[PATCH] sched: introduce child field in sched_domain
[deliverable/linux.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <linux/auxvec.h> /* For AT_VECTOR_SIZE */
5
6 /*
7 * cloning flags:
8 */
9 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
10 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
11 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
12 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
13 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
14 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
15 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
16 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
17 #define CLONE_THREAD 0x00010000 /* Same thread group? */
18 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
19 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
20 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
21 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
22 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
23 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
24 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
25 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
26 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
27 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
28 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
29
30 /*
31 * Scheduling policies
32 */
33 #define SCHED_NORMAL 0
34 #define SCHED_FIFO 1
35 #define SCHED_RR 2
36 #define SCHED_BATCH 3
37
38 #ifdef __KERNEL__
39
40 struct sched_param {
41 int sched_priority;
42 };
43
44 #include <asm/param.h> /* for HZ */
45
46 #include <linux/capability.h>
47 #include <linux/threads.h>
48 #include <linux/kernel.h>
49 #include <linux/types.h>
50 #include <linux/timex.h>
51 #include <linux/jiffies.h>
52 #include <linux/rbtree.h>
53 #include <linux/thread_info.h>
54 #include <linux/cpumask.h>
55 #include <linux/errno.h>
56 #include <linux/nodemask.h>
57
58 #include <asm/system.h>
59 #include <asm/semaphore.h>
60 #include <asm/page.h>
61 #include <asm/ptrace.h>
62 #include <asm/mmu.h>
63 #include <asm/cputime.h>
64
65 #include <linux/smp.h>
66 #include <linux/sem.h>
67 #include <linux/signal.h>
68 #include <linux/securebits.h>
69 #include <linux/fs_struct.h>
70 #include <linux/compiler.h>
71 #include <linux/completion.h>
72 #include <linux/pid.h>
73 #include <linux/percpu.h>
74 #include <linux/topology.h>
75 #include <linux/seccomp.h>
76 #include <linux/rcupdate.h>
77 #include <linux/futex.h>
78 #include <linux/rtmutex.h>
79
80 #include <linux/time.h>
81 #include <linux/param.h>
82 #include <linux/resource.h>
83 #include <linux/timer.h>
84 #include <linux/hrtimer.h>
85
86 #include <asm/processor.h>
87
88 struct exec_domain;
89 struct futex_pi_state;
90
91 /*
92 * List of flags we want to share for kernel threads,
93 * if only because they are not used by them anyway.
94 */
95 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
96
97 /*
98 * These are the constant used to fake the fixed-point load-average
99 * counting. Some notes:
100 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
101 * a load-average precision of 10 bits integer + 11 bits fractional
102 * - if you want to count load-averages more often, you need more
103 * precision, or rounding will get you. With 2-second counting freq,
104 * the EXP_n values would be 1981, 2034 and 2043 if still using only
105 * 11 bit fractions.
106 */
107 extern unsigned long avenrun[]; /* Load averages */
108
109 #define FSHIFT 11 /* nr of bits of precision */
110 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
111 #define LOAD_FREQ (5*HZ) /* 5 sec intervals */
112 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
113 #define EXP_5 2014 /* 1/exp(5sec/5min) */
114 #define EXP_15 2037 /* 1/exp(5sec/15min) */
115
116 #define CALC_LOAD(load,exp,n) \
117 load *= exp; \
118 load += n*(FIXED_1-exp); \
119 load >>= FSHIFT;
120
121 extern unsigned long total_forks;
122 extern int nr_threads;
123 DECLARE_PER_CPU(unsigned long, process_counts);
124 extern int nr_processes(void);
125 extern unsigned long nr_running(void);
126 extern unsigned long nr_uninterruptible(void);
127 extern unsigned long nr_active(void);
128 extern unsigned long nr_iowait(void);
129 extern unsigned long weighted_cpuload(const int cpu);
130
131
132 /*
133 * Task state bitmask. NOTE! These bits are also
134 * encoded in fs/proc/array.c: get_task_state().
135 *
136 * We have two separate sets of flags: task->state
137 * is about runnability, while task->exit_state are
138 * about the task exiting. Confusing, but this way
139 * modifying one set can't modify the other one by
140 * mistake.
141 */
142 #define TASK_RUNNING 0
143 #define TASK_INTERRUPTIBLE 1
144 #define TASK_UNINTERRUPTIBLE 2
145 #define TASK_STOPPED 4
146 #define TASK_TRACED 8
147 /* in tsk->exit_state */
148 #define EXIT_ZOMBIE 16
149 #define EXIT_DEAD 32
150 /* in tsk->state again */
151 #define TASK_NONINTERACTIVE 64
152 #define TASK_DEAD 128
153
154 #define __set_task_state(tsk, state_value) \
155 do { (tsk)->state = (state_value); } while (0)
156 #define set_task_state(tsk, state_value) \
157 set_mb((tsk)->state, (state_value))
158
159 /*
160 * set_current_state() includes a barrier so that the write of current->state
161 * is correctly serialised wrt the caller's subsequent test of whether to
162 * actually sleep:
163 *
164 * set_current_state(TASK_UNINTERRUPTIBLE);
165 * if (do_i_need_to_sleep())
166 * schedule();
167 *
168 * If the caller does not need such serialisation then use __set_current_state()
169 */
170 #define __set_current_state(state_value) \
171 do { current->state = (state_value); } while (0)
172 #define set_current_state(state_value) \
173 set_mb(current->state, (state_value))
174
175 /* Task command name length */
176 #define TASK_COMM_LEN 16
177
178 #include <linux/spinlock.h>
179
180 /*
181 * This serializes "schedule()" and also protects
182 * the run-queue from deletions/modifications (but
183 * _adding_ to the beginning of the run-queue has
184 * a separate lock).
185 */
186 extern rwlock_t tasklist_lock;
187 extern spinlock_t mmlist_lock;
188
189 struct task_struct;
190
191 extern void sched_init(void);
192 extern void sched_init_smp(void);
193 extern void init_idle(struct task_struct *idle, int cpu);
194
195 extern cpumask_t nohz_cpu_mask;
196
197 extern void show_state(void);
198 extern void show_regs(struct pt_regs *);
199
200 /*
201 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
202 * task), SP is the stack pointer of the first frame that should be shown in the back
203 * trace (or NULL if the entire call-chain of the task should be shown).
