Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ieee1394...
[deliverable/linux.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
29 #define CLONE_NEWNET 0x40000000 /* New network namespace */
30 #define CLONE_IO 0x80000000 /* Clone io context */
31
32 /*
33 * Scheduling policies
34 */
35 #define SCHED_NORMAL 0
36 #define SCHED_FIFO 1
37 #define SCHED_RR 2
38 #define SCHED_BATCH 3
39 /* SCHED_ISO: reserved but not implemented yet */
40 #define SCHED_IDLE 5
41
42 #ifdef __KERNEL__
43
44 struct sched_param {
45 int sched_priority;
46 };
47
48 #include <asm/param.h> /* for HZ */
49
50 #include <linux/capability.h>
51 #include <linux/threads.h>
52 #include <linux/kernel.h>
53 #include <linux/types.h>
54 #include <linux/timex.h>
55 #include <linux/jiffies.h>
56 #include <linux/rbtree.h>
57 #include <linux/thread_info.h>
58 #include <linux/cpumask.h>
59 #include <linux/errno.h>
60 #include <linux/nodemask.h>
61 #include <linux/mm_types.h>
62
63 #include <asm/system.h>
64 #include <asm/page.h>
65 #include <asm/ptrace.h>
66 #include <asm/cputime.h>
67
68 #include <linux/smp.h>
69 #include <linux/sem.h>
70 #include <linux/signal.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compiler.h>
73 #include <linux/completion.h>
74 #include <linux/pid.h>
75 #include <linux/percpu.h>
76 #include <linux/topology.h>
77 #include <linux/proportions.h>
78 #include <linux/seccomp.h>
79 #include <linux/rcupdate.h>
80 #include <linux/rtmutex.h>
81
82 #include <linux/time.h>
83 #include <linux/param.h>
84 #include <linux/resource.h>
85 #include <linux/timer.h>
86 #include <linux/hrtimer.h>
87 #include <linux/task_io_accounting.h>
88 #include <linux/kobject.h>
89 #include <linux/latencytop.h>
90 #include <linux/cred.h>
91
92 #include <asm/processor.h>
93
94 struct mem_cgroup;
95 struct exec_domain;
96 struct futex_pi_state;
97 struct robust_list_head;
98 struct bio;
99
100 /*
101 * List of flags we want to share for kernel threads,
102 * if only because they are not used by them anyway.
103 */
104 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
105
106 /*
107 * These are the constant used to fake the fixed-point load-average
108 * counting. Some notes:
109 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
110 * a load-average precision of 10 bits integer + 11 bits fractional
111 * - if you want to count load-averages more often, you need more
112 * precision, or rounding will get you. With 2-second counting freq,
113 * the EXP_n values would be 1981, 2034 and 2043 if still using only
114 * 11 bit fractions.
115 */
116 extern unsigned long avenrun[]; /* Load averages */
117
118 #define FSHIFT 11 /* nr of bits of precision */
119 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
120 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
121 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
122 #define EXP_5 2014 /* 1/exp(5sec/5min) */
123 #define EXP_15 2037 /* 1/exp(5sec/15min) */
124
125 #define CALC_LOAD(load,exp,n) \
126 load *= exp; \
127 load += n*(FIXED_1-exp); \
128 load >>= FSHIFT;
129
130 extern unsigned long total_forks;
131 extern int nr_threads;
132 DECLARE_PER_CPU(unsigned long, process_counts);
133 extern int nr_processes(void);
134 extern unsigned long nr_running(void);
135 extern unsigned long nr_uninterruptible(void);
136 extern unsigned long nr_active(void);
137 extern unsigned long nr_iowait(void);
138
139 struct seq_file;
140 struct cfs_rq;
141 struct task_group;
142 #ifdef CONFIG_SCHED_DEBUG
143 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
144 extern void proc_sched_set_task(struct task_struct *p);
145 extern void
146 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
147 #else
148 static inline void
149 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
150 {
151 }
152 static inline void proc_sched_set_task(struct task_struct *p)
153 {
154 }
155 static inline void
156 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
157 {
158 }
159 #endif
160
161 extern unsigned long long time_sync_thresh;
162
163 /*
164 * Task state bitmask. NOTE! These bits are also
165 * encoded in fs/proc/array.c: get_task_state().
166 *
167 * We have two separate sets of flags: task->state
168 * is about runnability, while task->exit_state are
169 * about the task exiting. Confusing, but this way
170 * modifying one set can't modify the other one by
171 * mistake.
172 */
173 #define TASK_RUNNING 0
174 #define TASK_INTERRUPTIBLE 1
175 #define TASK_UNINTERRUPTIBLE 2
176 #define __TASK_STOPPED 4
177 #define __TASK_TRACED 8
178 /* in tsk->exit_state */
179 #define EXIT_ZOMBIE 16
180 #define EXIT_DEAD 32
181 /* in tsk->state again */
182 #define TASK_DEAD 64
183 #define TASK_WAKEKILL 128
184
185 /* Convenience macros for the sake of set_task_state */
186 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
187 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
188 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
189
190 /* Convenience macros for the sake of wake_up */
191 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
192 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
193
194 /* get_task_state() */
195 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
196 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
197 __TASK_TRACED)
198
199 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
200 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
201 #define task_is_stopped_or_traced(task) \
202 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
203 #define task_contributes_to_load(task) \
204 ((task->state & TASK_UNINTERRUPTIBLE) != 0)
205
206 #define __set_task_state(tsk, state_value) \
207 do { (tsk)->state = (state_value); } while (0)
208 #define set_task_state(tsk, state_value) \
209 set_mb((tsk)->state, (state_value))
210
211 /*
212 * set_current_state() includes a barrier so that the write of current->state
213 * is correctly serialised wrt the caller's subsequent test of whether to
214 * actually sleep:
215 *
216 * set_current_state(TASK_UNINTERRUPTIBLE);
217 * if (do_i_need_to_sleep())
218 * schedule();
219 *
220 * If the caller does not need such serialisation then use __set_current_state()
221 */
222 #define __set_current_state(state_value) \
223 do { current->state = (state_value); } while (0)
224 #define set_current_state(state_value) \
225 set_mb(current->state, (state_value))
226
227 /* Task command name length */
228 #define TASK_COMM_LEN 16
229
230 #include <linux/spinlock.h>
231
232 /*
233 * This serializes "schedule()" and also protects
234 * the run-queue from deletions/modifications (but
235 * _adding_ to the beginning of the run-queue has
236 * a separate lock).
237 */
238 extern rwlock_t tasklist_lock;
239 extern spinlock_t mmlist_lock;
240
241 struct task_struct;
242
243 extern void sched_init(void);
244 extern void sched_init_smp(void);
245 extern asmlinkage void schedule_tail(struct task_struct *prev);
246 extern void init_idle(struct task_struct *idle, int cpu);
247 extern void init_idle_bootup_task(struct task_struct *idle);
248
249 extern int runqueue_is_locked(void);
250
251 extern cpumask_t nohz_cpu_mask;
252 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
253 extern int select_nohz_load_balancer(int cpu);
254 #else
255 static inline int select_nohz_load_balancer(int cpu)
256 {
257 return 0;
258 }
259 #endif
260
261 extern unsigned long rt_needs_cpu(int cpu);
262
263 /*
264 * Only dump TASK_* tasks. (0 for all tasks)
265 */
266 extern void show_state_filter(unsigned long state_filter);
267
268 static inline void show_state(void)
269 {
270 show_state_filter(0);
271 }
272
273 extern void show_regs(struct pt_regs *);
274
275 /*
276 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
277 * task), SP is the stack pointer of the first frame that should be shown in the back
278 * trace (or NULL if the entire call-chain of the task should be shown).
