Merge branch 'core/percpu' into perfcounters/core
[deliverable/linux.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
29 #define CLONE_NEWNET 0x40000000 /* New network namespace */
30 #define CLONE_IO 0x80000000 /* Clone io context */
31
32 /*
33 * Scheduling policies
34 */
35 #define SCHED_NORMAL 0
36 #define SCHED_FIFO 1
37 #define SCHED_RR 2
38 #define SCHED_BATCH 3
39 /* SCHED_ISO: reserved but not implemented yet */
40 #define SCHED_IDLE 5
41
42 #ifdef __KERNEL__
43
44 struct sched_param {
45 int sched_priority;
46 };
47
48 #include <asm/param.h> /* for HZ */
49
50 #include <linux/capability.h>
51 #include <linux/threads.h>
52 #include <linux/kernel.h>
53 #include <linux/types.h>
54 #include <linux/timex.h>
55 #include <linux/jiffies.h>
56 #include <linux/rbtree.h>
57 #include <linux/thread_info.h>
58 #include <linux/cpumask.h>
59 #include <linux/errno.h>
60 #include <linux/nodemask.h>
61 #include <linux/mm_types.h>
62
63 #include <asm/system.h>
64 #include <asm/page.h>
65 #include <asm/ptrace.h>
66 #include <asm/cputime.h>
67
68 #include <linux/smp.h>
69 #include <linux/sem.h>
70 #include <linux/signal.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compiler.h>
73 #include <linux/completion.h>
74 #include <linux/perf_counter.h>
75 #include <linux/pid.h>
76 #include <linux/percpu.h>
77 #include <linux/topology.h>
78 #include <linux/proportions.h>
79 #include <linux/seccomp.h>
80 #include <linux/rcupdate.h>
81 #include <linux/rtmutex.h>
82
83 #include <linux/time.h>
84 #include <linux/param.h>
85 #include <linux/resource.h>
86 #include <linux/timer.h>
87 #include <linux/hrtimer.h>
88 #include <linux/task_io_accounting.h>
89 #include <linux/kobject.h>
90 #include <linux/latencytop.h>
91 #include <linux/cred.h>
92
93 #include <asm/processor.h>
94
95 struct mem_cgroup;
96 struct exec_domain;
97 struct futex_pi_state;
98 struct robust_list_head;
99 struct bio;
100 struct bts_tracer;
101
102 /*
103 * List of flags we want to share for kernel threads,
104 * if only because they are not used by them anyway.
105 */
106 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
107
108 /*
109 * These are the constant used to fake the fixed-point load-average
110 * counting. Some notes:
111 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
112 * a load-average precision of 10 bits integer + 11 bits fractional
113 * - if you want to count load-averages more often, you need more
114 * precision, or rounding will get you. With 2-second counting freq,
115 * the EXP_n values would be 1981, 2034 and 2043 if still using only
116 * 11 bit fractions.
117 */
118 extern unsigned long avenrun[]; /* Load averages */
119
120 #define FSHIFT 11 /* nr of bits of precision */
121 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
122 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
123 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
124 #define EXP_5 2014 /* 1/exp(5sec/5min) */
125 #define EXP_15 2037 /* 1/exp(5sec/15min) */
126
127 #define CALC_LOAD(load,exp,n) \
128 load *= exp; \
129 load += n*(FIXED_1-exp); \
130 load >>= FSHIFT;
131
132 extern unsigned long total_forks;
133 extern int nr_threads;
134 DECLARE_PER_CPU(unsigned long, process_counts);
135 extern int nr_processes(void);
136 extern unsigned long nr_running(void);
137 extern unsigned long nr_uninterruptible(void);
138 extern unsigned long nr_active(void);
139 extern unsigned long nr_iowait(void);
140
141 struct seq_file;
142 struct cfs_rq;
143 struct task_group;
144 #ifdef CONFIG_SCHED_DEBUG
145 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
146 extern void proc_sched_set_task(struct task_struct *p);
147 extern void
148 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
149 #else
150 static inline void
151 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
152 {
153 }
154 static inline void proc_sched_set_task(struct task_struct *p)
155 {
156 }
157 static inline void
158 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
159 {
160 }
161 #endif
162
163 extern unsigned long long time_sync_thresh;
164
165 /*
166 * Task state bitmask. NOTE! These bits are also
167 * encoded in fs/proc/array.c: get_task_state().
168 *
169 * We have two separate sets of flags: task->state
170 * is about runnability, while task->exit_state are
171 * about the task exiting. Confusing, but this way
172 * modifying one set can't modify the other one by
173 * mistake.
174 */
175 #define TASK_RUNNING 0
176 #define TASK_INTERRUPTIBLE 1
177 #define TASK_UNINTERRUPTIBLE 2
178 #define __TASK_STOPPED 4
179 #define __TASK_TRACED 8
180 /* in tsk->exit_state */
181 #define EXIT_ZOMBIE 16
182 #define EXIT_DEAD 32
183 /* in tsk->state again */
184 #define TASK_DEAD 64
185 #define TASK_WAKEKILL 128
186
187 /* Convenience macros for the sake of set_task_state */
188 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
189 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
190 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
191
192 /* Convenience macros for the sake of wake_up */
193 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
194 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
195
196 /* get_task_state() */
197 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
198 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
199 __TASK_TRACED)
200
201 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
202 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
203 #define task_is_stopped_or_traced(task) \
204 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
205 #define task_contributes_to_load(task) \
206 ((task->state & TASK_UNINTERRUPTIBLE) != 0)
207
208 #define __set_task_state(tsk, state_value) \
209 do { (tsk)->state = (state_value); } while (0)
210 #define set_task_state(tsk, state_value) \
211 set_mb((tsk)->state, (state_value))
212
213 /*
214 * set_current_state() includes a barrier so that the write of current->state
215 * is correctly serialised wrt the caller's subsequent test of whether to
216 * actually sleep:
217 *
218 * set_current_state(TASK_UNINTERRUPTIBLE);
219 * if (do_i_need_to_sleep())
220 * schedule();
221 *
222 * If the caller does not need such serialisation then use __set_current_state()
223 */
224 #define __set_current_state(state_value) \
225 do { current->state = (state_value); } while (0)
226 #define set_current_state(state_value) \
227 set_mb(current->state, (state_value))
228
229 /* Task command name length */
230 #define TASK_COMM_LEN 16
231
232 #include <linux/spinlock.h>
233
234 /*
235 * This serializes "schedule()" and also protects
236 * the run-queue from deletions/modifications (but
237 * _adding_ to the beginning of the run-queue has
238 * a separate lock).
239 */
240 extern rwlock_t tasklist_lock;
241 extern spinlock_t mmlist_lock;
242
243 struct task_struct;
244
245 extern void sched_init(void);
246 extern void sched_init_smp(void);
247 extern asmlinkage void schedule_tail(struct task_struct *prev);
248 extern void init_idle(struct task_struct *idle, int cpu);
249 extern void init_idle_bootup_task(struct task_struct *idle);
250
251 extern int runqueue_is_locked(void);
252 extern void task_rq_unlock_wait(struct task_struct *p);
253
254 extern cpumask_var_t nohz_cpu_mask;
255 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
256 extern int select_nohz_load_balancer(int cpu);
257 #else
258 static inline int select_nohz_load_balancer(int cpu)
259 {
260 return 0;
261 }
262 #endif
263
264 /*
265 * Only dump TASK_* tasks. (0 for all tasks)
266 */
267 extern void show_state_filter(unsigned long state_filter);
268
269 static inline void show_state(void)
270 {
271 show_state_filter(0);
272 }
273
274 extern void show_regs(struct pt_regs *);
275
276 /*
277 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
278 * task), SP is the stack pointer of the first frame that should be shown in the back
279 * trace (or NULL if the entire call-chain of the task should be shown).
280 */
281 extern void show_stack(struct task_struct *task, unsigned long *sp);
282
283 void io_schedule(void);
284 long io_schedule_timeout(long timeout);
285
286 extern void cpu_init (void);
287 extern void trap_init(void);
288 extern void update_process_times(int user);
289 extern void scheduler_tick(void);
290
291 extern void sched_show_task(struct task_struct *p);
292
293 #ifdef CONFIG_DETECT_SOFTLOCKUP
294 extern void softlockup_tick(void);
295 extern void touch_softlockup_watchdog(void);
296 extern void touch_all_softlockup_watchdogs(void);
297 extern unsigned int softlockup_panic;
298 extern unsigned long sysctl_hung_task_check_count;
299 extern unsigned long sysctl_hung_task_timeout_secs;
300 extern unsigned long sysctl_hung_task_warnings;
301 extern int softlockup_thresh;
302 #else
303 static inline void softlockup_tick(void)
304 {
305 }
306 static inline void spawn_softlockup_task(void)
307 {
308 }
309 static inline void touch_softlockup_watchdog(void)
310 {
311 }
312 static inline void touch_all_softlockup_watchdogs(void)
313 {
314 }
315 #endif
316
317
318 /* Attach to any functions which should be ignored in wchan output. */
319 #define __sched __attribute__((__section__(".sched.text")))
320
321 /* Linker adds these: start and end of __sched functions */
322 extern char __sched_text_start[], __sched_text_end[];
323
324 /* Is this address in the __sched functions? */
325 extern int in_sched_functions(unsigned long addr);
326
327 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
328 extern signed long schedule_timeout(signed long timeout);
329 extern signed long schedule_timeout_interruptible(signed long timeout);
330 extern signed long schedule_timeout_killable(signed long timeout);
331 extern signed long schedule_timeout_uninterruptible(signed long timeout);
332 asmlinkage void schedule(void);
333
334 struct nsproxy;
335 struct user_namespace;
336
337 /* Maximum number of active map areas.. This is a random (large) number */
338 #define DEFAULT_MAX_MAP_COUNT 65536
339
340 extern int sysctl_max_map_count;
341
342 #include <linux/aio.h>
343
344 extern unsigned long
345 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
346 unsigned long, unsigned long);
347 extern unsigned long
348 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
349 unsigned long len, unsigned long pgoff,
350 unsigned long flags);
351 extern void arch_unmap_area(struct mm_struct *, unsigned long);
352 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
353
354 #if USE_SPLIT_PTLOCKS
355 /*
356 * The mm counters are not protected by its page_table_lock,
357 * so must be incremented atomically.
