perf_counters: make software counters work as per-cpu counters
[deliverable/linux.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
29 #define CLONE_NEWNET 0x40000000 /* New network namespace */
30 #define CLONE_IO 0x80000000 /* Clone io context */
31
32 /*
33 * Scheduling policies
34 */
35 #define SCHED_NORMAL 0
36 #define SCHED_FIFO 1
37 #define SCHED_RR 2
38 #define SCHED_BATCH 3
39 /* SCHED_ISO: reserved but not implemented yet */
40 #define SCHED_IDLE 5
41
42 #ifdef __KERNEL__
43
44 struct sched_param {
45 int sched_priority;
46 };
47
48 #include <asm/param.h> /* for HZ */
49
50 #include <linux/capability.h>
51 #include <linux/threads.h>
52 #include <linux/kernel.h>
53 #include <linux/types.h>
54 #include <linux/timex.h>
55 #include <linux/jiffies.h>
56 #include <linux/rbtree.h>
57 #include <linux/thread_info.h>
58 #include <linux/cpumask.h>
59 #include <linux/errno.h>
60 #include <linux/nodemask.h>
61 #include <linux/mm_types.h>
62
63 #include <asm/system.h>
64 #include <asm/page.h>
65 #include <asm/ptrace.h>
66 #include <asm/cputime.h>
67
68 #include <linux/smp.h>
69 #include <linux/sem.h>
70 #include <linux/signal.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compiler.h>
73 #include <linux/completion.h>
74 #include <linux/perf_counter.h>
75 #include <linux/pid.h>
76 #include <linux/percpu.h>
77 #include <linux/topology.h>
78 #include <linux/proportions.h>
79 #include <linux/seccomp.h>
80 #include <linux/rcupdate.h>
81 #include <linux/rtmutex.h>
82
83 #include <linux/time.h>
84 #include <linux/param.h>
85 #include <linux/resource.h>
86 #include <linux/timer.h>
87 #include <linux/hrtimer.h>
88 #include <linux/task_io_accounting.h>
89 #include <linux/kobject.h>
90 #include <linux/latencytop.h>
91 #include <linux/cred.h>
92
93 #include <asm/processor.h>
94
95 struct mem_cgroup;
96 struct exec_domain;
97 struct futex_pi_state;
98 struct robust_list_head;
99 struct bio;
100 struct bts_tracer;
101
102 /*
103 * List of flags we want to share for kernel threads,
104 * if only because they are not used by them anyway.
105 */
106 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
107
108 /*
109 * These are the constant used to fake the fixed-point load-average
110 * counting. Some notes:
111 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
112 * a load-average precision of 10 bits integer + 11 bits fractional
113 * - if you want to count load-averages more often, you need more
114 * precision, or rounding will get you. With 2-second counting freq,
115 * the EXP_n values would be 1981, 2034 and 2043 if still using only
116 * 11 bit fractions.
117 */
118 extern unsigned long avenrun[]; /* Load averages */
119
120 #define FSHIFT 11 /* nr of bits of precision */
121 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
122 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
123 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
124 #define EXP_5 2014 /* 1/exp(5sec/5min) */
125 #define EXP_15 2037 /* 1/exp(5sec/15min) */
126
127 #define CALC_LOAD(load,exp,n) \
128 load *= exp; \
129 load += n*(FIXED_1-exp); \
130 load >>= FSHIFT;
131
132 extern unsigned long total_forks;
133 extern int nr_threads;
134 DECLARE_PER_CPU(unsigned long, process_counts);
135 extern int nr_processes(void);
136 extern unsigned long nr_running(void);
137 extern unsigned long nr_uninterruptible(void);
138 extern unsigned long nr_active(void);
139 extern unsigned long nr_iowait(void);
140 extern u64 cpu_nr_switches(int cpu);
141 extern u64 cpu_nr_migrations(int cpu);
142
143 struct seq_file;
144 struct cfs_rq;
145 struct task_group;
146 #ifdef CONFIG_SCHED_DEBUG
147 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
148 extern void proc_sched_set_task(struct task_struct *p);
149 extern void
150 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
151 #else
152 static inline void
153 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
154 {
155 }
156 static inline void proc_sched_set_task(struct task_struct *p)
157 {
158 }
159 static inline void
160 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
161 {
162 }
163 #endif
164
165 extern unsigned long long time_sync_thresh;
166
167 /*
168 * Task state bitmask. NOTE! These bits are also
169 * encoded in fs/proc/array.c: get_task_state().
170 *
171 * We have two separate sets of flags: task->state
172 * is about runnability, while task->exit_state are
173 * about the task exiting. Confusing, but this way
174 * modifying one set can't modify the other one by
175 * mistake.
176 */
177 #define TASK_RUNNING 0
178 #define TASK_INTERRUPTIBLE 1
179 #define TASK_UNINTERRUPTIBLE 2
180 #define __TASK_STOPPED 4
181 #define __TASK_TRACED 8
182 /* in tsk->exit_state */
183 #define EXIT_ZOMBIE 16
184 #define EXIT_DEAD 32
185 /* in tsk->state again */
186 #define TASK_DEAD 64
187 #define TASK_WAKEKILL 128
188
189 /* Convenience macros for the sake of set_task_state */
190 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
191 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
192 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
193
194 /* Convenience macros for the sake of wake_up */
195 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
196 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
197
198 /* get_task_state() */
199 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
200 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
201 __TASK_TRACED)
202
203 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
204 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
205 #define task_is_stopped_or_traced(task) \
206 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
207 #define task_contributes_to_load(task) \
208 ((task->state & TASK_UNINTERRUPTIBLE) != 0)
209
210 #define __set_task_state(tsk, state_value) \
211 do { (tsk)->state = (state_value); } while (0)
212 #define set_task_state(tsk, state_value) \
213 set_mb((tsk)->state, (state_value))
214
215 /*
216 * set_current_state() includes a barrier so that the write of current->state
217 * is correctly serialised wrt the caller's subsequent test of whether to
218 * actually sleep:
219 *
220 * set_current_state(TASK_UNINTERRUPTIBLE);
221 * if (do_i_need_to_sleep())
222 * schedule();
223 *
224 * If the caller does not need such serialisation then use __set_current_state()
225 */
226 #define __set_current_state(state_value) \
227 do { current->state = (state_value); } while (0)
228 #define set_current_state(state_value) \
229 set_mb(current->state, (state_value))
230
231 /* Task command name length */
232 #define TASK_COMM_LEN 16
233
234 #include <linux/spinlock.h>
235
236 /*
237 * This serializes "schedule()" and also protects
238 * the run-queue from deletions/modifications (but
239 * _adding_ to the beginning of the run-queue has
240 * a separate lock).
241 */
242 extern rwlock_t tasklist_lock;
243 extern spinlock_t mmlist_lock;
244
245 struct task_struct;
246
247 extern void sched_init(void);
248 extern void sched_init_smp(void);
249 extern asmlinkage void schedule_tail(struct task_struct *prev);
250 extern void init_idle(struct task_struct *idle, int cpu);
251 extern void init_idle_bootup_task(struct task_struct *idle);
252
253 extern int runqueue_is_locked(void);
254 extern void task_rq_unlock_wait(struct task_struct *p);
255
256 extern cpumask_var_t nohz_cpu_mask;
257 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
258 extern int select_nohz_load_balancer(int cpu);
259 #else
260 static inline int select_nohz_load_balancer(int cpu)
261 {
262 return 0;
263 }
264 #endif
265
266 /*
267 * Only dump TASK_* tasks. (0 for all tasks)
268 */
269 extern void show_state_filter(unsigned long state_filter);
270
271 static inline void show_state(void)
272 {
273 show_state_filter(0);
274 }
275
276 extern void show_regs(struct pt_regs *);
277
278 /*
279 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
280 * task), SP is the stack pointer of the first frame that should be shown in the back
281 * trace (or NULL if the entire call-chain of the task should be shown).