279 */
280 extern void show_stack(struct task_struct *task, unsigned long *sp);
281
282 void io_schedule(void);
283 long io_schedule_timeout(long timeout);
284
285 extern void cpu_init (void);
286 extern void trap_init(void);
287 extern void account_process_tick(struct task_struct *task, int user);
288 extern void update_process_times(int user);
289 extern void scheduler_tick(void);
290 extern void hrtick_resched(void);
291
292 extern void sched_show_task(struct task_struct *p);
293
294 #ifdef CONFIG_DETECT_SOFTLOCKUP
295 extern void softlockup_tick(void);
296 extern void touch_softlockup_watchdog(void);
297 extern void touch_all_softlockup_watchdogs(void);
298 extern unsigned int softlockup_panic;
299 extern unsigned long sysctl_hung_task_check_count;
300 extern unsigned long sysctl_hung_task_timeout_secs;
301 extern unsigned long sysctl_hung_task_warnings;
302 extern int softlockup_thresh;
303 #else
304 static inline void softlockup_tick(void)
305 {
306 }
307 static inline void spawn_softlockup_task(void)
308 {
309 }
310 static inline void touch_softlockup_watchdog(void)
311 {
312 }
313 static inline void touch_all_softlockup_watchdogs(void)
314 {
315 }
316 #endif
317
318
319 /* Attach to any functions which should be ignored in wchan output. */
320 #define __sched __attribute__((__section__(".sched.text")))
321
322 /* Linker adds these: start and end of __sched functions */
323 extern char __sched_text_start[], __sched_text_end[];
324
325 /* Is this address in the __sched functions? */
326 extern int in_sched_functions(unsigned long addr);
327
328 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
329 extern signed long schedule_timeout(signed long timeout);
330 extern signed long schedule_timeout_interruptible(signed long timeout);
331 extern signed long schedule_timeout_killable(signed long timeout);
332 extern signed long schedule_timeout_uninterruptible(signed long timeout);
333 asmlinkage void schedule(void);
334
335 struct nsproxy;
336 struct user_namespace;
337
338 /* Maximum number of active map areas.. This is a random (large) number */
339 #define DEFAULT_MAX_MAP_COUNT 65536
340
341 extern int sysctl_max_map_count;
342
343 #include <linux/aio.h>
344
345 extern unsigned long
346 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
347 unsigned long, unsigned long);
348 extern unsigned long
349 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
350 unsigned long len, unsigned long pgoff,
351 unsigned long flags);
352 extern void arch_unmap_area(struct mm_struct *, unsigned long);
353 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
354
355 #if USE_SPLIT_PTLOCKS
356 /*
357 * The mm counters are not protected by its page_table_lock,
358 * so must be incremented atomically.
359 */
360 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
361 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
362 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
363 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
364 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
365
366 #else /* !USE_SPLIT_PTLOCKS */
367 /*
368 * The mm counters are protected by its page_table_lock,
369 * so can be incremented directly.
370 */
371 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
372 #define get_mm_counter(mm, member) ((mm)->_##member)
373 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
374 #define inc_mm_counter(mm, member) (mm)->_##member++
375 #define dec_mm_counter(mm, member) (mm)->_##member--
376
377 #endif /* !USE_SPLIT_PTLOCKS */
378
379 #define get_mm_rss(mm) \
380 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
381 #define update_hiwater_rss(mm) do { \
382 unsigned long _rss = get_mm_rss(mm); \
383 if ((mm)->hiwater_rss < _rss) \
384 (mm)->hiwater_rss = _rss; \
385 } while (0)
386 #define update_hiwater_vm(mm) do { \
387 if ((mm)->hiwater_vm < (mm)->total_vm) \
388 (mm)->hiwater_vm = (mm)->total_vm; \
389 } while (0)
390
391 extern void set_dumpable(struct mm_struct *mm, int value);
392 extern int get_dumpable(struct mm_struct *mm);
393
394 /* mm flags */
395 /* dumpable bits */
396 #define MMF_DUMPABLE 0 /* core dump is permitted */
397 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
398 #define MMF_DUMPABLE_BITS 2
399
400 /* coredump filter bits */
401 #define MMF_DUMP_ANON_PRIVATE 2
402 #define MMF_DUMP_ANON_SHARED 3
403 #define MMF_DUMP_MAPPED_PRIVATE 4
404 #define MMF_DUMP_MAPPED_SHARED 5
405 #define MMF_DUMP_ELF_HEADERS 6
406 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
407 #define MMF_DUMP_FILTER_BITS 5
408 #define MMF_DUMP_FILTER_MASK \
409 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
410 #define MMF_DUMP_FILTER_DEFAULT \
411 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED))
412
413 struct sighand_struct {
414 atomic_t count;
415 struct k_sigaction action[_NSIG];
416 spinlock_t siglock;
417 wait_queue_head_t signalfd_wqh;
418 };
419
420 struct pacct_struct {
421 int ac_flag;
422 long ac_exitcode;
423 unsigned long ac_mem;
424 cputime_t ac_utime, ac_stime;
425 unsigned long ac_minflt, ac_majflt;
426 };
427
428 /*
429 * NOTE! "signal_struct" does not have it's own
430 * locking, because a shared signal_struct always
431 * implies a shared sighand_struct, so locking
432 * sighand_struct is always a proper superset of
433 * the locking of signal_struct.
434 */
435 struct signal_struct {
436 atomic_t count;
437 atomic_t live;
438
439 wait_queue_head_t wait_chldexit; /* for wait4() */
440
441 /* current thread group signal load-balancing target: */
442 struct task_struct *curr_target;
443
444 /* shared signal handling: */
445 struct sigpending shared_pending;
446
447 /* thread group exit support */
448 int group_exit_code;
449 /* overloaded:
450 * - notify group_exit_task when ->count is equal to notify_count
451 * - everyone except group_exit_task is stopped during signal delivery
452 * of fatal signals, group_exit_task processes the signal.
453 */
454 int notify_count;
455 struct task_struct *group_exit_task;
456
457 /* thread group stop support, overloads group_exit_code too */
458 int group_stop_count;
459 unsigned int flags; /* see SIGNAL_* flags below */
460
461 /* POSIX.1b Interval Timers */
462 struct list_head posix_timers;
463
464 /* ITIMER_REAL timer for the process */
465 struct hrtimer real_timer;
466 struct pid *leader_pid;
467 ktime_t it_real_incr;
468
469 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
470 cputime_t it_prof_expires, it_virt_expires;
471 cputime_t it_prof_incr, it_virt_incr;
472
473 /* job control IDs */
474
475 /*
476 * pgrp and session fields are deprecated.
477 * use the task_session_Xnr and task_pgrp_Xnr routines below
478 */
479
480 union {
481 pid_t pgrp __deprecated;
482 pid_t __pgrp;
483 };
484
485 struct pid *tty_old_pgrp;
486
487 union {
488 pid_t session __deprecated;
489 pid_t __session;
490 };
491
492 /* boolean value for session group leader */
493 int leader;
494
495 struct tty_struct *tty; /* NULL if no tty */
496
497 /*
498 * Cumulative resource counters for dead threads in the group,
499 * and for reaped dead child processes forked by this group.
500 * Live threads maintain their own counters and add to these
501 * in __exit_signal, except for the group leader.
502 */
503 cputime_t utime, stime, cutime, cstime;
504 cputime_t gtime;
505 cputime_t cgtime;
506 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
507 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
508 unsigned long inblock, oublock, cinblock, coublock;
509 struct task_io_accounting ioac;
510
511 /*
512 * Cumulative ns of scheduled CPU time for dead threads in the
513 * group, not including a zombie group leader. (This only differs
514 * from jiffies_to_ns(utime + stime) if sched_clock uses something
515 * other than jiffies.)
516 */
517 unsigned long long sum_sched_runtime;
518
519 /*
520 * We don't bother to synchronize most readers of this at all,
521 * because there is no reader checking a limit that actually needs
522 * to get both rlim_cur and rlim_max atomically, and either one
523 * alone is a single word that can safely be read normally.
524 * getrlimit/setrlimit use task_lock(current->group_leader) to
525 * protect this instead of the siglock, because they really
526 * have no need to disable irqs.
527 */
528 struct rlimit rlim[RLIM_NLIMITS];
529
530 struct list_head cpu_timers[3];
531
532 /* keep the process-shared keyrings here so that they do the right
533 * thing in threads created with CLONE_THREAD */
534 #ifdef CONFIG_KEYS
535 struct key *session_keyring; /* keyring inherited over fork */
536 struct key *process_keyring; /* keyring private to this process */
537 #endif
538 #ifdef CONFIG_BSD_PROCESS_ACCT
539 struct pacct_struct pacct; /* per-process accounting information */
540 #endif
541 #ifdef CONFIG_TASKSTATS
542 struct taskstats *stats;
543 #endif
544 #ifdef CONFIG_AUDIT
545 unsigned audit_tty;
546 struct tty_audit_buf *tty_audit_buf;
547 #endif
548 };
549
550 /* Context switch must be unlocked if interrupts are to be enabled */
551 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
552 # define __ARCH_WANT_UNLOCKED_CTXSW
553 #endif
554
555 /*
556 * Bits in flags field of signal_struct.
557 */
558 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
559 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
560 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
561 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
562 /*
563 * Pending notifications to parent.
564 */
565 #define SIGNAL_CLD_STOPPED 0x00000010
566 #define SIGNAL_CLD_CONTINUED 0x00000020
567 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
568
569 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
570
571 /* If true, all threads except ->group_exit_task have pending SIGKILL */
572 static inline int signal_group_exit(const struct signal_struct *sig)
573 {
574 return (sig->flags & SIGNAL_GROUP_EXIT) ||
575 (sig->group_exit_task != NULL);
576 }
577
578 /*
579 * Some day this will be a full-fledged user tracking system..