358 */
359 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
360 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
361 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
362 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
363 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
364
365 #else /* !USE_SPLIT_PTLOCKS */
366 /*
367 * The mm counters are protected by its page_table_lock,
368 * so can be incremented directly.
369 */
370 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
371 #define get_mm_counter(mm, member) ((mm)->_##member)
372 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
373 #define inc_mm_counter(mm, member) (mm)->_##member++
374 #define dec_mm_counter(mm, member) (mm)->_##member--
375
376 #endif /* !USE_SPLIT_PTLOCKS */
377
378 #define get_mm_rss(mm) \
379 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
380 #define update_hiwater_rss(mm) do { \
381 unsigned long _rss = get_mm_rss(mm); \
382 if ((mm)->hiwater_rss < _rss) \
383 (mm)->hiwater_rss = _rss; \
384 } while (0)
385 #define update_hiwater_vm(mm) do { \
386 if ((mm)->hiwater_vm < (mm)->total_vm) \
387 (mm)->hiwater_vm = (mm)->total_vm; \
388 } while (0)
389
390 #define get_mm_hiwater_rss(mm) max((mm)->hiwater_rss, get_mm_rss(mm))
391 #define get_mm_hiwater_vm(mm) max((mm)->hiwater_vm, (mm)->total_vm)
392
393 extern void set_dumpable(struct mm_struct *mm, int value);
394 extern int get_dumpable(struct mm_struct *mm);
395
396 /* mm flags */
397 /* dumpable bits */
398 #define MMF_DUMPABLE 0 /* core dump is permitted */
399 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
400 #define MMF_DUMPABLE_BITS 2
401
402 /* coredump filter bits */
403 #define MMF_DUMP_ANON_PRIVATE 2
404 #define MMF_DUMP_ANON_SHARED 3
405 #define MMF_DUMP_MAPPED_PRIVATE 4
406 #define MMF_DUMP_MAPPED_SHARED 5
407 #define MMF_DUMP_ELF_HEADERS 6
408 #define MMF_DUMP_HUGETLB_PRIVATE 7
409 #define MMF_DUMP_HUGETLB_SHARED 8
410 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
411 #define MMF_DUMP_FILTER_BITS 7
412 #define MMF_DUMP_FILTER_MASK \
413 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
414 #define MMF_DUMP_FILTER_DEFAULT \
415 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
416 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
417
418 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
419 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
420 #else
421 # define MMF_DUMP_MASK_DEFAULT_ELF 0
422 #endif
423
424 struct sighand_struct {
425 atomic_t count;
426 struct k_sigaction action[_NSIG];
427 spinlock_t siglock;
428 wait_queue_head_t signalfd_wqh;
429 };
430
431 struct pacct_struct {
432 int ac_flag;
433 long ac_exitcode;
434 unsigned long ac_mem;
435 cputime_t ac_utime, ac_stime;
436 unsigned long ac_minflt, ac_majflt;
437 };
438
439 /**
440 * struct task_cputime - collected CPU time counts
441 * @utime: time spent in user mode, in &cputime_t units
442 * @stime: time spent in kernel mode, in &cputime_t units
443 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
444 *
445 * This structure groups together three kinds of CPU time that are
446 * tracked for threads and thread groups. Most things considering
447 * CPU time want to group these counts together and treat all three
448 * of them in parallel.
449 */
450 struct task_cputime {
451 cputime_t utime;
452 cputime_t stime;
453 unsigned long long sum_exec_runtime;
454 };
455 /* Alternate field names when used to cache expirations. */
456 #define prof_exp stime
457 #define virt_exp utime
458 #define sched_exp sum_exec_runtime
459
460 /**
461 * struct thread_group_cputime - thread group interval timer counts
462 * @totals: thread group interval timers; substructure for
463 * uniprocessor kernel, per-cpu for SMP kernel.
464 *
465 * This structure contains the version of task_cputime, above, that is
466 * used for thread group CPU clock calculations.
467 */
468 struct thread_group_cputime {
469 struct task_cputime *totals;
470 };
471
472 /*
473 * NOTE! "signal_struct" does not have it's own
474 * locking, because a shared signal_struct always
475 * implies a shared sighand_struct, so locking
476 * sighand_struct is always a proper superset of
477 * the locking of signal_struct.
478 */
479 struct signal_struct {
480 atomic_t count;
481 atomic_t live;
482
483 wait_queue_head_t wait_chldexit; /* for wait4() */
484
485 /* current thread group signal load-balancing target: */
486 struct task_struct *curr_target;
487
488 /* shared signal handling: */
489 struct sigpending shared_pending;
490
491 /* thread group exit support */
492 int group_exit_code;
493 /* overloaded:
494 * - notify group_exit_task when ->count is equal to notify_count
495 * - everyone except group_exit_task is stopped during signal delivery
496 * of fatal signals, group_exit_task processes the signal.
497 */
498 int notify_count;
499 struct task_struct *group_exit_task;
500
501 /* thread group stop support, overloads group_exit_code too */
502 int group_stop_count;
503 unsigned int flags; /* see SIGNAL_* flags below */
504
505 /* POSIX.1b Interval Timers */
506 struct list_head posix_timers;
507
508 /* ITIMER_REAL timer for the process */
509 struct hrtimer real_timer;
510 struct pid *leader_pid;
511 ktime_t it_real_incr;
512
513 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
514 cputime_t it_prof_expires, it_virt_expires;
515 cputime_t it_prof_incr, it_virt_incr;
516
517 /*
518 * Thread group totals for process CPU clocks.
519 * See thread_group_cputime(), et al, for details.
520 */
521 struct thread_group_cputime cputime;
522
523 /* Earliest-expiration cache. */
524 struct task_cputime cputime_expires;
525
526 struct list_head cpu_timers[3];
527
528 /* job control IDs */
529
530 /*
531 * pgrp and session fields are deprecated.
532 * use the task_session_Xnr and task_pgrp_Xnr routines below
533 */
534
535 union {
536 pid_t pgrp __deprecated;
537 pid_t __pgrp;
538 };
539
540 struct pid *tty_old_pgrp;
541
542 union {
543 pid_t session __deprecated;
544 pid_t __session;
545 };
546
547 /* boolean value for session group leader */
548 int leader;
549
550 struct tty_struct *tty; /* NULL if no tty */
551
552 /*
553 * Cumulative resource counters for dead threads in the group,
554 * and for reaped dead child processes forked by this group.
555 * Live threads maintain their own counters and add to these
556 * in __exit_signal, except for the group leader.
557 */
558 cputime_t cutime, cstime;
559 cputime_t gtime;
560 cputime_t cgtime;
561 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
562 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
563 unsigned long inblock, oublock, cinblock, coublock;
564 struct task_io_accounting ioac;
565
566 /*
567 * We don't bother to synchronize most readers of this at all,
568 * because there is no reader checking a limit that actually needs
569 * to get both rlim_cur and rlim_max atomically, and either one
570 * alone is a single word that can safely be read normally.
571 * getrlimit/setrlimit use task_lock(current->group_leader) to
572 * protect this instead of the siglock, because they really
573 * have no need to disable irqs.
574 */
575 struct rlimit rlim[RLIM_NLIMITS];
576
577 #ifdef CONFIG_BSD_PROCESS_ACCT
578 struct pacct_struct pacct; /* per-process accounting information */
579 #endif
580 #ifdef CONFIG_TASKSTATS
581 struct taskstats *stats;
582 #endif
583 #ifdef CONFIG_AUDIT
584 unsigned audit_tty;
585 struct tty_audit_buf *tty_audit_buf;
586 #endif
587 };
588
589 /* Context switch must be unlocked if interrupts are to be enabled */
590 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
591 # define __ARCH_WANT_UNLOCKED_CTXSW
592 #endif
593
594 /*
595 * Bits in flags field of signal_struct.
596 */
597 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
598 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
599 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
600 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
601 /*
602 * Pending notifications to parent.
