[PATCH] namespaces: utsname: implement utsname namespaces
[deliverable/linux.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <linux/auxvec.h> /* For AT_VECTOR_SIZE */
5
6 /*
7 * cloning flags:
8 */
9 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
10 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
11 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
12 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
13 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
14 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
15 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
16 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
17 #define CLONE_THREAD 0x00010000 /* Same thread group? */
18 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
19 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
20 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
21 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
22 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
23 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
24 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
25 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
26 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
27
28 /*
29 * Scheduling policies
30 */
31 #define SCHED_NORMAL 0
32 #define SCHED_FIFO 1
33 #define SCHED_RR 2
34 #define SCHED_BATCH 3
35
36 #ifdef __KERNEL__
37
38 struct sched_param {
39 int sched_priority;
40 };
41
42 #include <asm/param.h> /* for HZ */
43
44 #include <linux/capability.h>
45 #include <linux/threads.h>
46 #include <linux/kernel.h>
47 #include <linux/types.h>
48 #include <linux/timex.h>
49 #include <linux/jiffies.h>
50 #include <linux/rbtree.h>
51 #include <linux/thread_info.h>
52 #include <linux/cpumask.h>
53 #include <linux/errno.h>
54 #include <linux/nodemask.h>
55
56 #include <asm/system.h>
57 #include <asm/semaphore.h>
58 #include <asm/page.h>
59 #include <asm/ptrace.h>
60 #include <asm/mmu.h>
61 #include <asm/cputime.h>
62
63 #include <linux/smp.h>
64 #include <linux/sem.h>
65 #include <linux/signal.h>
66 #include <linux/securebits.h>
67 #include <linux/fs_struct.h>
68 #include <linux/compiler.h>
69 #include <linux/completion.h>
70 #include <linux/pid.h>
71 #include <linux/percpu.h>
72 #include <linux/topology.h>
73 #include <linux/seccomp.h>
74 #include <linux/rcupdate.h>
75 #include <linux/futex.h>
76 #include <linux/rtmutex.h>
77
78 #include <linux/time.h>
79 #include <linux/param.h>
80 #include <linux/resource.h>
81 #include <linux/timer.h>
82 #include <linux/hrtimer.h>
83
84 #include <asm/processor.h>
85
86 struct exec_domain;
87 struct futex_pi_state;
88
89 /*
90 * List of flags we want to share for kernel threads,
91 * if only because they are not used by them anyway.
92 */
93 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
94
95 /*
96 * These are the constant used to fake the fixed-point load-average
97 * counting. Some notes:
98 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
99 * a load-average precision of 10 bits integer + 11 bits fractional
100 * - if you want to count load-averages more often, you need more
101 * precision, or rounding will get you. With 2-second counting freq,
102 * the EXP_n values would be 1981, 2034 and 2043 if still using only
103 * 11 bit fractions.
104 */
105 extern unsigned long avenrun[]; /* Load averages */
106
107 #define FSHIFT 11 /* nr of bits of precision */
108 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
109 #define LOAD_FREQ (5*HZ) /* 5 sec intervals */
110 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
111 #define EXP_5 2014 /* 1/exp(5sec/5min) */
112 #define EXP_15 2037 /* 1/exp(5sec/15min) */
113
114 #define CALC_LOAD(load,exp,n) \
115 load *= exp; \
116 load += n*(FIXED_1-exp); \
117 load >>= FSHIFT;
118
119 extern unsigned long total_forks;
120 extern int nr_threads;
121 DECLARE_PER_CPU(unsigned long, process_counts);
122 extern int nr_processes(void);
123 extern unsigned long nr_running(void);
124 extern unsigned long nr_uninterruptible(void);
125 extern unsigned long nr_active(void);
126 extern unsigned long nr_iowait(void);
127 extern unsigned long weighted_cpuload(const int cpu);
128
129
130 /*
131 * Task state bitmask. NOTE! These bits are also
132 * encoded in fs/proc/array.c: get_task_state().
133 *
134 * We have two separate sets of flags: task->state
135 * is about runnability, while task->exit_state are
136 * about the task exiting. Confusing, but this way
137 * modifying one set can't modify the other one by
138 * mistake.
139 */
140 #define TASK_RUNNING 0
141 #define TASK_INTERRUPTIBLE 1
142 #define TASK_UNINTERRUPTIBLE 2
143 #define TASK_STOPPED 4
144 #define TASK_TRACED 8
145 /* in tsk->exit_state */
146 #define EXIT_ZOMBIE 16
147 #define EXIT_DEAD 32
148 /* in tsk->state again */
149 #define TASK_NONINTERACTIVE 64
150 #define TASK_DEAD 128
151
152 #define __set_task_state(tsk, state_value) \
153 do { (tsk)->state = (state_value); } while (0)
154 #define set_task_state(tsk, state_value) \
155 set_mb((tsk)->state, (state_value))
156
157 /*
158 * set_current_state() includes a barrier so that the write of current->state
159 * is correctly serialised wrt the caller's subsequent test of whether to
160 * actually sleep:
161 *
162 * set_current_state(TASK_UNINTERRUPTIBLE);
163 * if (do_i_need_to_sleep())
164 * schedule();
165 *
166 * If the caller does not need such serialisation then use __set_current_state()
167 */
168 #define __set_current_state(state_value) \
169 do { current->state = (state_value); } while (0)
170 #define set_current_state(state_value) \
171 set_mb(current->state, (state_value))
172
173 /* Task command name length */
174 #define TASK_COMM_LEN 16
175
176 #include <linux/spinlock.h>
177
178 /*
179 * This serializes "schedule()" and also protects
180 * the run-queue from deletions/modifications (but
181 * _adding_ to the beginning of the run-queue has
182 * a separate lock).
183 */
184 extern rwlock_t tasklist_lock;
185 extern spinlock_t mmlist_lock;
186
187 struct task_struct;
188
189 extern void sched_init(void);
190 extern void sched_init_smp(void);
191 extern void init_idle(struct task_struct *idle, int cpu);
192
193 extern cpumask_t nohz_cpu_mask;
194
195 extern void show_state(void);
196 extern void show_regs(struct pt_regs *);
197
198 /*
199 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
200 * task), SP is the stack pointer of the first frame that should be shown in the back
201 * trace (or NULL if the entire call-chain of the task should be shown).
