack plugging */
1283 struct blk_plug *plug;
1284 #endif
1285
1286 /* VM state */
1287 struct reclaim_state *reclaim_state;
1288
1289 struct backing_dev_info *backing_dev_info;
1290
1291 struct io_context *io_context;
1292
1293 unsigned long ptrace_message;
1294 siginfo_t *last_siginfo; /* For ptrace use. */
1295 struct task_io_accounting ioac;
1296 #if defined(CONFIG_TASK_XACCT)
1297 u64 acct_rss_mem1; /* accumulated rss usage */
1298 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1299 cputime_t acct_timexpd; /* stime + utime since last update */
1300 #endif
1301 #ifdef CONFIG_CPUSETS
1302 nodemask_t mems_allowed; /* Protected by alloc_lock */
1303 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
1304 int cpuset_mem_spread_rotor;
1305 int cpuset_slab_spread_rotor;
1306 #endif
1307 #ifdef CONFIG_CGROUPS
1308 /* Control Group info protected by css_set_lock */
1309 struct css_set __rcu *cgroups;
1310 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1311 struct list_head cg_list;
1312 #endif
1313 #ifdef CONFIG_FUTEX
1314 struct robust_list_head __user *robust_list;
1315 #ifdef CONFIG_COMPAT
1316 struct compat_robust_list_head __user *compat_robust_list;
1317 #endif
1318 struct list_head pi_state_list;
1319 struct futex_pi_state *pi_state_cache;
1320 #endif
1321 #ifdef CONFIG_PERF_EVENTS
1322 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1323 struct mutex perf_event_mutex;
1324 struct list_head perf_event_list;
1325 #endif
1326 #ifdef CONFIG_NUMA
1327 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1328 short il_next;
1329 short pref_node_fork;
1330 #endif
1331 #ifdef CONFIG_NUMA_BALANCING
1332 int numa_scan_seq;
1333 int numa_migrate_seq;
1334 unsigned int numa_scan_period;
1335 u64 node_stamp; /* migration stamp */
1336 struct callback_head numa_work;
1337 #endif /* CONFIG_NUMA_BALANCING */
1338
1339 struct rcu_head rcu;
1340
1341 /*
1342 * cache last used pipe for splice
1343 */
1344 struct pipe_inode_info *splice_pipe;
1345
1346 struct page_frag task_frag;
1347
1348 #ifdef CONFIG_TASK_DELAY_ACCT
1349 struct task_delay_info *delays;
1350 #endif
1351 #ifdef CONFIG_FAULT_INJECTION
1352 int make_it_fail;
1353 #endif
1354 /*
1355 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1356 * balance_dirty_pages() for some dirty throttling pause
1357 */
1358 int nr_dirtied;
1359 int nr_dirtied_pause;
1360 unsigned long dirty_paused_when; /* start of a write-and-pause period */
1361
1362 #ifdef CONFIG_LATENCYTOP
1363 int latency_record_count;
1364 struct latency_record latency_record[LT_SAVECOUNT];
1365 #endif
1366 /*
1367 * time slack values; these are used to round up poll() and
1368 * select() etc timeout values. These are in nanoseconds.
1369 */
1370 unsigned long timer_slack_ns;
1371 unsigned long default_timer_slack_ns;
1372
1373 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1374 /* Index of current stored address in ret_stack */
1375 int curr_ret_stack;
1376 /* Stack of return addresses for return function tracing */
1377 struct ftrace_ret_stack *ret_stack;
1378 /* time stamp for last schedule */
1379 unsigned long long ftrace_timestamp;
1380 /*
1381 * Number of functions that haven't been traced
1382 * because of depth overrun.
1383 */
1384 atomic_t trace_overrun;
1385 /* Pause for the tracing */
1386 atomic_t tracing_graph_pause;
1387 #endif
1388 #ifdef CONFIG_TRACING
1389 /* state flags for use by tracers */
1390 unsigned long trace;
1391 /* bitmask and counter of trace recursion */
1392 unsigned long trace_recursion;
1393 #endif /* CONFIG_TRACING */
1394 #ifdef CONFIG_MEMCG /* memcg uses this to do batch job */
1395 struct memcg_batch_info {
1396 int do_batch; /* incremented when batch uncharge started */
1397 struct mem_cgroup *memcg; /* target memcg of uncharge */
1398 unsigned long nr_pages; /* uncharged usage */
1399 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1400 } memcg_batch;
1401 unsigned int memcg_kmem_skip_account;
1402 #endif
1403 #ifdef CONFIG_UPROBES
1404 struct uprobe_task *utask;
1405 #endif
1406 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1407 unsigned int sequential_io;
1408 unsigned int sequential_io_avg;
1409 #endif
1410 };
1411
1412 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1413 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1414
1415 #ifdef CONFIG_NUMA_BALANCING
1416 extern void task_numa_fault(int node, int pages, bool migrated);
1417 extern void set_numabalancing_state(bool enabled);
1418 #else
1419 static inline void task_numa_fault(int node, int pages, bool migrated)
1420 {
1421 }
1422 static inline void set_numabalancing_state(bool enabled)
1423 {
1424 }
1425 #endif
1426
1427 static inline struct pid *task_pid(struct task_struct *task)
1428 {
1429 return task->pids[PIDTYPE_PID].pid;
1430 }
1431
1432 static inline struct pid *task_tgid(struct task_struct *task)
1433 {
1434 return task->group_leader->pids[PIDTYPE_PID].pid;
1435 }
1436
1437 /*
1438 * Without tasklist or rcu lock it is not safe to dereference
1439 * the result of task_pgrp/task_session even if task == current,
1440 * we can race with another thread doing sys_setsid/sys_setpgid.