603 */
604 #define SIGNAL_CLD_STOPPED 0x00000010
605 #define SIGNAL_CLD_CONTINUED 0x00000020
606 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
607
608 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
609
610 /* If true, all threads except ->group_exit_task have pending SIGKILL */
611 static inline int signal_group_exit(const struct signal_struct *sig)
612 {
613 return (sig->flags & SIGNAL_GROUP_EXIT) ||
614 (sig->group_exit_task != NULL);
615 }
616
617 /*
618 * Some day this will be a full-fledged user tracking system..
619 */
620 struct user_struct {
621 atomic_t __count; /* reference count */
622 atomic_t processes; /* How many processes does this user have? */
623 atomic_t files; /* How many open files does this user have? */
624 atomic_t sigpending; /* How many pending signals does this user have? */
625 #ifdef CONFIG_INOTIFY_USER
626 atomic_t inotify_watches; /* How many inotify watches does this user have? */
627 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
628 #endif
629 #ifdef CONFIG_EPOLL
630 atomic_t epoll_devs; /* The number of epoll descriptors currently open */
631 atomic_t epoll_watches; /* The number of file descriptors currently watched */
632 #endif
633 #ifdef CONFIG_POSIX_MQUEUE
634 /* protected by mq_lock */
635 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
636 #endif
637 unsigned long locked_shm; /* How many pages of mlocked shm ? */
638
639 #ifdef CONFIG_KEYS
640 struct key *uid_keyring; /* UID specific keyring */
641 struct key *session_keyring; /* UID's default session keyring */
642 #endif
643
644 /* Hash table maintenance information */
645 struct hlist_node uidhash_node;
646 uid_t uid;
647 struct user_namespace *user_ns;
648
649 #ifdef CONFIG_USER_SCHED
650 struct task_group *tg;
651 #ifdef CONFIG_SYSFS
652 struct kobject kobj;
653 struct work_struct work;
654 #endif
655 #endif
656 };
657
658 extern int uids_sysfs_init(void);
659
660 extern struct user_struct *find_user(uid_t);
661
662 extern struct user_struct root_user;
663 #define INIT_USER (&root_user)
664
665
666 struct backing_dev_info;
667 struct reclaim_state;
668
669 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
670 struct sched_info {
671 /* cumulative counters */
672 unsigned long pcount; /* # of times run on this cpu */
673 unsigned long long run_delay; /* time spent waiting on a runqueue */
674
675 /* timestamps */
676 unsigned long long last_arrival,/* when we last ran on a cpu */
677 last_queued; /* when we were last queued to run */
678 #ifdef CONFIG_SCHEDSTATS
679 /* BKL stats */
680 unsigned int bkl_count;
681 #endif
682 };
683 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
684
685 #ifdef CONFIG_TASK_DELAY_ACCT
686 struct task_delay_info {
687 spinlock_t lock;
688 unsigned int flags; /* Private per-task flags */
689
690 /* For each stat XXX, add following, aligned appropriately
691 *
692 * struct timespec XXX_start, XXX_end;
693 * u64 XXX_delay;
694 * u32 XXX_count;
695 *
696 * Atomicity of updates to XXX_delay, XXX_count protected by
697 * single lock above (split into XXX_lock if contention is an issue).
698 */
699
700 /*
701 * XXX_count is incremented on every XXX operation, the delay
702 * associated with the operation is added to XXX_delay.
703 * XXX_delay contains the accumulated delay time in nanoseconds.
704 */
705 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
706 u64 blkio_delay; /* wait for sync block io completion */
707 u64 swapin_delay; /* wait for swapin block io completion */
708 u32 blkio_count; /* total count of the number of sync block */
709 /* io operations performed */
710 u32 swapin_count; /* total count of the number of swapin block */
711 /* io operations performed */
712
713 struct timespec freepages_start, freepages_end;
714 u64 freepages_delay; /* wait for memory reclaim */
715 u32 freepages_count; /* total count of memory reclaim */
716 };
717 #endif /* CONFIG_TASK_DELAY_ACCT */
718
719 static inline int sched_info_on(void)
720 {
721 #ifdef CONFIG_SCHEDSTATS
722 return 1;
723 #elif defined(CONFIG_TASK_DELAY_ACCT)
724 extern int delayacct_on;
725 return delayacct_on;
726 #else
727 return 0;
728 #endif
729 }
730
731 enum cpu_idle_type {
732 CPU_IDLE,
733 CPU_NOT_IDLE,
734 CPU_NEWLY_IDLE,
735 CPU_MAX_IDLE_TYPES
736 };
737
738 /*
739 * sched-domains (multiprocessor balancing) declarations:
740 */
741
742 /*
743 * Increase resolution of nice-level calculations:
744 */
745 #define SCHED_LOAD_SHIFT 10
746 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
747
748 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
749
750 #ifdef CONFIG_SMP
751 #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */
752 #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */
753 #define SD_BALANCE_EXEC 4 /* Balance on exec */
754 #define SD_BALANCE_FORK 8 /* Balance on fork, clone */
755 #define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */
756 #define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */
757 #define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */
758 #define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */
759 #define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */
760 #define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */
761 #define SD_SERIALIZE 1024 /* Only a single load balancing instance */
762 #define SD_WAKE_IDLE_FAR 2048 /* Gain latency sacrificing cache hit */
763
764 enum powersavings_balance_level {
765 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */
766 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package
767 * first for long running threads
768 */
769 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle
770 * cpu package for power savings
771 */
772 MAX_POWERSAVINGS_BALANCE_LEVELS
773 };
774
775 extern int sched_mc_power_savings, sched_smt_power_savings;
776
777 static inline int sd_balance_for_mc_power(void)
778 {
779 if (sched_smt_power_savings)
780 return SD_POWERSAVINGS_BALANCE;
781
782 return 0;
783 }
784
785 static inline int sd_balance_for_package_power(void)
786 {
787 if (sched_mc_power_savings | sched_smt_power_savings)
788 return SD_POWERSAVINGS_BALANCE;
789
790 return 0;
791 }
792
793 /*
794 * Optimise SD flags for power savings:
795 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings.
796 * Keep default SD flags if sched_{smt,mc}_power_saving=0
797 */
798
799 static inline int sd_power_saving_flags(void)
800 {
801 if (sched_mc_power_savings | sched_smt_power_savings)
802 return SD_BALANCE_NEWIDLE;
803
804 return 0;
805 }
806
807 struct sched_group {
808 struct sched_group *next; /* Must be a circular list */
809
810 /*
811 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
812 * single CPU. This is read only (except for setup, hotplug CPU).