282 */
283 extern void show_stack(struct task_struct *task, unsigned long *sp);
284
285 void io_schedule(void);
286 long io_schedule_timeout(long timeout);
287
288 extern void cpu_init (void);
289 extern void trap_init(void);
290 extern void update_process_times(int user);
291 extern void scheduler_tick(void);
292
293 extern void sched_show_task(struct task_struct *p);
294
295 #ifdef CONFIG_DETECT_SOFTLOCKUP
296 extern void softlockup_tick(void);
297 extern void touch_softlockup_watchdog(void);
298 extern void touch_all_softlockup_watchdogs(void);
299 extern unsigned int softlockup_panic;
300 extern unsigned long sysctl_hung_task_check_count;
301 extern unsigned long sysctl_hung_task_timeout_secs;
302 extern unsigned long sysctl_hung_task_warnings;
303 extern int softlockup_thresh;
304 #else
305 static inline void softlockup_tick(void)
306 {
307 }
308 static inline void spawn_softlockup_task(void)
309 {
310 }
311 static inline void touch_softlockup_watchdog(void)
312 {
313 }
314 static inline void touch_all_softlockup_watchdogs(void)
315 {
316 }
317 #endif
318
319
320 /* Attach to any functions which should be ignored in wchan output. */
321 #define __sched __attribute__((__section__(".sched.text")))
322
323 /* Linker adds these: start and end of __sched functions */
324 extern char __sched_text_start[], __sched_text_end[];
325
326 /* Is this address in the __sched functions? */
327 extern int in_sched_functions(unsigned long addr);
328
329 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
330 extern signed long schedule_timeout(signed long timeout);
331 extern signed long schedule_timeout_interruptible(signed long timeout);
332 extern signed long schedule_timeout_killable(signed long timeout);
333 extern signed long schedule_timeout_uninterruptible(signed long timeout);
334 asmlinkage void schedule(void);
335
336 struct nsproxy;
337 struct user_namespace;
338
339 /* Maximum number of active map areas.. This is a random (large) number */
340 #define DEFAULT_MAX_MAP_COUNT 65536
341
342 extern int sysctl_max_map_count;
343
344 #include <linux/aio.h>
345
346 extern unsigned long
347 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
348 unsigned long, unsigned long);
349 extern unsigned long
350 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
351 unsigned long len, unsigned long pgoff,
352 unsigned long flags);
353 extern void arch_unmap_area(struct mm_struct *, unsigned long);
354 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
355
356 #if USE_SPLIT_PTLOCKS
357 /*
358 * The mm counters are not protected by its page_table_lock,
359 * so must be incremented atomically.
360 */
361 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
362 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
363 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
364 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
365 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
366
367 #else /* !USE_SPLIT_PTLOCKS */
368 /*
369 * The mm counters are protected by its page_table_lock,
370 * so can be incremented directly.
371 */
372 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
373 #define get_mm_counter(mm, member) ((mm)->_##member)
374 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
375 #define inc_mm_counter(mm, member) (mm)->_##member++
376 #define dec_mm_counter(mm, member) (mm)->_##member--
377
378 #endif /* !USE_SPLIT_PTLOCKS */
379
380 #define get_mm_rss(mm) \
381 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
382 #define update_hiwater_rss(mm) do { \
383 unsigned long _rss = get_mm_rss(mm); \
384 if ((mm)->hiwater_rss < _rss) \
385 (mm)->hiwater_rss = _rss; \
386 } while (0)
387 #define update_hiwater_vm(mm) do { \
388 if ((mm)->hiwater_vm < (mm)->total_vm) \
389 (mm)->hiwater_vm = (mm)->total_vm; \
390 } while (0)
391
392 #define get_mm_hiwater_rss(mm) max((mm)->hiwater_rss, get_mm_rss(mm))
393 #define get_mm_hiwater_vm(mm) max((mm)->hiwater_vm, (mm)->total_vm)
394
395 extern void set_dumpable(struct mm_struct *mm, int value);
396 extern int get_dumpable(struct mm_struct *mm);
397
398 /* mm flags */
399 /* dumpable bits */
400 #define MMF_DUMPABLE 0 /* core dump is permitted */
401 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
402 #define MMF_DUMPABLE_BITS 2
403
404 /* coredump filter bits */
405 #define MMF_DUMP_ANON_PRIVATE 2
406 #define MMF_DUMP_ANON_SHARED 3
407 #define MMF_DUMP_MAPPED_PRIVATE 4
408 #define MMF_DUMP_MAPPED_SHARED 5
409 #define MMF_DUMP_ELF_HEADERS 6
410 #define MMF_DUMP_HUGETLB_PRIVATE 7
411 #define MMF_DUMP_HUGETLB_SHARED 8
412 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
413 #define MMF_DUMP_FILTER_BITS 7
414 #define MMF_DUMP_FILTER_MASK \
415 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
416 #define MMF_DUMP_FILTER_DEFAULT \
417 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
418 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
419
420 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
421 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
422 #else
423 # define MMF_DUMP_MASK_DEFAULT_ELF 0
424 #endif
425
426 struct sighand_struct {
427 atomic_t count;
428 struct k_sigaction action[_NSIG];
429 spinlock_t siglock;
430 wait_queue_head_t signalfd_wqh;
431 };
432
433 struct pacct_struct {
434 int ac_flag;
435 long ac_exitcode;
436 unsigned long ac_mem;
437 cputime_t ac_utime, ac_stime;
438 unsigned long ac_minflt, ac_majflt;
439 };
440
441 /**
442 * struct task_cputime - collected CPU time counts
443 * @utime: time spent in user mode, in &cputime_t units
444 * @stime: time spent in kernel mode, in &cputime_t units
445 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
446 *
447 * This structure groups together three kinds of CPU time that are
448 * tracked for threads and thread groups. Most things considering
449 * CPU time want to group these counts together and treat all three
450 * of them in parallel.
451 */
452 struct task_cputime {
453 cputime_t utime;
454 cputime_t stime;
455 unsigned long long sum_exec_runtime;
456 };
457 /* Alternate field names when used to cache expirations. */
458 #define prof_exp stime
459 #define virt_exp utime
460 #define sched_exp sum_exec_runtime
461
462 /**
463 * struct thread_group_cputime - thread group interval timer counts
464 * @totals: thread group interval timers; substructure for
465 * uniprocessor kernel, per-cpu for SMP kernel.
466 *
467 * This structure contains the version of task_cputime, above, that is
468 * used for thread group CPU clock calculations.
469 */
470 struct thread_group_cputime {
471 struct task_cputime *totals;
472 };
473
474 /*
475 * NOTE! "signal_struct" does not have it's own
476 * locking, because a shared signal_struct always
477 * implies a shared sighand_struct, so locking
478 * sighand_struct is always a proper superset of
479 * the locking of signal_struct.
480 */
481 struct signal_struct {
482 atomic_t count;
483 atomic_t live;
484
485 wait_queue_head_t wait_chldexit; /* for wait4() */
486
487 /* current thread group signal load-balancing target: */
488 struct task_struct *curr_target;
489
490 /* shared signal handling: */
491 struct sigpending shared_pending;
492
493 /* thread group exit support */
494 int group_exit_code;
495 /* overloaded:
496 * - notify group_exit_task when ->count is equal to notify_count
497 * - everyone except group_exit_task is stopped during signal delivery
498 * of fatal signals, group_exit_task processes the signal.
499 */
500 int notify_count;
501 struct task_struct *group_exit_task;
502
503 /* thread group stop support, overloads group_exit_code too */
504 int group_stop_count;
505 unsigned int flags; /* see SIGNAL_* flags below */
506
507 /* POSIX.1b Interval Timers */
508 struct list_head posix_timers;
509
510 /* ITIMER_REAL timer for the process */
511 struct hrtimer real_timer;
512 struct pid *leader_pid;
513 ktime_t it_real_incr;
514
515 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
516 cputime_t it_prof_expires, it_virt_expires;
517 cputime_t it_prof_incr, it_virt_incr;
518
519 /*
520 * Thread group totals for process CPU clocks.
521 * See thread_group_cputime(), et al, for details.
522 */
523 struct thread_group_cputime cputime;
524
525 /* Earliest-expiration cache. */
526 struct task_cputime cputime_expires;
527
528 struct list_head cpu_timers[3];
529
530 /* job control IDs */
531
532 /*
533 * pgrp and session fields are deprecated.
534 * use the task_session_Xnr and task_pgrp_Xnr routines below
535 */
536
537 union {
538 pid_t pgrp __deprecated;
539 pid_t __pgrp;
540 };
541
542 struct pid *tty_old_pgrp;
543
544 union {
545 pid_t session __deprecated;
546 pid_t __session;
547 };
548
549 /* boolean value for session group leader */
550 int leader;
551
552 struct tty_struct *tty; /* NULL if no tty */
553
554 /*
555 * Cumulative resource counters for dead threads in the group,
556 * and for reaped dead child processes forked by this group.
557 * Live threads maintain their own counters and add to these
558 * in __exit_signal, except for the group leader.
559 */
560 cputime_t cutime, cstime;
561 cputime_t gtime;
562 cputime_t cgtime;
563 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
564 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
565 unsigned long inblock, oublock, cinblock, coublock;
566 struct task_io_accounting ioac;
567
568 /*
569 * We don't bother to synchronize most readers of this at all,
570 * because there is no reader checking a limit that actually needs
571 * to get both rlim_cur and rlim_max atomically, and either one
572 * alone is a single word that can safely be read normally.
573 * getrlimit/setrlimit use task_lock(current->group_leader) to
574 * protect this instead of the siglock, because they really
575 * have no need to disable irqs.
576 */
577 struct rlimit rlim[RLIM_NLIMITS];
578
579 #ifdef CONFIG_BSD_PROCESS_ACCT
580 struct pacct_struct pacct; /* per-process accounting information */
581 #endif
582 #ifdef CONFIG_TASKSTATS
583 struct taskstats *stats;
584 #endif
585 #ifdef CONFIG_AUDIT
586 unsigned audit_tty;
587 struct tty_audit_buf *tty_audit_buf;
588 #endif
589 };
590
591 /* Context switch must be unlocked if interrupts are to be enabled */
592 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
593 # define __ARCH_WANT_UNLOCKED_CTXSW
594 #endif
595
596 /*
597 * Bits in flags field of signal_struct.
598 */
599 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
600 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
601 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
602 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
603 /*
604 * Pending notifications to parent.