580 */
581 struct user_struct {
582 atomic_t __count; /* reference count */
583 atomic_t processes; /* How many processes does this user have? */
584 atomic_t files; /* How many open files does this user have? */
585 atomic_t sigpending; /* How many pending signals does this user have? */
586 #ifdef CONFIG_INOTIFY_USER
587 atomic_t inotify_watches; /* How many inotify watches does this user have? */
588 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
589 #endif
590 #ifdef CONFIG_POSIX_MQUEUE
591 /* protected by mq_lock */
592 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
593 #endif
594 unsigned long locked_shm; /* How many pages of mlocked shm ? */
595
596 #ifdef CONFIG_KEYS
597 struct key *uid_keyring; /* UID specific keyring */
598 struct key *session_keyring; /* UID's default session keyring */
599 #endif
600
601 /* Hash table maintenance information */
602 struct hlist_node uidhash_node;
603 uid_t uid;
604
605 #ifdef CONFIG_USER_SCHED
606 struct task_group *tg;
607 #ifdef CONFIG_SYSFS
608 struct kobject kobj;
609 struct work_struct work;
610 #endif
611 #endif
612 };
613
614 extern int uids_sysfs_init(void);
615
616 extern struct user_struct *find_user(uid_t);
617
618 extern struct user_struct root_user;
619 #define INIT_USER (&root_user)
620
621 struct backing_dev_info;
622 struct reclaim_state;
623
624 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
625 struct sched_info {
626 /* cumulative counters */
627 unsigned long pcount; /* # of times run on this cpu */
628 unsigned long long cpu_time, /* time spent on the cpu */
629 run_delay; /* time spent waiting on a runqueue */
630
631 /* timestamps */
632 unsigned long long last_arrival,/* when we last ran on a cpu */
633 last_queued; /* when we were last queued to run */
634 #ifdef CONFIG_SCHEDSTATS
635 /* BKL stats */
636 unsigned int bkl_count;
637 #endif
638 };
639 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
640
641 #ifdef CONFIG_SCHEDSTATS
642 extern const struct file_operations proc_schedstat_operations;
643 #endif /* CONFIG_SCHEDSTATS */
644
645 #ifdef CONFIG_TASK_DELAY_ACCT
646 struct task_delay_info {
647 spinlock_t lock;
648 unsigned int flags; /* Private per-task flags */
649
650 /* For each stat XXX, add following, aligned appropriately
651 *
652 * struct timespec XXX_start, XXX_end;
653 * u64 XXX_delay;
654 * u32 XXX_count;
655 *
656 * Atomicity of updates to XXX_delay, XXX_count protected by
657 * single lock above (split into XXX_lock if contention is an issue).
658 */
659
660 /*
661 * XXX_count is incremented on every XXX operation, the delay
662 * associated with the operation is added to XXX_delay.
663 * XXX_delay contains the accumulated delay time in nanoseconds.
664 */
665 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
666 u64 blkio_delay; /* wait for sync block io completion */
667 u64 swapin_delay; /* wait for swapin block io completion */
668 u32 blkio_count; /* total count of the number of sync block */
669 /* io operations performed */
670 u32 swapin_count; /* total count of the number of swapin block */
671 /* io operations performed */
672
673 struct timespec freepages_start, freepages_end;
674 u64 freepages_delay; /* wait for memory reclaim */
675 u32 freepages_count; /* total count of memory reclaim */
676 };
677 #endif /* CONFIG_TASK_DELAY_ACCT */
678
679 static inline int sched_info_on(void)
680 {
681 #ifdef CONFIG_SCHEDSTATS
682 return 1;
683 #elif defined(CONFIG_TASK_DELAY_ACCT)
684 extern int delayacct_on;
685 return delayacct_on;
686 #else
687 return 0;
688 #endif
689 }
690
691 enum cpu_idle_type {
692 CPU_IDLE,
693 CPU_NOT_IDLE,
694 CPU_NEWLY_IDLE,
695 CPU_MAX_IDLE_TYPES
696 };
697
698 /*
699 * sched-domains (multiprocessor balancing) declarations:
700 */
701
702 /*
703 * Increase resolution of nice-level calculations:
704 */
705 #define SCHED_LOAD_SHIFT 10
706 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
707
708 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
709
710 #ifdef CONFIG_SMP
711 #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */
712 #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */
713 #define SD_BALANCE_EXEC 4 /* Balance on exec */
714 #define SD_BALANCE_FORK 8 /* Balance on fork, clone */
715 #define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */
716 #define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */
717 #define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */
718 #define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */
719 #define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */
720 #define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */
721 #define SD_SERIALIZE 1024 /* Only a single load balancing instance */
722 #define SD_WAKE_IDLE_FAR 2048 /* Gain latency sacrificing cache hit */
723
724 #define BALANCE_FOR_MC_POWER \
725 (sched_smt_power_savings ? SD_POWERSAVINGS_BALANCE : 0)
726
727 #define BALANCE_FOR_PKG_POWER \
728 ((sched_mc_power_savings || sched_smt_power_savings) ? \
729 SD_POWERSAVINGS_BALANCE : 0)
730
731 #define test_sd_parent(sd, flag) ((sd->parent && \
732 (sd->parent->flags & flag)) ? 1 : 0)
733
734
735 struct sched_group {
736 struct sched_group *next; /* Must be a circular list */
737 cpumask_t cpumask;
738
739 /*
740 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
741 * single CPU. This is read only (except for setup, hotplug CPU).
742 * Note : Never change cpu_power without recompute its reciprocal
743 */
744 unsigned int __cpu_power;
745 /*
746 * reciprocal value of cpu_power to avoid expensive divides
747 * (see include/linux/reciprocal_div.h)
748 */
749 u32 reciprocal_cpu_power;
750 };
751
752 enum sched_domain_level {
753 SD_LV_NONE = 0,
754 SD_LV_SIBLING,
755 SD_LV_MC,
756 SD_LV_CPU,
757 SD_LV_NODE,
758 SD_LV_ALLNODES,
759 SD_LV_MAX
760 };
761
762 struct sched_domain_attr {
763 int relax_domain_level;
764 };
765
766 #define SD_ATTR_INIT (struct sched_domain_attr) { \
767 .relax_domain_level = -1, \
768 }
769
770 struct sched_domain {
771 /* These fields must be setup */
772 struct sched_domain *parent; /* top domain must be null terminated */
773 struct sched_domain *child; /* bottom domain must be null terminated */
774 struct sched_group *groups; /* the balancing groups of the domain */
775 cpumask_t span; /* span of all CPUs in this domain */
776 unsigned long min_interval; /* Minimum balance interval ms */
777 unsigned long max_interval; /* Maximum balance interval ms */
778 unsigned int busy_factor; /* less balancing by factor if busy */
779 unsigned int imbalance_pct; /* No balance until over watermark */
780 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
781 unsigned int busy_idx;
782 unsigned int idle_idx;
783 unsigned int newidle_idx;
784 unsigned int wake_idx;
785 unsigned int forkexec_idx;
786 int flags; /* See SD_* */
787 enum sched_domain_level level;
788
789 /* Runtime fields. */
790 unsigned long last_balance; /* init to jiffies. units in jiffies */
791 unsigned int balance_interval; /* initialise to 1. units in ms. */
792 unsigned int nr_balance_failed; /* initialise to 0 */
793
794 u64 last_update;
795
796 #ifdef CONFIG_SCHEDSTATS
797 /* load_balance() stats */
798 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
799 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
800 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
801 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
802 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
803 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
804 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
805 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
806
807 /* Active load balancing */
808 unsigned int alb_count;
809 unsigned int alb_failed;
810 unsigned int alb_pushed;
811
812 /* SD_BALANCE_EXEC stats */
813 unsigned int sbe_count;
814 unsigned int sbe_balanced;
815 unsigned int sbe_pushed;
816
817 /* SD_BALANCE_FORK stats */
818 unsigned int sbf_count;
819 unsigned int sbf_balanced;
820 unsigned int sbf_pushed;
821
822 /* try_to_wake_up() stats */
823 unsigned int ttwu_wake_remote;
824 unsigned int ttwu_move_affine;
825 unsigned int ttwu_move_balance;
826 #endif
827 #ifdef CONFIG_SCHED_DEBUG
828 char *name;
829 #endif
830 };
831
832 extern void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
833 struct sched_domain_attr *dattr_new);
834 extern int arch_reinit_sched_domains(void);
835
836 #else /* CONFIG_SMP */
837
838 struct sched_domain_attr;
839
840 static inline void
841 partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
842 struct sched_domain_attr *dattr_new)
843 {
844 }
845 #endif /* !CONFIG_SMP */
846
847 struct io_context; /* See blkdev.h */
848 #define NGROUPS_SMALL 32
849 #define NGROUPS_PER_BLOCK ((unsigned int)(PAGE_SIZE / sizeof(gid_t)))
850 struct group_info {
851 int ngroups;
852 atomic_t usage;
853 gid_t small_block[NGROUPS_SMALL];
854 int nblocks;
855 gid_t *blocks[0];
856 };
857
858 /*
859 * get_group_info() must be called with the owning task locked (via task_lock())
860 * when task != current. The reason being that the vast majority of callers are
861 * looking at current->group_info, which can not be changed except by the
862 * current task. Changing current->group_info requires the task lock, too.