813 * Note : Never change cpu_power without recompute its reciprocal
814 */
815 unsigned int __cpu_power;
816 /*
817 * reciprocal value of cpu_power to avoid expensive divides
818 * (see include/linux/reciprocal_div.h)
819 */
820 u32 reciprocal_cpu_power;
821
822 unsigned long cpumask[];
823 };
824
825 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
826 {
827 return to_cpumask(sg->cpumask);
828 }
829
830 enum sched_domain_level {
831 SD_LV_NONE = 0,
832 SD_LV_SIBLING,
833 SD_LV_MC,
834 SD_LV_CPU,
835 SD_LV_NODE,
836 SD_LV_ALLNODES,
837 SD_LV_MAX
838 };
839
840 struct sched_domain_attr {
841 int relax_domain_level;
842 };
843
844 #define SD_ATTR_INIT (struct sched_domain_attr) { \
845 .relax_domain_level = -1, \
846 }
847
848 struct sched_domain {
849 /* These fields must be setup */
850 struct sched_domain *parent; /* top domain must be null terminated */
851 struct sched_domain *child; /* bottom domain must be null terminated */
852 struct sched_group *groups; /* the balancing groups of the domain */
853 unsigned long min_interval; /* Minimum balance interval ms */
854 unsigned long max_interval; /* Maximum balance interval ms */
855 unsigned int busy_factor; /* less balancing by factor if busy */
856 unsigned int imbalance_pct; /* No balance until over watermark */
857 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
858 unsigned int busy_idx;
859 unsigned int idle_idx;
860 unsigned int newidle_idx;
861 unsigned int wake_idx;
862 unsigned int forkexec_idx;
863 int flags; /* See SD_* */
864 enum sched_domain_level level;
865
866 /* Runtime fields. */
867 unsigned long last_balance; /* init to jiffies. units in jiffies */
868 unsigned int balance_interval; /* initialise to 1. units in ms. */
869 unsigned int nr_balance_failed; /* initialise to 0 */
870
871 u64 last_update;
872
873 #ifdef CONFIG_SCHEDSTATS
874 /* load_balance() stats */
875 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
876 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
877 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
878 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
879 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
880 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
881 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
882 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
883
884 /* Active load balancing */
885 unsigned int alb_count;
886 unsigned int alb_failed;
887 unsigned int alb_pushed;
888
889 /* SD_BALANCE_EXEC stats */
890 unsigned int sbe_count;
891 unsigned int sbe_balanced;
892 unsigned int sbe_pushed;
893
894 /* SD_BALANCE_FORK stats */
895 unsigned int sbf_count;
896 unsigned int sbf_balanced;
897 unsigned int sbf_pushed;
898
899 /* try_to_wake_up() stats */
900 unsigned int ttwu_wake_remote;
901 unsigned int ttwu_move_affine;
902 unsigned int ttwu_move_balance;
903 #endif
904 #ifdef CONFIG_SCHED_DEBUG
905 char *name;
906 #endif
907
908 /* span of all CPUs in this domain */
909 unsigned long span[];
910 };
911
912 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
913 {
914 return to_cpumask(sd->span);
915 }
916
917 extern void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
918 struct sched_domain_attr *dattr_new);
919
920 /* Test a flag in parent sched domain */
921 static inline int test_sd_parent(struct sched_domain *sd, int flag)
922 {
923 if (sd->parent && (sd->parent->flags & flag))
924 return 1;
925
926 return 0;
927 }
928
929 #else /* CONFIG_SMP */
930
931 struct sched_domain_attr;
932
933 static inline void
934 partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
935 struct sched_domain_attr *dattr_new)
936 {
937 }
938 #endif /* !CONFIG_SMP */
939
940 struct io_context; /* See blkdev.h */
941
942
943 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
944 extern void prefetch_stack(struct task_struct *t);
945 #else
946 static inline void prefetch_stack(struct task_struct *t) { }
947 #endif
948
949 struct audit_context; /* See audit.c */
950 struct mempolicy;
951 struct pipe_inode_info;
952 struct uts_namespace;
953
954 struct rq;
955 struct sched_domain;
956
957 struct sched_class {
958 const struct sched_class *next;
959
960 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
961 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
962 void (*yield_task) (struct rq *rq);
963
964 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int sync);
965
966 struct task_struct * (*pick_next_task) (struct rq *rq);
967 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
968
969 #ifdef CONFIG_SMP
970 int (*select_task_rq)(struct task_struct *p, int sync);
971
972 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
973 struct rq *busiest, unsigned long max_load_move,
974 struct sched_domain *sd, enum cpu_idle_type idle,
975 int *all_pinned, int *this_best_prio);
976
977 int (*move_one_task) (struct rq *this_rq, int this_cpu,
978 struct rq *busiest, struct sched_domain *sd,
979 enum cpu_idle_type idle);
980 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
981 void (*post_schedule) (struct rq *this_rq);
982 void (*task_wake_up) (struct rq *this_rq, struct task_struct *task);
983
984 void (*set_cpus_allowed)(struct task_struct *p,
985 const struct cpumask *newmask);
986
987 void (*rq_online)(struct rq *rq);
988 void (*rq_offline)(struct rq *rq);
989 #endif
990
991 void (*set_curr_task) (struct rq *rq);
992 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
993 void (*task_new) (struct rq *rq, struct task_struct *p);
994
995 void (*switched_from) (struct rq *this_rq, struct task_struct *task,
996 int running);
997 void (*switched_to) (struct rq *this_rq, struct task_struct *task,
998 int running);
999 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1000 int oldprio, int running);
1001
1002 #ifdef CONFIG_FAIR_GROUP_SCHED
1003 void (*moved_group) (struct task_struct *p);
1004 #endif
1005 };
1006
1007 struct load_weight {
1008 unsigned long weight, inv_weight;
1009 };
1010
1011 /*
1012 * CFS stats for a schedulable entity (task, task-group etc)
1013 *
1014 * Current field usage histogram:
1015 *
1016 * 4 se->block_start
1017 * 4 se->run_node
1018 * 4 se->sleep_start
1019 * 6 se->load.weight
1020 */
1021 struct sched_entity {
1022 struct load_weight load; /* for load-balancing */
1023 struct rb_node run_node;
1024 struct list_head group_node;
1025 unsigned int on_rq;
1026
1027 u64 exec_start;
1028 u64 sum_exec_runtime;
1029 u64 vruntime;
1030 u64 prev_sum_exec_runtime;
1031
1032 u64 last_wakeup;
1033 u64 avg_overlap;
1034
1035 u64 nr_migrations;
1036
1037 #ifdef CONFIG_SCHEDSTATS
1038 u64 wait_start;
1039 u64 wait_max;
1040 u64 wait_count;
1041 u64 wait_sum;
1042
1043 u64 sleep_start;
1044 u64 sleep_max;
1045 s64 sum_sleep_runtime;
1046
1047 u64 block_start;
1048 u64 block_max;
1049 u64 exec_max;
1050 u64 slice_max;
1051
1052 u64 nr_migrations_cold;
1053 u64 nr_failed_migrations_affine;
1054 u64 nr_failed_migrations_running;
1055 u64 nr_failed_migrations_hot;
1056 u64 nr_forced_migrations;
1057 u64 nr_forced2_migrations;
1058
1059 u64 nr_wakeups;
1060 u64 nr_wakeups_sync;
1061 u64 nr_wakeups_migrate;
1062 u64 nr_wakeups_local;
1063 u64 nr_wakeups_remote;
1064 u64 nr_wakeups_affine;
1065 u64 nr_wakeups_affine_attempts;
1066 u64 nr_wakeups_passive;
1067 u64 nr_wakeups_idle;
1068 #endif
1069
1070 #ifdef CONFIG_FAIR_GROUP_SCHED
1071 struct sched_entity *parent;
1072 /* rq on which this entity is (to be) queued: */
1073 struct cfs_rq *cfs_rq;
1074 /* rq "owned" by this entity/group: */
1075 struct cfs_rq *my_q;
1076 #endif
1077 };
1078
1079 struct sched_rt_entity {
1080 struct list_head run_list;
1081 unsigned long timeout;
1082 unsigned int time_slice;
1083 int nr_cpus_allowed;
1084
1085 struct sched_rt_entity *back;
1086 #ifdef CONFIG_RT_GROUP_SCHED
1087 struct sched_rt_entity *parent;
1088 /* rq on which this entity is (to be) queued: */
1089 struct rt_rq *rt_rq;
1090 /* rq "owned" by this entity/group: */
1091 struct rt_rq *my_q;
1092 #endif
1093 };
1094
1095 struct task_struct {
1096 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1097 void *stack;
1098 atomic_t usage;
1099 unsigned int flags; /* per process flags, defined below */
1100 unsigned int ptrace;
1101
1102 int lock_depth; /* BKL lock depth */
1103
1104 #ifdef CONFIG_SMP
1105 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1106 int oncpu;
1107 #endif
1108 #endif
1109
1110 int prio, static_prio, normal_prio;
1111 unsigned int rt_priority;
1112 const struct sched_class *sched_class;
1113 struct sched_entity se;
1114 struct sched_rt_entity rt;
1115
1116 #ifdef CONFIG_PREEMPT_NOTIFIERS
1117 /* list of struct preempt_notifier: */
1118 struct hlist_head preempt_notifiers;
1119 #endif
1120
1121 /*
1122 * fpu_counter contains the number of consecutive context switches
1123 * that the FPU is used. If this is over a threshold, the lazy fpu
1124 * saving becomes unlazy to save the trap. This is an unsigned char
1125 * so that after 256 times the counter wraps and the behavior turns
1126 * lazy again; this to deal with bursty apps that only use FPU for
1127 * a short time
1128 */
1129 unsigned char fpu_counter;
1130 s8 oomkilladj; /* OOM kill score adjustment (bit shift). */
1131 #ifdef CONFIG_BLK_DEV_IO_TRACE
1132 unsigned int btrace_seq;
1133 #endif
1134
1135 unsigned int policy;
1136 cpumask_t cpus_allowed;
1137
1138 #ifdef CONFIG_PREEMPT_RCU
1139 int rcu_read_lock_nesting;
1140 int rcu_flipctr_idx;
1141 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1142
1143 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1144 struct sched_info sched_info;
1145 #endif
1146
1147 struct list_head tasks;
1148
1149 struct mm_struct *mm, *active_mm;
1150
1151 /* task state */
1152 struct linux_binfmt *binfmt;
1153 int exit_state;
1154 int exit_code, exit_signal;
1155 int pdeath_signal; /* The signal sent when the parent dies */
1156 /* ??? */
1157 unsigned int personality;
1158 unsigned did_exec:1;
1159 pid_t pid;
1160 pid_t tgid;
1161
1162 /* Canary value for the -fstack-protector gcc feature */
1163 unsigned long stack_canary;
1164
1165 /*
1166 * pointers to (original) parent process, youngest child, younger sibling,
1167 * older sibling, respectively. (p->father can be replaced with
1168 * p->real_parent->pid)
1169 */
1170 struct task_struct *real_parent; /* real parent process */
1171 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1172 /*
1173 * children/sibling forms the list of my natural children
1174 */
1175 struct list_head children; /* list of my children */
1176 struct list_head sibling; /* linkage in my parent's children list */
1177 struct task_struct *group_leader; /* threadgroup leader */
1178
1179 /*
1180 * ptraced is the list of tasks this task is using ptrace on.
1181 * This includes both natural children and PTRACE_ATTACH targets.
1182 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1183 */
1184 struct list_head ptraced;
1185 struct list_head ptrace_entry;
1186
1187 #ifdef CONFIG_X86_PTRACE_BTS
1188 /*
1189 * This is the tracer handle for the ptrace BTS extension.
1190 * This field actually belongs to the ptracer task.