204 */
205 extern void show_stack(struct task_struct *task, unsigned long *sp);
206
207 void io_schedule(void);
208 long io_schedule_timeout(long timeout);
209
210 extern void cpu_init (void);
211 extern void trap_init(void);
212 extern void update_process_times(int user);
213 extern void scheduler_tick(void);
214
215 #ifdef CONFIG_DETECT_SOFTLOCKUP
216 extern void softlockup_tick(void);
217 extern void spawn_softlockup_task(void);
218 extern void touch_softlockup_watchdog(void);
219 #else
220 static inline void softlockup_tick(void)
221 {
222 }
223 static inline void spawn_softlockup_task(void)
224 {
225 }
226 static inline void touch_softlockup_watchdog(void)
227 {
228 }
229 #endif
230
231
232 /* Attach to any functions which should be ignored in wchan output. */
233 #define __sched __attribute__((__section__(".sched.text")))
234 /* Is this address in the __sched functions? */
235 extern int in_sched_functions(unsigned long addr);
236
237 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
238 extern signed long FASTCALL(schedule_timeout(signed long timeout));
239 extern signed long schedule_timeout_interruptible(signed long timeout);
240 extern signed long schedule_timeout_uninterruptible(signed long timeout);
241 asmlinkage void schedule(void);
242
243 struct nsproxy;
244
245 /* Maximum number of active map areas.. This is a random (large) number */
246 #define DEFAULT_MAX_MAP_COUNT 65536
247
248 extern int sysctl_max_map_count;
249
250 #include <linux/aio.h>
251
252 extern unsigned long
253 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
254 unsigned long, unsigned long);
255 extern unsigned long
256 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
257 unsigned long len, unsigned long pgoff,
258 unsigned long flags);
259 extern void arch_unmap_area(struct mm_struct *, unsigned long);
260 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
261
262 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
263 /*
264 * The mm counters are not protected by its page_table_lock,
265 * so must be incremented atomically.
266 */
267 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
268 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
269 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
270 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
271 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
272 typedef atomic_long_t mm_counter_t;
273
274 #else /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
275 /*
276 * The mm counters are protected by its page_table_lock,
277 * so can be incremented directly.
278 */
279 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
280 #define get_mm_counter(mm, member) ((mm)->_##member)
281 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
282 #define inc_mm_counter(mm, member) (mm)->_##member++
283 #define dec_mm_counter(mm, member) (mm)->_##member--
284 typedef unsigned long mm_counter_t;
285
286 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
287
288 #define get_mm_rss(mm) \
289 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
290 #define update_hiwater_rss(mm) do { \
291 unsigned long _rss = get_mm_rss(mm); \
292 if ((mm)->hiwater_rss < _rss) \
293 (mm)->hiwater_rss = _rss; \
294 } while (0)
295 #define update_hiwater_vm(mm) do { \
296 if ((mm)->hiwater_vm < (mm)->total_vm) \
297 (mm)->hiwater_vm = (mm)->total_vm; \
298 } while (0)
299
300 struct mm_struct {
301 struct vm_area_struct * mmap; /* list of VMAs */
302 struct rb_root mm_rb;
303 struct vm_area_struct * mmap_cache; /* last find_vma result */
304 unsigned long (*get_unmapped_area) (struct file *filp,
305 unsigned long addr, unsigned long len,
306 unsigned long pgoff, unsigned long flags);
307 void (*unmap_area) (struct mm_struct *mm, unsigned long addr);
308 unsigned long mmap_base; /* base of mmap area */
309 unsigned long task_size; /* size of task vm space */
310 unsigned long cached_hole_size; /* if non-zero, the largest hole below free_area_cache */
311 unsigned long free_area_cache; /* first hole of size cached_hole_size or larger */
312 pgd_t * pgd;
313 atomic_t mm_users; /* How many users with user space? */
314 atomic_t mm_count; /* How many references to "struct mm_struct" (users count as 1) */
315 int map_count; /* number of VMAs */
316 struct rw_semaphore mmap_sem;
317 spinlock_t page_table_lock; /* Protects page tables and some counters */
318
319 struct list_head mmlist; /* List of maybe swapped mm's. These are globally strung
320 * together off init_mm.mmlist, and are protected
321 * by mmlist_lock
322 */
323
324 /* Special counters, in some configurations protected by the
325 * page_table_lock, in other configurations by being atomic.
326 */
327 mm_counter_t _file_rss;
328 mm_counter_t _anon_rss;
329
330 unsigned long hiwater_rss; /* High-watermark of RSS usage */
331 unsigned long hiwater_vm; /* High-water virtual memory usage */
332
333 unsigned long total_vm, locked_vm, shared_vm, exec_vm;
334 unsigned long stack_vm, reserved_vm, def_flags, nr_ptes;
335 unsigned long start_code, end_code, start_data, end_data;
336 unsigned long start_brk, brk, start_stack;
337 unsigned long arg_start, arg_end, env_start, env_end;
338
339 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
340
341 unsigned dumpable:2;
342 cpumask_t cpu_vm_mask;
343
344 /* Architecture-specific MM context */
345 mm_context_t context;
346
347 /* Token based thrashing protection. */
348 unsigned long swap_token_time;
349 char recent_pagein;
350
351 /* coredumping support */
352 int core_waiters;
353 struct completion *core_startup_done, core_done;
354
355 /* aio bits */
356 rwlock_t ioctx_list_lock;
357 struct kioctx *ioctx_list;
358 };
359
360 struct sighand_struct {
361 atomic_t count;
362 struct k_sigaction action[_NSIG];
363 spinlock_t siglock;
364 };
365
366 struct pacct_struct {
367 int ac_flag;
368 long ac_exitcode;
369 unsigned long ac_mem;
370 cputime_t ac_utime, ac_stime;
371 unsigned long ac_minflt, ac_majflt;
372 };
373
374 /*
375 * NOTE! "signal_struct" does not have it's own
376 * locking, because a shared signal_struct always
377 * implies a shared sighand_struct, so locking
378 * sighand_struct is always a proper superset of
379 * the locking of signal_struct.
380 */
381 struct signal_struct {
382 atomic_t count;
383 atomic_t live;
384
385 wait_queue_head_t wait_chldexit; /* for wait4() */
386
387 /* current thread group signal load-balancing target: */
388 struct task_struct *curr_target;
389
390 /* shared signal handling: */
391 struct sigpending shared_pending;
392
393 /* thread group exit support */
394 int group_exit_code;
395 /* overloaded:
396 * - notify group_exit_task when ->count is equal to notify_count
397 * - everyone except group_exit_task is stopped during signal delivery
398 * of fatal signals, group_exit_task processes the signal.
399 */
400 struct task_struct *group_exit_task;
401 int notify_count;
402
403 /* thread group stop support, overloads group_exit_code too */
404 int group_stop_count;
405 unsigned int flags; /* see SIGNAL_* flags below */
406
407 /* POSIX.1b Interval Timers */
408 struct list_head posix_timers;
409
410 /* ITIMER_REAL timer for the process */
411 struct hrtimer real_timer;
412 struct task_struct *tsk;
413 ktime_t it_real_incr;
414
415 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
416 cputime_t it_prof_expires, it_virt_expires;
417 cputime_t it_prof_incr, it_virt_incr;
418
419 /* job control IDs */
420 pid_t pgrp;
421 pid_t tty_old_pgrp;
422 pid_t session;
423 /* boolean value for session group leader */
424 int leader;
425
426 struct tty_struct *tty; /* NULL if no tty */
427
428 /*
429 * Cumulative resource counters for dead threads in the group,
430 * and for reaped dead child processes forked by this group.
431 * Live threads maintain their own counters and add to these
432 * in __exit_signal, except for the group leader.
433 */
434 cputime_t utime, stime, cutime, cstime;
435 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
436 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
437
438 /*
439 * Cumulative ns of scheduled CPU time for dead threads in the
440 * group, not including a zombie group leader. (This only differs
441 * from jiffies_to_ns(utime + stime) if sched_clock uses something
442 * other than jiffies.)