605 */
606 #define SIGNAL_CLD_STOPPED 0x00000010
607 #define SIGNAL_CLD_CONTINUED 0x00000020
608 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
609
610 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
611
612 /* If true, all threads except ->group_exit_task have pending SIGKILL */
613 static inline int signal_group_exit(const struct signal_struct *sig)
614 {
615 return (sig->flags & SIGNAL_GROUP_EXIT) ||
616 (sig->group_exit_task != NULL);
617 }
618
619 /*
620 * Some day this will be a full-fledged user tracking system..
621 */
622 struct user_struct {
623 atomic_t __count; /* reference count */
624 atomic_t processes; /* How many processes does this user have? */
625 atomic_t files; /* How many open files does this user have? */
626 atomic_t sigpending; /* How many pending signals does this user have? */
627 #ifdef CONFIG_INOTIFY_USER
628 atomic_t inotify_watches; /* How many inotify watches does this user have? */
629 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
630 #endif
631 #ifdef CONFIG_EPOLL
632 atomic_t epoll_devs; /* The number of epoll descriptors currently open */
633 atomic_t epoll_watches; /* The number of file descriptors currently watched */
634 #endif
635 #ifdef CONFIG_POSIX_MQUEUE
636 /* protected by mq_lock */
637 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
638 #endif
639 unsigned long locked_shm; /* How many pages of mlocked shm ? */
640
641 #ifdef CONFIG_KEYS
642 struct key *uid_keyring; /* UID specific keyring */
643 struct key *session_keyring; /* UID's default session keyring */
644 #endif
645
646 /* Hash table maintenance information */
647 struct hlist_node uidhash_node;
648 uid_t uid;
649 struct user_namespace *user_ns;
650
651 #ifdef CONFIG_USER_SCHED
652 struct task_group *tg;
653 #ifdef CONFIG_SYSFS
654 struct kobject kobj;
655 struct work_struct work;
656 #endif
657 #endif
658 };
659
660 extern int uids_sysfs_init(void);
661
662 extern struct user_struct *find_user(uid_t);
663
664 extern struct user_struct root_user;
665 #define INIT_USER (&root_user)
666
667
668 struct backing_dev_info;
669 struct reclaim_state;
670
671 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
672 struct sched_info {
673 /* cumulative counters */
674 unsigned long pcount; /* # of times run on this cpu */
675 unsigned long long run_delay; /* time spent waiting on a runqueue */
676
677 /* timestamps */
678 unsigned long long last_arrival,/* when we last ran on a cpu */
679 last_queued; /* when we were last queued to run */
680 #ifdef CONFIG_SCHEDSTATS
681 /* BKL stats */
682 unsigned int bkl_count;
683 #endif
684 };
685 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
686
687 #ifdef CONFIG_TASK_DELAY_ACCT
688 struct task_delay_info {
689 spinlock_t lock;
690 unsigned int flags; /* Private per-task flags */
691
692 /* For each stat XXX, add following, aligned appropriately
693 *
694 * struct timespec XXX_start, XXX_end;
695 * u64 XXX_delay;
696 * u32 XXX_count;
697 *
698 * Atomicity of updates to XXX_delay, XXX_count protected by
699 * single lock above (split into XXX_lock if contention is an issue).
700 */
701
702 /*
703 * XXX_count is incremented on every XXX operation, the delay
704 * associated with the operation is added to XXX_delay.
705 * XXX_delay contains the accumulated delay time in nanoseconds.
706 */
707 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
708 u64 blkio_delay; /* wait for sync block io completion */
709 u64 swapin_delay; /* wait for swapin block io completion */
710 u32 blkio_count; /* total count of the number of sync block */
711 /* io operations performed */
712 u32 swapin_count; /* total count of the number of swapin block */
713 /* io operations performed */
714
715 struct timespec freepages_start, freepages_end;
716 u64 freepages_delay; /* wait for memory reclaim */
717 u32 freepages_count; /* total count of memory reclaim */
718 };
719 #endif /* CONFIG_TASK_DELAY_ACCT */
720
721 static inline int sched_info_on(void)
722 {
723 #ifdef CONFIG_SCHEDSTATS
724 return 1;
725 #elif defined(CONFIG_TASK_DELAY_ACCT)
726 extern int delayacct_on;
727 return delayacct_on;
728 #else
729 return 0;
730 #endif
731 }
732
733 enum cpu_idle_type {
734 CPU_IDLE,
735 CPU_NOT_IDLE,
736 CPU_NEWLY_IDLE,
737 CPU_MAX_IDLE_TYPES
738 };
739
740 /*
741 * sched-domains (multiprocessor balancing) declarations:
742 */
743
744 /*
745 * Increase resolution of nice-level calculations:
746 */
747 #define SCHED_LOAD_SHIFT 10
748 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
749
750 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
751
752 #ifdef CONFIG_SMP
753 #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */
754 #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */
755 #define SD_BALANCE_EXEC 4 /* Balance on exec */
756 #define SD_BALANCE_FORK 8 /* Balance on fork, clone */
757 #define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */
758 #define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */
759 #define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */
760 #define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */
761 #define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */
762 #define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */
763 #define SD_SERIALIZE 1024 /* Only a single load balancing instance */
764 #define SD_WAKE_IDLE_FAR 2048 /* Gain latency sacrificing cache hit */
765
766 enum powersavings_balance_level {
767 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */
768 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package
769 * first for long running threads
770 */
771 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle
772 * cpu package for power savings
773 */
774 MAX_POWERSAVINGS_BALANCE_LEVELS
775 };
776
777 extern int sched_mc_power_savings, sched_smt_power_savings;
778
779 static inline int sd_balance_for_mc_power(void)
780 {
781 if (sched_smt_power_savings)
782 return SD_POWERSAVINGS_BALANCE;
783
784 return 0;
785 }
786
787 static inline int sd_balance_for_package_power(void)
788 {
789 if (sched_mc_power_savings | sched_smt_power_savings)
790 return SD_POWERSAVINGS_BALANCE;
791
792 return 0;
793 }
794
795 /*
796 * Optimise SD flags for power savings:
797 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings.
798 * Keep default SD flags if sched_{smt,mc}_power_saving=0
799 */
800
801 static inline int sd_power_saving_flags(void)
802 {
803 if (sched_mc_power_savings | sched_smt_power_savings)
804 return SD_BALANCE_NEWIDLE;
805
806 return 0;
807 }
808
809 struct sched_group {
810 struct sched_group *next; /* Must be a circular list */
811
812 /*
813 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
814 * single CPU. This is read only (except for setup, hotplug CPU).