1191 */
1192 struct bts_tracer *bts;
1193 /*
1194 * The buffer to hold the BTS data.
1195 */
1196 void *bts_buffer;
1197 size_t bts_size;
1198 #endif /* CONFIG_X86_PTRACE_BTS */
1199
1200 /* PID/PID hash table linkage. */
1201 struct pid_link pids[PIDTYPE_MAX];
1202 struct list_head thread_group;
1203
1204 struct completion *vfork_done; /* for vfork() */
1205 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1206 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1207
1208 cputime_t utime, stime, utimescaled, stimescaled;
1209 cputime_t gtime;
1210 cputime_t prev_utime, prev_stime;
1211 unsigned long nvcsw, nivcsw; /* context switch counts */
1212 struct timespec start_time; /* monotonic time */
1213 struct timespec real_start_time; /* boot based time */
1214 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1215 unsigned long min_flt, maj_flt;
1216
1217 struct task_cputime cputime_expires;
1218 struct list_head cpu_timers[3];
1219
1220 /* process credentials */
1221 const struct cred *real_cred; /* objective and real subjective task
1222 * credentials (COW) */
1223 const struct cred *cred; /* effective (overridable) subjective task
1224 * credentials (COW) */
1225 struct mutex cred_exec_mutex; /* execve vs ptrace cred calculation mutex */
1226
1227 char comm[TASK_COMM_LEN]; /* executable name excluding path
1228 - access with [gs]et_task_comm (which lock
1229 it with task_lock())
1230 - initialized normally by flush_old_exec */
1231 /* file system info */
1232 int link_count, total_link_count;
1233 #ifdef CONFIG_SYSVIPC
1234 /* ipc stuff */
1235 struct sysv_sem sysvsem;
1236 #endif
1237 #ifdef CONFIG_DETECT_SOFTLOCKUP
1238 /* hung task detection */
1239 unsigned long last_switch_timestamp;
1240 unsigned long last_switch_count;
1241 #endif
1242 /* CPU-specific state of this task */
1243 struct thread_struct thread;
1244 /* filesystem information */
1245 struct fs_struct *fs;
1246 /* open file information */
1247 struct files_struct *files;
1248 /* namespaces */
1249 struct nsproxy *nsproxy;
1250 /* signal handlers */
1251 struct signal_struct *signal;
1252 struct sighand_struct *sighand;
1253
1254 sigset_t blocked, real_blocked;
1255 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1256 struct sigpending pending;
1257
1258 unsigned long sas_ss_sp;
1259 size_t sas_ss_size;
1260 int (*notifier)(void *priv);
1261 void *notifier_data;
1262 sigset_t *notifier_mask;
1263 struct audit_context *audit_context;
1264 #ifdef CONFIG_AUDITSYSCALL
1265 uid_t loginuid;
1266 unsigned int sessionid;
1267 #endif
1268 seccomp_t seccomp;
1269
1270 /* Thread group tracking */
1271 u32 parent_exec_id;
1272 u32 self_exec_id;
1273 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
1274 spinlock_t alloc_lock;
1275
1276 /* Protection of the PI data structures: */
1277 spinlock_t pi_lock;
1278
1279 #ifdef CONFIG_RT_MUTEXES
1280 /* PI waiters blocked on a rt_mutex held by this task */
1281 struct plist_head pi_waiters;
1282 /* Deadlock detection and priority inheritance handling */
1283 struct rt_mutex_waiter *pi_blocked_on;
1284 #endif
1285
1286 #ifdef CONFIG_DEBUG_MUTEXES
1287 /* mutex deadlock detection */
1288 struct mutex_waiter *blocked_on;
1289 #endif
1290 #ifdef CONFIG_TRACE_IRQFLAGS
1291 unsigned int irq_events;
1292 int hardirqs_enabled;
1293 unsigned long hardirq_enable_ip;
1294 unsigned int hardirq_enable_event;
1295 unsigned long hardirq_disable_ip;
1296 unsigned int hardirq_disable_event;
1297 int softirqs_enabled;
1298 unsigned long softirq_disable_ip;
1299 unsigned int softirq_disable_event;
1300 unsigned long softirq_enable_ip;
1301 unsigned int softirq_enable_event;
1302 int hardirq_context;
1303 int softirq_context;
1304 #endif
1305 #ifdef CONFIG_LOCKDEP
1306 # define MAX_LOCK_DEPTH 48UL
1307 u64 curr_chain_key;
1308 int lockdep_depth;
1309 unsigned int lockdep_recursion;
1310 struct held_lock held_locks[MAX_LOCK_DEPTH];
1311 #endif
1312
1313 /* journalling filesystem info */
1314 void *journal_info;
1315
1316 /* stacked block device info */
1317 struct bio *bio_list, **bio_tail;
1318
1319 /* VM state */
1320 struct reclaim_state *reclaim_state;
1321
1322 struct backing_dev_info *backing_dev_info;
1323
1324 struct io_context *io_context;
1325
1326 unsigned long ptrace_message;
1327 siginfo_t *last_siginfo; /* For ptrace use. */
1328 struct task_io_accounting ioac;
1329 #if defined(CONFIG_TASK_XACCT)
1330 u64 acct_rss_mem1; /* accumulated rss usage */
1331 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1332 cputime_t acct_timexpd; /* stime + utime since last update */
1333 #endif
1334 #ifdef CONFIG_CPUSETS
1335 nodemask_t mems_allowed;
1336 int cpuset_mems_generation;
1337 int cpuset_mem_spread_rotor;
1338 #endif
1339 #ifdef CONFIG_CGROUPS
1340 /* Control Group info protected by css_set_lock */
1341 struct css_set *cgroups;
1342 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1343 struct list_head cg_list;
1344 #endif
1345 #ifdef CONFIG_FUTEX
1346 struct robust_list_head __user *robust_list;
1347 #ifdef CONFIG_COMPAT
1348 struct compat_robust_list_head __user *compat_robust_list;
1349 #endif
1350 struct list_head pi_state_list;
1351 struct futex_pi_state *pi_state_cache;
1352 #endif
1353 struct perf_counter_context perf_counter_ctx;
1354 #ifdef CONFIG_NUMA
1355 struct mempolicy *mempolicy;
1356 short il_next;
1357 #endif
1358 atomic_t fs_excl; /* holding fs exclusive resources */
1359 struct rcu_head rcu;
1360
1361 /*
1362 * cache last used pipe for splice
1363 */
1364 struct pipe_inode_info *splice_pipe;
1365 #ifdef CONFIG_TASK_DELAY_ACCT
1366 struct task_delay_info *delays;
1367 #endif
1368 #ifdef CONFIG_FAULT_INJECTION
1369 int make_it_fail;
1370 #endif
1371 struct prop_local_single dirties;
1372 #ifdef CONFIG_LATENCYTOP
1373 int latency_record_count;
1374 struct latency_record latency_record[LT_SAVECOUNT];
1375 #endif
1376 /*
1377 * time slack values; these are used to round up poll() and
1378 * select() etc timeout values. These are in nanoseconds.
1379 */
1380 unsigned long timer_slack_ns;
1381 unsigned long default_timer_slack_ns;
1382
1383 struct list_head *scm_work_list;
1384 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1385 /* Index of current stored adress in ret_stack */
1386 int curr_ret_stack;
1387 /* Stack of return addresses for return function tracing */
1388 struct ftrace_ret_stack *ret_stack;
1389 /*
1390 * Number of functions that haven't been traced
1391 * because of depth overrun.
1392 */
1393 atomic_t trace_overrun;
1394 /* Pause for the tracing */
1395 atomic_t tracing_graph_pause;
1396 #endif
1397 #ifdef CONFIG_TRACING
1398 /* state flags for use by tracers */
1399 unsigned long trace;
1400 #endif
1401 };
1402
1403 /*
1404 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1405 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1406 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1407 * values are inverted: lower p->prio value means higher priority.
1408 *
1409 * The MAX_USER_RT_PRIO value allows the actual maximum
1410 * RT priority to be separate from the value exported to
1411 * user-space. This allows kernel threads to set their
1412 * priority to a value higher than any user task. Note:
1413 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1414 */
1415
1416 #define MAX_USER_RT_PRIO 100
1417 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1418
1419 #define MAX_PRIO (MAX_RT_PRIO + 40)
1420 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1421
1422 static inline int rt_prio(int prio)
1423 {
1424 if (unlikely(prio < MAX_RT_PRIO))
1425 return 1;
1426 return 0;
1427 }
1428
1429 static inline int rt_task(struct task_struct *p)
1430 {
1431 return rt_prio(p->prio);
1432 }
1433
1434 static inline void set_task_session(struct task_struct *tsk, pid_t session)
1435 {
1436 tsk->signal->__session = session;
1437 }
1438
1439 static inline void set_task_pgrp(struct task_struct *tsk, pid_t pgrp)
1440 {
1441 tsk->signal->__pgrp = pgrp;
1442 }
1443
1444 static inline struct pid *task_pid(struct task_struct *task)
1445 {
1446 return task->pids[PIDTYPE_PID].pid;
1447 }
1448
1449 static inline struct pid *task_tgid(struct task_struct *task)
1450 {
1451 return task->group_leader->pids[PIDTYPE_PID].pid;
1452 }
1453
1454 static inline struct pid *task_pgrp(struct task_struct *task)
1455 {
1456 return task->group_leader->pids[PIDTYPE_PGID].pid;
1457 }
1458
1459 static inline struct pid *task_session(struct task_struct *task)
1460 {
1461 return task->group_leader->pids[PIDTYPE_SID].pid;
1462 }
1463
1464 struct pid_namespace;
1465
1466 /*
1467 * the helpers to get the task's different pids as they are seen
1468 * from various namespaces
1469 *
1470 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1471 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1472 * current.