443 */
444 unsigned long long sched_time;
445
446 /*
447 * We don't bother to synchronize most readers of this at all,
448 * because there is no reader checking a limit that actually needs
449 * to get both rlim_cur and rlim_max atomically, and either one
450 * alone is a single word that can safely be read normally.
451 * getrlimit/setrlimit use task_lock(current->group_leader) to
452 * protect this instead of the siglock, because they really
453 * have no need to disable irqs.
454 */
455 struct rlimit rlim[RLIM_NLIMITS];
456
457 struct list_head cpu_timers[3];
458
459 /* keep the process-shared keyrings here so that they do the right
460 * thing in threads created with CLONE_THREAD */
461 #ifdef CONFIG_KEYS
462 struct key *session_keyring; /* keyring inherited over fork */
463 struct key *process_keyring; /* keyring private to this process */
464 #endif
465 #ifdef CONFIG_BSD_PROCESS_ACCT
466 struct pacct_struct pacct; /* per-process accounting information */
467 #endif
468 #ifdef CONFIG_TASKSTATS
469 spinlock_t stats_lock;
470 struct taskstats *stats;
471 #endif
472 };
473
474 /* Context switch must be unlocked if interrupts are to be enabled */
475 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
476 # define __ARCH_WANT_UNLOCKED_CTXSW
477 #endif
478
479 /*
480 * Bits in flags field of signal_struct.
481 */
482 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
483 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
484 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
485 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
486
487
488 /*
489 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
490 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
491 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
492 * values are inverted: lower p->prio value means higher priority.
493 *
494 * The MAX_USER_RT_PRIO value allows the actual maximum
495 * RT priority to be separate from the value exported to
496 * user-space. This allows kernel threads to set their
497 * priority to a value higher than any user task. Note:
498 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
499 */
500
501 #define MAX_USER_RT_PRIO 100
502 #define MAX_RT_PRIO MAX_USER_RT_PRIO
503
504 #define MAX_PRIO (MAX_RT_PRIO + 40)
505
506 #define rt_prio(prio) unlikely((prio) < MAX_RT_PRIO)
507 #define rt_task(p) rt_prio((p)->prio)
508 #define batch_task(p) (unlikely((p)->policy == SCHED_BATCH))
509 #define is_rt_policy(p) ((p) != SCHED_NORMAL && (p) != SCHED_BATCH)
510 #define has_rt_policy(p) unlikely(is_rt_policy((p)->policy))
511
512 /*
513 * Some day this will be a full-fledged user tracking system..
514 */
515 struct user_struct {
516 atomic_t __count; /* reference count */
517 atomic_t processes; /* How many processes does this user have? */
518 atomic_t files; /* How many open files does this user have? */
519 atomic_t sigpending; /* How many pending signals does this user have? */
520 #ifdef CONFIG_INOTIFY_USER
521 atomic_t inotify_watches; /* How many inotify watches does this user have? */
522 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
523 #endif
524 /* protected by mq_lock */
525 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
526 unsigned long locked_shm; /* How many pages of mlocked shm ? */
527
528 #ifdef CONFIG_KEYS
529 struct key *uid_keyring; /* UID specific keyring */
530 struct key *session_keyring; /* UID's default session keyring */
531 #endif
532
533 /* Hash table maintenance information */
534 struct list_head uidhash_list;
535 uid_t uid;
536 };
537
538 extern struct user_struct *find_user(uid_t);
539
540 extern struct user_struct root_user;
541 #define INIT_USER (&root_user)
542
543 struct backing_dev_info;
544 struct reclaim_state;
545
546 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
547 struct sched_info {
548 /* cumulative counters */
549 unsigned long cpu_time, /* time spent on the cpu */
550 run_delay, /* time spent waiting on a runqueue */
551 pcnt; /* # of timeslices run on this cpu */
552
553 /* timestamps */
554 unsigned long last_arrival, /* when we last ran on a cpu */
555 last_queued; /* when we were last queued to run */
556 };
557 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
558
559 #ifdef CONFIG_SCHEDSTATS
560 extern struct file_operations proc_schedstat_operations;
561 #endif /* CONFIG_SCHEDSTATS */
562
563 #ifdef CONFIG_TASK_DELAY_ACCT
564 struct task_delay_info {
565 spinlock_t lock;
566 unsigned int flags; /* Private per-task flags */
567
568 /* For each stat XXX, add following, aligned appropriately
569 *
570 * struct timespec XXX_start, XXX_end;
571 * u64 XXX_delay;
572 * u32 XXX_count;
573 *
574 * Atomicity of updates to XXX_delay, XXX_count protected by
575 * single lock above (split into XXX_lock if contention is an issue).
576 */
577
578 /*
579 * XXX_count is incremented on every XXX operation, the delay
580 * associated with the operation is added to XXX_delay.
581 * XXX_delay contains the accumulated delay time in nanoseconds.
582 */
583 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
584 u64 blkio_delay; /* wait for sync block io completion */
585 u64 swapin_delay; /* wait for swapin block io completion */
586 u32 blkio_count; /* total count of the number of sync block */
587 /* io operations performed */
588 u32 swapin_count; /* total count of the number of swapin block */
589 /* io operations performed */
590 };
591 #endif /* CONFIG_TASK_DELAY_ACCT */
592
593 static inline int sched_info_on(void)
594 {
595 #ifdef CONFIG_SCHEDSTATS
596 return 1;
597 #elif defined(CONFIG_TASK_DELAY_ACCT)
598 extern int delayacct_on;
599 return delayacct_on;
600 #else
601 return 0;
602 #endif
603 }
604
605 enum idle_type
606 {
607 SCHED_IDLE,
608 NOT_IDLE,
609 NEWLY_IDLE,
610 MAX_IDLE_TYPES
611 };
612
613 /*
614 * sched-domains (multiprocessor balancing) declarations:
615 */
616 #define SCHED_LOAD_SCALE 128UL /* increase resolution of load */
617
618 #ifdef CONFIG_SMP
619 #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */
620 #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */
621 #define SD_BALANCE_EXEC 4 /* Balance on exec */
622 #define SD_BALANCE_FORK 8 /* Balance on fork, clone */
623 #define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */
624 #define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */
625 #define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */
626 #define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */
627 #define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */
628
629 #define BALANCE_FOR_POWER ((sched_mc_power_savings || sched_smt_power_savings) \
630 ? SD_POWERSAVINGS_BALANCE : 0)
631
632
633 struct sched_group {
634 struct sched_group *next; /* Must be a circular list */
635 cpumask_t cpumask;
636
637 /*
638 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
639 * single CPU. This is read only (except for setup, hotplug CPU).