815 * Note : Never change cpu_power without recompute its reciprocal
816 */
817 unsigned int __cpu_power;
818 /*
819 * reciprocal value of cpu_power to avoid expensive divides
820 * (see include/linux/reciprocal_div.h)
821 */
822 u32 reciprocal_cpu_power;
823
824 unsigned long cpumask[];
825 };
826
827 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
828 {
829 return to_cpumask(sg->cpumask);
830 }
831
832 enum sched_domain_level {
833 SD_LV_NONE = 0,
834 SD_LV_SIBLING,
835 SD_LV_MC,
836 SD_LV_CPU,
837 SD_LV_NODE,
838 SD_LV_ALLNODES,
839 SD_LV_MAX
840 };
841
842 struct sched_domain_attr {
843 int relax_domain_level;
844 };
845
846 #define SD_ATTR_INIT (struct sched_domain_attr) { \
847 .relax_domain_level = -1, \
848 }
849
850 struct sched_domain {
851 /* These fields must be setup */
852 struct sched_domain *parent; /* top domain must be null terminated */
853 struct sched_domain *child; /* bottom domain must be null terminated */
854 struct sched_group *groups; /* the balancing groups of the domain */
855 unsigned long min_interval; /* Minimum balance interval ms */
856 unsigned long max_interval; /* Maximum balance interval ms */
857 unsigned int busy_factor; /* less balancing by factor if busy */
858 unsigned int imbalance_pct; /* No balance until over watermark */
859 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
860 unsigned int busy_idx;
861 unsigned int idle_idx;
862 unsigned int newidle_idx;
863 unsigned int wake_idx;
864 unsigned int forkexec_idx;
865 int flags; /* See SD_* */
866 enum sched_domain_level level;
867
868 /* Runtime fields. */
869 unsigned long last_balance; /* init to jiffies. units in jiffies */
870 unsigned int balance_interval; /* initialise to 1. units in ms. */
871 unsigned int nr_balance_failed; /* initialise to 0 */
872
873 u64 last_update;
874
875 #ifdef CONFIG_SCHEDSTATS
876 /* load_balance() stats */
877 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
878 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
879 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
880 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
881 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
882 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
883 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
884 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
885
886 /* Active load balancing */
887 unsigned int alb_count;
888 unsigned int alb_failed;
889 unsigned int alb_pushed;
890
891 /* SD_BALANCE_EXEC stats */
892 unsigned int sbe_count;
893 unsigned int sbe_balanced;
894 unsigned int sbe_pushed;
895
896 /* SD_BALANCE_FORK stats */
897 unsigned int sbf_count;
898 unsigned int sbf_balanced;
899 unsigned int sbf_pushed;
900
901 /* try_to_wake_up() stats */
902 unsigned int ttwu_wake_remote;
903 unsigned int ttwu_move_affine;
904 unsigned int ttwu_move_balance;
905 #endif
906 #ifdef CONFIG_SCHED_DEBUG
907 char *name;
908 #endif
909
910 /* span of all CPUs in this domain */
911 unsigned long span[];
912 };
913
914 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
915 {
916 return to_cpumask(sd->span);
917 }
918
919 extern void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
920 struct sched_domain_attr *dattr_new);
921
922 /* Test a flag in parent sched domain */
923 static inline int test_sd_parent(struct sched_domain *sd, int flag)
924 {
925 if (sd->parent && (sd->parent->flags & flag))
926 return 1;
927
928 return 0;
929 }
930
931 #else /* CONFIG_SMP */
932
933 struct sched_domain_attr;
934
935 static inline void
936 partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
937 struct sched_domain_attr *dattr_new)
938 {
939 }
940 #endif /* !CONFIG_SMP */
941
942 struct io_context; /* See blkdev.h */
943
944
945 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
946 extern void prefetch_stack(struct task_struct *t);
947 #else
948 static inline void prefetch_stack(struct task_struct *t) { }
949 #endif
950
951 struct audit_context; /* See audit.c */
952 struct mempolicy;
953 struct pipe_inode_info;
954 struct uts_namespace;
955
956 struct rq;
957 struct sched_domain;
958
959 struct sched_class {
960 const struct sched_class *next;
961
962 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
963 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
964 void (*yield_task) (struct rq *rq);
965
966 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int sync);
967
968 struct task_struct * (*pick_next_task) (struct rq *rq);
969 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
970
971 #ifdef CONFIG_SMP
972 int (*select_task_rq)(struct task_struct *p, int sync);
973
974 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
975 struct rq *busiest, unsigned long max_load_move,
976 struct sched_domain *sd, enum cpu_idle_type idle,
977 int *all_pinned, int *this_best_prio);
978
979 int (*move_one_task) (struct rq *this_rq, int this_cpu,
980 struct rq *busiest, struct sched_domain *sd,
981 enum cpu_idle_type idle);
982 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
983 void (*post_schedule) (struct rq *this_rq);
984 void (*task_wake_up) (struct rq *this_rq, struct task_struct *task);
985
986 void (*set_cpus_allowed)(struct task_struct *p,
987 const struct cpumask *newmask);
988
989 void (*rq_online)(struct rq *rq);
990 void (*rq_offline)(struct rq *rq);
991 #endif
992
993 void (*set_curr_task) (struct rq *rq);
994 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
995 void (*task_new) (struct rq *rq, struct task_struct *p);
996
997 void (*switched_from) (struct rq *this_rq, struct task_struct *task,
998 int running);
999 void (*switched_to) (struct rq *this_rq, struct task_struct *task,
1000 int running);
1001 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1002 int oldprio, int running);
1003
1004 #ifdef CONFIG_FAIR_GROUP_SCHED
1005 void (*moved_group) (struct task_struct *p);
1006 #endif
1007 };
1008
1009 struct load_weight {
1010 unsigned long weight, inv_weight;
1011 };
1012
1013 /*
1014 * CFS stats for a schedulable entity (task, task-group etc)
1015 *
1016 * Current field usage histogram:
1017 *
1018 * 4 se->block_start
1019 * 4 se->run_node
1020 * 4 se->sleep_start
1021 * 6 se->load.weight
1022 */
1023 struct sched_entity {
1024 struct load_weight load; /* for load-balancing */
1025 struct rb_node run_node;
1026 struct list_head group_node;
1027 unsigned int on_rq;
1028
1029 u64 exec_start;
1030 u64 sum_exec_runtime;
1031 u64 vruntime;
1032 u64 prev_sum_exec_runtime;
1033
1034 u64 last_wakeup;
1035 u64 avg_overlap;
1036
1037 u64 nr_migrations;
1038
1039 #ifdef CONFIG_SCHEDSTATS
1040 u64 wait_start;
1041 u64 wait_max;
1042 u64 wait_count;
1043 u64 wait_sum;
1044
1045 u64 sleep_start;
1046 u64 sleep_max;
1047 s64 sum_sleep_runtime;
1048
1049 u64 block_start;
1050 u64 block_max;
1051 u64 exec_max;
1052 u64 slice_max;
1053
1054 u64 nr_migrations_cold;
1055 u64 nr_failed_migrations_affine;
1056 u64 nr_failed_migrations_running;
1057 u64 nr_failed_migrations_hot;
1058 u64 nr_forced_migrations;
1059 u64 nr_forced2_migrations;
1060
1061 u64 nr_wakeups;
1062 u64 nr_wakeups_sync;
1063 u64 nr_wakeups_migrate;
1064 u64 nr_wakeups_local;
1065 u64 nr_wakeups_remote;
1066 u64 nr_wakeups_affine;
1067 u64 nr_wakeups_affine_attempts;
1068 u64 nr_wakeups_passive;
1069 u64 nr_wakeups_idle;
1070 #endif
1071
1072 #ifdef CONFIG_FAIR_GROUP_SCHED
1073 struct sched_entity *parent;
1074 /* rq on which this entity is (to be) queued: */
1075 struct cfs_rq *cfs_rq;
1076 /* rq "owned" by this entity/group: */
1077 struct cfs_rq *my_q;
1078 #endif
1079 };
1080
1081 struct sched_rt_entity {
1082 struct list_head run_list;
1083 unsigned long timeout;
1084 unsigned int time_slice;
1085 int nr_cpus_allowed;
1086
1087 struct sched_rt_entity *back;
1088 #ifdef CONFIG_RT_GROUP_SCHED
1089 struct sched_rt_entity *parent;
1090 /* rq on which this entity is (to be) queued: */
1091 struct rt_rq *rt_rq;
1092 /* rq "owned" by this entity/group: */
1093 struct rt_rq *my_q;
1094 #endif
1095 };
1096
1097 struct task_struct {
1098 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1099 void *stack;
1100 atomic_t usage;
1101 unsigned int flags; /* per process flags, defined below */
1102 unsigned int ptrace;
1103
1104 int lock_depth; /* BKL lock depth */
1105
1106 #ifdef CONFIG_SMP
1107 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1108 int oncpu;
1109 #endif
1110 #endif
1111
1112 int prio, static_prio, normal_prio;
1113 unsigned int rt_priority;
1114 const struct sched_class *sched_class;
1115 struct sched_entity se;
1116 struct sched_rt_entity rt;
1117
1118 #ifdef CONFIG_PREEMPT_NOTIFIERS
1119 /* list of struct preempt_notifier: */
1120 struct hlist_head preempt_notifiers;
1121 #endif
1122
1123 /*
1124 * fpu_counter contains the number of consecutive context switches
1125 * that the FPU is used. If this is over a threshold, the lazy fpu
1126 * saving becomes unlazy to save the trap. This is an unsigned char
1127 * so that after 256 times the counter wraps and the behavior turns
1128 * lazy again; this to deal with bursty apps that only use FPU for
1129 * a short time
1130 */
1131 unsigned char fpu_counter;
1132 s8 oomkilladj; /* OOM kill score adjustment (bit shift). */
1133 #ifdef CONFIG_BLK_DEV_IO_TRACE
1134 unsigned int btrace_seq;
1135 #endif
1136
1137 unsigned int policy;
1138 cpumask_t cpus_allowed;
1139
1140 #ifdef CONFIG_PREEMPT_RCU
1141 int rcu_read_lock_nesting;
1142 int rcu_flipctr_idx;
1143 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1144
1145 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1146 struct sched_info sched_info;
1147 #endif
1148
1149 struct list_head tasks;
1150
1151 struct mm_struct *mm, *active_mm;
1152
1153 /* task state */
1154 struct linux_binfmt *binfmt;
1155 int exit_state;
1156 int exit_code, exit_signal;
1157 int pdeath_signal; /* The signal sent when the parent dies */
1158 /* ??? */
1159 unsigned int personality;
1160 unsigned did_exec:1;
1161 pid_t pid;
1162 pid_t tgid;
1163
1164 /* Canary value for the -fstack-protector gcc feature */
1165 unsigned long stack_canary;
1166
1167 /*
1168 * pointers to (original) parent process, youngest child, younger sibling,
1169 * older sibling, respectively. (p->father can be replaced with
1170 * p->real_parent->pid)
1171 */
1172 struct task_struct *real_parent; /* real parent process */
1173 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1174 /*
1175 * children/sibling forms the list of my natural children
1176 */
1177 struct list_head children; /* list of my children */
1178 struct list_head sibling; /* linkage in my parent's children list */
1179 struct task_struct *group_leader; /* threadgroup leader */
1180
1181 /*
1182 * ptraced is the list of tasks this task is using ptrace on.
1183 * This includes both natural children and PTRACE_ATTACH targets.
1184 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1185 */
1186 struct list_head ptraced;
1187 struct list_head ptrace_entry;
1188
1189 #ifdef CONFIG_X86_PTRACE_BTS
1190 /*
1191 * This is the tracer handle for the ptrace BTS extension.