1441 */
1442 static inline struct pid *task_pgrp(struct task_struct *task)
1443 {
1444 return task->group_leader->pids[PIDTYPE_PGID].pid;
1445 }
1446
1447 static inline struct pid *task_session(struct task_struct *task)
1448 {
1449 return task->group_leader->pids[PIDTYPE_SID].pid;
1450 }
1451
1452 struct pid_namespace;
1453
1454 /*
1455 * the helpers to get the task's different pids as they are seen
1456 * from various namespaces
1457 *
1458 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1459 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1460 * current.
1461 * task_xid_nr_ns() : id seen from the ns specified;
1462 *
1463 * set_task_vxid() : assigns a virtual id to a task;
1464 *
1465 * see also pid_nr() etc in include/linux/pid.h
1466 */
1467 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1468 struct pid_namespace *ns);
1469
1470 static inline pid_t task_pid_nr(struct task_struct *tsk)
1471 {
1472 return tsk->pid;
1473 }
1474
1475 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1476 struct pid_namespace *ns)
1477 {
1478 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1479 }
1480
1481 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1482 {
1483 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1484 }
1485
1486
1487 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1488 {
1489 return tsk->tgid;
1490 }
1491
1492 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1493
1494 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1495 {
1496 return pid_vnr(task_tgid(tsk));
1497 }
1498
1499
1500 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1501 struct pid_namespace *ns)
1502 {
1503 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1504 }
1505
1506 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1507 {
1508 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1509 }
1510
1511
1512 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1513 struct pid_namespace *ns)
1514 {
1515 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1516 }
1517
1518 static inline pid_t task_session_vnr(struct task_struct *tsk)
1519 {
1520 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1521 }
1522
1523 /* obsolete, do not use */
1524 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1525 {
1526 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1527 }
1528
1529 /**
1530 * pid_alive - check that a task structure is not stale
1531 * @p: Task structure to be checked.
1532 *
1533 * Test if a process is not yet dead (at most zombie state)
1534 * If pid_alive fails, then pointers within the task structure
1535 * can be stale and must not be dereferenced.
1536 *
1537 * Return: 1 if the process is alive. 0 otherwise.
1538 */
1539 static inline int pid_alive(struct task_struct *p)
1540 {
1541 return p->pids[PIDTYPE_PID].pid != NULL;
1542 }
1543
1544 /**
1545 * is_global_init - check if a task structure is init
1546 * @tsk: Task structure to be checked.
1547 *
1548 * Check if a task structure is the first user space task the kernel created.
1549 *
1550 * Return: 1 if the task structure is init. 0 otherwise.
1551 */
1552 static inline int is_global_init(struct task_struct *tsk)
1553 {
1554 return tsk->pid == 1;
1555 }
1556
1557 extern struct pid *cad_pid;
1558
1559 extern void free_task(struct task_struct *tsk);
1560 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1561
1562 extern void __put_task_struct(struct task_struct *t);
1563
1564 static inline void put_task_struct(struct task_struct *t)
1565 {
1566 if (atomic_dec_and_test(&t->usage))
1567 __put_task_struct(t);
1568 }
1569
1570 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1571 extern void task_cputime(struct task_struct *t,
1572 cputime_t *utime, cputime_t *stime);
1573 extern void task_cputime_scaled(struct task_struct *t,
1574 cputime_t *utimescaled, cputime_t *stimescaled);
1575 extern cputime_t task_gtime(struct task_struct *t);
1576 #else
1577 static inline void task_cputime(struct task_struct *t,
1578 cputime_t *utime, cputime_t *stime)
1579 {
1580 if (utime)
1581 *utime = t->utime;
1582 if (stime)
1583 *stime = t->stime;
1584 }
1585
1586 static inline void task_cputime_scaled(struct task_struct *t,
1587 cputime_t *utimescaled,
1588 cputime_t *stimescaled)
1589 {
1590 if (utimescaled)
1591 *utimescaled = t->utimescaled;
1592 if (stimescaled)
1593 *stimescaled = t->stimescaled;
1594 }
1595
1596 static inline cputime_t task_gtime(struct task_struct *t)
1597 {
1598 return t->gtime;
1599 }
1600 #endif
1601 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1602 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1603
1604 /*
1605 * Per process flags
1606 */
1607 #define PF_EXITING 0x00000004 /* getting shut down */
1608 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1609 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1610 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1611 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1612 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1613 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1614 #define PF_DUMPCORE 0x00000200 /* dumped core */
1615 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1616 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1617 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1618 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1619 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1620 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1621 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1622 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1623 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1624 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1625 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1626 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1627 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1628 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1629 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1630 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1631 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
1632 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1633 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1634 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1635 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1636 #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
1637
1638 /*
1639 * Only the _current_ task can read/write to tsk->flags, but other
1640 * tasks can access tsk->flags in readonly mode for example
1641 * with tsk_used_math (like during threaded core dumping).