640 */
641 unsigned long cpu_power;
642 };
643
644 struct sched_domain {
645 /* These fields must be setup */
646 struct sched_domain *parent; /* top domain must be null terminated */
647 struct sched_domain *child; /* bottom domain must be null terminated */
648 struct sched_group *groups; /* the balancing groups of the domain */
649 cpumask_t span; /* span of all CPUs in this domain */
650 unsigned long min_interval; /* Minimum balance interval ms */
651 unsigned long max_interval; /* Maximum balance interval ms */
652 unsigned int busy_factor; /* less balancing by factor if busy */
653 unsigned int imbalance_pct; /* No balance until over watermark */
654 unsigned long long cache_hot_time; /* Task considered cache hot (ns) */
655 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
656 unsigned int per_cpu_gain; /* CPU % gained by adding domain cpus */
657 unsigned int busy_idx;
658 unsigned int idle_idx;
659 unsigned int newidle_idx;
660 unsigned int wake_idx;
661 unsigned int forkexec_idx;
662 int flags; /* See SD_* */
663
664 /* Runtime fields. */
665 unsigned long last_balance; /* init to jiffies. units in jiffies */
666 unsigned int balance_interval; /* initialise to 1. units in ms. */
667 unsigned int nr_balance_failed; /* initialise to 0 */
668
669 #ifdef CONFIG_SCHEDSTATS
670 /* load_balance() stats */
671 unsigned long lb_cnt[MAX_IDLE_TYPES];
672 unsigned long lb_failed[MAX_IDLE_TYPES];
673 unsigned long lb_balanced[MAX_IDLE_TYPES];
674 unsigned long lb_imbalance[MAX_IDLE_TYPES];
675 unsigned long lb_gained[MAX_IDLE_TYPES];
676 unsigned long lb_hot_gained[MAX_IDLE_TYPES];
677 unsigned long lb_nobusyg[MAX_IDLE_TYPES];
678 unsigned long lb_nobusyq[MAX_IDLE_TYPES];
679
680 /* Active load balancing */
681 unsigned long alb_cnt;
682 unsigned long alb_failed;
683 unsigned long alb_pushed;
684
685 /* SD_BALANCE_EXEC stats */
686 unsigned long sbe_cnt;
687 unsigned long sbe_balanced;
688 unsigned long sbe_pushed;
689
690 /* SD_BALANCE_FORK stats */
691 unsigned long sbf_cnt;
692 unsigned long sbf_balanced;
693 unsigned long sbf_pushed;
694
695 /* try_to_wake_up() stats */
696 unsigned long ttwu_wake_remote;
697 unsigned long ttwu_move_affine;
698 unsigned long ttwu_move_balance;
699 #endif
700 };
701
702 extern int partition_sched_domains(cpumask_t *partition1,
703 cpumask_t *partition2);
704
705 /*
706 * Maximum cache size the migration-costs auto-tuning code will
707 * search from:
708 */
709 extern unsigned int max_cache_size;
710
711 #endif /* CONFIG_SMP */
712
713
714 struct io_context; /* See blkdev.h */
715 struct cpuset;
716
717 #define NGROUPS_SMALL 32
718 #define NGROUPS_PER_BLOCK ((int)(PAGE_SIZE / sizeof(gid_t)))
719 struct group_info {
720 int ngroups;
721 atomic_t usage;
722 gid_t small_block[NGROUPS_SMALL];
723 int nblocks;
724 gid_t *blocks[0];
725 };
726
727 /*
728 * get_group_info() must be called with the owning task locked (via task_lock())
729 * when task != current. The reason being that the vast majority of callers are
730 * looking at current->group_info, which can not be changed except by the
731 * current task. Changing current->group_info requires the task lock, too.
732 */
733 #define get_group_info(group_info) do { \
734 atomic_inc(&(group_info)->usage); \
735 } while (0)
736
737 #define put_group_info(group_info) do { \
738 if (atomic_dec_and_test(&(group_info)->usage)) \
739 groups_free(group_info); \
740 } while (0)
741
742 extern struct group_info *groups_alloc(int gidsetsize);
743 extern void groups_free(struct group_info *group_info);
744 extern int set_current_groups(struct group_info *group_info);
745 extern int groups_search(struct group_info *group_info, gid_t grp);
746 /* access the groups "array" with this macro */
747 #define GROUP_AT(gi, i) \
748 ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK])
749
750 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
751 extern void prefetch_stack(struct task_struct *t);
752 #else
753 static inline void prefetch_stack(struct task_struct *t) { }
754 #endif
755
756 struct audit_context; /* See audit.c */
757 struct mempolicy;
758 struct pipe_inode_info;
759 struct uts_namespace;
760
761 enum sleep_type {
762 SLEEP_NORMAL,
763 SLEEP_NONINTERACTIVE,
764 SLEEP_INTERACTIVE,
765 SLEEP_INTERRUPTED,
766 };
767
768 struct prio_array;
769
770 struct task_struct {
771 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
772 struct thread_info *thread_info;
773 atomic_t usage;
774 unsigned long flags; /* per process flags, defined below */
775 unsigned long ptrace;
776
777 int lock_depth; /* BKL lock depth */
778
779 #ifdef CONFIG_SMP
780 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
781 int oncpu;
782 #endif
783 #endif
784 int load_weight; /* for niceness load balancing purposes */
785 int prio, static_prio, normal_prio;
786 struct list_head run_list;
787 struct prio_array *array;
788
789 unsigned short ioprio;
790 #ifdef CONFIG_BLK_DEV_IO_TRACE
791 unsigned int btrace_seq;
792 #endif
793 unsigned long sleep_avg;
794 unsigned long long timestamp, last_ran;
795 unsigned long long sched_time; /* sched_clock time spent running */
796 enum sleep_type sleep_type;
797
798 unsigned long policy;
799 cpumask_t cpus_allowed;
800 unsigned int time_slice, first_time_slice;
801
802 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
803 struct sched_info sched_info;
804 #endif
805
806 struct list_head tasks;
807 /*
808 * ptrace_list/ptrace_children forms the list of my children
809 * that were stolen by a ptracer.
810 */
811 struct list_head ptrace_children;
812 struct list_head ptrace_list;
813
814 struct mm_struct *mm, *active_mm;
815
816 /* task state */
817 struct linux_binfmt *binfmt;
818 long exit_state;
819 int exit_code, exit_signal;
820 int pdeath_signal; /* The signal sent when the parent dies */
821 /* ??? */
822 unsigned long personality;
823 unsigned did_exec:1;
824 pid_t pid;
825 pid_t tgid;
826
827 #ifdef CONFIG_CC_STACKPROTECTOR
828 /* Canary value for the -fstack-protector gcc feature */
829 unsigned long stack_canary;
830 #endif
831 /*
832 * pointers to (original) parent process, youngest child, younger sibling,
833 * older sibling, respectively. (p->father can be replaced with
834 * p->parent->pid)
835 */
836 struct task_struct *real_parent; /* real parent process (when being debugged) */
837 struct task_struct *parent; /* parent process */
838 /*
839 * children/sibling forms the list of my children plus the
840 * tasks I'm ptracing.