1192 * This field actually belongs to the ptracer task.
1193 */
1194 struct bts_tracer *bts;
1195 /*
1196 * The buffer to hold the BTS data.
1197 */
1198 void *bts_buffer;
1199 size_t bts_size;
1200 #endif /* CONFIG_X86_PTRACE_BTS */
1201
1202 /* PID/PID hash table linkage. */
1203 struct pid_link pids[PIDTYPE_MAX];
1204 struct list_head thread_group;
1205
1206 struct completion *vfork_done; /* for vfork() */
1207 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1208 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1209
1210 cputime_t utime, stime, utimescaled, stimescaled;
1211 cputime_t gtime;
1212 cputime_t prev_utime, prev_stime;
1213 unsigned long nvcsw, nivcsw; /* context switch counts */
1214 struct timespec start_time; /* monotonic time */
1215 struct timespec real_start_time; /* boot based time */
1216 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1217 unsigned long min_flt, maj_flt;
1218
1219 struct task_cputime cputime_expires;
1220 struct list_head cpu_timers[3];
1221
1222 /* process credentials */
1223 const struct cred *real_cred; /* objective and real subjective task
1224 * credentials (COW) */
1225 const struct cred *cred; /* effective (overridable) subjective task
1226 * credentials (COW) */
1227 struct mutex cred_exec_mutex; /* execve vs ptrace cred calculation mutex */
1228
1229 char comm[TASK_COMM_LEN]; /* executable name excluding path
1230 - access with [gs]et_task_comm (which lock
1231 it with task_lock())
1232 - initialized normally by flush_old_exec */
1233 /* file system info */
1234 int link_count, total_link_count;
1235 #ifdef CONFIG_SYSVIPC
1236 /* ipc stuff */
1237 struct sysv_sem sysvsem;
1238 #endif
1239 #ifdef CONFIG_DETECT_SOFTLOCKUP
1240 /* hung task detection */
1241 unsigned long last_switch_timestamp;
1242 unsigned long last_switch_count;
1243 #endif
1244 /* CPU-specific state of this task */
1245 struct thread_struct thread;
1246 /* filesystem information */
1247 struct fs_struct *fs;
1248 /* open file information */
1249 struct files_struct *files;
1250 /* namespaces */
1251 struct nsproxy *nsproxy;
1252 /* signal handlers */
1253 struct signal_struct *signal;
1254 struct sighand_struct *sighand;
1255
1256 sigset_t blocked, real_blocked;
1257 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1258 struct sigpending pending;
1259
1260 unsigned long sas_ss_sp;
1261 size_t sas_ss_size;
1262 int (*notifier)(void *priv);
1263 void *notifier_data;
1264 sigset_t *notifier_mask;
1265 struct audit_context *audit_context;
1266 #ifdef CONFIG_AUDITSYSCALL
1267 uid_t loginuid;
1268 unsigned int sessionid;
1269 #endif
1270 seccomp_t seccomp;
1271
1272 /* Thread group tracking */
1273 u32 parent_exec_id;
1274 u32 self_exec_id;
1275 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
1276 spinlock_t alloc_lock;
1277
1278 /* Protection of the PI data structures: */
1279 spinlock_t pi_lock;
1280
1281 #ifdef CONFIG_RT_MUTEXES
1282 /* PI waiters blocked on a rt_mutex held by this task */
1283 struct plist_head pi_waiters;
1284 /* Deadlock detection and priority inheritance handling */
1285 struct rt_mutex_waiter *pi_blocked_on;
1286 #endif
1287
1288 #ifdef CONFIG_DEBUG_MUTEXES
1289 /* mutex deadlock detection */
1290 struct mutex_waiter *blocked_on;
1291 #endif
1292 #ifdef CONFIG_TRACE_IRQFLAGS
1293 unsigned int irq_events;
1294 int hardirqs_enabled;
1295 unsigned long hardirq_enable_ip;
1296 unsigned int hardirq_enable_event;
1297 unsigned long hardirq_disable_ip;
1298 unsigned int hardirq_disable_event;
1299 int softirqs_enabled;
1300 unsigned long softirq_disable_ip;
1301 unsigned int softirq_disable_event;
1302 unsigned long softirq_enable_ip;
1303 unsigned int softirq_enable_event;
1304 int hardirq_context;
1305 int softirq_context;
1306 #endif
1307 #ifdef CONFIG_LOCKDEP
1308 # define MAX_LOCK_DEPTH 48UL
1309 u64 curr_chain_key;
1310 int lockdep_depth;
1311 unsigned int lockdep_recursion;
1312 struct held_lock held_locks[MAX_LOCK_DEPTH];
1313 #endif
1314
1315 /* journalling filesystem info */
1316 void *journal_info;
1317
1318 /* stacked block device info */
1319 struct bio *bio_list, **bio_tail;
1320
1321 /* VM state */
1322 struct reclaim_state *reclaim_state;
1323
1324 struct backing_dev_info *backing_dev_info;
1325
1326 struct io_context *io_context;
1327
1328 unsigned long ptrace_message;
1329 siginfo_t *last_siginfo; /* For ptrace use. */
1330 struct task_io_accounting ioac;
1331 #if defined(CONFIG_TASK_XACCT)
1332 u64 acct_rss_mem1; /* accumulated rss usage */
1333 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1334 cputime_t acct_timexpd; /* stime + utime since last update */
1335 #endif
1336 #ifdef CONFIG_CPUSETS
1337 nodemask_t mems_allowed;
1338 int cpuset_mems_generation;
1339 int cpuset_mem_spread_rotor;
1340 #endif
1341 #ifdef CONFIG_CGROUPS
1342 /* Control Group info protected by css_set_lock */
1343 struct css_set *cgroups;
1344 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1345 struct list_head cg_list;
1346 #endif
1347 #ifdef CONFIG_FUTEX
1348 struct robust_list_head __user *robust_list;
1349 #ifdef CONFIG_COMPAT
1350 struct compat_robust_list_head __user *compat_robust_list;
1351 #endif
1352 struct list_head pi_state_list;
1353 struct futex_pi_state *pi_state_cache;
1354 #endif
1355 struct perf_counter_context perf_counter_ctx;
1356 #ifdef CONFIG_NUMA
1357 struct mempolicy *mempolicy;
1358 short il_next;
1359 #endif
1360 atomic_t fs_excl; /* holding fs exclusive resources */
1361 struct rcu_head rcu;
1362
1363 /*
1364 * cache last used pipe for splice
1365 */
1366 struct pipe_inode_info *splice_pipe;
1367 #ifdef CONFIG_TASK_DELAY_ACCT
1368 struct task_delay_info *delays;
1369 #endif
1370 #ifdef CONFIG_FAULT_INJECTION
1371 int make_it_fail;
1372 #endif
1373 struct prop_local_single dirties;
1374 #ifdef CONFIG_LATENCYTOP
1375 int latency_record_count;
1376 struct latency_record latency_record[LT_SAVECOUNT];
1377 #endif
1378 /*
1379 * time slack values; these are used to round up poll() and
1380 * select() etc timeout values. These are in nanoseconds.
1381 */
1382 unsigned long timer_slack_ns;
1383 unsigned long default_timer_slack_ns;
1384
1385 struct list_head *scm_work_list;
1386 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1387 /* Index of current stored adress in ret_stack */
1388 int curr_ret_stack;
1389 /* Stack of return addresses for return function tracing */
1390 struct ftrace_ret_stack *ret_stack;
1391 /*
1392 * Number of functions that haven't been traced
1393 * because of depth overrun.
1394 */
1395 atomic_t trace_overrun;
1396 /* Pause for the tracing */
1397 atomic_t tracing_graph_pause;
1398 #endif
1399 #ifdef CONFIG_TRACING
1400 /* state flags for use by tracers */
1401 unsigned long trace;
1402 #endif
1403 };
1404
1405 /*
1406 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1407 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1408 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1409 * values are inverted: lower p->prio value means higher priority.
1410 *
1411 * The MAX_USER_RT_PRIO value allows the actual maximum
1412 * RT priority to be separate from the value exported to
1413 * user-space. This allows kernel threads to set their
1414 * priority to a value higher than any user task. Note:
1415 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1416 */
1417
1418 #define MAX_USER_RT_PRIO 100
1419 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1420
1421 #define MAX_PRIO (MAX_RT_PRIO + 40)
1422 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1423
1424 static inline int rt_prio(int prio)
1425 {
1426 if (unlikely(prio < MAX_RT_PRIO))
1427 return 1;
1428 return 0;
1429 }
1430
1431 static inline int rt_task(struct task_struct *p)
1432 {
1433 return rt_prio(p->prio);
1434 }
1435
1436 static inline void set_task_session(struct task_struct *tsk, pid_t session)
1437 {
1438 tsk->signal->__session = session;
1439 }
1440
1441 static inline void set_task_pgrp(struct task_struct *tsk, pid_t pgrp)
1442 {
1443 tsk->signal->__pgrp = pgrp;
1444 }
1445
1446 static inline struct pid *task_pid(struct task_struct *task)
1447 {
1448 return task->pids[PIDTYPE_PID].pid;
1449 }
1450
1451 static inline struct pid *task_tgid(struct task_struct *task)
1452 {
1453 return task->group_leader->pids[PIDTYPE_PID].pid;
1454 }
1455
1456 static inline struct pid *task_pgrp(struct task_struct *task)
1457 {
1458 return task->group_leader->pids[PIDTYPE_PGID].pid;
1459 }
1460
1461 static inline struct pid *task_session(struct task_struct *task)
1462 {
1463 return task->group_leader->pids[PIDTYPE_SID].pid;
1464 }
1465
1466 struct pid_namespace;
1467
1468 /*
1469 * the helpers to get the task's different pids as they are seen
1470 * from various namespaces
1471 *
1472 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1473 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1474 * current.