863 */
864 #define get_group_info(group_info) do { \
865 atomic_inc(&(group_info)->usage); \
866 } while (0)
867
868 #define put_group_info(group_info) do { \
869 if (atomic_dec_and_test(&(group_info)->usage)) \
870 groups_free(group_info); \
871 } while (0)
872
873 extern struct group_info *groups_alloc(int gidsetsize);
874 extern void groups_free(struct group_info *group_info);
875 extern int set_current_groups(struct group_info *group_info);
876 extern int groups_search(struct group_info *group_info, gid_t grp);
877 /* access the groups "array" with this macro */
878 #define GROUP_AT(gi, i) \
879 ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK])
880
881 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
882 extern void prefetch_stack(struct task_struct *t);
883 #else
884 static inline void prefetch_stack(struct task_struct *t) { }
885 #endif
886
887 struct audit_context; /* See audit.c */
888 struct mempolicy;
889 struct pipe_inode_info;
890 struct uts_namespace;
891
892 struct rq;
893 struct sched_domain;
894
895 struct sched_class {
896 const struct sched_class *next;
897
898 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
899 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
900 void (*yield_task) (struct rq *rq);
901 int (*select_task_rq)(struct task_struct *p, int sync);
902
903 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int sync);
904
905 struct task_struct * (*pick_next_task) (struct rq *rq);
906 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
907
908 #ifdef CONFIG_SMP
909 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
910 struct rq *busiest, unsigned long max_load_move,
911 struct sched_domain *sd, enum cpu_idle_type idle,
912 int *all_pinned, int *this_best_prio);
913
914 int (*move_one_task) (struct rq *this_rq, int this_cpu,
915 struct rq *busiest, struct sched_domain *sd,
916 enum cpu_idle_type idle);
917 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
918 void (*post_schedule) (struct rq *this_rq);
919 void (*task_wake_up) (struct rq *this_rq, struct task_struct *task);
920 #endif
921
922 void (*set_curr_task) (struct rq *rq);
923 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
924 void (*task_new) (struct rq *rq, struct task_struct *p);
925 void (*set_cpus_allowed)(struct task_struct *p,
926 const cpumask_t *newmask);
927
928 void (*rq_online)(struct rq *rq);
929 void (*rq_offline)(struct rq *rq);
930
931 void (*switched_from) (struct rq *this_rq, struct task_struct *task,
932 int running);
933 void (*switched_to) (struct rq *this_rq, struct task_struct *task,
934 int running);
935 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
936 int oldprio, int running);
937
938 #ifdef CONFIG_FAIR_GROUP_SCHED
939 void (*moved_group) (struct task_struct *p);
940 #endif
941 };
942
943 struct load_weight {
944 unsigned long weight, inv_weight;
945 };
946
947 /*
948 * CFS stats for a schedulable entity (task, task-group etc)
949 *
950 * Current field usage histogram:
951 *
952 * 4 se->block_start
953 * 4 se->run_node
954 * 4 se->sleep_start
955 * 6 se->load.weight
956 */
957 struct sched_entity {
958 struct load_weight load; /* for load-balancing */
959 struct rb_node run_node;
960 struct list_head group_node;
961 unsigned int on_rq;
962
963 u64 exec_start;
964 u64 sum_exec_runtime;
965 u64 vruntime;
966 u64 prev_sum_exec_runtime;
967
968 u64 last_wakeup;
969 u64 avg_overlap;
970
971 #ifdef CONFIG_SCHEDSTATS
972 u64 wait_start;
973 u64 wait_max;
974 u64 wait_count;
975 u64 wait_sum;
976
977 u64 sleep_start;
978 u64 sleep_max;
979 s64 sum_sleep_runtime;
980
981 u64 block_start;
982 u64 block_max;
983 u64 exec_max;
984 u64 slice_max;
985
986 u64 nr_migrations;
987 u64 nr_migrations_cold;
988 u64 nr_failed_migrations_affine;
989 u64 nr_failed_migrations_running;
990 u64 nr_failed_migrations_hot;
991 u64 nr_forced_migrations;
992 u64 nr_forced2_migrations;
993
994 u64 nr_wakeups;
995 u64 nr_wakeups_sync;
996 u64 nr_wakeups_migrate;
997 u64 nr_wakeups_local;
998 u64 nr_wakeups_remote;
999 u64 nr_wakeups_affine;
1000 u64 nr_wakeups_affine_attempts;
1001 u64 nr_wakeups_passive;
1002 u64 nr_wakeups_idle;
1003 #endif
1004
1005 #ifdef CONFIG_FAIR_GROUP_SCHED
1006 struct sched_entity *parent;
1007 /* rq on which this entity is (to be) queued: */
1008 struct cfs_rq *cfs_rq;
1009 /* rq "owned" by this entity/group: */
1010 struct cfs_rq *my_q;
1011 #endif
1012 };
1013
1014 struct sched_rt_entity {
1015 struct list_head run_list;
1016 unsigned long timeout;
1017 unsigned int time_slice;
1018 int nr_cpus_allowed;
1019
1020 struct sched_rt_entity *back;
1021 #ifdef CONFIG_RT_GROUP_SCHED
1022 struct sched_rt_entity *parent;
1023 /* rq on which this entity is (to be) queued: */
1024 struct rt_rq *rt_rq;
1025 /* rq "owned" by this entity/group: */
1026 struct rt_rq *my_q;
1027 #endif
1028 };
1029
1030 struct task_struct {
1031 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1032 void *stack;
1033 atomic_t usage;
1034 unsigned int flags; /* per process flags, defined below */
1035 unsigned int ptrace;
1036
1037 int lock_depth; /* BKL lock depth */
1038
1039 #ifdef CONFIG_SMP
1040 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1041 int oncpu;
1042 #endif
1043 #endif
1044
1045 int prio, static_prio, normal_prio;
1046 unsigned int rt_priority;
1047 const struct sched_class *sched_class;
1048 struct sched_entity se;
1049 struct sched_rt_entity rt;
1050
1051 #ifdef CONFIG_PREEMPT_NOTIFIERS
1052 /* list of struct preempt_notifier: */
1053 struct hlist_head preempt_notifiers;
1054 #endif
1055
1056 /*
1057 * fpu_counter contains the number of consecutive context switches
1058 * that the FPU is used. If this is over a threshold, the lazy fpu
1059 * saving becomes unlazy to save the trap. This is an unsigned char
1060 * so that after 256 times the counter wraps and the behavior turns
1061 * lazy again; this to deal with bursty apps that only use FPU for
1062 * a short time
1063 */
1064 unsigned char fpu_counter;
1065 s8 oomkilladj; /* OOM kill score adjustment (bit shift). */
1066 #ifdef CONFIG_BLK_DEV_IO_TRACE
1067 unsigned int btrace_seq;
1068 #endif
1069
1070 unsigned int policy;
1071 cpumask_t cpus_allowed;
1072
1073 #ifdef CONFIG_PREEMPT_RCU
1074 int rcu_read_lock_nesting;
1075 int rcu_flipctr_idx;
1076 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1077
1078 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1079 struct sched_info sched_info;
1080 #endif
1081
1082 struct list_head tasks;
1083
1084 struct mm_struct *mm, *active_mm;
1085
1086 /* task state */
1087 struct linux_binfmt *binfmt;
1088 int exit_state;
1089 int exit_code, exit_signal;
1090 int pdeath_signal; /* The signal sent when the parent dies */
1091 /* ??? */
1092 unsigned int personality;
1093 unsigned did_exec:1;
1094 pid_t pid;
1095 pid_t tgid;
1096
1097 #ifdef CONFIG_CC_STACKPROTECTOR
1098 /* Canary value for the -fstack-protector gcc feature */
1099 unsigned long stack_canary;
1100 #endif
1101 /*
1102 * pointers to (original) parent process, youngest child, younger sibling,
1103 * older sibling, respectively. (p->father can be replaced with
1104 * p->real_parent->pid)
1105 */
1106 struct task_struct *real_parent; /* real parent process */
1107 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1108 /*
1109 * children/sibling forms the list of my natural children
1110 */
1111 struct list_head children; /* list of my children */
1112 struct list_head sibling; /* linkage in my parent's children list */
1113 struct task_struct *group_leader; /* threadgroup leader */
1114
1115 /*
1116 * ptraced is the list of tasks this task is using ptrace on.