841 */
842 struct list_head children; /* list of my children */
843 struct list_head sibling; /* linkage in my parent's children list */
844 struct task_struct *group_leader; /* threadgroup leader */
845
846 /* PID/PID hash table linkage. */
847 struct pid_link pids[PIDTYPE_MAX];
848 struct list_head thread_group;
849
850 struct completion *vfork_done; /* for vfork() */
851 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
852 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
853
854 unsigned long rt_priority;
855 cputime_t utime, stime;
856 unsigned long nvcsw, nivcsw; /* context switch counts */
857 struct timespec start_time;
858 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
859 unsigned long min_flt, maj_flt;
860
861 cputime_t it_prof_expires, it_virt_expires;
862 unsigned long long it_sched_expires;
863 struct list_head cpu_timers[3];
864
865 /* process credentials */
866 uid_t uid,euid,suid,fsuid;
867 gid_t gid,egid,sgid,fsgid;
868 struct group_info *group_info;
869 kernel_cap_t cap_effective, cap_inheritable, cap_permitted;
870 unsigned keep_capabilities:1;
871 struct user_struct *user;
872 #ifdef CONFIG_KEYS
873 struct key *request_key_auth; /* assumed request_key authority */
874 struct key *thread_keyring; /* keyring private to this thread */
875 unsigned char jit_keyring; /* default keyring to attach requested keys to */
876 #endif
877 /*
878 * fpu_counter contains the number of consecutive context switches
879 * that the FPU is used. If this is over a threshold, the lazy fpu
880 * saving becomes unlazy to save the trap. This is an unsigned char
881 * so that after 256 times the counter wraps and the behavior turns
882 * lazy again; this to deal with bursty apps that only use FPU for
883 * a short time
884 */
885 unsigned char fpu_counter;
886 int oomkilladj; /* OOM kill score adjustment (bit shift). */
887 char comm[TASK_COMM_LEN]; /* executable name excluding path
888 - access with [gs]et_task_comm (which lock
889 it with task_lock())
890 - initialized normally by flush_old_exec */
891 /* file system info */
892 int link_count, total_link_count;
893 #ifdef CONFIG_SYSVIPC
894 /* ipc stuff */
895 struct sysv_sem sysvsem;
896 #endif
897 /* CPU-specific state of this task */
898 struct thread_struct thread;
899 /* filesystem information */
900 struct fs_struct *fs;
901 /* open file information */
902 struct files_struct *files;
903 /* namespaces */
904 struct nsproxy *nsproxy;
905 /* signal handlers */
906 struct signal_struct *signal;
907 struct sighand_struct *sighand;
908
909 sigset_t blocked, real_blocked;
910 sigset_t saved_sigmask; /* To be restored with TIF_RESTORE_SIGMASK */
911 struct sigpending pending;
912
913 unsigned long sas_ss_sp;
914 size_t sas_ss_size;
915 int (*notifier)(void *priv);
916 void *notifier_data;
917 sigset_t *notifier_mask;
918
919 void *security;
920 struct audit_context *audit_context;
921 seccomp_t seccomp;
922
923 /* Thread group tracking */
924 u32 parent_exec_id;
925 u32 self_exec_id;
926 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
927 spinlock_t alloc_lock;
928
929 /* Protection of the PI data structures: */
930 spinlock_t pi_lock;
931
932 #ifdef CONFIG_RT_MUTEXES
933 /* PI waiters blocked on a rt_mutex held by this task */
934 struct plist_head pi_waiters;
935 /* Deadlock detection and priority inheritance handling */
936 struct rt_mutex_waiter *pi_blocked_on;
937 #endif
938
939 #ifdef CONFIG_DEBUG_MUTEXES
940 /* mutex deadlock detection */
941 struct mutex_waiter *blocked_on;
942 #endif
943 #ifdef CONFIG_TRACE_IRQFLAGS
944 unsigned int irq_events;
945 int hardirqs_enabled;
946 unsigned long hardirq_enable_ip;
947 unsigned int hardirq_enable_event;
948 unsigned long hardirq_disable_ip;
949 unsigned int hardirq_disable_event;
950 int softirqs_enabled;
951 unsigned long softirq_disable_ip;
952 unsigned int softirq_disable_event;
953 unsigned long softirq_enable_ip;
954 unsigned int softirq_enable_event;
955 int hardirq_context;
956 int softirq_context;
957 #endif
958 #ifdef CONFIG_LOCKDEP
959 # define MAX_LOCK_DEPTH 30UL
960 u64 curr_chain_key;
961 int lockdep_depth;
962 struct held_lock held_locks[MAX_LOCK_DEPTH];
963 unsigned int lockdep_recursion;
964 #endif
965
966 /* journalling filesystem info */
967 void *journal_info;
968
969 /* VM state */
970 struct reclaim_state *reclaim_state;
971
972 struct backing_dev_info *backing_dev_info;
973
974 struct io_context *io_context;
975
976 unsigned long ptrace_message;
977 siginfo_t *last_siginfo; /* For ptrace use. */
978 /*
979 * current io wait handle: wait queue entry to use for io waits
980 * If this thread is processing aio, this points at the waitqueue
981 * inside the currently handled kiocb. It may be NULL (i.e. default
982 * to a stack based synchronous wait) if its doing sync IO.
983 */
984 wait_queue_t *io_wait;
985 /* i/o counters(bytes read/written, #syscalls */
986 u64 rchar, wchar, syscr, syscw;
987 #if defined(CONFIG_TASK_XACCT)
988 u64 acct_rss_mem1; /* accumulated rss usage */
989 u64 acct_vm_mem1; /* accumulated virtual memory usage */
990 cputime_t acct_stimexpd;/* stime since last update */
991 #endif
992 #ifdef CONFIG_NUMA
993 struct mempolicy *mempolicy;
994 short il_next;
995 #endif
996 #ifdef CONFIG_CPUSETS
997 struct cpuset *cpuset;
998 nodemask_t mems_allowed;
999 int cpuset_mems_generation;
1000 int cpuset_mem_spread_rotor;
1001 #endif
1002 struct robust_list_head __user *robust_list;
1003 #ifdef CONFIG_COMPAT
1004 struct compat_robust_list_head __user *compat_robust_list;
1005 #endif
1006 struct list_head pi_state_list;
1007 struct futex_pi_state *pi_state_cache;
1008
1009 atomic_t fs_excl; /* holding fs exclusive resources */
1010 struct rcu_head rcu;
1011
1012 /*
1013 * cache last used pipe for splice
1014 */
1015 struct pipe_inode_info *splice_pipe;
1016 #ifdef CONFIG_TASK_DELAY_ACCT
1017 struct task_delay_info *delays;
1018 #endif
1019 };
1020
1021 static inline pid_t process_group(struct task_struct *tsk)
1022 {
1023 return tsk->signal->pgrp;
1024 }
1025
1026 static inline struct pid *task_pid(struct task_struct *task)
1027 {
1028 return task->pids[PIDTYPE_PID].pid;
1029 }
1030
1031 static inline struct pid *task_tgid(struct task_struct *task)
1032 {
1033 return task->group_leader->pids[PIDTYPE_PID].pid;
1034 }
1035
1036 static inline struct pid *task_pgrp(struct task_struct *task)
1037 {
1038 return task->group_leader->pids[PIDTYPE_PGID].pid;
1039 }
1040
1041 static inline struct pid *task_session(struct task_struct *task)
1042 {
1043 return task->group_leader->pids[PIDTYPE_SID].pid;
1044 }
1045
1046 /**
1047 * pid_alive - check that a task structure is not stale
1048 * @p: Task structure to be checked.