1642 * There is however an exception to this rule during ptrace
1643 * or during fork: the ptracer task is allowed to write to the
1644 * child->flags of its traced child (same goes for fork, the parent
1645 * can write to the child->flags), because we're guaranteed the
1646 * child is not running and in turn not changing child->flags
1647 * at the same time the parent does it.
1648 */
1649 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1650 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1651 #define clear_used_math() clear_stopped_child_used_math(current)
1652 #define set_used_math() set_stopped_child_used_math(current)
1653 #define conditional_stopped_child_used_math(condition, child) \
1654 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1655 #define conditional_used_math(condition) \
1656 conditional_stopped_child_used_math(condition, current)
1657 #define copy_to_stopped_child_used_math(child) \
1658 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1659 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1660 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1661 #define used_math() tsk_used_math(current)
1662
1663 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags */
1664 static inline gfp_t memalloc_noio_flags(gfp_t flags)
1665 {
1666 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
1667 flags &= ~__GFP_IO;
1668 return flags;
1669 }
1670
1671 static inline unsigned int memalloc_noio_save(void)
1672 {
1673 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
1674 current->flags |= PF_MEMALLOC_NOIO;
1675 return flags;
1676 }
1677
1678 static inline void memalloc_noio_restore(unsigned int flags)
1679 {
1680 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
1681 }
1682
1683 /*
1684 * task->jobctl flags
1685 */
1686 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
1687
1688 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
1689 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
1690 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
1691 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
1692 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
1693 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
1694 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
1695
1696 #define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT)
1697 #define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT)
1698 #define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT)
1699 #define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT)
1700 #define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT)
1701 #define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT)
1702 #define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT)
1703
1704 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1705 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1706
1707 extern bool task_set_jobctl_pending(struct task_struct *task,
1708 unsigned int mask);
1709 extern void task_clear_jobctl_trapping(struct task_struct *task);
1710 extern void task_clear_jobctl_pending(struct task_struct *task,
1711 unsigned int mask);
1712
1713 #ifdef CONFIG_PREEMPT_RCU
1714
1715 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1716 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1717
1718 static inline void rcu_copy_process(struct task_struct *p)
1719 {
1720 p->rcu_read_lock_nesting = 0;
1721 p->rcu_read_unlock_special = 0;
1722 #ifdef CONFIG_TREE_PREEMPT_RCU
1723 p->rcu_blocked_node = NULL;
1724 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1725 #ifdef CONFIG_RCU_BOOST
1726 p->rcu_boost_mutex = NULL;
1727 #endif /* #ifdef CONFIG_RCU_BOOST */
1728 INIT_LIST_HEAD(&p->rcu_node_entry);
1729 }
1730
1731 #else
1732
1733 static inline void rcu_copy_process(struct task_struct *p)
1734 {
1735 }
1736
1737 #endif
1738
1739 static inline void tsk_restore_flags(struct task_struct *task,
1740 unsigned long orig_flags, unsigned long flags)
1741 {
1742 task->flags &= ~flags;
1743 task->flags |= orig_flags & flags;
1744 }
1745
1746 #ifdef CONFIG_SMP
1747 extern void do_set_cpus_allowed(struct task_struct *p,
1748 const struct cpumask *new_mask);
1749
1750 extern int set_cpus_allowed_ptr(struct task_struct *p,
1751 const struct cpumask *new_mask);
1752 #else
1753 static inline void do_set_cpus_allowed(struct task_struct *p,
1754 const struct cpumask *new_mask)
1755 {
1756 }
1757 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1758 const struct cpumask *new_mask)
1759 {
1760 if (!cpumask_test_cpu(0, new_mask))
1761 return -EINVAL;
1762 return 0;
1763 }
1764 #endif
1765
1766 #ifdef CONFIG_NO_HZ_COMMON
1767 void calc_load_enter_idle(void);
1768 void calc_load_exit_idle(void);
1769 #else
1770 static inline void calc_load_enter_idle(void) { }
1771 static inline void calc_load_exit_idle(void) { }
1772 #endif /* CONFIG_NO_HZ_COMMON */
1773
1774 #ifndef CONFIG_CPUMASK_OFFSTACK
1775 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1776 {
1777 return set_cpus_allowed_ptr(p, &new_mask);
1778 }
1779 #endif
1780
1781 /*
1782 * Do not use outside of architecture code which knows its limitations.
1783 *
1784 * sched_clock() has no promise of monotonicity or bounded drift between
1785 * CPUs, use (which you should not) requires disabling IRQs.
1786 *
1787 * Please use one of the three interfaces below.