1117 * This includes both natural children and PTRACE_ATTACH targets.
1118 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1119 */
1120 struct list_head ptraced;
1121 struct list_head ptrace_entry;
1122
1123 /* PID/PID hash table linkage. */
1124 struct pid_link pids[PIDTYPE_MAX];
1125 struct list_head thread_group;
1126
1127 struct completion *vfork_done; /* for vfork() */
1128 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1129 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1130
1131 cputime_t utime, stime, utimescaled, stimescaled;
1132 cputime_t gtime;
1133 cputime_t prev_utime, prev_stime;
1134 unsigned long nvcsw, nivcsw; /* context switch counts */
1135 struct timespec start_time; /* monotonic time */
1136 struct timespec real_start_time; /* boot based time */
1137 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1138 unsigned long min_flt, maj_flt;
1139
1140 cputime_t it_prof_expires, it_virt_expires;
1141 unsigned long long it_sched_expires;
1142 struct list_head cpu_timers[3];
1143
1144 /* process credentials */
1145 uid_t uid,euid,suid,fsuid;
1146 gid_t gid,egid,sgid,fsgid;
1147 struct group_info *group_info;
1148 kernel_cap_t cap_effective, cap_inheritable, cap_permitted, cap_bset;
1149 struct user_struct *user;
1150 unsigned securebits;
1151 #ifdef CONFIG_KEYS
1152 unsigned char jit_keyring; /* default keyring to attach requested keys to */
1153 struct key *request_key_auth; /* assumed request_key authority */
1154 struct key *thread_keyring; /* keyring private to this thread */
1155 #endif
1156 char comm[TASK_COMM_LEN]; /* executable name excluding path
1157 - access with [gs]et_task_comm (which lock
1158 it with task_lock())
1159 - initialized normally by flush_old_exec */
1160 /* file system info */
1161 int link_count, total_link_count;
1162 #ifdef CONFIG_SYSVIPC
1163 /* ipc stuff */
1164 struct sysv_sem sysvsem;
1165 #endif
1166 #ifdef CONFIG_DETECT_SOFTLOCKUP
1167 /* hung task detection */
1168 unsigned long last_switch_timestamp;
1169 unsigned long last_switch_count;
1170 #endif
1171 /* CPU-specific state of this task */
1172 struct thread_struct thread;
1173 /* filesystem information */
1174 struct fs_struct *fs;
1175 /* open file information */
1176 struct files_struct *files;
1177 /* namespaces */
1178 struct nsproxy *nsproxy;
1179 /* signal handlers */
1180 struct signal_struct *signal;
1181 struct sighand_struct *sighand;
1182
1183 sigset_t blocked, real_blocked;
1184 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1185 struct sigpending pending;
1186
1187 unsigned long sas_ss_sp;
1188 size_t sas_ss_size;
1189 int (*notifier)(void *priv);
1190 void *notifier_data;
1191 sigset_t *notifier_mask;
1192 #ifdef CONFIG_SECURITY
1193 void *security;
1194 #endif
1195 struct audit_context *audit_context;
1196 #ifdef CONFIG_AUDITSYSCALL
1197 uid_t loginuid;
1198 unsigned int sessionid;
1199 #endif
1200 seccomp_t seccomp;
1201
1202 /* Thread group tracking */
1203 u32 parent_exec_id;
1204 u32 self_exec_id;
1205 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
1206 spinlock_t alloc_lock;
1207
1208 /* Protection of the PI data structures: */
1209 spinlock_t pi_lock;
1210
1211 #ifdef CONFIG_RT_MUTEXES
1212 /* PI waiters blocked on a rt_mutex held by this task */
1213 struct plist_head pi_waiters;
1214 /* Deadlock detection and priority inheritance handling */
1215 struct rt_mutex_waiter *pi_blocked_on;
1216 #endif
1217
1218 #ifdef CONFIG_DEBUG_MUTEXES
1219 /* mutex deadlock detection */
1220 struct mutex_waiter *blocked_on;
1221 #endif
1222 #ifdef CONFIG_TRACE_IRQFLAGS
1223 unsigned int irq_events;
1224 int hardirqs_enabled;
1225 unsigned long hardirq_enable_ip;
1226 unsigned int hardirq_enable_event;
1227 unsigned long hardirq_disable_ip;
1228 unsigned int hardirq_disable_event;
1229 int softirqs_enabled;
1230 unsigned long softirq_disable_ip;
1231 unsigned int softirq_disable_event;
1232 unsigned long softirq_enable_ip;
1233 unsigned int softirq_enable_event;
1234 int hardirq_context;
1235 int softirq_context;
1236 #endif
1237 #ifdef CONFIG_LOCKDEP
1238 # define MAX_LOCK_DEPTH 48UL
1239 u64 curr_chain_key;
1240 int lockdep_depth;
1241 unsigned int lockdep_recursion;
1242 struct held_lock held_locks[MAX_LOCK_DEPTH];
1243 #endif
1244
1245 /* journalling filesystem info */
1246 void *journal_info;
1247
1248 /* stacked block device info */
1249 struct bio *bio_list, **bio_tail;
1250
1251 /* VM state */
1252 struct reclaim_state *reclaim_state;
1253
1254 struct backing_dev_info *backing_dev_info;
1255
1256 struct io_context *io_context;
1257
1258 unsigned long ptrace_message;
1259 siginfo_t *last_siginfo; /* For ptrace use. */
1260 struct task_io_accounting ioac;
1261 #if defined(CONFIG_TASK_XACCT)
1262 u64 acct_rss_mem1; /* accumulated rss usage */
1263 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1264 cputime_t acct_timexpd; /* stime + utime since last update */
1265 #endif
1266 #ifdef CONFIG_CPUSETS
1267 nodemask_t mems_allowed;
1268 int cpuset_mems_generation;
1269 int cpuset_mem_spread_rotor;
1270 #endif
1271 #ifdef CONFIG_CGROUPS
1272 /* Control Group info protected by css_set_lock */
1273 struct css_set *cgroups;
1274 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1275 struct list_head cg_list;
1276 #endif
1277 #ifdef CONFIG_FUTEX
1278 struct robust_list_head __user *robust_list;
1279 #ifdef CONFIG_COMPAT
1280 struct compat_robust_list_head __user *compat_robust_list;
1281 #endif
1282 struct list_head pi_state_list;
1283 struct futex_pi_state *pi_state_cache;
1284 #endif
1285 #ifdef CONFIG_NUMA
1286 struct mempolicy *mempolicy;
1287 short il_next;
1288 #endif
1289 atomic_t fs_excl; /* holding fs exclusive resources */
1290 struct rcu_head rcu;
1291
1292 /*
1293 * cache last used pipe for splice
1294 */
1295 struct pipe_inode_info *splice_pipe;
1296 #ifdef CONFIG_TASK_DELAY_ACCT
1297 struct task_delay_info *delays;
1298 #endif
1299 #ifdef CONFIG_FAULT_INJECTION
1300 int make_it_fail;
1301 #endif
1302 struct prop_local_single dirties;
1303 #ifdef CONFIG_LATENCYTOP
1304 int latency_record_count;
1305 struct latency_record latency_record[LT_SAVECOUNT];
1306 #endif
1307 };
1308
1309 /*
1310 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1311 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1312 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1313 * values are inverted: lower p->prio value means higher priority.
1314 *
1315 * The MAX_USER_RT_PRIO value allows the actual maximum
1316 * RT priority to be separate from the value exported to
1317 * user-space. This allows kernel threads to set their
1318 * priority to a value higher than any user task. Note:
1319 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1320 */
1321
1322 #define MAX_USER_RT_PRIO 100
1323 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1324
1325 #define MAX_PRIO (MAX_RT_PRIO + 40)
1326 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1327
1328 static inline int rt_prio(int prio)
1329 {
1330 if (unlikely(prio < MAX_RT_PRIO))
1331 return 1;
1332 return 0;
1333 }
1334
1335 static inline int rt_task(struct task_struct *p)
1336 {
1337 return rt_prio(p->prio);
1338 }
1339
1340 static inline void set_task_session(struct task_struct *tsk, pid_t session)
1341 {
1342 tsk->signal->__session = session;
1343 }
1344
1345 static inline void set_task_pgrp(struct task_struct *tsk, pid_t pgrp)
1346 {
1347 tsk->signal->__pgrp = pgrp;
1348 }
1349
1350 static inline struct pid *task_pid(struct task_struct *task)
1351 {
1352 return task->pids[PIDTYPE_PID].pid;
1353 }
1354
1355 static inline struct pid *task_tgid(struct task_struct *task)
1356 {
1357 return task->group_leader->pids[PIDTYPE_PID].pid;
1358 }
1359
1360 static inline struct pid *task_pgrp(struct task_struct *task)
1361 {
1362 return task->group_leader->pids[PIDTYPE_PGID].pid;
1363 }
1364
1365 static inline struct pid *task_session(struct task_struct *task)
1366 {
1367 return task->group_leader->pids[PIDTYPE_SID].pid;
1368 }
1369
1370 struct pid_namespace;
1371
1372 /*
1373 * the helpers to get the task's different pids as they are seen
1374 * from various namespaces
1375 *
1376 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1377 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1378 * current.