1049 *
1050 * Test if a process is not yet dead (at most zombie state)
1051 * If pid_alive fails, then pointers within the task structure
1052 * can be stale and must not be dereferenced.
1053 */
1054 static inline int pid_alive(struct task_struct *p)
1055 {
1056 return p->pids[PIDTYPE_PID].pid != NULL;
1057 }
1058
1059 /**
1060 * is_init - check if a task structure is the first user space
1061 * task the kernel created.
1062 * @p: Task structure to be checked.
1063 */
1064 static inline int is_init(struct task_struct *tsk)
1065 {
1066 return tsk->pid == 1;
1067 }
1068
1069 extern struct pid *cad_pid;
1070
1071 extern void free_task(struct task_struct *tsk);
1072 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1073
1074 extern void __put_task_struct(struct task_struct *t);
1075
1076 static inline void put_task_struct(struct task_struct *t)
1077 {
1078 if (atomic_dec_and_test(&t->usage))
1079 __put_task_struct(t);
1080 }
1081
1082 /*
1083 * Per process flags
1084 */
1085 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1086 /* Not implemented yet, only for 486*/
1087 #define PF_STARTING 0x00000002 /* being created */
1088 #define PF_EXITING 0x00000004 /* getting shut down */
1089 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1090 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1091 #define PF_DUMPCORE 0x00000200 /* dumped core */
1092 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1093 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1094 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1095 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1096 #define PF_FREEZE 0x00004000 /* this task is being frozen for suspend now */
1097 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1098 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1099 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1100 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1101 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */
1102 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1103 #define PF_BORROWED_MM 0x00200000 /* I am a kthread doing use_mm */
1104 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1105 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1106 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1107 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1108 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1109 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1110
1111 /*
1112 * Only the _current_ task can read/write to tsk->flags, but other
1113 * tasks can access tsk->flags in readonly mode for example
1114 * with tsk_used_math (like during threaded core dumping).
1115 * There is however an exception to this rule during ptrace
1116 * or during fork: the ptracer task is allowed to write to the
1117 * child->flags of its traced child (same goes for fork, the parent
1118 * can write to the child->flags), because we're guaranteed the
1119 * child is not running and in turn not changing child->flags
1120 * at the same time the parent does it.
1121 */
1122 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1123 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1124 #define clear_used_math() clear_stopped_child_used_math(current)
1125 #define set_used_math() set_stopped_child_used_math(current)
1126 #define conditional_stopped_child_used_math(condition, child) \
1127 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1128 #define conditional_used_math(condition) \
1129 conditional_stopped_child_used_math(condition, current)
1130 #define copy_to_stopped_child_used_math(child) \
1131 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1132 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1133 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1134 #define used_math() tsk_used_math(current)
1135
1136 #ifdef CONFIG_SMP
1137 extern int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask);
1138 #else
1139 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1140 {
1141 if (!cpu_isset(0, new_mask))
1142 return -EINVAL;
1143 return 0;
1144 }
1145 #endif
1146
1147 extern unsigned long long sched_clock(void);
1148 extern unsigned long long
1149 current_sched_time(const struct task_struct *current_task);
1150
1151 /* sched_exec is called by processes performing an exec */
1152 #ifdef CONFIG_SMP
1153 extern void sched_exec(void);
1154 #else
1155 #define sched_exec() {}
1156 #endif
1157
1158 #ifdef CONFIG_HOTPLUG_CPU
1159 extern void idle_task_exit(void);
1160 #else
1161 static inline void idle_task_exit(void) {}
1162 #endif
1163
1164 extern void sched_idle_next(void);
1165
1166 #ifdef CONFIG_RT_MUTEXES
1167 extern int rt_mutex_getprio(struct task_struct *p);
1168 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1169 extern void rt_mutex_adjust_pi(struct task_struct *p);
1170 #else
1171 static inline int rt_mutex_getprio(struct task_struct *p)
1172 {
1173 return p->normal_prio;
1174 }
1175 # define rt_mutex_adjust_pi(p) do { } while (0)
1176 #endif
1177
1178 extern void set_user_nice(struct task_struct *p, long nice);
1179 extern int task_prio(const struct task_struct *p);
1180 extern int task_nice(const struct task_struct *p);
1181 extern int can_nice(const struct task_struct *p, const int nice);
1182 extern int task_curr(const struct task_struct *p);
1183 extern int idle_cpu(int cpu);
1184 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1185 extern struct task_struct *idle_task(int cpu);
1186 extern struct task_struct *curr_task(int cpu);
1187 extern void set_curr_task(int cpu, struct task_struct *p);
1188
1189 void yield(void);
1190
1191 /*
1192 * The default (Linux) execution domain.
1193 */
1194 extern struct exec_domain default_exec_domain;
1195
1196 union thread_union {
1197 struct thread_info thread_info;
1198 unsigned long stack[THREAD_SIZE/sizeof(long)];
1199 };
1200
1201 #ifndef __HAVE_ARCH_KSTACK_END
1202 static inline int kstack_end(void *addr)
1203 {
1204 /* Reliable end of stack detection:
1205 * Some APM bios versions misalign the stack
1206 */
1207 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1208 }
1209 #endif
1210
1211 extern union thread_union init_thread_union;
1212 extern struct task_struct init_task;
1213
1214 extern struct mm_struct init_mm;
1215
1216 #define find_task_by_pid(nr) find_task_by_pid_type(PIDTYPE_PID, nr)
1217 extern struct task_struct *find_task_by_pid_type(int type, int pid);
1218 extern void set_special_pids(pid_t session, pid_t pgrp);
1219 extern void __set_special_pids(pid_t session, pid_t pgrp);
1220
1221 /* per-UID process charging. */
1222 extern struct user_struct * alloc_uid(uid_t);
1223 static inline struct user_struct *get_uid(struct user_struct *u)
1224 {
1225 atomic_inc(&u->__count);
1226 return u;
1227 }
1228 extern void free_uid(struct user_struct *);
1229 extern void switch_uid(struct user_struct *);
1230
1231 #include <asm/current.h>
1232
1233 extern void do_timer(unsigned long ticks);
1234
1235 extern int FASTCALL(wake_up_state(struct task_struct * tsk, unsigned int state));
1236 extern int FASTCALL(wake_up_process(struct task_struct * tsk));
1237 extern void FASTCALL(wake_up_new_task(struct task_struct * tsk,
1238 unsigned long clone_flags));
1239 #ifdef CONFIG_SMP
1240 extern void kick_process(struct task_struct *tsk);
1241 #else
1242 static inline void kick_process(struct task_struct *tsk) { }