202 */
203 extern void show_stack(struct task_struct *task, unsigned long *sp);
204
205 void io_schedule(void);
206 long io_schedule_timeout(long timeout);
207
208 extern void cpu_init (void);
209 extern void trap_init(void);
210 extern void update_process_times(int user);
211 extern void scheduler_tick(void);
212
213 #ifdef CONFIG_DETECT_SOFTLOCKUP
214 extern void softlockup_tick(void);
215 extern void spawn_softlockup_task(void);
216 extern void touch_softlockup_watchdog(void);
217 #else
218 static inline void softlockup_tick(void)
219 {
220 }
221 static inline void spawn_softlockup_task(void)
222 {
223 }
224 static inline void touch_softlockup_watchdog(void)
225 {
226 }
227 #endif
228
229
230 /* Attach to any functions which should be ignored in wchan output. */
231 #define __sched __attribute__((__section__(".sched.text")))
232 /* Is this address in the __sched functions? */
233 extern int in_sched_functions(unsigned long addr);
234
235 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
236 extern signed long FASTCALL(schedule_timeout(signed long timeout));
237 extern signed long schedule_timeout_interruptible(signed long timeout);
238 extern signed long schedule_timeout_uninterruptible(signed long timeout);
239 asmlinkage void schedule(void);
240
241 struct nsproxy;
242
243 /* Maximum number of active map areas.. This is a random (large) number */
244 #define DEFAULT_MAX_MAP_COUNT 65536
245
246 extern int sysctl_max_map_count;
247
248 #include <linux/aio.h>
249
250 extern unsigned long
251 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
252 unsigned long, unsigned long);
253 extern unsigned long
254 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
255 unsigned long len, unsigned long pgoff,
256 unsigned long flags);
257 extern void arch_unmap_area(struct mm_struct *, unsigned long);
258 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
259
260 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
261 /*
262 * The mm counters are not protected by its page_table_lock,
263 * so must be incremented atomically.
264 */
265 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
266 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
267 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
268 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
269 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
270 typedef atomic_long_t mm_counter_t;
271
272 #else /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
273 /*
274 * The mm counters are protected by its page_table_lock,
275 * so can be incremented directly.
276 */
277 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
278 #define get_mm_counter(mm, member) ((mm)->_##member)
279 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
280 #define inc_mm_counter(mm, member) (mm)->_##member++
281 #define dec_mm_counter(mm, member) (mm)->_##member--
282 typedef unsigned long mm_counter_t;
283
284 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
285
286 #define get_mm_rss(mm) \
287 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
288 #define update_hiwater_rss(mm) do { \
289 unsigned long _rss = get_mm_rss(mm); \
290 if ((mm)->hiwater_rss < _rss) \
291 (mm)->hiwater_rss = _rss; \
292 } while (0)
293 #define update_hiwater_vm(mm) do { \
294 if ((mm)->hiwater_vm < (mm)->total_vm) \
295 (mm)->hiwater_vm = (mm)->total_vm; \
296 } while (0)
297
298 struct mm_struct {
299 struct vm_area_struct * mmap; /* list of VMAs */
300 struct rb_root mm_rb;
301 struct vm_area_struct * mmap_cache; /* last find_vma result */
302 unsigned long (*get_unmapped_area) (struct file *filp,
303 unsigned long addr, unsigned long len,
304 unsigned long pgoff, unsigned long flags);
305 void (*unmap_area) (struct mm_struct *mm, unsigned long addr);
306 unsigned long mmap_base; /* base of mmap area */
307 unsigned long task_size; /* size of task vm space */
308 unsigned long cached_hole_size; /* if non-zero, the largest hole below free_area_cache */
309 unsigned long free_area_cache; /* first hole of size cached_hole_size or larger */
310 pgd_t * pgd;
311 atomic_t mm_users; /* How many users with user space? */
312 atomic_t mm_count; /* How many references to "struct mm_struct" (users count as 1) */
313 int map_count; /* number of VMAs */
314 struct rw_semaphore mmap_sem;
315 spinlock_t page_table_lock; /* Protects page tables and some counters */
316
317 struct list_head mmlist; /* List of maybe swapped mm's. These are globally strung
318 * together off init_mm.mmlist, and are protected
319 * by mmlist_lock
320 */
321
322 /* Special counters, in some configurations protected by the
323 * page_table_lock, in other configurations by being atomic.
324 */
325 mm_counter_t _file_rss;
326 mm_counter_t _anon_rss;
327
328 unsigned long hiwater_rss; /* High-watermark of RSS usage */
329 unsigned long hiwater_vm; /* High-water virtual memory usage */
330
331 unsigned long total_vm, locked_vm, shared_vm, exec_vm;
332 unsigned long stack_vm, reserved_vm, def_flags, nr_ptes;
333 unsigned long start_code, end_code, start_data, end_data;
334 unsigned long start_brk, brk, start_stack;
335 unsigned long arg_start, arg_end, env_start, env_end;
336
337 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
338
339 unsigned dumpable:2;
340 cpumask_t cpu_vm_mask;
341
342 /* Architecture-specific MM context */
343 mm_context_t context;
344
345 /* Token based thrashing protection. */
346 unsigned long swap_token_time;
347 char recent_pagein;
348
349 /* coredumping support */
350 int core_waiters;
351 struct completion *core_startup_done, core_done;
352
353 /* aio bits */
354 rwlock_t ioctx_list_lock;
355 struct kioctx *ioctx_list;
356 };
357
358 struct sighand_struct {
359 atomic_t count;
360 struct k_sigaction action[_NSIG];
361 spinlock_t siglock;
362 };
363
364 struct pacct_struct {
365 int ac_flag;
366 long ac_exitcode;
367 unsigned long ac_mem;
368 cputime_t ac_utime, ac_stime;
369 unsigned long ac_minflt, ac_majflt;
370 };
371
372 /*
373 * NOTE! "signal_struct" does not have it's own
374 * locking, because a shared signal_struct always
375 * implies a shared sighand_struct, so locking
376 * sighand_struct is always a proper superset of
377 * the locking of signal_struct.
378 */
379 struct signal_struct {
380 atomic_t count;
381 atomic_t live;
382
383 wait_queue_head_t wait_chldexit; /* for wait4() */
384
385 /* current thread group signal load-balancing target: */
386 struct task_struct *curr_target;
387
388 /* shared signal handling: */
389 struct sigpending shared_pending;
390
391 /* thread group exit support */
392 int group_exit_code;
393 /* overloaded:
394 * - notify group_exit_task when ->count is equal to notify_count
395 * - everyone except group_exit_task is stopped during signal delivery
396 * of fatal signals, group_exit_task processes the signal.