1475 * task_xid_nr_ns() : id seen from the ns specified;
1476 *
1477 * set_task_vxid() : assigns a virtual id to a task;
1478 *
1479 * see also pid_nr() etc in include/linux/pid.h
1480 */
1481
1482 static inline pid_t task_pid_nr(struct task_struct *tsk)
1483 {
1484 return tsk->pid;
1485 }
1486
1487 pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1488
1489 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1490 {
1491 return pid_vnr(task_pid(tsk));
1492 }
1493
1494
1495 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1496 {
1497 return tsk->tgid;
1498 }
1499
1500 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1501
1502 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1503 {
1504 return pid_vnr(task_tgid(tsk));
1505 }
1506
1507
1508 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1509 {
1510 return tsk->signal->__pgrp;
1511 }
1512
1513 pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1514
1515 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1516 {
1517 return pid_vnr(task_pgrp(tsk));
1518 }
1519
1520
1521 static inline pid_t task_session_nr(struct task_struct *tsk)
1522 {
1523 return tsk->signal->__session;
1524 }
1525
1526 pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1527
1528 static inline pid_t task_session_vnr(struct task_struct *tsk)
1529 {
1530 return pid_vnr(task_session(tsk));
1531 }
1532
1533
1534 /**
1535 * pid_alive - check that a task structure is not stale
1536 * @p: Task structure to be checked.
1537 *
1538 * Test if a process is not yet dead (at most zombie state)
1539 * If pid_alive fails, then pointers within the task structure
1540 * can be stale and must not be dereferenced.
1541 */
1542 static inline int pid_alive(struct task_struct *p)
1543 {
1544 return p->pids[PIDTYPE_PID].pid != NULL;
1545 }
1546
1547 /**
1548 * is_global_init - check if a task structure is init
1549 * @tsk: Task structure to be checked.
1550 *
1551 * Check if a task structure is the first user space task the kernel created.
1552 */
1553 static inline int is_global_init(struct task_struct *tsk)
1554 {
1555 return tsk->pid == 1;
1556 }
1557
1558 /*
1559 * is_container_init:
1560 * check whether in the task is init in its own pid namespace.
1561 */
1562 extern int is_container_init(struct task_struct *tsk);
1563
1564 extern struct pid *cad_pid;
1565
1566 extern void free_task(struct task_struct *tsk);
1567 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1568
1569 extern void __put_task_struct(struct task_struct *t);
1570
1571 static inline void put_task_struct(struct task_struct *t)
1572 {
1573 if (atomic_dec_and_test(&t->usage))
1574 __put_task_struct(t);
1575 }
1576
1577 extern cputime_t task_utime(struct task_struct *p);
1578 extern cputime_t task_stime(struct task_struct *p);
1579 extern cputime_t task_gtime(struct task_struct *p);
1580
1581 /*
1582 * Per process flags
1583 */
1584 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1585 /* Not implemented yet, only for 486*/
1586 #define PF_STARTING 0x00000002 /* being created */
1587 #define PF_EXITING 0x00000004 /* getting shut down */
1588 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1589 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1590 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1591 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1592 #define PF_DUMPCORE 0x00000200 /* dumped core */
1593 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1594 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1595 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1596 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1597 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1598 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1599 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1600 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1601 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */
1602 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1603 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1604 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1605 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1606 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1607 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1608 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1609 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1610 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1611 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1612 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */
1613
1614 /*
1615 * Only the _current_ task can read/write to tsk->flags, but other
1616 * tasks can access tsk->flags in readonly mode for example
1617 * with tsk_used_math (like during threaded core dumping).
1618 * There is however an exception to this rule during ptrace
1619 * or during fork: the ptracer task is allowed to write to the
1620 * child->flags of its traced child (same goes for fork, the parent
1621 * can write to the child->flags), because we're guaranteed the
1622 * child is not running and in turn not changing child->flags
1623 * at the same time the parent does it.
1624 */
1625 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1626 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1627 #define clear_used_math() clear_stopped_child_used_math(current)
1628 #define set_used_math() set_stopped_child_used_math(current)
1629 #define conditional_stopped_child_used_math(condition, child) \
1630 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1631 #define conditional_used_math(condition) \
1632 conditional_stopped_child_used_math(condition, current)
1633 #define copy_to_stopped_child_used_math(child) \
1634 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1635 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1636 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1637 #define used_math() tsk_used_math(current)
1638
1639 #ifdef CONFIG_SMP
1640 extern int set_cpus_allowed_ptr(struct task_struct *p,
1641 const struct cpumask *new_mask);
1642 #else
1643 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1644 const struct cpumask *new_mask)
1645 {
1646 if (!cpumask_test_cpu(0, new_mask))
1647 return -EINVAL;
1648 return 0;
1649 }
1650 #endif
1651 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1652 {
1653 return set_cpus_allowed_ptr(p, &new_mask);
1654 }
1655
1656 extern unsigned long long sched_clock(void);
1657
1658 extern void sched_clock_init(void);
1659 extern u64 sched_clock_cpu(int cpu);
1660
1661 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1662 static inline void sched_clock_tick(void)
1663 {
1664 }
1665
1666 static inline void sched_clock_idle_sleep_event(void)
1667 {
1668 }
1669
1670 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1671 {
1672 }
1673 #else
1674 extern void sched_clock_tick(void);
1675 extern void sched_clock_idle_sleep_event(void);
1676 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1677 #endif
1678
1679 /*
1680 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1681 * clock constructed from sched_clock():
1682 */
1683 extern unsigned long long cpu_clock(int cpu);
1684
1685 extern unsigned long long
1686 task_sched_runtime(struct task_struct *task);
1687 extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1688
1689 /* sched_exec is called by processes performing an exec */
1690 #ifdef CONFIG_SMP
1691 extern void sched_exec(void);
1692 #else
1693 #define sched_exec() {}
1694 #endif
1695
1696 extern void sched_clock_idle_sleep_event(void);
1697 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1698
1699 #ifdef CONFIG_HOTPLUG_CPU
1700 extern void idle_task_exit(void);
1701 #else
1702 static inline void idle_task_exit(void) {}
1703 #endif
1704
1705 extern void sched_idle_next(void);
1706
1707 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1708 extern void wake_up_idle_cpu(int cpu);
1709 #else
1710 static inline void wake_up_idle_cpu(int cpu) { }
1711 #endif
1712
1713 extern unsigned int sysctl_sched_latency;
1714 extern unsigned int sysctl_sched_min_granularity;
1715 extern unsigned int sysctl_sched_wakeup_granularity;
1716 extern unsigned int sysctl_sched_shares_ratelimit;
1717 extern unsigned int sysctl_sched_shares_thresh;
1718 #ifdef CONFIG_SCHED_DEBUG
1719 extern unsigned int sysctl_sched_child_runs_first;
1720 extern unsigned int sysctl_sched_features;
1721 extern unsigned int sysctl_sched_migration_cost;
1722 extern unsigned int sysctl_sched_nr_migrate;
1723
1724 int sched_nr_latency_handler(struct ctl_table *table, int write,
1725 struct file *file, void __user *buffer, size_t *length,
1726 loff_t *ppos);
1727 #endif
1728 extern unsigned int sysctl_sched_rt_period;
1729 extern int sysctl_sched_rt_runtime;
1730
1731 int sched_rt_handler(struct ctl_table *table, int write,
1732 struct file *filp, void __user *buffer, size_t *lenp,
1733 loff_t *ppos);
1734
1735 extern unsigned int sysctl_sched_compat_yield;
1736
1737 #ifdef CONFIG_RT_MUTEXES
1738 extern int rt_mutex_getprio(struct task_struct *p);
1739 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1740 extern void rt_mutex_adjust_pi(struct task_struct *p);
1741 #else
1742 static inline int rt_mutex_getprio(struct task_struct *p)
1743 {
1744 return p->normal_prio;
1745 }
1746 # define rt_mutex_adjust_pi(p) do { } while (0)
1747 #endif
1748
1749 extern void set_user_nice(struct task_struct *p, long nice);
1750 extern int task_prio(const struct task_struct *p);
1751 extern int task_nice(const struct task_struct *p);
1752 extern int can_nice(const struct task_struct *p, const int nice);
1753 extern int task_curr(const struct task_struct *p);
1754 extern int idle_cpu(int cpu);
1755 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1756 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1757 struct sched_param *);
1758 extern struct task_struct *idle_task(int cpu);
1759 extern struct task_struct *curr_task(int cpu);
1760 extern void set_curr_task(int cpu, struct task_struct *p);
1761
1762 void yield(void);
1763
1764 /*
1765 * The default (Linux) execution domain.