1788 */
1789 extern unsigned long long notrace sched_clock(void);
1790 /*
1791 * See the comment in kernel/sched/clock.c
1792 */
1793 extern u64 cpu_clock(int cpu);
1794 extern u64 local_clock(void);
1795 extern u64 sched_clock_cpu(int cpu);
1796
1797
1798 extern void sched_clock_init(void);
1799
1800 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1801 static inline void sched_clock_tick(void)
1802 {
1803 }
1804
1805 static inline void sched_clock_idle_sleep_event(void)
1806 {
1807 }
1808
1809 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1810 {
1811 }
1812 #else
1813 /*
1814 * Architectures can set this to 1 if they have specified
1815 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1816 * but then during bootup it turns out that sched_clock()
1817 * is reliable after all:
1818 */
1819 extern int sched_clock_stable;
1820
1821 extern void sched_clock_tick(void);
1822 extern void sched_clock_idle_sleep_event(void);
1823 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1824 #endif
1825
1826 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1827 /*
1828 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1829 * The reason for this explicit opt-in is not to have perf penalty with
1830 * slow sched_clocks.
1831 */
1832 extern void enable_sched_clock_irqtime(void);
1833 extern void disable_sched_clock_irqtime(void);
1834 #else
1835 static inline void enable_sched_clock_irqtime(void) {}
1836 static inline void disable_sched_clock_irqtime(void) {}
1837 #endif
1838
1839 extern unsigned long long
1840 task_sched_runtime(struct task_struct *task);
1841
1842 /* sched_exec is called by processes performing an exec */
1843 #ifdef CONFIG_SMP
1844 extern void sched_exec(void);
1845 #else
1846 #define sched_exec() {}
1847 #endif
1848
1849 extern void sched_clock_idle_sleep_event(void);
1850 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1851
1852 #ifdef CONFIG_HOTPLUG_CPU
1853 extern void idle_task_exit(void);
1854 #else
1855 static inline void idle_task_exit(void) {}
1856 #endif
1857
1858 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
1859 extern void wake_up_nohz_cpu(int cpu);
1860 #else
1861 static inline void wake_up_nohz_cpu(int cpu) { }
1862 #endif
1863
1864 #ifdef CONFIG_NO_HZ_FULL
1865 extern bool sched_can_stop_tick(void);
1866 extern u64 scheduler_tick_max_deferment(void);
1867 #else
1868 static inline bool sched_can_stop_tick(void) { return false; }
1869 #endif
1870
1871 #ifdef CONFIG_SCHED_AUTOGROUP
1872 extern void sched_autogroup_create_attach(struct task_struct *p);
1873 extern void sched_autogroup_detach(struct task_struct *p);
1874 extern void sched_autogroup_fork(struct signal_struct *sig);
1875 extern void sched_autogroup_exit(struct signal_struct *sig);
1876 #ifdef CONFIG_PROC_FS
1877 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
1878 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
1879 #endif
1880 #else
1881 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
1882 static inline void sched_autogroup_detach(struct task_struct *p) { }
1883 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
1884 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
1885 #endif
1886
1887 extern bool yield_to(struct task_struct *p, bool preempt);
1888 extern void set_user_nice(struct task_struct *p, long nice);
1889 extern int task_prio(const struct task_struct *p);
1890 extern int task_nice(const struct task_struct *p);
1891 extern int can_nice(const struct task_struct *p, const int nice);
1892 extern int task_curr(const struct task_struct *p);
1893 extern int idle_cpu(int cpu);
1894 extern int sched_setscheduler(struct task_struct *, int,
1895 const struct sched_param *);
1896 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1897 const struct sched_param *);
1898 extern struct task_struct *idle_task(int cpu);
1899 /**
1900 * is_idle_task - is the specified task an idle task?
1901 * @p: the task in question.
1902 *
1903 * Return: 1 if @p is an idle task. 0 otherwise.
1904 */
1905 static inline bool is_idle_task(const struct task_struct *p)
1906 {
1907 return p->pid == 0;
1908 }
1909 extern struct task_struct *curr_task(int cpu);
1910 extern void set_curr_task(int cpu, struct task_struct *p);
1911
1912 void yield(void);
1913
1914 /*
1915 * The default (Linux) execution domain.