397 */
398 struct task_struct *group_exit_task;
399 int notify_count;
400
401 /* thread group stop support, overloads group_exit_code too */
402 int group_stop_count;
403 unsigned int flags; /* see SIGNAL_* flags below */
404
405 /* POSIX.1b Interval Timers */
406 struct list_head posix_timers;
407
408 /* ITIMER_REAL timer for the process */
409 struct hrtimer real_timer;
410 struct task_struct *tsk;
411 ktime_t it_real_incr;
412
413 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
414 cputime_t it_prof_expires, it_virt_expires;
415 cputime_t it_prof_incr, it_virt_incr;
416
417 /* job control IDs */
418 pid_t pgrp;
419 pid_t tty_old_pgrp;
420 pid_t session;
421 /* boolean value for session group leader */
422 int leader;
423
424 struct tty_struct *tty; /* NULL if no tty */
425
426 /*
427 * Cumulative resource counters for dead threads in the group,
428 * and for reaped dead child processes forked by this group.
429 * Live threads maintain their own counters and add to these
430 * in __exit_signal, except for the group leader.
431 */
432 cputime_t utime, stime, cutime, cstime;
433 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
434 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
435
436 /*
437 * Cumulative ns of scheduled CPU time for dead threads in the
438 * group, not including a zombie group leader. (This only differs
439 * from jiffies_to_ns(utime + stime) if sched_clock uses something
440 * other than jiffies.)
441 */
442 unsigned long long sched_time;
443
444 /*
445 * We don't bother to synchronize most readers of this at all,
446 * because there is no reader checking a limit that actually needs
447 * to get both rlim_cur and rlim_max atomically, and either one
448 * alone is a single word that can safely be read normally.
449 * getrlimit/setrlimit use task_lock(current->group_leader) to
450 * protect this instead of the siglock, because they really
451 * have no need to disable irqs.
452 */
453 struct rlimit rlim[RLIM_NLIMITS];
454
455 struct list_head cpu_timers[3];
456
457 /* keep the process-shared keyrings here so that they do the right
458 * thing in threads created with CLONE_THREAD */
459 #ifdef CONFIG_KEYS
460 struct key *session_keyring; /* keyring inherited over fork */
461 struct key *process_keyring; /* keyring private to this process */
462 #endif
463 #ifdef CONFIG_BSD_PROCESS_ACCT
464 struct pacct_struct pacct; /* per-process accounting information */
465 #endif
466 #ifdef CONFIG_TASKSTATS
467 spinlock_t stats_lock;
468 struct taskstats *stats;
469 #endif
470 };
471
472 /* Context switch must be unlocked if interrupts are to be enabled */
473 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
474 # define __ARCH_WANT_UNLOCKED_CTXSW
475 #endif
476
477 /*
478 * Bits in flags field of signal_struct.
479 */
480 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
481 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
482 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
483 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
484
485
486 /*
487 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
488 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
489 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
490 * values are inverted: lower p->prio value means higher priority.
491 *
492 * The MAX_USER_RT_PRIO value allows the actual maximum
493 * RT priority to be separate from the value exported to
494 * user-space. This allows kernel threads to set their
495 * priority to a value higher than any user task. Note:
496 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
497 */
498
499 #define MAX_USER_RT_PRIO 100
500 #define MAX_RT_PRIO MAX_USER_RT_PRIO
501
502 #define MAX_PRIO (MAX_RT_PRIO + 40)
503
504 #define rt_prio(prio) unlikely((prio) < MAX_RT_PRIO)
505 #define rt_task(p) rt_prio((p)->prio)
506 #define batch_task(p) (unlikely((p)->policy == SCHED_BATCH))
507 #define is_rt_policy(p) ((p) != SCHED_NORMAL && (p) != SCHED_BATCH)
508 #define has_rt_policy(p) unlikely(is_rt_policy((p)->policy))
509
510 /*
511 * Some day this will be a full-fledged user tracking system..
512 */
513 struct user_struct {
514 atomic_t __count; /* reference count */
515 atomic_t processes; /* How many processes does this user have? */
516 atomic_t files; /* How many open files does this user have? */
517 atomic_t sigpending; /* How many pending signals does this user have? */
518 #ifdef CONFIG_INOTIFY_USER
519 atomic_t inotify_watches; /* How many inotify watches does this user have? */
520 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
521 #endif
522 /* protected by mq_lock */
523 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
524 unsigned long locked_shm; /* How many pages of mlocked shm ? */
525
526 #ifdef CONFIG_KEYS
527 struct key *uid_keyring; /* UID specific keyring */
528 struct key *session_keyring; /* UID's default session keyring */
529 #endif
530
531 /* Hash table maintenance information */
532 struct list_head uidhash_list;
533 uid_t uid;
534 };
535
536 extern struct user_struct *find_user(uid_t);
537
538 extern struct user_struct root_user;
539 #define INIT_USER (&root_user)
540
541 struct backing_dev_info;
542 struct reclaim_state;
543
544 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
545 struct sched_info {
546 /* cumulative counters */
547 unsigned long cpu_time, /* time spent on the cpu */
548 run_delay, /* time spent waiting on a runqueue */
549 pcnt; /* # of timeslices run on this cpu */
550
551 /* timestamps */
552 unsigned long last_arrival, /* when we last ran on a cpu */
553 last_queued; /* when we were last queued to run */
554 };
555 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
556
557 #ifdef CONFIG_SCHEDSTATS
558 extern struct file_operations proc_schedstat_operations;
559 #endif /* CONFIG_SCHEDSTATS */
560
561 #ifdef CONFIG_TASK_DELAY_ACCT
562 struct task_delay_info {
563 spinlock_t lock;
564 unsigned int flags; /* Private per-task flags */
565
566 /* For each stat XXX, add following, aligned appropriately
567 *
568 * struct timespec XXX_start, XXX_end;
569 * u64 XXX_delay;
570 * u32 XXX_count;
571 *
572 * Atomicity of updates to XXX_delay, XXX_count protected by
573 * single lock above (split into XXX_lock if contention is an issue).
574 */
575
576 /*
577 * XXX_count is incremented on every XXX operation, the delay
578 * associated with the operation is added to XXX_delay.
579 * XXX_delay contains the accumulated delay time in nanoseconds.