1473 * task_xid_nr_ns() : id seen from the ns specified;
1474 *
1475 * set_task_vxid() : assigns a virtual id to a task;
1476 *
1477 * see also pid_nr() etc in include/linux/pid.h
1478 */
1479
1480 static inline pid_t task_pid_nr(struct task_struct *tsk)
1481 {
1482 return tsk->pid;
1483 }
1484
1485 pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1486
1487 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1488 {
1489 return pid_vnr(task_pid(tsk));
1490 }
1491
1492
1493 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1494 {
1495 return tsk->tgid;
1496 }
1497
1498 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1499
1500 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1501 {
1502 return pid_vnr(task_tgid(tsk));
1503 }
1504
1505
1506 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1507 {
1508 return tsk->signal->__pgrp;
1509 }
1510
1511 pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1512
1513 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1514 {
1515 return pid_vnr(task_pgrp(tsk));
1516 }
1517
1518
1519 static inline pid_t task_session_nr(struct task_struct *tsk)
1520 {
1521 return tsk->signal->__session;
1522 }
1523
1524 pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1525
1526 static inline pid_t task_session_vnr(struct task_struct *tsk)
1527 {
1528 return pid_vnr(task_session(tsk));
1529 }
1530
1531
1532 /**
1533 * pid_alive - check that a task structure is not stale
1534 * @p: Task structure to be checked.
1535 *
1536 * Test if a process is not yet dead (at most zombie state)
1537 * If pid_alive fails, then pointers within the task structure
1538 * can be stale and must not be dereferenced.
1539 */
1540 static inline int pid_alive(struct task_struct *p)
1541 {
1542 return p->pids[PIDTYPE_PID].pid != NULL;
1543 }
1544
1545 /**
1546 * is_global_init - check if a task structure is init
1547 * @tsk: Task structure to be checked.
1548 *
1549 * Check if a task structure is the first user space task the kernel created.
1550 */
1551 static inline int is_global_init(struct task_struct *tsk)
1552 {
1553 return tsk->pid == 1;
1554 }
1555
1556 /*
1557 * is_container_init:
1558 * check whether in the task is init in its own pid namespace.
1559 */
1560 extern int is_container_init(struct task_struct *tsk);
1561
1562 extern struct pid *cad_pid;
1563
1564 extern void free_task(struct task_struct *tsk);
1565 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1566
1567 extern void __put_task_struct(struct task_struct *t);
1568
1569 static inline void put_task_struct(struct task_struct *t)
1570 {
1571 if (atomic_dec_and_test(&t->usage))
1572 __put_task_struct(t);
1573 }
1574
1575 extern cputime_t task_utime(struct task_struct *p);
1576 extern cputime_t task_stime(struct task_struct *p);
1577 extern cputime_t task_gtime(struct task_struct *p);
1578
1579 /*
1580 * Per process flags
1581 */
1582 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1583 /* Not implemented yet, only for 486*/
1584 #define PF_STARTING 0x00000002 /* being created */
1585 #define PF_EXITING 0x00000004 /* getting shut down */
1586 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1587 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1588 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1589 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1590 #define PF_DUMPCORE 0x00000200 /* dumped core */
1591 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1592 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1593 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1594 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1595 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1596 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1597 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1598 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1599 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */
1600 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1601 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1602 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1603 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1604 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1605 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1606 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1607 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1608 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1609 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1610 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */
1611
1612 /*
1613 * Only the _current_ task can read/write to tsk->flags, but other
1614 * tasks can access tsk->flags in readonly mode for example
1615 * with tsk_used_math (like during threaded core dumping).
1616 * There is however an exception to this rule during ptrace
1617 * or during fork: the ptracer task is allowed to write to the
1618 * child->flags of its traced child (same goes for fork, the parent
1619 * can write to the child->flags), because we're guaranteed the
1620 * child is not running and in turn not changing child->flags
1621 * at the same time the parent does it.
1622 */
1623 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1624 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1625 #define clear_used_math() clear_stopped_child_used_math(current)
1626 #define set_used_math() set_stopped_child_used_math(current)
1627 #define conditional_stopped_child_used_math(condition, child) \
1628 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1629 #define conditional_used_math(condition) \
1630 conditional_stopped_child_used_math(condition, current)
1631 #define copy_to_stopped_child_used_math(child) \
1632 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1633 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1634 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1635 #define used_math() tsk_used_math(current)
1636
1637 #ifdef CONFIG_SMP
1638 extern int set_cpus_allowed_ptr(struct task_struct *p,
1639 const struct cpumask *new_mask);
1640 #else
1641 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1642 const struct cpumask *new_mask)
1643 {
1644 if (!cpumask_test_cpu(0, new_mask))
1645 return -EINVAL;
1646 return 0;
1647 }
1648 #endif
1649 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1650 {
1651 return set_cpus_allowed_ptr(p, &new_mask);
1652 }
1653
1654 extern unsigned long long sched_clock(void);
1655
1656 extern void sched_clock_init(void);
1657 extern u64 sched_clock_cpu(int cpu);
1658
1659 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1660 static inline void sched_clock_tick(void)
1661 {
1662 }
1663
1664 static inline void sched_clock_idle_sleep_event(void)
1665 {
1666 }
1667
1668 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1669 {
1670 }
1671 #else
1672 extern void sched_clock_tick(void);
1673 extern void sched_clock_idle_sleep_event(void);
1674 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1675 #endif
1676
1677 /*
1678 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1679 * clock constructed from sched_clock():
1680 */
1681 extern unsigned long long cpu_clock(int cpu);
1682
1683 extern unsigned long long
1684 task_sched_runtime(struct task_struct *task);
1685 extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1686
1687 /* sched_exec is called by processes performing an exec */
1688 #ifdef CONFIG_SMP
1689 extern void sched_exec(void);
1690 #else
1691 #define sched_exec() {}
1692 #endif
1693
1694 extern void sched_clock_idle_sleep_event(void);
1695 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1696
1697 #ifdef CONFIG_HOTPLUG_CPU
1698 extern void idle_task_exit(void);
1699 #else
1700 static inline void idle_task_exit(void) {}
1701 #endif
1702
1703 extern void sched_idle_next(void);
1704
1705 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1706 extern void wake_up_idle_cpu(int cpu);
1707 #else
1708 static inline void wake_up_idle_cpu(int cpu) { }
1709 #endif
1710
1711 extern unsigned int sysctl_sched_latency;
1712 extern unsigned int sysctl_sched_min_granularity;
1713 extern unsigned int sysctl_sched_wakeup_granularity;
1714 extern unsigned int sysctl_sched_shares_ratelimit;
1715 extern unsigned int sysctl_sched_shares_thresh;
1716 #ifdef CONFIG_SCHED_DEBUG
1717 extern unsigned int sysctl_sched_child_runs_first;
1718 extern unsigned int sysctl_sched_features;
1719 extern unsigned int sysctl_sched_migration_cost;
1720 extern unsigned int sysctl_sched_nr_migrate;
1721
1722 int sched_nr_latency_handler(struct ctl_table *table, int write,
1723 struct file *file, void __user *buffer, size_t *length,
1724 loff_t *ppos);
1725 #endif
1726 extern unsigned int sysctl_sched_rt_period;
1727 extern int sysctl_sched_rt_runtime;
1728
1729 int sched_rt_handler(struct ctl_table *table, int write,
1730 struct file *filp, void __user *buffer, size_t *lenp,
1731 loff_t *ppos);
1732
1733 extern unsigned int sysctl_sched_compat_yield;
1734
1735 #ifdef CONFIG_RT_MUTEXES
1736 extern int rt_mutex_getprio(struct task_struct *p);
1737 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1738 extern void rt_mutex_adjust_pi(struct task_struct *p);
1739 #else
1740 static inline int rt_mutex_getprio(struct task_struct *p)
1741 {
1742 return p->normal_prio;
1743 }
1744 # define rt_mutex_adjust_pi(p) do { } while (0)
1745 #endif
1746
1747 extern void set_user_nice(struct task_struct *p, long nice);
1748 extern int task_prio(const struct task_struct *p);
1749 extern int task_nice(const struct task_struct *p);
1750 extern int can_nice(const struct task_struct *p, const int nice);
1751 extern int task_curr(const struct task_struct *p);
1752 extern int idle_cpu(int cpu);
1753 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1754 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1755 struct sched_param *);
1756 extern struct task_struct *idle_task(int cpu);
1757 extern struct task_struct *curr_task(int cpu);
1758 extern void set_curr_task(int cpu, struct task_struct *p);
1759
1760 void yield(void);
1761
1762 /*
1763 * The default (Linux) execution domain.