1766 */
1767 extern struct exec_domain default_exec_domain;
1768
1769 union thread_union {
1770 struct thread_info thread_info;
1771 unsigned long stack[THREAD_SIZE/sizeof(long)];
1772 };
1773
1774 #ifndef __HAVE_ARCH_KSTACK_END
1775 static inline int kstack_end(void *addr)
1776 {
1777 /* Reliable end of stack detection:
1778 * Some APM bios versions misalign the stack
1779 */
1780 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1781 }
1782 #endif
1783
1784 extern union thread_union init_thread_union;
1785 extern struct task_struct init_task;
1786
1787 extern struct mm_struct init_mm;
1788
1789 extern struct pid_namespace init_pid_ns;
1790
1791 /*
1792 * find a task by one of its numerical ids
1793 *
1794 * find_task_by_pid_type_ns():
1795 * it is the most generic call - it finds a task by all id,
1796 * type and namespace specified
1797 * find_task_by_pid_ns():
1798 * finds a task by its pid in the specified namespace
1799 * find_task_by_vpid():
1800 * finds a task by its virtual pid
1801 *
1802 * see also find_vpid() etc in include/linux/pid.h
1803 */
1804
1805 extern struct task_struct *find_task_by_pid_type_ns(int type, int pid,
1806 struct pid_namespace *ns);
1807
1808 extern struct task_struct *find_task_by_vpid(pid_t nr);
1809 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1810 struct pid_namespace *ns);
1811
1812 extern void __set_special_pids(struct pid *pid);
1813
1814 /* per-UID process charging. */
1815 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1816 static inline struct user_struct *get_uid(struct user_struct *u)
1817 {
1818 atomic_inc(&u->__count);
1819 return u;
1820 }
1821 extern void free_uid(struct user_struct *);
1822 extern void release_uids(struct user_namespace *ns);
1823
1824 #include <asm/current.h>
1825
1826 extern void do_timer(unsigned long ticks);
1827
1828 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1829 extern int wake_up_process(struct task_struct *tsk);
1830 extern void wake_up_new_task(struct task_struct *tsk,
1831 unsigned long clone_flags);
1832 #ifdef CONFIG_SMP
1833 extern void kick_process(struct task_struct *tsk);
1834 #else
1835 static inline void kick_process(struct task_struct *tsk) { }
1836 #endif
1837 extern void sched_fork(struct task_struct *p, int clone_flags);
1838 extern void sched_dead(struct task_struct *p);
1839
1840 extern void proc_caches_init(void);
1841 extern void flush_signals(struct task_struct *);
1842 extern void ignore_signals(struct task_struct *);
1843 extern void flush_signal_handlers(struct task_struct *, int force_default);
1844 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1845
1846 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1847 {
1848 unsigned long flags;
1849 int ret;
1850
1851 spin_lock_irqsave(&tsk->sighand->siglock, flags);
1852 ret = dequeue_signal(tsk, mask, info);
1853 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1854
1855 return ret;
1856 }
1857
1858 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1859 sigset_t *mask);
1860 extern void unblock_all_signals(void);
1861 extern void release_task(struct task_struct * p);
1862 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1863 extern int force_sigsegv(int, struct task_struct *);
1864 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1865 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1866 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
1867 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
1868 extern int kill_pgrp(struct pid *pid, int sig, int priv);
1869 extern int kill_pid(struct pid *pid, int sig, int priv);
1870 extern int kill_proc_info(int, struct siginfo *, pid_t);
1871 extern int do_notify_parent(struct task_struct *, int);
1872 extern void force_sig(int, struct task_struct *);
1873 extern void force_sig_specific(int, struct task_struct *);
1874 extern int send_sig(int, struct task_struct *, int);
1875 extern void zap_other_threads(struct task_struct *p);
1876 extern struct sigqueue *sigqueue_alloc(void);
1877 extern void sigqueue_free(struct sigqueue *);
1878 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
1879 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1880 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1881
1882 static inline int kill_cad_pid(int sig, int priv)
1883 {
1884 return kill_pid(cad_pid, sig, priv);
1885 }
1886
1887 /* These can be the second arg to send_sig_info/send_group_sig_info. */
1888 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
1889 #define SEND_SIG_PRIV ((struct siginfo *) 1)
1890 #define SEND_SIG_FORCED ((struct siginfo *) 2)
1891
1892 static inline int is_si_special(const struct siginfo *info)
1893 {
1894 return info <= SEND_SIG_FORCED;
1895 }
1896
1897 /* True if we are on the alternate signal stack. */
1898
1899 static inline int on_sig_stack(unsigned long sp)
1900 {
1901 return (sp - current->sas_ss_sp < current->sas_ss_size);
1902 }
1903
1904 static inline int sas_ss_flags(unsigned long sp)
1905 {
1906 return (current->sas_ss_size == 0 ? SS_DISABLE
1907 : on_sig_stack(sp) ? SS_ONSTACK : 0);
1908 }
1909
1910 /*
1911 * Routines for handling mm_structs
1912 */
1913 extern struct mm_struct * mm_alloc(void);
1914
1915 /* mmdrop drops the mm and the page tables */
1916 extern void __mmdrop(struct mm_struct *);
1917 static inline void mmdrop(struct mm_struct * mm)
1918 {
1919 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1920 __mmdrop(mm);
1921 }
1922
1923 /* mmput gets rid of the mappings and all user-space */
1924 extern void mmput(struct mm_struct *);
1925 /* Grab a reference to a task's mm, if it is not already going away */
1926 extern struct mm_struct *get_task_mm(struct task_struct *task);
1927 /* Remove the current tasks stale references to the old mm_struct */
1928 extern void mm_release(struct task_struct *, struct mm_struct *);
1929 /* Allocate a new mm structure and copy contents from tsk->mm */
1930 extern struct mm_struct *dup_mm(struct task_struct *tsk);
1931
1932 extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
1933 extern void flush_thread(void);
1934 extern void exit_thread(void);
1935
1936 extern void exit_files(struct task_struct *);
1937 extern void __cleanup_signal(struct signal_struct *);
1938 extern void __cleanup_sighand(struct sighand_struct *);
1939
1940 extern void exit_itimers(struct signal_struct *);
1941 extern void flush_itimer_signals(void);
1942
1943 extern NORET_TYPE void do_group_exit(int);
1944
1945 extern void daemonize(const char *, ...);
1946 extern int allow_signal(int);
1947 extern int disallow_signal(int);
1948
1949 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
1950 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
1951 struct task_struct *fork_idle(int);
1952
1953 extern void set_task_comm(struct task_struct *tsk, char *from);
1954 extern char *get_task_comm(char *to, struct task_struct *tsk);
1955
1956 #ifdef CONFIG_SMP
1957 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1958 #else
1959 static inline unsigned long wait_task_inactive(struct task_struct *p,
1960 long match_state)
1961 {
1962 return 1;
1963 }
1964 #endif
1965
1966 #define next_task(p) list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks)
1967
1968 #define for_each_process(p) \
1969 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
1970
1971 extern bool is_single_threaded(struct task_struct *);
1972
1973 /*
1974 * Careful: do_each_thread/while_each_thread is a double loop so
1975 * 'break' will not work as expected - use goto instead.
1976 */
1977 #define do_each_thread(g, t) \
1978 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
1979
1980 #define while_each_thread(g, t) \
1981 while ((t = next_thread(t)) != g)
1982
1983 /* de_thread depends on thread_group_leader not being a pid based check */
1984 #define thread_group_leader(p) (p == p->group_leader)
1985
1986 /* Do to the insanities of de_thread it is possible for a process
1987 * to have the pid of the thread group leader without actually being
1988 * the thread group leader. For iteration through the pids in proc
1989 * all we care about is that we have a task with the appropriate
1990 * pid, we don't actually care if we have the right task.
1991 */
1992 static inline int has_group_leader_pid(struct task_struct *p)
1993 {
1994 return p->pid == p->tgid;
1995 }
1996
1997 static inline
1998 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
1999 {
2000 return p1->tgid == p2->tgid;
2001 }
2002
2003 static inline struct task_struct *next_thread(const struct task_struct *p)
2004 {
2005 return list_entry(rcu_dereference(p->thread_group.next),
2006 struct task_struct, thread_group);
2007 }
2008
2009 static inline int thread_group_empty(struct task_struct *p)
2010 {
2011 return list_empty(&p->thread_group);
2012 }
2013
2014 #define delay_group_leader(p) \
2015 (thread_group_leader(p) && !thread_group_empty(p))
2016
2017 /*
2018 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2019 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2020 * pins the final release of task.io_context. Also protects ->cpuset and
2021 * ->cgroup.subsys[].
2022 *
2023 * Nests both inside and outside of read_lock(&tasklist_lock).
2024 * It must not be nested with write_lock_irq(&tasklist_lock),
2025 * neither inside nor outside.