580 */
581 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
582 u64 blkio_delay; /* wait for sync block io completion */
583 u64 swapin_delay; /* wait for swapin block io completion */
584 u32 blkio_count; /* total count of the number of sync block */
585 /* io operations performed */
586 u32 swapin_count; /* total count of the number of swapin block */
587 /* io operations performed */
588 };
589 #endif /* CONFIG_TASK_DELAY_ACCT */
590
591 static inline int sched_info_on(void)
592 {
593 #ifdef CONFIG_SCHEDSTATS
594 return 1;
595 #elif defined(CONFIG_TASK_DELAY_ACCT)
596 extern int delayacct_on;
597 return delayacct_on;
598 #else
599 return 0;
600 #endif
601 }
602
603 enum idle_type
604 {
605 SCHED_IDLE,
606 NOT_IDLE,
607 NEWLY_IDLE,
608 MAX_IDLE_TYPES
609 };
610
611 /*
612 * sched-domains (multiprocessor balancing) declarations:
613 */
614 #define SCHED_LOAD_SCALE 128UL /* increase resolution of load */
615
616 #ifdef CONFIG_SMP
617 #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */
618 #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */
619 #define SD_BALANCE_EXEC 4 /* Balance on exec */
620 #define SD_BALANCE_FORK 8 /* Balance on fork, clone */
621 #define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */
622 #define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */
623 #define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */
624 #define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */
625 #define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */
626
627 #define BALANCE_FOR_POWER ((sched_mc_power_savings || sched_smt_power_savings) \
628 ? SD_POWERSAVINGS_BALANCE : 0)
629
630
631 struct sched_group {
632 struct sched_group *next; /* Must be a circular list */
633 cpumask_t cpumask;
634
635 /*
636 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
637 * single CPU. This is read only (except for setup, hotplug CPU).
638 */
639 unsigned long cpu_power;
640 };
641
642 struct sched_domain {
643 /* These fields must be setup */
644 struct sched_domain *parent; /* top domain must be null terminated */
645 struct sched_group *groups; /* the balancing groups of the domain */
646 cpumask_t span; /* span of all CPUs in this domain */
647 unsigned long min_interval; /* Minimum balance interval ms */
648 unsigned long max_interval; /* Maximum balance interval ms */
649 unsigned int busy_factor; /* less balancing by factor if busy */
650 unsigned int imbalance_pct; /* No balance until over watermark */
651 unsigned long long cache_hot_time; /* Task considered cache hot (ns) */
652 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
653 unsigned int per_cpu_gain; /* CPU % gained by adding domain cpus */
654 unsigned int busy_idx;
655 unsigned int idle_idx;
656 unsigned int newidle_idx;
657 unsigned int wake_idx;
658 unsigned int forkexec_idx;
659 int flags; /* See SD_* */
660
661 /* Runtime fields. */
662 unsigned long last_balance; /* init to jiffies. units in jiffies */
663 unsigned int balance_interval; /* initialise to 1. units in ms. */
664 unsigned int nr_balance_failed; /* initialise to 0 */
665
666 #ifdef CONFIG_SCHEDSTATS
667 /* load_balance() stats */
668 unsigned long lb_cnt[MAX_IDLE_TYPES];
669 unsigned long lb_failed[MAX_IDLE_TYPES];
670 unsigned long lb_balanced[MAX_IDLE_TYPES];
671 unsigned long lb_imbalance[MAX_IDLE_TYPES];
672 unsigned long lb_gained[MAX_IDLE_TYPES];
673 unsigned long lb_hot_gained[MAX_IDLE_TYPES];
674 unsigned long lb_nobusyg[MAX_IDLE_TYPES];
675 unsigned long lb_nobusyq[MAX_IDLE_TYPES];
676
677 /* Active load balancing */
678 unsigned long alb_cnt;
679 unsigned long alb_failed;
680 unsigned long alb_pushed;
681
682 /* SD_BALANCE_EXEC stats */
683 unsigned long sbe_cnt;
684 unsigned long sbe_balanced;
685 unsigned long sbe_pushed;
686
687 /* SD_BALANCE_FORK stats */
688 unsigned long sbf_cnt;
689 unsigned long sbf_balanced;
690 unsigned long sbf_pushed;
691
692 /* try_to_wake_up() stats */
693 unsigned long ttwu_wake_remote;
694 unsigned long ttwu_move_affine;
695 unsigned long ttwu_move_balance;
696 #endif
697 };
698
699 extern int partition_sched_domains(cpumask_t *partition1,
700 cpumask_t *partition2);
701
702 /*
703 * Maximum cache size the migration-costs auto-tuning code will
704 * search from:
705 */
706 extern unsigned int max_cache_size;
707
708 #endif /* CONFIG_SMP */
709
710
711 struct io_context; /* See blkdev.h */
712 struct cpuset;
713
714 #define NGROUPS_SMALL 32
715 #define NGROUPS_PER_BLOCK ((int)(PAGE_SIZE / sizeof(gid_t)))
716 struct group_info {
717 int ngroups;
718 atomic_t usage;
719 gid_t small_block[NGROUPS_SMALL];
720 int nblocks;
721 gid_t *blocks[0];
722 };
723
724 /*
725 * get_group_info() must be called with the owning task locked (via task_lock())
726 * when task != current. The reason being that the vast majority of callers are
727 * looking at current->group_info, which can not be changed except by the
728 * current task. Changing current->group_info requires the task lock, too.
729 */
730 #define get_group_info(group_info) do { \
731 atomic_inc(&(group_info)->usage); \
732 } while (0)
733
734 #define put_group_info(group_info) do { \
735 if (atomic_dec_and_test(&(group_info)->usage)) \
736 groups_free(group_info); \
737 } while (0)
738
739 extern struct group_info *groups_alloc(int gidsetsize);
740 extern void groups_free(struct group_info *group_info);
741 extern int set_current_groups(struct group_info *group_info);
742 extern int groups_search(struct group_info *group_info, gid_t grp);
743 /* access the groups "array" with this macro */
744 #define GROUP_AT(gi, i) \
745 ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK])
746
747 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
748 extern void prefetch_stack(struct task_struct *t);
749 #else
750 static inline void prefetch_stack(struct task_struct *t) { }
751 #endif
752
753 struct audit_context; /* See audit.c */
754 struct mempolicy;
755 struct pipe_inode_info;
756 struct uts_namespace;
757
758 enum sleep_type {
759 SLEEP_NORMAL,
760 SLEEP_NONINTERACTIVE,
761 SLEEP_INTERACTIVE,
762 SLEEP_INTERRUPTED,
763 };
764
765 struct prio_array;
766
767 struct task_struct {
768 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
769 struct thread_info *thread_info;
770 atomic_t usage;
771 unsigned long flags; /* per process flags, defined below */
772 unsigned long ptrace;
773
774 int lock_depth; /* BKL lock depth */
775
776 #ifdef CONFIG_SMP
777 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
778 int oncpu;
779 #endif
780 #endif
781 int load_weight; /* for niceness load balancing purposes */
782 int prio, static_prio, normal_prio;
783 struct list_head run_list;
784 struct prio_array *array;
785
786 unsigned short ioprio;
787 #ifdef CONFIG_BLK_DEV_IO_TRACE
788 unsigned int btrace_seq;
789 #endif
790 unsigned long sleep_avg;
791 unsigned long long timestamp, last_ran;
792 unsigned long long sched_time; /* sched_clock time spent running */
793 enum sleep_type sleep_type;
794
795 unsigned long policy;
796 cpumask_t cpus_allowed;
797 unsigned int time_slice, first_time_slice;
798
799 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
800 struct sched_info sched_info;
801 #endif
802
803 struct list_head tasks;
804 /*
805 * ptrace_list/ptrace_children forms the list of my children
806 * that were stolen by a ptracer.