1379 * task_xid_nr_ns() : id seen from the ns specified;
1380 *
1381 * set_task_vxid() : assigns a virtual id to a task;
1382 *
1383 * see also pid_nr() etc in include/linux/pid.h
1384 */
1385
1386 static inline pid_t task_pid_nr(struct task_struct *tsk)
1387 {
1388 return tsk->pid;
1389 }
1390
1391 pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1392
1393 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1394 {
1395 return pid_vnr(task_pid(tsk));
1396 }
1397
1398
1399 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1400 {
1401 return tsk->tgid;
1402 }
1403
1404 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1405
1406 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1407 {
1408 return pid_vnr(task_tgid(tsk));
1409 }
1410
1411
1412 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1413 {
1414 return tsk->signal->__pgrp;
1415 }
1416
1417 pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1418
1419 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1420 {
1421 return pid_vnr(task_pgrp(tsk));
1422 }
1423
1424
1425 static inline pid_t task_session_nr(struct task_struct *tsk)
1426 {
1427 return tsk->signal->__session;
1428 }
1429
1430 pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1431
1432 static inline pid_t task_session_vnr(struct task_struct *tsk)
1433 {
1434 return pid_vnr(task_session(tsk));
1435 }
1436
1437
1438 /**
1439 * pid_alive - check that a task structure is not stale
1440 * @p: Task structure to be checked.
1441 *
1442 * Test if a process is not yet dead (at most zombie state)
1443 * If pid_alive fails, then pointers within the task structure
1444 * can be stale and must not be dereferenced.
1445 */
1446 static inline int pid_alive(struct task_struct *p)
1447 {
1448 return p->pids[PIDTYPE_PID].pid != NULL;
1449 }
1450
1451 /**
1452 * is_global_init - check if a task structure is init
1453 * @tsk: Task structure to be checked.
1454 *
1455 * Check if a task structure is the first user space task the kernel created.
1456 */
1457 static inline int is_global_init(struct task_struct *tsk)
1458 {
1459 return tsk->pid == 1;
1460 }
1461
1462 /*
1463 * is_container_init:
1464 * check whether in the task is init in its own pid namespace.
1465 */
1466 extern int is_container_init(struct task_struct *tsk);
1467
1468 extern struct pid *cad_pid;
1469
1470 extern void free_task(struct task_struct *tsk);
1471 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1472
1473 extern void __put_task_struct(struct task_struct *t);
1474
1475 static inline void put_task_struct(struct task_struct *t)
1476 {
1477 if (atomic_dec_and_test(&t->usage))
1478 __put_task_struct(t);
1479 }
1480
1481 extern cputime_t task_utime(struct task_struct *p);
1482 extern cputime_t task_stime(struct task_struct *p);
1483 extern cputime_t task_gtime(struct task_struct *p);
1484
1485 /*
1486 * Per process flags
1487 */
1488 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1489 /* Not implemented yet, only for 486*/
1490 #define PF_STARTING 0x00000002 /* being created */
1491 #define PF_EXITING 0x00000004 /* getting shut down */
1492 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1493 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1494 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1495 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1496 #define PF_DUMPCORE 0x00000200 /* dumped core */
1497 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1498 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1499 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1500 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1501 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1502 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1503 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1504 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1505 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */
1506 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1507 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1508 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1509 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1510 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1511 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1512 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1513 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1514 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1515 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1516 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */
1517
1518 /*
1519 * Only the _current_ task can read/write to tsk->flags, but other
1520 * tasks can access tsk->flags in readonly mode for example
1521 * with tsk_used_math (like during threaded core dumping).
1522 * There is however an exception to this rule during ptrace
1523 * or during fork: the ptracer task is allowed to write to the
1524 * child->flags of its traced child (same goes for fork, the parent
1525 * can write to the child->flags), because we're guaranteed the
1526 * child is not running and in turn not changing child->flags
1527 * at the same time the parent does it.
1528 */
1529 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1530 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1531 #define clear_used_math() clear_stopped_child_used_math(current)
1532 #define set_used_math() set_stopped_child_used_math(current)
1533 #define conditional_stopped_child_used_math(condition, child) \
1534 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1535 #define conditional_used_math(condition) \
1536 conditional_stopped_child_used_math(condition, current)
1537 #define copy_to_stopped_child_used_math(child) \
1538 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1539 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1540 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1541 #define used_math() tsk_used_math(current)
1542
1543 #ifdef CONFIG_SMP
1544 extern int set_cpus_allowed_ptr(struct task_struct *p,
1545 const cpumask_t *new_mask);
1546 #else
1547 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1548 const cpumask_t *new_mask)
1549 {
1550 if (!cpu_isset(0, *new_mask))
1551 return -EINVAL;
1552 return 0;
1553 }
1554 #endif
1555 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1556 {
1557 return set_cpus_allowed_ptr(p, &new_mask);
1558 }
1559
1560 extern unsigned long long sched_clock(void);
1561
1562 extern void sched_clock_init(void);
1563 extern u64 sched_clock_cpu(int cpu);
1564
1565 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1566 static inline void sched_clock_tick(void)
1567 {
1568 }
1569
1570 static inline void sched_clock_idle_sleep_event(void)
1571 {
1572 }
1573
1574 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1575 {
1576 }
1577 #else
1578 extern void sched_clock_tick(void);
1579 extern void sched_clock_idle_sleep_event(void);
1580 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1581 #endif
1582
1583 /*
1584 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1585 * clock constructed from sched_clock():
1586 */
1587 extern unsigned long long cpu_clock(int cpu);
1588
1589 extern unsigned long long
1590 task_sched_runtime(struct task_struct *task);
1591
1592 /* sched_exec is called by processes performing an exec */
1593 #ifdef CONFIG_SMP
1594 extern void sched_exec(void);
1595 #else
1596 #define sched_exec() {}
1597 #endif
1598
1599 extern void sched_clock_idle_sleep_event(void);
1600 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1601
1602 #ifdef CONFIG_HOTPLUG_CPU
1603 extern void idle_task_exit(void);
1604 #else
1605 static inline void idle_task_exit(void) {}
1606 #endif
1607
1608 extern void sched_idle_next(void);
1609
1610 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1611 extern void wake_up_idle_cpu(int cpu);
1612 #else
1613 static inline void wake_up_idle_cpu(int cpu) { }
1614 #endif
1615
1616 #ifdef CONFIG_SCHED_DEBUG
1617 extern unsigned int sysctl_sched_latency;
1618 extern unsigned int sysctl_sched_min_granularity;
1619 extern unsigned int sysctl_sched_wakeup_granularity;
1620 extern unsigned int sysctl_sched_child_runs_first;
1621 extern unsigned int sysctl_sched_features;
1622 extern unsigned int sysctl_sched_migration_cost;
1623 extern unsigned int sysctl_sched_nr_migrate;
1624 extern unsigned int sysctl_sched_shares_ratelimit;
1625
1626 int sched_nr_latency_handler(struct ctl_table *table, int write,
1627 struct file *file, void __user *buffer, size_t *length,
1628 loff_t *ppos);
1629 #endif
1630 extern unsigned int sysctl_sched_rt_period;
1631 extern int sysctl_sched_rt_runtime;
1632
1633 int sched_rt_handler(struct ctl_table *table, int write,
1634 struct file *filp, void __user *buffer, size_t *lenp,
1635 loff_t *ppos);
1636
1637 extern unsigned int sysctl_sched_compat_yield;
1638
1639 #ifdef CONFIG_RT_MUTEXES
1640 extern int rt_mutex_getprio(struct task_struct *p);
1641 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1642 extern void rt_mutex_adjust_pi(struct task_struct *p);
1643 #else
1644 static inline int rt_mutex_getprio(struct task_struct *p)
1645 {
1646 return p->normal_prio;
1647 }
1648 # define rt_mutex_adjust_pi(p) do { } while (0)
1649 #endif
1650
1651 extern void set_user_nice(struct task_struct *p, long nice);
1652 extern int task_prio(const struct task_struct *p);
1653 extern int task_nice(const struct task_struct *p);
1654 extern int can_nice(const struct task_struct *p, const int nice);
1655 extern int task_curr(const struct task_struct *p);
1656 extern int idle_cpu(int cpu);
1657 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1658 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1659 struct sched_param *);
1660 extern struct task_struct *idle_task(int cpu);
1661 extern struct task_struct *curr_task(int cpu);
1662 extern void set_curr_task(int cpu, struct task_struct *p);
1663
1664 void yield(void);
1665
1666 /*
1667 * The default (Linux) execution domain.