1916 */
1917 extern struct exec_domain default_exec_domain;
1918
1919 union thread_union {
1920 struct thread_info thread_info;
1921 unsigned long stack[THREAD_SIZE/sizeof(long)];
1922 };
1923
1924 #ifndef __HAVE_ARCH_KSTACK_END
1925 static inline int kstack_end(void *addr)
1926 {
1927 /* Reliable end of stack detection:
1928 * Some APM bios versions misalign the stack
1929 */
1930 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1931 }
1932 #endif
1933
1934 extern union thread_union init_thread_union;
1935 extern struct task_struct init_task;
1936
1937 extern struct mm_struct init_mm;
1938
1939 extern struct pid_namespace init_pid_ns;
1940
1941 /*
1942 * find a task by one of its numerical ids
1943 *
1944 * find_task_by_pid_ns():
1945 * finds a task by its pid in the specified namespace
1946 * find_task_by_vpid():
1947 * finds a task by its virtual pid
1948 *
1949 * see also find_vpid() etc in include/linux/pid.h
1950 */
1951
1952 extern struct task_struct *find_task_by_vpid(pid_t nr);
1953 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1954 struct pid_namespace *ns);
1955
1956 /* per-UID process charging. */
1957 extern struct user_struct * alloc_uid(kuid_t);
1958 static inline struct user_struct *get_uid(struct user_struct *u)
1959 {
1960 atomic_inc(&u->__count);
1961 return u;
1962 }
1963 extern void free_uid(struct user_struct *);
1964
1965 #include <asm/current.h>
1966
1967 extern void xtime_update(unsigned long ticks);
1968
1969 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1970 extern int wake_up_process(struct task_struct *tsk);
1971 extern void wake_up_new_task(struct task_struct *tsk);
1972 #ifdef CONFIG_SMP
1973 extern void kick_process(struct task_struct *tsk);
1974 #else
1975 static inline void kick_process(struct task_struct *tsk) { }
1976 #endif
1977 extern void sched_fork(struct task_struct *p);
1978 extern void sched_dead(struct task_struct *p);
1979
1980 extern void proc_caches_init(void);
1981 extern void flush_signals(struct task_struct *);
1982 extern void __flush_signals(struct task_struct *);
1983 extern void ignore_signals(struct task_struct *);
1984 extern void flush_signal_handlers(struct task_struct *, int force_default);
1985 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1986
1987 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1988 {
1989 unsigned long flags;
1990 int ret;
1991
1992 spin_lock_irqsave(&tsk->sighand->siglock, flags);
1993 ret = dequeue_signal(tsk, mask, info);
1994 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1995
1996 return ret;
1997 }
1998
1999 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2000 sigset_t *mask);
2001 extern void unblock_all_signals(void);
2002 extern void release_task(struct task_struct * p);
2003 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2004 extern int force_sigsegv(int, struct task_struct *);
2005 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2006 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2007 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2008 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2009 const struct cred *, u32);
2010 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2011 extern int kill_pid(struct pid *pid, int sig, int priv);
2012 extern int kill_proc_info(int, struct siginfo *, pid_t);
2013 extern __must_check bool do_notify_parent(struct task_struct *, int);
2014 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2015 extern void force_sig(int, struct task_struct *);
2016 extern int send_sig(int, struct task_struct *, int);
2017 extern int zap_other_threads(struct task_struct *p);
2018 extern struct sigqueue *sigqueue_alloc(void);
2019 extern void sigqueue_free(struct sigqueue *);
2020 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2021 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2022
2023 static inline void restore_saved_sigmask(void)
2024 {
2025 if (test_and_clear_restore_sigmask())
2026 __set_current_blocked(&current->saved_sigmask);
2027 }
2028
2029 static inline sigset_t *sigmask_to_save(void)
2030 {
2031 sigset_t *res = &current->blocked;
2032 if (unlikely(test_restore_sigmask()))
2033 res = &current->saved_sigmask;
2034 return res;
2035 }
2036
2037 static inline int kill_cad_pid(int sig, int priv)
2038 {
2039 return kill_pid(cad_pid, sig, priv);
2040 }
2041
2042 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2043 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2044 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2045 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2046
2047 /*
2048 * True if we are on the alternate signal stack.
2049 */
2050 static inline int on_sig_stack(unsigned long sp)
2051 {
2052 #ifdef CONFIG_STACK_GROWSUP
2053 return sp >= current->sas_ss_sp &&
2054 sp - current->sas_ss_sp < current->sas_ss_size;
2055 #else
2056 return sp > current->sas_ss_sp &&
2057 sp - current->sas_ss_sp <= current->sas_ss_size;
2058 #endif
2059 }
2060
2061 static inline int sas_ss_flags(unsigned long sp)
2062 {
2063 return (current->sas_ss_size == 0 ? SS_DISABLE
2064 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2065 }
2066
2067 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2068 {
2069 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2070 #ifdef CONFIG_STACK_GROWSUP
2071 return current->sas_ss_sp;
2072 #else
2073 return current->sas_ss_sp + current->sas_ss_size;
2074 #endif
2075 return sp;
2076 }
2077
2078 /*
2079 * Routines for handling mm_structs
2080 */
2081 extern struct mm_struct * mm_alloc(void);
2082
2083 /* mmdrop drops the mm and the page tables */
2084 extern void __mmdrop(struct mm_struct *);
2085 static inline void mmdrop(struct mm_struct * mm)
2086 {
2087 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2088 __mmdrop(mm);
2089 }
2090
2091 /* mmput gets rid of the mappings and all user-space */
2092 extern void mmput(struct mm_struct *);
2093 /* Grab a reference to a task's mm, if it is not already going away */
2094 extern struct mm_struct *get_task_mm(struct task_struct *task);
2095 /*
2096 * Grab a reference to a task's mm, if it is not already going away
2097 * and ptrace_may_access with the mode parameter passed to it
2098 * succeeds.