1243 #endif
1244 extern void FASTCALL(sched_fork(struct task_struct * p, int clone_flags));
1245 extern void FASTCALL(sched_exit(struct task_struct * p));
1246
1247 extern int in_group_p(gid_t);
1248 extern int in_egroup_p(gid_t);
1249
1250 extern void proc_caches_init(void);
1251 extern void flush_signals(struct task_struct *);
1252 extern void flush_signal_handlers(struct task_struct *, int force_default);
1253 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1254
1255 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1256 {
1257 unsigned long flags;
1258 int ret;
1259
1260 spin_lock_irqsave(&tsk->sighand->siglock, flags);
1261 ret = dequeue_signal(tsk, mask, info);
1262 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1263
1264 return ret;
1265 }
1266
1267 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1268 sigset_t *mask);
1269 extern void unblock_all_signals(void);
1270 extern void release_task(struct task_struct * p);
1271 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1272 extern int send_group_sig_info(int, struct siginfo *, struct task_struct *);
1273 extern int force_sigsegv(int, struct task_struct *);
1274 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1275 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1276 extern int kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1277 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
1278 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
1279 extern int kill_pgrp(struct pid *pid, int sig, int priv);
1280 extern int kill_pid(struct pid *pid, int sig, int priv);
1281 extern int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp);
1282 extern int kill_pg_info(int, struct siginfo *, pid_t);
1283 extern int kill_proc_info(int, struct siginfo *, pid_t);
1284 extern void do_notify_parent(struct task_struct *, int);
1285 extern void force_sig(int, struct task_struct *);
1286 extern void force_sig_specific(int, struct task_struct *);
1287 extern int send_sig(int, struct task_struct *, int);
1288 extern void zap_other_threads(struct task_struct *p);
1289 extern int kill_pg(pid_t, int, int);
1290 extern int kill_proc(pid_t, int, int);
1291 extern struct sigqueue *sigqueue_alloc(void);
1292 extern void sigqueue_free(struct sigqueue *);
1293 extern int send_sigqueue(int, struct sigqueue *, struct task_struct *);
1294 extern int send_group_sigqueue(int, struct sigqueue *, struct task_struct *);
1295 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1296 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1297
1298 static inline int kill_cad_pid(int sig, int priv)
1299 {
1300 return kill_pid(cad_pid, sig, priv);
1301 }
1302
1303 /* These can be the second arg to send_sig_info/send_group_sig_info. */
1304 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
1305 #define SEND_SIG_PRIV ((struct siginfo *) 1)
1306 #define SEND_SIG_FORCED ((struct siginfo *) 2)
1307
1308 static inline int is_si_special(const struct siginfo *info)
1309 {
1310 return info <= SEND_SIG_FORCED;
1311 }
1312
1313 /* True if we are on the alternate signal stack. */
1314
1315 static inline int on_sig_stack(unsigned long sp)
1316 {
1317 return (sp - current->sas_ss_sp < current->sas_ss_size);
1318 }
1319
1320 static inline int sas_ss_flags(unsigned long sp)
1321 {
1322 return (current->sas_ss_size == 0 ? SS_DISABLE
1323 : on_sig_stack(sp) ? SS_ONSTACK : 0);
1324 }
1325
1326 /*
1327 * Routines for handling mm_structs
1328 */
1329 extern struct mm_struct * mm_alloc(void);
1330
1331 /* mmdrop drops the mm and the page tables */
1332 extern void FASTCALL(__mmdrop(struct mm_struct *));
1333 static inline void mmdrop(struct mm_struct * mm)
1334 {
1335 if (atomic_dec_and_test(&mm->mm_count))
1336 __mmdrop(mm);
1337 }
1338
1339 /* mmput gets rid of the mappings and all user-space */
1340 extern void mmput(struct mm_struct *);
1341 /* Grab a reference to a task's mm, if it is not already going away */
1342 extern struct mm_struct *get_task_mm(struct task_struct *task);
1343 /* Remove the current tasks stale references to the old mm_struct */
1344 extern void mm_release(struct task_struct *, struct mm_struct *);
1345
1346 extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
1347 extern void flush_thread(void);
1348 extern void exit_thread(void);
1349
1350 extern void exit_files(struct task_struct *);
1351 extern void __cleanup_signal(struct signal_struct *);
1352 extern void __cleanup_sighand(struct sighand_struct *);
1353 extern void exit_itimers(struct signal_struct *);
1354
1355 extern NORET_TYPE void do_group_exit(int);
1356
1357 extern void daemonize(const char *, ...);
1358 extern int allow_signal(int);
1359 extern int disallow_signal(int);
1360 extern struct task_struct *child_reaper;
1361
1362 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
1363 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
1364 struct task_struct *fork_idle(int);
1365
1366 extern void set_task_comm(struct task_struct *tsk, char *from);
1367 extern void get_task_comm(char *to, struct task_struct *tsk);
1368
1369 #ifdef CONFIG_SMP
1370 extern void wait_task_inactive(struct task_struct * p);
1371 #else
1372 #define wait_task_inactive(p) do { } while (0)
1373 #endif
1374
1375 #define remove_parent(p) list_del_init(&(p)->sibling)
1376 #define add_parent(p) list_add_tail(&(p)->sibling,&(p)->parent->children)
1377
1378 #define next_task(p) list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks)
1379
1380 #define for_each_process(p) \
1381 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
1382
1383 /*
1384 * Careful: do_each_thread/while_each_thread is a double loop so
1385 * 'break' will not work as expected - use goto instead.
1386 */
1387 #define do_each_thread(g, t) \
1388 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
1389
1390 #define while_each_thread(g, t) \
1391 while ((t = next_thread(t)) != g)
1392
1393 /* de_thread depends on thread_group_leader not being a pid based check */
1394 #define thread_group_leader(p) (p == p->group_leader)
1395
1396 /* Do to the insanities of de_thread it is possible for a process
1397 * to have the pid of the thread group leader without actually being
1398 * the thread group leader. For iteration through the pids in proc
1399 * all we care about is that we have a task with the appropriate
1400 * pid, we don't actually care if we have the right task.
1401 */
1402 static inline int has_group_leader_pid(struct task_struct *p)
1403 {
1404 return p->pid == p->tgid;
1405 }
1406
1407 static inline struct task_struct *next_thread(const struct task_struct *p)
1408 {
1409 return list_entry(rcu_dereference(p->thread_group.next),
1410 struct task_struct, thread_group);
1411 }
1412
1413 static inline int thread_group_empty(struct task_struct *p)
1414 {
1415 return list_empty(&p->thread_group);
1416 }
1417
1418 #define delay_group_leader(p) \
1419 (thread_group_leader(p) && !thread_group_empty(p))
1420
1421 /*
1422 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
1423 * subscriptions and synchronises with wait4(). Also used in procfs. Also
1424 * pins the final release of task.io_context. Also protects ->cpuset.
1425 *
1426 * Nests both inside and outside of read_lock(&tasklist_lock).
1427 * It must not be nested with write_lock_irq(&tasklist_lock),
1428 * neither inside nor outside.