1764 */
1765 extern struct exec_domain default_exec_domain;
1766
1767 union thread_union {
1768 struct thread_info thread_info;
1769 unsigned long stack[THREAD_SIZE/sizeof(long)];
1770 };
1771
1772 #ifndef __HAVE_ARCH_KSTACK_END
1773 static inline int kstack_end(void *addr)
1774 {
1775 /* Reliable end of stack detection:
1776 * Some APM bios versions misalign the stack
1777 */
1778 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1779 }
1780 #endif
1781
1782 extern union thread_union init_thread_union;
1783 extern struct task_struct init_task;
1784
1785 extern struct mm_struct init_mm;
1786
1787 extern struct pid_namespace init_pid_ns;
1788
1789 /*
1790 * find a task by one of its numerical ids
1791 *
1792 * find_task_by_pid_type_ns():
1793 * it is the most generic call - it finds a task by all id,
1794 * type and namespace specified
1795 * find_task_by_pid_ns():
1796 * finds a task by its pid in the specified namespace
1797 * find_task_by_vpid():
1798 * finds a task by its virtual pid
1799 *
1800 * see also find_vpid() etc in include/linux/pid.h
1801 */
1802
1803 extern struct task_struct *find_task_by_pid_type_ns(int type, int pid,
1804 struct pid_namespace *ns);
1805
1806 extern struct task_struct *find_task_by_vpid(pid_t nr);
1807 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1808 struct pid_namespace *ns);
1809
1810 extern void __set_special_pids(struct pid *pid);
1811
1812 /* per-UID process charging. */
1813 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1814 static inline struct user_struct *get_uid(struct user_struct *u)
1815 {
1816 atomic_inc(&u->__count);
1817 return u;
1818 }
1819 extern void free_uid(struct user_struct *);
1820 extern void release_uids(struct user_namespace *ns);
1821
1822 #include <asm/current.h>
1823
1824 extern void do_timer(unsigned long ticks);
1825
1826 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1827 extern int wake_up_process(struct task_struct *tsk);
1828 extern void wake_up_new_task(struct task_struct *tsk,
1829 unsigned long clone_flags);
1830 #ifdef CONFIG_SMP
1831 extern void kick_process(struct task_struct *tsk);
1832 #else
1833 static inline void kick_process(struct task_struct *tsk) { }
1834 #endif
1835 extern void sched_fork(struct task_struct *p, int clone_flags);
1836 extern void sched_dead(struct task_struct *p);
1837
1838 extern void proc_caches_init(void);
1839 extern void flush_signals(struct task_struct *);
1840 extern void ignore_signals(struct task_struct *);
1841 extern void flush_signal_handlers(struct task_struct *, int force_default);
1842 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1843
1844 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1845 {
1846 unsigned long flags;
1847 int ret;
1848
1849 spin_lock_irqsave(&tsk->sighand->siglock, flags);
1850 ret = dequeue_signal(tsk, mask, info);
1851 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1852
1853 return ret;
1854 }
1855
1856 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1857 sigset_t *mask);
1858 extern void unblock_all_signals(void);
1859 extern void release_task(struct task_struct * p);
1860 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1861 extern int force_sigsegv(int, struct task_struct *);
1862 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1863 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1864 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
1865 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
1866 extern int kill_pgrp(struct pid *pid, int sig, int priv);
1867 extern int kill_pid(struct pid *pid, int sig, int priv);
1868 extern int kill_proc_info(int, struct siginfo *, pid_t);
1869 extern int do_notify_parent(struct task_struct *, int);
1870 extern void force_sig(int, struct task_struct *);
1871 extern void force_sig_specific(int, struct task_struct *);
1872 extern int send_sig(int, struct task_struct *, int);
1873 extern void zap_other_threads(struct task_struct *p);
1874 extern struct sigqueue *sigqueue_alloc(void);
1875 extern void sigqueue_free(struct sigqueue *);
1876 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
1877 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1878 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1879
1880 static inline int kill_cad_pid(int sig, int priv)
1881 {
1882 return kill_pid(cad_pid, sig, priv);
1883 }
1884
1885 /* These can be the second arg to send_sig_info/send_group_sig_info. */
1886 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
1887 #define SEND_SIG_PRIV ((struct siginfo *) 1)
1888 #define SEND_SIG_FORCED ((struct siginfo *) 2)
1889
1890 static inline int is_si_special(const struct siginfo *info)
1891 {
1892 return info <= SEND_SIG_FORCED;
1893 }
1894
1895 /* True if we are on the alternate signal stack. */
1896
1897 static inline int on_sig_stack(unsigned long sp)
1898 {
1899 return (sp - current->sas_ss_sp < current->sas_ss_size);
1900 }
1901
1902 static inline int sas_ss_flags(unsigned long sp)
1903 {
1904 return (current->sas_ss_size == 0 ? SS_DISABLE
1905 : on_sig_stack(sp) ? SS_ONSTACK : 0);
1906 }
1907
1908 /*
1909 * Routines for handling mm_structs
1910 */
1911 extern struct mm_struct * mm_alloc(void);
1912
1913 /* mmdrop drops the mm and the page tables */
1914 extern void __mmdrop(struct mm_struct *);
1915 static inline void mmdrop(struct mm_struct * mm)
1916 {
1917 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1918 __mmdrop(mm);
1919 }
1920
1921 /* mmput gets rid of the mappings and all user-space */
1922 extern void mmput(struct mm_struct *);
1923 /* Grab a reference to a task's mm, if it is not already going away */
1924 extern struct mm_struct *get_task_mm(struct task_struct *task);
1925 /* Remove the current tasks stale references to the old mm_struct */
1926 extern void mm_release(struct task_struct *, struct mm_struct *);
1927 /* Allocate a new mm structure and copy contents from tsk->mm */
1928 extern struct mm_struct *dup_mm(struct task_struct *tsk);
1929
1930 extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
1931 extern void flush_thread(void);
1932 extern void exit_thread(void);
1933
1934 extern void exit_files(struct task_struct *);
1935 extern void __cleanup_signal(struct signal_struct *);
1936 extern void __cleanup_sighand(struct sighand_struct *);
1937
1938 extern void exit_itimers(struct signal_struct *);
1939 extern void flush_itimer_signals(void);
1940
1941 extern NORET_TYPE void do_group_exit(int);
1942
1943 extern void daemonize(const char *, ...);
1944 extern int allow_signal(int);
1945 extern int disallow_signal(int);
1946
1947 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
1948 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
1949 struct task_struct *fork_idle(int);
1950
1951 extern void set_task_comm(struct task_struct *tsk, char *from);
1952 extern char *get_task_comm(char *to, struct task_struct *tsk);
1953
1954 #ifdef CONFIG_SMP
1955 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1956 #else
1957 static inline unsigned long wait_task_inactive(struct task_struct *p,
1958 long match_state)
1959 {
1960 return 1;
1961 }
1962 #endif
1963
1964 #define next_task(p) list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks)
1965
1966 #define for_each_process(p) \
1967 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
1968
1969 extern bool is_single_threaded(struct task_struct *);
1970
1971 /*
1972 * Careful: do_each_thread/while_each_thread is a double loop so
1973 * 'break' will not work as expected - use goto instead.
1974 */
1975 #define do_each_thread(g, t) \
1976 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
1977
1978 #define while_each_thread(g, t) \
1979 while ((t = next_thread(t)) != g)
1980
1981 /* de_thread depends on thread_group_leader not being a pid based check */
1982 #define thread_group_leader(p) (p == p->group_leader)
1983
1984 /* Do to the insanities of de_thread it is possible for a process
1985 * to have the pid of the thread group leader without actually being
1986 * the thread group leader. For iteration through the pids in proc
1987 * all we care about is that we have a task with the appropriate
1988 * pid, we don't actually care if we have the right task.
1989 */
1990 static inline int has_group_leader_pid(struct task_struct *p)
1991 {
1992 return p->pid == p->tgid;
1993 }
1994
1995 static inline
1996 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
1997 {
1998 return p1->tgid == p2->tgid;
1999 }
2000
2001 static inline struct task_struct *next_thread(const struct task_struct *p)
2002 {
2003 return list_entry(rcu_dereference(p->thread_group.next),
2004 struct task_struct, thread_group);
2005 }
2006
2007 static inline int thread_group_empty(struct task_struct *p)
2008 {
2009 return list_empty(&p->thread_group);
2010 }
2011
2012 #define delay_group_leader(p) \
2013 (thread_group_leader(p) && !thread_group_empty(p))
2014
2015 /*
2016 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2017 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2018 * pins the final release of task.io_context. Also protects ->cpuset and
2019 * ->cgroup.subsys[].
2020 *
2021 * Nests both inside and outside of read_lock(&tasklist_lock).
2022 * It must not be nested with write_lock_irq(&tasklist_lock),
2023 * neither inside nor outside.