2099 */
2100 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2101 /* Remove the current tasks stale references to the old mm_struct */
2102 extern void mm_release(struct task_struct *, struct mm_struct *);
2103 /* Allocate a new mm structure and copy contents from tsk->mm */
2104 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2105
2106 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2107 struct task_struct *);
2108 extern void flush_thread(void);
2109 extern void exit_thread(void);
2110
2111 extern void exit_files(struct task_struct *);
2112 extern void __cleanup_sighand(struct sighand_struct *);
2113
2114 extern void exit_itimers(struct signal_struct *);
2115 extern void flush_itimer_signals(void);
2116
2117 extern void do_group_exit(int);
2118
2119 extern int allow_signal(int);
2120 extern int disallow_signal(int);
2121
2122 extern int do_execve(const char *,
2123 const char __user * const __user *,
2124 const char __user * const __user *);
2125 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2126 struct task_struct *fork_idle(int);
2127 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2128
2129 extern void set_task_comm(struct task_struct *tsk, char *from);
2130 extern char *get_task_comm(char *to, struct task_struct *tsk);
2131
2132 #ifdef CONFIG_SMP
2133 void scheduler_ipi(void);
2134 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2135 #else
2136 static inline void scheduler_ipi(void) { }
2137 static inline unsigned long wait_task_inactive(struct task_struct *p,
2138 long match_state)
2139 {
2140 return 1;
2141 }
2142 #endif
2143
2144 #define next_task(p) \
2145 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2146
2147 #define for_each_process(p) \
2148 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2149
2150 extern bool current_is_single_threaded(void);
2151
2152 /*
2153 * Careful: do_each_thread/while_each_thread is a double loop so
2154 * 'break' will not work as expected - use goto instead.
2155 */
2156 #define do_each_thread(g, t) \
2157 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2158
2159 #define while_each_thread(g, t) \
2160 while ((t = next_thread(t)) != g)
2161
2162 static inline int get_nr_threads(struct task_struct *tsk)
2163 {
2164 return tsk->signal->nr_threads;
2165 }
2166
2167 static inline bool thread_group_leader(struct task_struct *p)
2168 {
2169 return p->exit_signal >= 0;
2170 }
2171
2172 /* Do to the insanities of de_thread it is possible for a process
2173 * to have the pid of the thread group leader without actually being
2174 * the thread group leader. For iteration through the pids in proc
2175 * all we care about is that we have a task with the appropriate
2176 * pid, we don't actually care if we have the right task.
2177 */
2178 static inline int has_group_leader_pid(struct task_struct *p)
2179 {
2180 return p->pid == p->tgid;
2181 }
2182
2183 static inline
2184 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2185 {
2186 return p1->tgid == p2->tgid;
2187 }
2188
2189 static inline struct task_struct *next_thread(const struct task_struct *p)
2190 {
2191 return list_entry_rcu(p->thread_group.next,
2192 struct task_struct, thread_group);
2193 }
2194
2195 static inline int thread_group_empty(struct task_struct *p)
2196 {
2197 return list_empty(&p->thread_group);
2198 }
2199
2200 #define delay_group_leader(p) \
2201 (thread_group_leader(p) && !thread_group_empty(p))
2202
2203 /*
2204 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2205 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2206 * pins the final release of task.io_context. Also protects ->cpuset and
2207 * ->cgroup.subsys[]. And ->vfork_done.
2208 *
2209 * Nests both inside and outside of read_lock(&tasklist_lock).
2210 * It must not be nested with write_lock_irq(&tasklist_lock),
2211 * neither inside nor outside.
2212 */
2213 static inline void task_lock(struct task_struct *p)
2214 {
2215 spin_lock(&p->alloc_lock);
2216 }
2217
2218 static inline void task_unlock(struct task_struct *p)
2219 {
2220 spin_unlock(&p->alloc_lock);
2221 }
2222
2223 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2224 unsigned long *flags);
2225
2226 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2227 unsigned long *flags)
2228 {
2229 struct sighand_struct *ret;
2230
2231 ret = __lock_task_sighand(tsk, flags);
2232 (void)__cond_lock(&tsk->sighand->siglock, ret);
2233 return ret;
2234 }
2235
2236 static inline void unlock_task_sighand(struct task_struct *tsk,
2237 unsigned long *flags)
2238 {
2239 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2240 }
2241
2242 #ifdef CONFIG_CGROUPS
2243 static inline void threadgroup_change_begin(struct task_struct *tsk)
2244 {
2245 down_read(&tsk->signal->group_rwsem);
2246 }
2247 static inline void threadgroup_change_end(struct task_struct *tsk)
2248 {
2249 up_read(&tsk->signal->group_rwsem);
2250 }
2251
2252 /**
2253 * threadgroup_lock - lock threadgroup
2254 * @tsk: member task of the threadgroup to lock
2255 *
2256 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter
2257 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2258 * change ->group_leader/pid. This is useful for cases where the threadgroup
2259 * needs to stay stable across blockable operations.
2260 *
2261 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2262 * synchronization. While held, no new task will be added to threadgroup
2263 * and no existing live task will have its PF_EXITING set.
2264 *
2265 * de_thread() does threadgroup_change_{begin|end}() when a non-leader
2266 * sub-thread becomes a new leader.