1668 */
1669 extern struct exec_domain default_exec_domain;
1670
1671 union thread_union {
1672 struct thread_info thread_info;
1673 unsigned long stack[THREAD_SIZE/sizeof(long)];
1674 };
1675
1676 #ifndef __HAVE_ARCH_KSTACK_END
1677 static inline int kstack_end(void *addr)
1678 {
1679 /* Reliable end of stack detection:
1680 * Some APM bios versions misalign the stack
1681 */
1682 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1683 }
1684 #endif
1685
1686 extern union thread_union init_thread_union;
1687 extern struct task_struct init_task;
1688
1689 extern struct mm_struct init_mm;
1690
1691 extern struct pid_namespace init_pid_ns;
1692
1693 /*
1694 * find a task by one of its numerical ids
1695 *
1696 * find_task_by_pid_type_ns():
1697 * it is the most generic call - it finds a task by all id,
1698 * type and namespace specified
1699 * find_task_by_pid_ns():
1700 * finds a task by its pid in the specified namespace
1701 * find_task_by_vpid():
1702 * finds a task by its virtual pid
1703 *
1704 * see also find_vpid() etc in include/linux/pid.h
1705 */
1706
1707 extern struct task_struct *find_task_by_pid_type_ns(int type, int pid,
1708 struct pid_namespace *ns);
1709
1710 extern struct task_struct *find_task_by_vpid(pid_t nr);
1711 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1712 struct pid_namespace *ns);
1713
1714 extern void __set_special_pids(struct pid *pid);
1715
1716 /* per-UID process charging. */
1717 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1718 static inline struct user_struct *get_uid(struct user_struct *u)
1719 {
1720 atomic_inc(&u->__count);
1721 return u;
1722 }
1723 extern void free_uid(struct user_struct *);
1724 extern void switch_uid(struct user_struct *);
1725 extern void release_uids(struct user_namespace *ns);
1726
1727 #include <asm/current.h>
1728
1729 extern void do_timer(unsigned long ticks);
1730
1731 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1732 extern int wake_up_process(struct task_struct *tsk);
1733 extern void wake_up_new_task(struct task_struct *tsk,
1734 unsigned long clone_flags);
1735 #ifdef CONFIG_SMP
1736 extern void kick_process(struct task_struct *tsk);
1737 #else
1738 static inline void kick_process(struct task_struct *tsk) { }
1739 #endif
1740 extern void sched_fork(struct task_struct *p, int clone_flags);
1741 extern void sched_dead(struct task_struct *p);
1742
1743 extern int in_group_p(gid_t);
1744 extern int in_egroup_p(gid_t);
1745
1746 extern void proc_caches_init(void);
1747 extern void flush_signals(struct task_struct *);
1748 extern void ignore_signals(struct task_struct *);
1749 extern void flush_signal_handlers(struct task_struct *, int force_default);
1750 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1751
1752 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1753 {
1754 unsigned long flags;
1755 int ret;
1756
1757 spin_lock_irqsave(&tsk->sighand->siglock, flags);
1758 ret = dequeue_signal(tsk, mask, info);
1759 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1760
1761 return ret;
1762 }
1763
1764 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1765 sigset_t *mask);
1766 extern void unblock_all_signals(void);
1767 extern void release_task(struct task_struct * p);
1768 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1769 extern int force_sigsegv(int, struct task_struct *);
1770 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1771 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1772 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
1773 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
1774 extern int kill_pgrp(struct pid *pid, int sig, int priv);
1775 extern int kill_pid(struct pid *pid, int sig, int priv);
1776 extern int kill_proc_info(int, struct siginfo *, pid_t);
1777 extern int do_notify_parent(struct task_struct *, int);
1778 extern void force_sig(int, struct task_struct *);
1779 extern void force_sig_specific(int, struct task_struct *);
1780 extern int send_sig(int, struct task_struct *, int);
1781 extern void zap_other_threads(struct task_struct *p);
1782 extern struct sigqueue *sigqueue_alloc(void);
1783 extern void sigqueue_free(struct sigqueue *);
1784 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
1785 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1786 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1787
1788 static inline int kill_cad_pid(int sig, int priv)
1789 {
1790 return kill_pid(cad_pid, sig, priv);
1791 }
1792
1793 /* These can be the second arg to send_sig_info/send_group_sig_info. */
1794 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
1795 #define SEND_SIG_PRIV ((struct siginfo *) 1)
1796 #define SEND_SIG_FORCED ((struct siginfo *) 2)
1797
1798 static inline int is_si_special(const struct siginfo *info)
1799 {
1800 return info <= SEND_SIG_FORCED;
1801 }
1802
1803 /* True if we are on the alternate signal stack. */
1804
1805 static inline int on_sig_stack(unsigned long sp)
1806 {
1807 return (sp - current->sas_ss_sp < current->sas_ss_size);
1808 }
1809
1810 static inline int sas_ss_flags(unsigned long sp)
1811 {
1812 return (current->sas_ss_size == 0 ? SS_DISABLE
1813 : on_sig_stack(sp) ? SS_ONSTACK : 0);
1814 }
1815
1816 /*
1817 * Routines for handling mm_structs
1818 */
1819 extern struct mm_struct * mm_alloc(void);
1820
1821 /* mmdrop drops the mm and the page tables */
1822 extern void __mmdrop(struct mm_struct *);
1823 static inline void mmdrop(struct mm_struct * mm)
1824 {
1825 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1826 __mmdrop(mm);
1827 }
1828
1829 /* mmput gets rid of the mappings and all user-space */
1830 extern void mmput(struct mm_struct *);
1831 /* Grab a reference to a task's mm, if it is not already going away */
1832 extern struct mm_struct *get_task_mm(struct task_struct *task);
1833 /* Remove the current tasks stale references to the old mm_struct */
1834 extern void mm_release(struct task_struct *, struct mm_struct *);
1835 /* Allocate a new mm structure and copy contents from tsk->mm */
1836 extern struct mm_struct *dup_mm(struct task_struct *tsk);
1837
1838 extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
1839 extern void flush_thread(void);
1840 extern void exit_thread(void);
1841
1842 extern void exit_files(struct task_struct *);
1843 extern void __cleanup_signal(struct signal_struct *);
1844 extern void __cleanup_sighand(struct sighand_struct *);
1845
1846 extern void exit_itimers(struct signal_struct *);
1847 extern void flush_itimer_signals(void);
1848
1849 extern NORET_TYPE void do_group_exit(int);
1850
1851 extern void daemonize(const char *, ...);
1852 extern int allow_signal(int);
1853 extern int disallow_signal(int);
1854
1855 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
1856 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
1857 struct task_struct *fork_idle(int);
1858
1859 extern void set_task_comm(struct task_struct *tsk, char *from);
1860 extern char *get_task_comm(char *to, struct task_struct *tsk);
1861
1862 #ifdef CONFIG_SMP
1863 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1864 #else
1865 static inline unsigned long wait_task_inactive(struct task_struct *p,
1866 long match_state)
1867 {
1868 return 1;
1869 }
1870 #endif
1871
1872 #define next_task(p) list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks)
1873
1874 #define for_each_process(p) \
1875 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
1876
1877 /*
1878 * Careful: do_each_thread/while_each_thread is a double loop so
1879 * 'break' will not work as expected - use goto instead.
1880 */
1881 #define do_each_thread(g, t) \
1882 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
1883
1884 #define while_each_thread(g, t) \
1885 while ((t = next_thread(t)) != g)
1886
1887 /* de_thread depends on thread_group_leader not being a pid based check */
1888 #define thread_group_leader(p) (p == p->group_leader)
1889
1890 /* Do to the insanities of de_thread it is possible for a process
1891 * to have the pid of the thread group leader without actually being
1892 * the thread group leader. For iteration through the pids in proc
1893 * all we care about is that we have a task with the appropriate
1894 * pid, we don't actually care if we have the right task.
1895 */
1896 static inline int has_group_leader_pid(struct task_struct *p)
1897 {
1898 return p->pid == p->tgid;
1899 }
1900
1901 static inline
1902 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
1903 {
1904 return p1->tgid == p2->tgid;
1905 }
1906
1907 static inline struct task_struct *next_thread(const struct task_struct *p)
1908 {
1909 return list_entry(rcu_dereference(p->thread_group.next),
1910 struct task_struct, thread_group);
1911 }
1912
1913 static inline int thread_group_empty(struct task_struct *p)
1914 {
1915 return list_empty(&p->thread_group);
1916 }
1917
1918 #define delay_group_leader(p) \
1919 (thread_group_leader(p) && !thread_group_empty(p))
1920
1921 /*
1922 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
1923 * subscriptions and synchronises with wait4(). Also used in procfs. Also
1924 * pins the final release of task.io_context. Also protects ->cpuset and
1925 * ->cgroup.subsys[].