2026 */
2027 static inline void task_lock(struct task_struct *p)
2028 {
2029 spin_lock(&p->alloc_lock);
2030 }
2031
2032 static inline void task_unlock(struct task_struct *p)
2033 {
2034 spin_unlock(&p->alloc_lock);
2035 }
2036
2037 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2038 unsigned long *flags);
2039
2040 static inline void unlock_task_sighand(struct task_struct *tsk,
2041 unsigned long *flags)
2042 {
2043 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2044 }
2045
2046 #ifndef __HAVE_THREAD_FUNCTIONS
2047
2048 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2049 #define task_stack_page(task) ((task)->stack)
2050
2051 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2052 {
2053 *task_thread_info(p) = *task_thread_info(org);
2054 task_thread_info(p)->task = p;
2055 }
2056
2057 static inline unsigned long *end_of_stack(struct task_struct *p)
2058 {
2059 return (unsigned long *)(task_thread_info(p) + 1);
2060 }
2061
2062 #endif
2063
2064 static inline int object_is_on_stack(void *obj)
2065 {
2066 void *stack = task_stack_page(current);
2067
2068 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2069 }
2070
2071 extern void thread_info_cache_init(void);
2072
2073 #ifdef CONFIG_DEBUG_STACK_USAGE
2074 static inline unsigned long stack_not_used(struct task_struct *p)
2075 {
2076 unsigned long *n = end_of_stack(p);
2077
2078 do { /* Skip over canary */
2079 n++;
2080 } while (!*n);
2081
2082 return (unsigned long)n - (unsigned long)end_of_stack(p);
2083 }
2084 #endif
2085
2086 /* set thread flags in other task's structures
2087 * - see asm/thread_info.h for TIF_xxxx flags available
2088 */
2089 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2090 {
2091 set_ti_thread_flag(task_thread_info(tsk), flag);
2092 }
2093
2094 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2095 {
2096 clear_ti_thread_flag(task_thread_info(tsk), flag);
2097 }
2098
2099 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2100 {
2101 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2102 }
2103
2104 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2105 {
2106 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2107 }
2108
2109 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2110 {
2111 return test_ti_thread_flag(task_thread_info(tsk), flag);
2112 }
2113
2114 static inline void set_tsk_need_resched(struct task_struct *tsk)
2115 {
2116 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2117 }
2118
2119 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2120 {
2121 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2122 }
2123
2124 static inline int test_tsk_need_resched(struct task_struct *tsk)
2125 {
2126 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2127 }
2128
2129 static inline int signal_pending(struct task_struct *p)
2130 {
2131 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2132 }
2133
2134 extern int __fatal_signal_pending(struct task_struct *p);
2135
2136 static inline int fatal_signal_pending(struct task_struct *p)
2137 {
2138 return signal_pending(p) && __fatal_signal_pending(p);
2139 }
2140
2141 static inline int signal_pending_state(long state, struct task_struct *p)
2142 {
2143 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2144 return 0;
2145 if (!signal_pending(p))
2146 return 0;
2147
2148 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2149 }
2150
2151 static inline int need_resched(void)
2152 {
2153 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2154 }
2155
2156 /*
2157 * cond_resched() and cond_resched_lock(): latency reduction via
2158 * explicit rescheduling in places that are safe. The return
2159 * value indicates whether a reschedule was done in fact.
2160 * cond_resched_lock() will drop the spinlock before scheduling,
2161 * cond_resched_softirq() will enable bhs before scheduling.
2162 */
2163 extern int _cond_resched(void);
2164 #ifdef CONFIG_PREEMPT_BKL
2165 static inline int cond_resched(void)
2166 {
2167 return 0;
2168 }
2169 #else
2170 static inline int cond_resched(void)
2171 {
2172 return _cond_resched();
2173 }
2174 #endif
2175 extern int cond_resched_lock(spinlock_t * lock);
2176 extern int cond_resched_softirq(void);
2177 static inline int cond_resched_bkl(void)
2178 {
2179 return _cond_resched();
2180 }
2181
2182 /*
2183 * Does a critical section need to be broken due to another
2184 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2185 * but a general need for low latency)
2186 */
2187 static inline int spin_needbreak(spinlock_t *lock)
2188 {
2189 #ifdef CONFIG_PREEMPT
2190 return spin_is_contended(lock);
2191 #else
2192 return 0;
2193 #endif
2194 }
2195
2196 /*
2197 * Thread group CPU time accounting.
2198 */
2199
2200 extern int thread_group_cputime_alloc(struct task_struct *);
2201 extern void thread_group_cputime(struct task_struct *, struct task_cputime *);
2202
2203 static inline void thread_group_cputime_init(struct signal_struct *sig)
2204 {
2205 sig->cputime.totals = NULL;
2206 }
2207
2208 static inline int thread_group_cputime_clone_thread(struct task_struct *curr)
2209 {
2210 if (curr->signal->cputime.totals)
2211 return 0;
2212 return thread_group_cputime_alloc(curr);
2213 }
2214
2215 static inline void thread_group_cputime_free(struct signal_struct *sig)
2216 {
2217 free_percpu(sig->cputime.totals);
2218 }
2219
2220 /*
2221 * Reevaluate whether the task has signals pending delivery.
2222 * Wake the task if so.
2223 * This is required every time the blocked sigset_t changes.
2224 * callers must hold sighand->siglock.
2225 */
2226 extern void recalc_sigpending_and_wake(struct task_struct *t);
2227 extern void recalc_sigpending(void);
2228
2229 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2230
2231 /*
2232 * Wrappers for p->thread_info->cpu access. No-op on UP.
2233 */
2234 #ifdef CONFIG_SMP
2235
2236 static inline unsigned int task_cpu(const struct task_struct *p)
2237 {
2238 return task_thread_info(p)->cpu;
2239 }
2240
2241 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2242
2243 #else
2244
2245 static inline unsigned int task_cpu(const struct task_struct *p)
2246 {
2247 return 0;
2248 }
2249
2250 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2251 {
2252 }
2253
2254 #endif /* CONFIG_SMP */
2255
2256 extern void arch_pick_mmap_layout(struct mm_struct *mm);
2257
2258 #ifdef CONFIG_TRACING
2259 extern void
2260 __trace_special(void *__tr, void *__data,
2261 unsigned long arg1, unsigned long arg2, unsigned long arg3);
2262 #else
2263 static inline void
2264 __trace_special(void *__tr, void *__data,
2265 unsigned long arg1, unsigned long arg2, unsigned long arg3)
2266 {
2267 }
2268 #endif
2269
2270 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2271 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2272
2273 extern void normalize_rt_tasks(void);
2274
2275 #ifdef CONFIG_GROUP_SCHED
2276
2277 extern struct task_group init_task_group;
2278 #ifdef CONFIG_USER_SCHED
2279 extern struct task_group root_task_group;
2280 extern void set_tg_uid(struct user_struct *user);
2281 #endif
2282
2283 extern struct task_group *sched_create_group(struct task_group *parent);
2284 extern void sched_destroy_group(struct task_group *tg);
2285 extern void sched_move_task(struct task_struct *tsk);
2286 #ifdef CONFIG_FAIR_GROUP_SCHED
2287 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2288 extern unsigned long sched_group_shares(struct task_group *tg);
2289 #endif
2290 #ifdef CONFIG_RT_GROUP_SCHED
2291 extern int sched_group_set_rt_runtime(struct task_group *tg,
2292 long rt_runtime_us);
2293 extern long sched_group_rt_runtime(struct task_group *tg);
2294 extern int sched_group_set_rt_period(struct task_group *tg,
2295 long rt_period_us);
2296 extern long sched_group_rt_period(struct task_group *tg);
2297 #endif
2298 #endif
2299
2300 #ifdef CONFIG_TASK_XACCT
2301 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2302 {
2303 tsk->ioac.rchar += amt;
2304 }
2305
2306 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2307 {
2308 tsk->ioac.wchar += amt;
2309 }
2310
2311 static inline void inc_syscr(struct task_struct *tsk)
2312 {
2313 tsk->ioac.syscr++;
2314 }
2315
2316 static inline void inc_syscw(struct task_struct *tsk)
2317 {
2318 tsk->ioac.syscw++;
2319 }
2320 #else
2321 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2322 {
2323 }
2324
2325 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2326 {
2327 }
2328
2329 static inline void inc_syscr(struct task_struct *tsk)
2330 {
2331 }
2332
2333 static inline void inc_syscw(struct task_struct *tsk)
2334 {
2335 }
2336 #endif
2337
2338 #ifndef TASK_SIZE_OF
2339 #define TASK_SIZE_OF(tsk) TASK_SIZE
2340 #endif
2341
2342 /*
2343 * Call the function if the target task is executing on a CPU right now:
2344 */
2345 extern void task_oncpu_function_call(struct task_struct *p,
2346 void (*func) (void *info), void *info);
2347
2348
2349 #ifdef CONFIG_MM_OWNER
2350 extern void mm_update_next_owner(struct mm_struct *mm);
2351 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2352 #else
2353 static inline void mm_update_next_owner(struct mm_struct *mm)
2354 {
2355 }
2356
2357 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2358 {
2359 }
2360 #endif /* CONFIG_MM_OWNER */
2361
2362 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
2363
2364 #endif /* __KERNEL__ */
2365
2366 #endif
This page took 0.110736 seconds and 6 git commands to generate.