807 */
808 struct list_head ptrace_children;
809 struct list_head ptrace_list;
810
811 struct mm_struct *mm, *active_mm;
812
813 /* task state */
814 struct linux_binfmt *binfmt;
815 long exit_state;
816 int exit_code, exit_signal;
817 int pdeath_signal; /* The signal sent when the parent dies */
818 /* ??? */
819 unsigned long personality;
820 unsigned did_exec:1;
821 pid_t pid;
822 pid_t tgid;
823
824 #ifdef CONFIG_CC_STACKPROTECTOR
825 /* Canary value for the -fstack-protector gcc feature */
826 unsigned long stack_canary;
827 #endif
828 /*
829 * pointers to (original) parent process, youngest child, younger sibling,
830 * older sibling, respectively. (p->father can be replaced with
831 * p->parent->pid)
832 */
833 struct task_struct *real_parent; /* real parent process (when being debugged) */
834 struct task_struct *parent; /* parent process */
835 /*
836 * children/sibling forms the list of my children plus the
837 * tasks I'm ptracing.
838 */
839 struct list_head children; /* list of my children */
840 struct list_head sibling; /* linkage in my parent's children list */
841 struct task_struct *group_leader; /* threadgroup leader */
842
843 /* PID/PID hash table linkage. */
844 struct pid_link pids[PIDTYPE_MAX];
845 struct list_head thread_group;
846
847 struct completion *vfork_done; /* for vfork() */
848 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
849 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
850
851 unsigned long rt_priority;
852 cputime_t utime, stime;
853 unsigned long nvcsw, nivcsw; /* context switch counts */
854 struct timespec start_time;
855 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
856 unsigned long min_flt, maj_flt;
857
858 cputime_t it_prof_expires, it_virt_expires;
859 unsigned long long it_sched_expires;
860 struct list_head cpu_timers[3];
861
862 /* process credentials */
863 uid_t uid,euid,suid,fsuid;
864 gid_t gid,egid,sgid,fsgid;
865 struct group_info *group_info;
866 kernel_cap_t cap_effective, cap_inheritable, cap_permitted;
867 unsigned keep_capabilities:1;
868 struct user_struct *user;
869 #ifdef CONFIG_KEYS
870 struct key *request_key_auth; /* assumed request_key authority */
871 struct key *thread_keyring; /* keyring private to this thread */
872 unsigned char jit_keyring; /* default keyring to attach requested keys to */
873 #endif
874 /*
875 * fpu_counter contains the number of consecutive context switches
876 * that the FPU is used. If this is over a threshold, the lazy fpu
877 * saving becomes unlazy to save the trap. This is an unsigned char
878 * so that after 256 times the counter wraps and the behavior turns
879 * lazy again; this to deal with bursty apps that only use FPU for
880 * a short time
881 */
882 unsigned char fpu_counter;
883 int oomkilladj; /* OOM kill score adjustment (bit shift). */
884 char comm[TASK_COMM_LEN]; /* executable name excluding path
885 - access with [gs]et_task_comm (which lock
886 it with task_lock())
887 - initialized normally by flush_old_exec */
888 /* file system info */
889 int link_count, total_link_count;
890 #ifdef CONFIG_SYSVIPC
891 /* ipc stuff */
892 struct sysv_sem sysvsem;
893 #endif
894 /* CPU-specific state of this task */
895 struct thread_struct thread;
896 /* filesystem information */
897 struct fs_struct *fs;
898 /* open file information */
899 struct files_struct *files;
900 /* namespaces */
901 struct nsproxy *nsproxy;
902 /* signal handlers */
903 struct signal_struct *signal;
904 struct sighand_struct *sighand;
905
906 sigset_t blocked, real_blocked;
907 sigset_t saved_sigmask; /* To be restored with TIF_RESTORE_SIGMASK */
908 struct sigpending pending;
909
910 unsigned long sas_ss_sp;
911 size_t sas_ss_size;
912 int (*notifier)(void *priv);
913 void *notifier_data;
914 sigset_t *notifier_mask;
915
916 void *security;
917 struct audit_context *audit_context;
918 seccomp_t seccomp;
919
920 /* Thread group tracking */
921 u32 parent_exec_id;
922 u32 self_exec_id;
923 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
924 spinlock_t alloc_lock;
925
926 /* Protection of the PI data structures: */
927 spinlock_t pi_lock;
928
929 #ifdef CONFIG_RT_MUTEXES
930 /* PI waiters blocked on a rt_mutex held by this task */
931 struct plist_head pi_waiters;
932 /* Deadlock detection and priority inheritance handling */
933 struct rt_mutex_waiter *pi_blocked_on;
934 #endif
935
936 #ifdef CONFIG_DEBUG_MUTEXES
937 /* mutex deadlock detection */
938 struct mutex_waiter *blocked_on;
939 #endif
940 #ifdef CONFIG_TRACE_IRQFLAGS
941 unsigned int irq_events;
942 int hardirqs_enabled;
943 unsigned long hardirq_enable_ip;
944 unsigned int hardirq_enable_event;
945 unsigned long hardirq_disable_ip;
946 unsigned int hardirq_disable_event;
947 int softirqs_enabled;
948 unsigned long softirq_disable_ip;
949 unsigned int softirq_disable_event;
950 unsigned long softirq_enable_ip;
951 unsigned int softirq_enable_event;
952 int hardirq_context;
953 int softirq_context;
954 #endif
955 #ifdef CONFIG_LOCKDEP
956 # define MAX_LOCK_DEPTH 30UL
957 u64 curr_chain_key;
958 int lockdep_depth;
959 struct held_lock held_locks[MAX_LOCK_DEPTH];
960 unsigned int lockdep_recursion;
961 #endif
962
963 /* journalling filesystem info */
964 void *journal_info;
965
966 /* VM state */
967 struct reclaim_state *reclaim_state;
968
969 struct backing_dev_info *backing_dev_info;
970
971 struct io_context *io_context;
972
973 unsigned long ptrace_message;
974 siginfo_t *last_siginfo; /* For ptrace use. */
975 /*
976 * current io wait handle: wait queue entry to use for io waits
977 * If this thread is processing aio, this points at the waitqueue
978 * inside the currently handled kiocb. It may be NULL (i.e. default
979 * to a stack based synchronous wait) if its doing sync IO.