2267 */
2268 static inline void threadgroup_lock(struct task_struct *tsk)
2269 {
2270 down_write(&tsk->signal->group_rwsem);
2271 }
2272
2273 /**
2274 * threadgroup_unlock - unlock threadgroup
2275 * @tsk: member task of the threadgroup to unlock
2276 *
2277 * Reverse threadgroup_lock().
2278 */
2279 static inline void threadgroup_unlock(struct task_struct *tsk)
2280 {
2281 up_write(&tsk->signal->group_rwsem);
2282 }
2283 #else
2284 static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2285 static inline void threadgroup_change_end(struct task_struct *tsk) {}
2286 static inline void threadgroup_lock(struct task_struct *tsk) {}
2287 static inline void threadgroup_unlock(struct task_struct *tsk) {}
2288 #endif
2289
2290 #ifndef __HAVE_THREAD_FUNCTIONS
2291
2292 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2293 #define task_stack_page(task) ((task)->stack)
2294
2295 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2296 {
2297 *task_thread_info(p) = *task_thread_info(org);
2298 task_thread_info(p)->task = p;
2299 }
2300
2301 static inline unsigned long *end_of_stack(struct task_struct *p)
2302 {
2303 return (unsigned long *)(task_thread_info(p) + 1);
2304 }
2305
2306 #endif
2307
2308 static inline int object_is_on_stack(void *obj)
2309 {
2310 void *stack = task_stack_page(current);
2311
2312 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2313 }
2314
2315 extern void thread_info_cache_init(void);
2316
2317 #ifdef CONFIG_DEBUG_STACK_USAGE
2318 static inline unsigned long stack_not_used(struct task_struct *p)
2319 {
2320 unsigned long *n = end_of_stack(p);
2321
2322 do { /* Skip over canary */
2323 n++;
2324 } while (!*n);
2325
2326 return (unsigned long)n - (unsigned long)end_of_stack(p);
2327 }
2328 #endif
2329
2330 /* set thread flags in other task's structures
2331 * - see asm/thread_info.h for TIF_xxxx flags available
2332 */
2333 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2334 {
2335 set_ti_thread_flag(task_thread_info(tsk), flag);
2336 }
2337
2338 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2339 {
2340 clear_ti_thread_flag(task_thread_info(tsk), flag);
2341 }
2342
2343 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2344 {
2345 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2346 }
2347
2348 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2349 {
2350 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2351 }
2352
2353 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2354 {
2355 return test_ti_thread_flag(task_thread_info(tsk), flag);
2356 }
2357
2358 static inline void set_tsk_need_resched(struct task_struct *tsk)
2359 {
2360 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2361 }
2362
2363 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2364 {
2365 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2366 }
2367
2368 static inline int test_tsk_need_resched(struct task_struct *tsk)
2369 {
2370 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2371 }
2372
2373 static inline int restart_syscall(void)
2374 {
2375 set_tsk_thread_flag(current, TIF_SIGPENDING);
2376 return -ERESTARTNOINTR;
2377 }
2378
2379 static inline int signal_pending(struct task_struct *p)
2380 {
2381 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2382 }
2383
2384 static inline int __fatal_signal_pending(struct task_struct *p)
2385 {
2386 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2387 }
2388
2389 static inline int fatal_signal_pending(struct task_struct *p)
2390 {
2391 return signal_pending(p) && __fatal_signal_pending(p);
2392 }
2393
2394 static inline int signal_pending_state(long state, struct task_struct *p)
2395 {
2396 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2397 return 0;
2398 if (!signal_pending(p))
2399 return 0;
2400
2401 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2402 }
2403
2404 static inline int need_resched(void)
2405 {
2406 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2407 }
2408
2409 /*
2410 * cond_resched() and cond_resched_lock(): latency reduction via
2411 * explicit rescheduling in places that are safe. The return
2412 * value indicates whether a reschedule was done in fact.
2413 * cond_resched_lock() will drop the spinlock before scheduling,
2414 * cond_resched_softirq() will enable bhs before scheduling.