1926 *
1927 * Nests both inside and outside of read_lock(&tasklist_lock).
1928 * It must not be nested with write_lock_irq(&tasklist_lock),
1929 * neither inside nor outside.
1930 */
1931 static inline void task_lock(struct task_struct *p)
1932 {
1933 spin_lock(&p->alloc_lock);
1934 }
1935
1936 static inline void task_unlock(struct task_struct *p)
1937 {
1938 spin_unlock(&p->alloc_lock);
1939 }
1940
1941 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
1942 unsigned long *flags);
1943
1944 static inline void unlock_task_sighand(struct task_struct *tsk,
1945 unsigned long *flags)
1946 {
1947 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
1948 }
1949
1950 #ifndef __HAVE_THREAD_FUNCTIONS
1951
1952 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
1953 #define task_stack_page(task) ((task)->stack)
1954
1955 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
1956 {
1957 *task_thread_info(p) = *task_thread_info(org);
1958 task_thread_info(p)->task = p;
1959 }
1960
1961 static inline unsigned long *end_of_stack(struct task_struct *p)
1962 {
1963 return (unsigned long *)(task_thread_info(p) + 1);
1964 }
1965
1966 #endif
1967
1968 static inline int object_is_on_stack(void *obj)
1969 {
1970 void *stack = task_stack_page(current);
1971
1972 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
1973 }
1974
1975 extern void thread_info_cache_init(void);
1976
1977 /* set thread flags in other task's structures
1978 * - see asm/thread_info.h for TIF_xxxx flags available
1979 */
1980 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1981 {
1982 set_ti_thread_flag(task_thread_info(tsk), flag);
1983 }
1984
1985 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1986 {
1987 clear_ti_thread_flag(task_thread_info(tsk), flag);
1988 }
1989
1990 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1991 {
1992 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1993 }
1994
1995 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1996 {
1997 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1998 }
1999
2000 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2001 {
2002 return test_ti_thread_flag(task_thread_info(tsk), flag);
2003 }
2004
2005 static inline void set_tsk_need_resched(struct task_struct *tsk)
2006 {
2007 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2008 }
2009
2010 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2011 {
2012 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2013 }
2014
2015 static inline int test_tsk_need_resched(struct task_struct *tsk)
2016 {
2017 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2018 }
2019
2020 static inline int signal_pending(struct task_struct *p)
2021 {
2022 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2023 }
2024
2025 extern int __fatal_signal_pending(struct task_struct *p);
2026
2027 static inline int fatal_signal_pending(struct task_struct *p)
2028 {
2029 return signal_pending(p) && __fatal_signal_pending(p);
2030 }
2031
2032 static inline int signal_pending_state(long state, struct task_struct *p)
2033 {
2034 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2035 return 0;
2036 if (!signal_pending(p))
2037 return 0;
2038
2039 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2040 }
2041
2042 static inline int need_resched(void)
2043 {
2044 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2045 }
2046
2047 /*
2048 * cond_resched() and cond_resched_lock(): latency reduction via
2049 * explicit rescheduling in places that are safe. The return
2050 * value indicates whether a reschedule was done in fact.
2051 * cond_resched_lock() will drop the spinlock before scheduling,
2052 * cond_resched_softirq() will enable bhs before scheduling.
2053 */
2054 extern int _cond_resched(void);
2055 #ifdef CONFIG_PREEMPT_BKL
2056 static inline int cond_resched(void)
2057 {
2058 return 0;
2059 }
2060 #else
2061 static inline int cond_resched(void)
2062 {
2063 return _cond_resched();
2064 }
2065 #endif
2066 extern int cond_resched_lock(spinlock_t * lock);
2067 extern int cond_resched_softirq(void);
2068 static inline int cond_resched_bkl(void)
2069 {
2070 return _cond_resched();
2071 }
2072
2073 /*
2074 * Does a critical section need to be broken due to another
2075 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2076 * but a general need for low latency)
2077 */
2078 static inline int spin_needbreak(spinlock_t *lock)
2079 {
2080 #ifdef CONFIG_PREEMPT
2081 return spin_is_contended(lock);
2082 #else
2083 return 0;
2084 #endif
2085 }
2086
2087 /*
2088 * Reevaluate whether the task has signals pending delivery.
2089 * Wake the task if so.
2090 * This is required every time the blocked sigset_t changes.
2091 * callers must hold sighand->siglock.
2092 */
2093 extern void recalc_sigpending_and_wake(struct task_struct *t);
2094 extern void recalc_sigpending(void);
2095
2096 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2097
2098 /*
2099 * Wrappers for p->thread_info->cpu access. No-op on UP.
2100 */
2101 #ifdef CONFIG_SMP
2102
2103 static inline unsigned int task_cpu(const struct task_struct *p)
2104 {
2105 return task_thread_info(p)->cpu;
2106 }
2107
2108 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2109
2110 #else
2111
2112 static inline unsigned int task_cpu(const struct task_struct *p)
2113 {
2114 return 0;
2115 }
2116
2117 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2118 {
2119 }
2120
2121 #endif /* CONFIG_SMP */
2122
2123 extern void arch_pick_mmap_layout(struct mm_struct *mm);
2124
2125 #ifdef CONFIG_TRACING
2126 extern void
2127 __trace_special(void *__tr, void *__data,
2128 unsigned long arg1, unsigned long arg2, unsigned long arg3);
2129 #else
2130 static inline void
2131 __trace_special(void *__tr, void *__data,
2132 unsigned long arg1, unsigned long arg2, unsigned long arg3)
2133 {
2134 }
2135 #endif
2136
2137 extern long sched_setaffinity(pid_t pid, const cpumask_t *new_mask);
2138 extern long sched_getaffinity(pid_t pid, cpumask_t *mask);
2139
2140 extern int sched_mc_power_savings, sched_smt_power_savings;
2141
2142 extern void normalize_rt_tasks(void);
2143
2144 #ifdef CONFIG_GROUP_SCHED
2145
2146 extern struct task_group init_task_group;
2147 #ifdef CONFIG_USER_SCHED
2148 extern struct task_group root_task_group;
2149 #endif
2150
2151 extern struct task_group *sched_create_group(struct task_group *parent);
2152 extern void sched_destroy_group(struct task_group *tg);
2153 extern void sched_move_task(struct task_struct *tsk);
2154 #ifdef CONFIG_FAIR_GROUP_SCHED
2155 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2156 extern unsigned long sched_group_shares(struct task_group *tg);
2157 #endif
2158 #ifdef CONFIG_RT_GROUP_SCHED
2159 extern int sched_group_set_rt_runtime(struct task_group *tg,
2160 long rt_runtime_us);
2161 extern long sched_group_rt_runtime(struct task_group *tg);
2162 extern int sched_group_set_rt_period(struct task_group *tg,
2163 long rt_period_us);
2164 extern long sched_group_rt_period(struct task_group *tg);
2165 #endif
2166 #endif
2167
2168 #ifdef CONFIG_TASK_XACCT
2169 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2170 {
2171 tsk->ioac.rchar += amt;
2172 }
2173
2174 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2175 {
2176 tsk->ioac.wchar += amt;
2177 }
2178
2179 static inline void inc_syscr(struct task_struct *tsk)
2180 {
2181 tsk->ioac.syscr++;
2182 }
2183
2184 static inline void inc_syscw(struct task_struct *tsk)
2185 {
2186 tsk->ioac.syscw++;
2187 }
2188 #else
2189 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2190 {
2191 }
2192
2193 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2194 {
2195 }
2196
2197 static inline void inc_syscr(struct task_struct *tsk)
2198 {
2199 }
2200
2201 static inline void inc_syscw(struct task_struct *tsk)
2202 {
2203 }
2204 #endif
2205
2206 #ifndef TASK_SIZE_OF
2207 #define TASK_SIZE_OF(tsk) TASK_SIZE
2208 #endif
2209
2210 #ifdef CONFIG_MM_OWNER
2211 extern void mm_update_next_owner(struct mm_struct *mm);
2212 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2213 #else
2214 static inline void mm_update_next_owner(struct mm_struct *mm)
2215 {
2216 }
2217
2218 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2219 {
2220 }
2221 #endif /* CONFIG_MM_OWNER */
2222
2223 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
2224
2225 #endif /* __KERNEL__ */
2226
2227 #endif
This page took 0.125765 seconds and 6 git commands to generate.