980 */
981 wait_queue_t *io_wait;
982 /* i/o counters(bytes read/written, #syscalls */
983 u64 rchar, wchar, syscr, syscw;
984 #if defined(CONFIG_TASK_XACCT)
985 u64 acct_rss_mem1; /* accumulated rss usage */
986 u64 acct_vm_mem1; /* accumulated virtual memory usage */
987 cputime_t acct_stimexpd;/* stime since last update */
988 #endif
989 #ifdef CONFIG_NUMA
990 struct mempolicy *mempolicy;
991 short il_next;
992 #endif
993 #ifdef CONFIG_CPUSETS
994 struct cpuset *cpuset;
995 nodemask_t mems_allowed;
996 int cpuset_mems_generation;
997 int cpuset_mem_spread_rotor;
998 #endif
999 struct robust_list_head __user *robust_list;
1000 #ifdef CONFIG_COMPAT
1001 struct compat_robust_list_head __user *compat_robust_list;
1002 #endif
1003 struct list_head pi_state_list;
1004 struct futex_pi_state *pi_state_cache;
1005
1006 atomic_t fs_excl; /* holding fs exclusive resources */
1007 struct rcu_head rcu;
1008
1009 /*
1010 * cache last used pipe for splice
1011 */
1012 struct pipe_inode_info *splice_pipe;
1013 #ifdef CONFIG_TASK_DELAY_ACCT
1014 struct task_delay_info *delays;
1015 #endif
1016 };
1017
1018 static inline pid_t process_group(struct task_struct *tsk)
1019 {
1020 return tsk->signal->pgrp;
1021 }
1022
1023 static inline struct pid *task_pid(struct task_struct *task)
1024 {
1025 return task->pids[PIDTYPE_PID].pid;
1026 }
1027
1028 static inline struct pid *task_tgid(struct task_struct *task)
1029 {
1030 return task->group_leader->pids[PIDTYPE_PID].pid;
1031 }
1032
1033 static inline struct pid *task_pgrp(struct task_struct *task)
1034 {
1035 return task->group_leader->pids[PIDTYPE_PGID].pid;
1036 }
1037
1038 static inline struct pid *task_session(struct task_struct *task)
1039 {
1040 return task->group_leader->pids[PIDTYPE_SID].pid;
1041 }
1042
1043 /**
1044 * pid_alive - check that a task structure is not stale
1045 * @p: Task structure to be checked.
1046 *
1047 * Test if a process is not yet dead (at most zombie state)
1048 * If pid_alive fails, then pointers within the task structure
1049 * can be stale and must not be dereferenced.
1050 */
1051 static inline int pid_alive(struct task_struct *p)
1052 {
1053 return p->pids[PIDTYPE_PID].pid != NULL;
1054 }
1055
1056 /**
1057 * is_init - check if a task structure is the first user space
1058 * task the kernel created.
1059 * @p: Task structure to be checked.
1060 */
1061 static inline int is_init(struct task_struct *tsk)
1062 {
1063 return tsk->pid == 1;
1064 }
1065
1066 extern void free_task(struct task_struct *tsk);
1067 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1068
1069 extern void __put_task_struct(struct task_struct *t);
1070
1071 static inline void put_task_struct(struct task_struct *t)
1072 {
1073 if (atomic_dec_and_test(&t->usage))
1074 __put_task_struct(t);
1075 }
1076
1077 /*
1078 * Per process flags
1079 */
1080 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1081 /* Not implemented yet, only for 486*/
1082 #define PF_STARTING 0x00000002 /* being created */
1083 #define PF_EXITING 0x00000004 /* getting shut down */
1084 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1085 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1086 #define PF_DUMPCORE 0x00000200 /* dumped core */
1087 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1088 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1089 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1090 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1091 #define PF_FREEZE 0x00004000 /* this task is being frozen for suspend now */
1092 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1093 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1094 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1095 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1096 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */
1097 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1098 #define PF_BORROWED_MM 0x00200000 /* I am a kthread doing use_mm */
1099 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1100 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1101 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1102 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1103 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1104 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1105
1106 /*
1107 * Only the _current_ task can read/write to tsk->flags, but other
1108 * tasks can access tsk->flags in readonly mode for example
1109 * with tsk_used_math (like during threaded core dumping).
1110 * There is however an exception to this rule during ptrace
1111 * or during fork: the ptracer task is allowed to write to the
1112 * child->flags of its traced child (same goes for fork, the parent
1113 * can write to the child->flags), because we're guaranteed the
1114 * child is not running and in turn not changing child->flags
1115 * at the same time the parent does it.
1116 */
1117 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1118 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1119 #define clear_used_math() clear_stopped_child_used_math(current)
1120 #define set_used_math() set_stopped_child_used_math(current)
1121 #define conditional_stopped_child_used_math(condition, child) \
1122 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1123 #define conditional_used_math(condition) \
1124 conditional_stopped_child_used_math(condition, current)
1125 #define copy_to_stopped_child_used_math(child) \
1126 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1127 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1128 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1129 #define used_math() tsk_used_math(current)
1130
1131 #ifdef CONFIG_SMP
1132 extern int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask);
1133 #else
1134 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1135 {
1136 if (!cpu_isset(0, new_mask))
1137 return -EINVAL;
1138 return 0;
1139 }
1140 #endif
1141
1142 extern unsigned long long sched_clock(void);
1143 extern unsigned long long
1144 current_sched_time(const struct task_struct *current_task);
1145
1146 /* sched_exec is called by processes performing an exec */
1147 #ifdef CONFIG_SMP
1148 extern void sched_exec(void);
1149 #else
1150 #define sched_exec() {}
1151 #endif
1152
1153 #ifdef CONFIG_HOTPLUG_CPU
1154 extern void idle_task_exit(void);
1155 #else
1156 static inline void idle_task_exit(void) {}
1157 #endif
1158
1159 extern void sched_idle_next(void);
1160
1161 #ifdef CONFIG_RT_MUTEXES
1162 extern int rt_mutex_getprio(struct task_struct *p);
1163 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1164 extern void rt_mutex_adjust_pi(struct task_struct *p);
1165 #else
1166 static inline int rt_mutex_getprio(struct task_struct *p)
1167 {
1168 return p->normal_prio;
1169 }
1170 # define rt_mutex_adjust_pi(p) do { } while (0)
1171 #endif
1172
1173 extern void set_user_nice(struct task_struct *p, long nice);
1174 extern int task_prio(const struct task_struct *p);
1175 extern int task_nice(const struct task_struct *p);
1176 extern int can_nice(const struct task_struct *p, const int nice);
1177 extern int task_curr(const struct task_struct *p);
1178 extern int idle_cpu(int cpu);
1179 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1180 extern struct task_struct *idle_task(int cpu);
1181 extern struct task_struct *curr_task(int cpu);
1182 extern void set_curr_task(int cpu, struct task_struct *p);
1183
1184 void yield(void);
1185
1186 /*
1187 * The default (Linux) execution domain.