2415 */
2416 extern int _cond_resched(void);
2417
2418 #define cond_resched() ({ \
2419 __might_sleep(__FILE__, __LINE__, 0); \
2420 _cond_resched(); \
2421 })
2422
2423 extern int __cond_resched_lock(spinlock_t *lock);
2424
2425 #ifdef CONFIG_PREEMPT_COUNT
2426 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2427 #else
2428 #define PREEMPT_LOCK_OFFSET 0
2429 #endif
2430
2431 #define cond_resched_lock(lock) ({ \
2432 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2433 __cond_resched_lock(lock); \
2434 })
2435
2436 extern int __cond_resched_softirq(void);
2437
2438 #define cond_resched_softirq() ({ \
2439 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2440 __cond_resched_softirq(); \
2441 })
2442
2443 static inline void cond_resched_rcu(void)
2444 {
2445 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2446 rcu_read_unlock();
2447 cond_resched();
2448 rcu_read_lock();
2449 #endif
2450 }
2451
2452 /*
2453 * Does a critical section need to be broken due to another
2454 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2455 * but a general need for low latency)
2456 */
2457 static inline int spin_needbreak(spinlock_t *lock)
2458 {
2459 #ifdef CONFIG_PREEMPT
2460 return spin_is_contended(lock);
2461 #else
2462 return 0;
2463 #endif
2464 }
2465
2466 /*
2467 * Idle thread specific functions to determine the need_resched
2468 * polling state. We have two versions, one based on TS_POLLING in
2469 * thread_info.status and one based on TIF_POLLING_NRFLAG in
2470 * thread_info.flags
2471 */
2472 #ifdef TS_POLLING
2473 static inline int tsk_is_polling(struct task_struct *p)
2474 {
2475 return task_thread_info(p)->status & TS_POLLING;
2476 }
2477 static inline void current_set_polling(void)
2478 {
2479 current_thread_info()->status |= TS_POLLING;
2480 }
2481
2482 static inline void current_clr_polling(void)
2483 {
2484 current_thread_info()->status &= ~TS_POLLING;
2485 smp_mb__after_clear_bit();
2486 }
2487 #elif defined(TIF_POLLING_NRFLAG)
2488 static inline int tsk_is_polling(struct task_struct *p)
2489 {
2490 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2491 }
2492 static inline void current_set_polling(void)
2493 {
2494 set_thread_flag(TIF_POLLING_NRFLAG);
2495 }
2496
2497 static inline void current_clr_polling(void)
2498 {
2499 clear_thread_flag(TIF_POLLING_NRFLAG);
2500 }
2501 #else
2502 static inline int tsk_is_polling(struct task_struct *p) { return 0; }
2503 static inline void current_set_polling(void) { }
2504 static inline void current_clr_polling(void) { }
2505 #endif
2506
2507 /*
2508 * Thread group CPU time accounting.
2509 */
2510 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2511 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2512
2513 static inline void thread_group_cputime_init(struct signal_struct *sig)
2514 {
2515 raw_spin_lock_init(&sig->cputimer.lock);
2516 }
2517
2518 /*
2519 * Reevaluate whether the task has signals pending delivery.
2520 * Wake the task if so.
2521 * This is required every time the blocked sigset_t changes.
2522 * callers must hold sighand->siglock.
2523 */
2524 extern void recalc_sigpending_and_wake(struct task_struct *t);
2525 extern void recalc_sigpending(void);
2526
2527 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
2528
2529 static inline void signal_wake_up(struct task_struct *t, bool resume)
2530 {
2531 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
2532 }
2533 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
2534 {
2535 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
2536 }
2537
2538 /*
2539 * Wrappers for p->thread_info->cpu access. No-op on UP.
2540 */
2541 #ifdef CONFIG_SMP
2542
2543 static inline unsigned int task_cpu(const struct task_struct *p)
2544 {
2545 return task_thread_info(p)->cpu;
2546 }
2547
2548 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2549
2550 #else
2551
2552 static inline unsigned int task_cpu(const struct task_struct *p)
2553 {
2554 return 0;
2555 }
2556
2557 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2558 {
2559 }
2560
2561 #endif /* CONFIG_SMP */
2562
2563 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2564 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2565
2566 #ifdef CONFIG_CGROUP_SCHED
2567 extern struct task_group root_task_group;
2568 #endif /* CONFIG_CGROUP_SCHED */
2569
2570 extern int task_can_switch_user(struct user_struct *up,
2571 struct task_struct *tsk);
2572
2573 #ifdef CONFIG_TASK_XACCT
2574 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2575 {
2576 tsk->ioac.rchar += amt;
2577 }
2578
2579 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2580 {
2581 tsk->ioac.wchar += amt;
2582 }
2583
2584 static inline void inc_syscr(struct task_struct *tsk)
2585 {
2586 tsk->ioac.syscr++;
2587 }
2588
2589 static inline void inc_syscw(struct task_struct *tsk)
2590 {
2591 tsk->ioac.syscw++;
2592 }
2593 #else
2594 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2595 {
2596 }
2597
2598 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2599 {
2600 }
2601
2602 static inline void inc_syscr(struct task_struct *tsk)
2603 {
2604 }
2605
2606 static inline void inc_syscw(struct task_struct *tsk)
2607 {
2608 }
2609 #endif
2610
2611 #ifndef TASK_SIZE_OF
2612 #define TASK_SIZE_OF(tsk) TASK_SIZE
2613 #endif
2614
2615 #ifdef CONFIG_MM_OWNER
2616 extern void mm_update_next_owner(struct mm_struct *mm);
2617 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2618 #else
2619 static inline void mm_update_next_owner(struct mm_struct *mm)
2620 {
2621 }
2622
2623 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2624 {
2625 }
2626 #endif /* CONFIG_MM_OWNER */
2627
2628 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2629 unsigned int limit)
2630 {
2631 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2632 }
2633
2634 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2635 unsigned int limit)
2636 {
2637 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2638 }
2639
2640 static inline unsigned long rlimit(unsigned int limit)
2641 {
2642 return task_rlimit(current, limit);
2643 }
2644
2645 static inline unsigned long rlimit_max(unsigned int limit)
2646 {
2647 return task_rlimit_max(current, limit);
2648 }
2649
2650 #endif
This page took 0.088097 seconds and 5 git commands to generate.