1429 */
1430 static inline void task_lock(struct task_struct *p)
1431 {
1432 spin_lock(&p->alloc_lock);
1433 }
1434
1435 static inline void task_unlock(struct task_struct *p)
1436 {
1437 spin_unlock(&p->alloc_lock);
1438 }
1439
1440 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
1441 unsigned long *flags);
1442
1443 static inline void unlock_task_sighand(struct task_struct *tsk,
1444 unsigned long *flags)
1445 {
1446 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
1447 }
1448
1449 #ifndef __HAVE_THREAD_FUNCTIONS
1450
1451 #define task_thread_info(task) (task)->thread_info
1452 #define task_stack_page(task) ((void*)((task)->thread_info))
1453
1454 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
1455 {
1456 *task_thread_info(p) = *task_thread_info(org);
1457 task_thread_info(p)->task = p;
1458 }
1459
1460 static inline unsigned long *end_of_stack(struct task_struct *p)
1461 {
1462 return (unsigned long *)(p->thread_info + 1);
1463 }
1464
1465 #endif
1466
1467 /* set thread flags in other task's structures
1468 * - see asm/thread_info.h for TIF_xxxx flags available
1469 */
1470 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1471 {
1472 set_ti_thread_flag(task_thread_info(tsk), flag);
1473 }
1474
1475 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1476 {
1477 clear_ti_thread_flag(task_thread_info(tsk), flag);
1478 }
1479
1480 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1481 {
1482 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1483 }
1484
1485 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1486 {
1487 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1488 }
1489
1490 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1491 {
1492 return test_ti_thread_flag(task_thread_info(tsk), flag);
1493 }
1494
1495 static inline void set_tsk_need_resched(struct task_struct *tsk)
1496 {
1497 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1498 }
1499
1500 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1501 {
1502 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1503 }
1504
1505 static inline int signal_pending(struct task_struct *p)
1506 {
1507 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
1508 }
1509
1510 static inline int need_resched(void)
1511 {
1512 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
1513 }
1514
1515 /*
1516 * cond_resched() and cond_resched_lock(): latency reduction via
1517 * explicit rescheduling in places that are safe. The return
1518 * value indicates whether a reschedule was done in fact.
1519 * cond_resched_lock() will drop the spinlock before scheduling,
1520 * cond_resched_softirq() will enable bhs before scheduling.
1521 */
1522 extern int cond_resched(void);
1523 extern int cond_resched_lock(spinlock_t * lock);
1524 extern int cond_resched_softirq(void);
1525
1526 /*
1527 * Does a critical section need to be broken due to another
1528 * task waiting?:
1529 */
1530 #if defined(CONFIG_PREEMPT) && defined(CONFIG_SMP)
1531 # define need_lockbreak(lock) ((lock)->break_lock)
1532 #else
1533 # define need_lockbreak(lock) 0
1534 #endif
1535
1536 /*
1537 * Does a critical section need to be broken due to another
1538 * task waiting or preemption being signalled:
1539 */
1540 static inline int lock_need_resched(spinlock_t *lock)
1541 {
1542 if (need_lockbreak(lock) || need_resched())
1543 return 1;
1544 return 0;
1545 }
1546
1547 /* Reevaluate whether the task has signals pending delivery.
1548 This is required every time the blocked sigset_t changes.
1549 callers must hold sighand->siglock. */
1550
1551 extern FASTCALL(void recalc_sigpending_tsk(struct task_struct *t));
1552 extern void recalc_sigpending(void);
1553
1554 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
1555
1556 /*
1557 * Wrappers for p->thread_info->cpu access. No-op on UP.
1558 */
1559 #ifdef CONFIG_SMP
1560
1561 static inline unsigned int task_cpu(const struct task_struct *p)
1562 {
1563 return task_thread_info(p)->cpu;
1564 }
1565
1566 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1567 {
1568 task_thread_info(p)->cpu = cpu;
1569 }
1570
1571 #else
1572
1573 static inline unsigned int task_cpu(const struct task_struct *p)
1574 {
1575 return 0;
1576 }
1577
1578 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1579 {
1580 }
1581
1582 #endif /* CONFIG_SMP */
1583
1584 #ifdef HAVE_ARCH_PICK_MMAP_LAYOUT
1585 extern void arch_pick_mmap_layout(struct mm_struct *mm);
1586 #else
1587 static inline void arch_pick_mmap_layout(struct mm_struct *mm)
1588 {
1589 mm->mmap_base = TASK_UNMAPPED_BASE;
1590 mm->get_unmapped_area = arch_get_unmapped_area;
1591 mm->unmap_area = arch_unmap_area;
1592 }
1593 #endif
1594
1595 extern long sched_setaffinity(pid_t pid, cpumask_t new_mask);
1596 extern long sched_getaffinity(pid_t pid, cpumask_t *mask);
1597
1598 #include <linux/sysdev.h>
1599 extern int sched_mc_power_savings, sched_smt_power_savings;
1600 extern struct sysdev_attribute attr_sched_mc_power_savings, attr_sched_smt_power_savings;
1601 extern int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls);
1602
1603 extern void normalize_rt_tasks(void);
1604
1605 #ifdef CONFIG_PM
1606 /*
1607 * Check if a process has been frozen
1608 */
1609 static inline int frozen(struct task_struct *p)
1610 {
1611 return p->flags & PF_FROZEN;
1612 }
1613
1614 /*
1615 * Check if there is a request to freeze a process
1616 */
1617 static inline int freezing(struct task_struct *p)
1618 {
1619 return p->flags & PF_FREEZE;
1620 }
1621
1622 /*
1623 * Request that a process be frozen
1624 * FIXME: SMP problem. We may not modify other process' flags!
1625 */
1626 static inline void freeze(struct task_struct *p)
1627 {
1628 p->flags |= PF_FREEZE;
1629 }
1630
1631 /*
1632 * Sometimes we may need to cancel the previous 'freeze' request
1633 */
1634 static inline void do_not_freeze(struct task_struct *p)
1635 {
1636 p->flags &= ~PF_FREEZE;
1637 }
1638
1639 /*
1640 * Wake up a frozen process
1641 */
1642 static inline int thaw_process(struct task_struct *p)
1643 {
1644 if (frozen(p)) {
1645 p->flags &= ~PF_FROZEN;
1646 wake_up_process(p);
1647 return 1;
1648 }
1649 return 0;
1650 }
1651
1652 /*
1653 * freezing is complete, mark process as frozen
1654 */
1655 static inline void frozen_process(struct task_struct *p)
1656 {
1657 p->flags = (p->flags & ~PF_FREEZE) | PF_FROZEN;
1658 }
1659
1660 extern void refrigerator(void);
1661 extern int freeze_processes(void);
1662 extern void thaw_processes(void);
1663
1664 static inline int try_to_freeze(void)
1665 {
1666 if (freezing(current)) {
1667 refrigerator();
1668 return 1;
1669 } else
1670 return 0;
1671 }
1672 #else
1673 static inline int frozen(struct task_struct *p) { return 0; }
1674 static inline int freezing(struct task_struct *p) { return 0; }
1675 static inline void freeze(struct task_struct *p) { BUG(); }
1676 static inline int thaw_process(struct task_struct *p) { return 1; }
1677 static inline void frozen_process(struct task_struct *p) { BUG(); }
1678
1679 static inline void refrigerator(void) {}
1680 static inline int freeze_processes(void) { BUG(); return 0; }
1681 static inline void thaw_processes(void) {}
1682
1683 static inline int try_to_freeze(void) { return 0; }
1684
1685 #endif /* CONFIG_PM */
1686 #endif /* __KERNEL__ */
1687
1688 #endif
This page took 0.066124 seconds and 6 git commands to generate.