1188 */
1189 extern struct exec_domain default_exec_domain;
1190
1191 union thread_union {
1192 struct thread_info thread_info;
1193 unsigned long stack[THREAD_SIZE/sizeof(long)];
1194 };
1195
1196 #ifndef __HAVE_ARCH_KSTACK_END
1197 static inline int kstack_end(void *addr)
1198 {
1199 /* Reliable end of stack detection:
1200 * Some APM bios versions misalign the stack
1201 */
1202 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1203 }
1204 #endif
1205
1206 extern union thread_union init_thread_union;
1207 extern struct task_struct init_task;
1208
1209 extern struct mm_struct init_mm;
1210
1211 #define find_task_by_pid(nr) find_task_by_pid_type(PIDTYPE_PID, nr)
1212 extern struct task_struct *find_task_by_pid_type(int type, int pid);
1213 extern void set_special_pids(pid_t session, pid_t pgrp);
1214 extern void __set_special_pids(pid_t session, pid_t pgrp);
1215
1216 /* per-UID process charging. */
1217 extern struct user_struct * alloc_uid(uid_t);
1218 static inline struct user_struct *get_uid(struct user_struct *u)
1219 {
1220 atomic_inc(&u->__count);
1221 return u;
1222 }
1223 extern void free_uid(struct user_struct *);
1224 extern void switch_uid(struct user_struct *);
1225
1226 #include <asm/current.h>
1227
1228 extern void do_timer(unsigned long ticks);
1229
1230 extern int FASTCALL(wake_up_state(struct task_struct * tsk, unsigned int state));
1231 extern int FASTCALL(wake_up_process(struct task_struct * tsk));
1232 extern void FASTCALL(wake_up_new_task(struct task_struct * tsk,
1233 unsigned long clone_flags));
1234 #ifdef CONFIG_SMP
1235 extern void kick_process(struct task_struct *tsk);
1236 #else
1237 static inline void kick_process(struct task_struct *tsk) { }
1238 #endif
1239 extern void FASTCALL(sched_fork(struct task_struct * p, int clone_flags));
1240 extern void FASTCALL(sched_exit(struct task_struct * p));
1241
1242 extern int in_group_p(gid_t);
1243 extern int in_egroup_p(gid_t);
1244
1245 extern void proc_caches_init(void);
1246 extern void flush_signals(struct task_struct *);
1247 extern void flush_signal_handlers(struct task_struct *, int force_default);
1248 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1249
1250 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1251 {
1252 unsigned long flags;
1253 int ret;
1254
1255 spin_lock_irqsave(&tsk->sighand->siglock, flags);
1256 ret = dequeue_signal(tsk, mask, info);
1257 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1258
1259 return ret;
1260 }
1261
1262 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1263 sigset_t *mask);
1264 extern void unblock_all_signals(void);
1265 extern void release_task(struct task_struct * p);
1266 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1267 extern int send_group_sig_info(int, struct siginfo *, struct task_struct *);
1268 extern int force_sigsegv(int, struct task_struct *);
1269 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1270 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1271 extern int kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1272 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
1273 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
1274 extern int kill_pgrp(struct pid *pid, int sig, int priv);
1275 extern int kill_pid(struct pid *pid, int sig, int priv);
1276 extern int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp);
1277 extern int kill_pg_info(int, struct siginfo *, pid_t);
1278 extern int kill_proc_info(int, struct siginfo *, pid_t);
1279 extern void do_notify_parent(struct task_struct *, int);
1280 extern void force_sig(int, struct task_struct *);
1281 extern void force_sig_specific(int, struct task_struct *);
1282 extern int send_sig(int, struct task_struct *, int);
1283 extern void zap_other_threads(struct task_struct *p);
1284 extern int kill_pg(pid_t, int, int);
1285 extern int kill_proc(pid_t, int, int);
1286 extern struct sigqueue *sigqueue_alloc(void);
1287 extern void sigqueue_free(struct sigqueue *);
1288 extern int send_sigqueue(int, struct sigqueue *, struct task_struct *);
1289 extern int send_group_sigqueue(int, struct sigqueue *, struct task_struct *);
1290 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1291 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1292
1293 /* These can be the second arg to send_sig_info/send_group_sig_info. */
1294 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
1295 #define SEND_SIG_PRIV ((struct siginfo *) 1)
1296 #define SEND_SIG_FORCED ((struct siginfo *) 2)
1297
1298 static inline int is_si_special(const struct siginfo *info)
1299 {
1300 return info <= SEND_SIG_FORCED;
1301 }
1302
1303 /* True if we are on the alternate signal stack. */
1304
1305 static inline int on_sig_stack(unsigned long sp)
1306 {
1307 return (sp - current->sas_ss_sp < current->sas_ss_size);
1308 }
1309
1310 static inline int sas_ss_flags(unsigned long sp)
1311 {
1312 return (current->sas_ss_size == 0 ? SS_DISABLE
1313 : on_sig_stack(sp) ? SS_ONSTACK : 0);
1314 }
1315
1316 /*
1317 * Routines for handling mm_structs
1318 */
1319 extern struct mm_struct * mm_alloc(void);
1320
1321 /* mmdrop drops the mm and the page tables */
1322 extern void FASTCALL(__mmdrop(struct mm_struct *));
1323 static inline void mmdrop(struct mm_struct * mm)
1324 {
1325 if (atomic_dec_and_test(&mm->mm_count))
1326 __mmdrop(mm);
1327 }
1328
1329 /* mmput gets rid of the mappings and all user-space */
1330 extern void mmput(struct mm_struct *);
1331 /* Grab a reference to a task's mm, if it is not already going away */
1332 extern struct mm_struct *get_task_mm(struct task_struct *task);
1333 /* Remove the current tasks stale references to the old mm_struct */
1334 extern void mm_release(struct task_struct *, struct mm_struct *);
1335
1336 extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
1337 extern void flush_thread(void);
1338 extern void exit_thread(void);
1339
1340 extern void exit_files(struct task_struct *);
1341 extern void __cleanup_signal(struct signal_struct *);
1342 extern void __cleanup_sighand(struct sighand_struct *);
1343 extern void exit_itimers(struct signal_struct *);
1344
1345 extern NORET_TYPE void do_group_exit(int);
1346
1347 extern void daemonize(const char *, ...);
1348 extern int allow_signal(int);
1349 extern int disallow_signal(int);
1350 extern struct task_struct *child_reaper;
1351
1352 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
1353 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
1354 struct task_struct *fork_idle(int);
1355
1356 extern void set_task_comm(struct task_struct *tsk, char *from);
1357 extern void get_task_comm(char *to, struct task_struct *tsk);
1358
1359 #ifdef CONFIG_SMP
1360 extern void wait_task_inactive(struct task_struct * p);
1361 #else
1362 #define wait_task_inactive(p) do { } while (0)
1363 #endif
1364
1365 #define remove_parent(p) list_del_init(&(p)->sibling)
1366 #define add_parent(p) list_add_tail(&(p)->sibling,&(p)->parent->children)
1367
1368 #define next_task(p) list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks)
1369
1370 #define for_each_process(p) \
1371 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
1372
1373 /*
1374 * Careful: do_each_thread/while_each_thread is a double loop so
1375 * 'break' will not work as expected - use goto instead.