2024 */
2025 static inline void task_lock(struct task_struct *p)
2026 {
2027 spin_lock(&p->alloc_lock);
2028 }
2029
2030 static inline void task_unlock(struct task_struct *p)
2031 {
2032 spin_unlock(&p->alloc_lock);
2033 }
2034
2035 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2036 unsigned long *flags);
2037
2038 static inline void unlock_task_sighand(struct task_struct *tsk,
2039 unsigned long *flags)
2040 {
2041 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2042 }
2043
2044 #ifndef __HAVE_THREAD_FUNCTIONS
2045
2046 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2047 #define task_stack_page(task) ((task)->stack)
2048
2049 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2050 {
2051 *task_thread_info(p) = *task_thread_info(org);
2052 task_thread_info(p)->task = p;
2053 }
2054
2055 static inline unsigned long *end_of_stack(struct task_struct *p)
2056 {
2057 return (unsigned long *)(task_thread_info(p) + 1);
2058 }
2059
2060 #endif
2061
2062 static inline int object_is_on_stack(void *obj)
2063 {
2064 void *stack = task_stack_page(current);
2065
2066 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2067 }
2068
2069 extern void thread_info_cache_init(void);
2070
2071 #ifdef CONFIG_DEBUG_STACK_USAGE
2072 static inline unsigned long stack_not_used(struct task_struct *p)
2073 {
2074 unsigned long *n = end_of_stack(p);
2075
2076 do { /* Skip over canary */
2077 n++;
2078 } while (!*n);
2079
2080 return (unsigned long)n - (unsigned long)end_of_stack(p);
2081 }
2082 #endif
2083
2084 /* set thread flags in other task's structures
2085 * - see asm/thread_info.h for TIF_xxxx flags available
2086 */
2087 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2088 {
2089 set_ti_thread_flag(task_thread_info(tsk), flag);
2090 }
2091
2092 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2093 {
2094 clear_ti_thread_flag(task_thread_info(tsk), flag);
2095 }
2096
2097 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2098 {
2099 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2100 }
2101
2102 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2103 {
2104 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2105 }
2106
2107 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2108 {
2109 return test_ti_thread_flag(task_thread_info(tsk), flag);
2110 }
2111
2112 static inline void set_tsk_need_resched(struct task_struct *tsk)
2113 {
2114 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2115 }
2116
2117 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2118 {
2119 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2120 }
2121
2122 static inline int test_tsk_need_resched(struct task_struct *tsk)
2123 {
2124 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2125 }
2126
2127 static inline int signal_pending(struct task_struct *p)
2128 {
2129 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2130 }
2131
2132 extern int __fatal_signal_pending(struct task_struct *p);
2133
2134 static inline int fatal_signal_pending(struct task_struct *p)
2135 {
2136 return signal_pending(p) && __fatal_signal_pending(p);
2137 }
2138
2139 static inline int signal_pending_state(long state, struct task_struct *p)
2140 {
2141 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2142 return 0;
2143 if (!signal_pending(p))
2144 return 0;
2145
2146 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2147 }
2148
2149 static inline int need_resched(void)
2150 {
2151 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2152 }
2153
2154 /*
2155 * cond_resched() and cond_resched_lock(): latency reduction via
2156 * explicit rescheduling in places that are safe. The return
2157 * value indicates whether a reschedule was done in fact.
2158 * cond_resched_lock() will drop the spinlock before scheduling,
2159 * cond_resched_softirq() will enable bhs before scheduling.
2160 */
2161 extern int _cond_resched(void);
2162 #ifdef CONFIG_PREEMPT_BKL
2163 static inline int cond_resched(void)
2164 {
2165 return 0;
2166 }
2167 #else
2168 static inline int cond_resched(void)
2169 {
2170 return _cond_resched();
2171 }
2172 #endif
2173 extern int cond_resched_lock(spinlock_t * lock);
2174 extern int cond_resched_softirq(void);
2175 static inline int cond_resched_bkl(void)
2176 {
2177 return _cond_resched();
2178 }
2179
2180 /*
2181 * Does a critical section need to be broken due to another
2182 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2183 * but a general need for low latency)
2184 */
2185 static inline int spin_needbreak(spinlock_t *lock)
2186 {
2187 #ifdef CONFIG_PREEMPT
2188 return spin_is_contended(lock);
2189 #else
2190 return 0;
2191 #endif
2192 }
2193
2194 /*
2195 * Thread group CPU time accounting.
2196 */
2197
2198 extern int thread_group_cputime_alloc(struct task_struct *);
2199 extern void thread_group_cputime(struct task_struct *, struct task_cputime *);
2200
2201 static inline void thread_group_cputime_init(struct signal_struct *sig)
2202 {
2203 sig->cputime.totals = NULL;
2204 }
2205
2206 static inline int thread_group_cputime_clone_thread(struct task_struct *curr)
2207 {
2208 if (curr->signal->cputime.totals)
2209 return 0;
2210 return thread_group_cputime_alloc(curr);
2211 }
2212
2213 static inline void thread_group_cputime_free(struct signal_struct *sig)
2214 {
2215 free_percpu(sig->cputime.totals);
2216 }
2217
2218 /*
2219 * Reevaluate whether the task has signals pending delivery.
2220 * Wake the task if so.
2221 * This is required every time the blocked sigset_t changes.
2222 * callers must hold sighand->siglock.
2223 */
2224 extern void recalc_sigpending_and_wake(struct task_struct *t);
2225 extern void recalc_sigpending(void);
2226
2227 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2228
2229 /*
2230 * Wrappers for p->thread_info->cpu access. No-op on UP.
2231 */
2232 #ifdef CONFIG_SMP
2233
2234 static inline unsigned int task_cpu(const struct task_struct *p)
2235 {
2236 return task_thread_info(p)->cpu;
2237 }
2238
2239 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2240
2241 #else
2242
2243 static inline unsigned int task_cpu(const struct task_struct *p)
2244 {
2245 return 0;
2246 }
2247
2248 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2249 {
2250 }
2251
2252 #endif /* CONFIG_SMP */
2253
2254 extern void arch_pick_mmap_layout(struct mm_struct *mm);
2255
2256 #ifdef CONFIG_TRACING
2257 extern void
2258 __trace_special(void *__tr, void *__data,
2259 unsigned long arg1, unsigned long arg2, unsigned long arg3);
2260 #else
2261 static inline void
2262 __trace_special(void *__tr, void *__data,
2263 unsigned long arg1, unsigned long arg2, unsigned long arg3)
2264 {
2265 }
2266 #endif
2267
2268 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2269 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2270
2271 extern void normalize_rt_tasks(void);
2272
2273 #ifdef CONFIG_GROUP_SCHED
2274
2275 extern struct task_group init_task_group;
2276 #ifdef CONFIG_USER_SCHED
2277 extern struct task_group root_task_group;
2278 extern void set_tg_uid(struct user_struct *user);
2279 #endif
2280
2281 extern struct task_group *sched_create_group(struct task_group *parent);
2282 extern void sched_destroy_group(struct task_group *tg);
2283 extern void sched_move_task(struct task_struct *tsk);
2284 #ifdef CONFIG_FAIR_GROUP_SCHED
2285 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2286 extern unsigned long sched_group_shares(struct task_group *tg);
2287 #endif
2288 #ifdef CONFIG_RT_GROUP_SCHED
2289 extern int sched_group_set_rt_runtime(struct task_group *tg,
2290 long rt_runtime_us);
2291 extern long sched_group_rt_runtime(struct task_group *tg);
2292 extern int sched_group_set_rt_period(struct task_group *tg,
2293 long rt_period_us);
2294 extern long sched_group_rt_period(struct task_group *tg);
2295 #endif
2296 #endif
2297
2298 #ifdef CONFIG_TASK_XACCT
2299 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2300 {
2301 tsk->ioac.rchar += amt;
2302 }
2303
2304 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2305 {
2306 tsk->ioac.wchar += amt;
2307 }
2308
2309 static inline void inc_syscr(struct task_struct *tsk)
2310 {
2311 tsk->ioac.syscr++;
2312 }
2313
2314 static inline void inc_syscw(struct task_struct *tsk)
2315 {
2316 tsk->ioac.syscw++;
2317 }
2318 #else
2319 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2320 {
2321 }
2322
2323 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2324 {
2325 }
2326
2327 static inline void inc_syscr(struct task_struct *tsk)
2328 {
2329 }
2330
2331 static inline void inc_syscw(struct task_struct *tsk)
2332 {
2333 }
2334 #endif
2335
2336 #ifndef TASK_SIZE_OF
2337 #define TASK_SIZE_OF(tsk) TASK_SIZE
2338 #endif
2339
2340 /*
2341 * Call the function if the target task is executing on a CPU right now:
2342 */
2343 extern void task_oncpu_function_call(struct task_struct *p,
2344 void (*func) (void *info), void *info);
2345
2346
2347 #ifdef CONFIG_MM_OWNER
2348 extern void mm_update_next_owner(struct mm_struct *mm);
2349 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2350 #else
2351 static inline void mm_update_next_owner(struct mm_struct *mm)
2352 {
2353 }
2354
2355 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2356 {
2357 }
2358 #endif /* CONFIG_MM_OWNER */
2359
2360 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
2361
2362 #endif /* __KERNEL__ */
2363
2364 #endif
This page took 0.103097 seconds and 6 git commands to generate.