1376 */
1377 #define do_each_thread(g, t) \
1378 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
1379
1380 #define while_each_thread(g, t) \
1381 while ((t = next_thread(t)) != g)
1382
1383 /* de_thread depends on thread_group_leader not being a pid based check */
1384 #define thread_group_leader(p) (p == p->group_leader)
1385
1386 /* Do to the insanities of de_thread it is possible for a process
1387 * to have the pid of the thread group leader without actually being
1388 * the thread group leader. For iteration through the pids in proc
1389 * all we care about is that we have a task with the appropriate
1390 * pid, we don't actually care if we have the right task.
1391 */
1392 static inline int has_group_leader_pid(struct task_struct *p)
1393 {
1394 return p->pid == p->tgid;
1395 }
1396
1397 static inline struct task_struct *next_thread(const struct task_struct *p)
1398 {
1399 return list_entry(rcu_dereference(p->thread_group.next),
1400 struct task_struct, thread_group);
1401 }
1402
1403 static inline int thread_group_empty(struct task_struct *p)
1404 {
1405 return list_empty(&p->thread_group);
1406 }
1407
1408 #define delay_group_leader(p) \
1409 (thread_group_leader(p) && !thread_group_empty(p))
1410
1411 /*
1412 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
1413 * subscriptions and synchronises with wait4(). Also used in procfs. Also
1414 * pins the final release of task.io_context. Also protects ->cpuset.
1415 *
1416 * Nests both inside and outside of read_lock(&tasklist_lock).
1417 * It must not be nested with write_lock_irq(&tasklist_lock),
1418 * neither inside nor outside.
1419 */
1420 static inline void task_lock(struct task_struct *p)
1421 {
1422 spin_lock(&p->alloc_lock);
1423 }
1424
1425 static inline void task_unlock(struct task_struct *p)
1426 {
1427 spin_unlock(&p->alloc_lock);
1428 }
1429
1430 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
1431 unsigned long *flags);
1432
1433 static inline void unlock_task_sighand(struct task_struct *tsk,
1434 unsigned long *flags)
1435 {
1436 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
1437 }
1438
1439 #ifndef __HAVE_THREAD_FUNCTIONS
1440
1441 #define task_thread_info(task) (task)->thread_info
1442 #define task_stack_page(task) ((void*)((task)->thread_info))
1443
1444 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
1445 {
1446 *task_thread_info(p) = *task_thread_info(org);
1447 task_thread_info(p)->task = p;
1448 }
1449
1450 static inline unsigned long *end_of_stack(struct task_struct *p)
1451 {
1452 return (unsigned long *)(p->thread_info + 1);
1453 }
1454
1455 #endif
1456
1457 /* set thread flags in other task's structures
1458 * - see asm/thread_info.h for TIF_xxxx flags available
1459 */
1460 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1461 {
1462 set_ti_thread_flag(task_thread_info(tsk), flag);
1463 }
1464
1465 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1466 {
1467 clear_ti_thread_flag(task_thread_info(tsk), flag);
1468 }
1469
1470 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1471 {
1472 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1473 }
1474
1475 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1476 {
1477 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1478 }
1479
1480 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1481 {
1482 return test_ti_thread_flag(task_thread_info(tsk), flag);
1483 }
1484
1485 static inline void set_tsk_need_resched(struct task_struct *tsk)
1486 {
1487 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1488 }
1489
1490 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1491 {
1492 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1493 }
1494
1495 static inline int signal_pending(struct task_struct *p)
1496 {
1497 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
1498 }
1499
1500 static inline int need_resched(void)
1501 {
1502 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
1503 }
1504
1505 /*
1506 * cond_resched() and cond_resched_lock(): latency reduction via
1507 * explicit rescheduling in places that are safe. The return
1508 * value indicates whether a reschedule was done in fact.
1509 * cond_resched_lock() will drop the spinlock before scheduling,
1510 * cond_resched_softirq() will enable bhs before scheduling.
1511 */
1512 extern int cond_resched(void);
1513 extern int cond_resched_lock(spinlock_t * lock);
1514 extern int cond_resched_softirq(void);
1515
1516 /*
1517 * Does a critical section need to be broken due to another
1518 * task waiting?:
1519 */
1520 #if defined(CONFIG_PREEMPT) && defined(CONFIG_SMP)
1521 # define need_lockbreak(lock) ((lock)->break_lock)
1522 #else
1523 # define need_lockbreak(lock) 0
1524 #endif
1525
1526 /*
1527 * Does a critical section need to be broken due to another
1528 * task waiting or preemption being signalled:
1529 */
1530 static inline int lock_need_resched(spinlock_t *lock)
1531 {
1532 if (need_lockbreak(lock) || need_resched())
1533 return 1;
1534 return 0;
1535 }
1536
1537 /* Reevaluate whether the task has signals pending delivery.
1538 This is required every time the blocked sigset_t changes.
1539 callers must hold sighand->siglock. */
1540
1541 extern FASTCALL(void recalc_sigpending_tsk(struct task_struct *t));
1542 extern void recalc_sigpending(void);
1543
1544 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
1545
1546 /*
1547 * Wrappers for p->thread_info->cpu access. No-op on UP.
1548 */
1549 #ifdef CONFIG_SMP
1550
1551 static inline unsigned int task_cpu(const struct task_struct *p)
1552 {
1553 return task_thread_info(p)->cpu;
1554 }
1555
1556 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1557 {
1558 task_thread_info(p)->cpu = cpu;
1559 }
1560
1561 #else
1562
1563 static inline unsigned int task_cpu(const struct task_struct *p)
1564 {
1565 return 0;
1566 }
1567
1568 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1569 {
1570 }
1571
1572 #endif /* CONFIG_SMP */
1573
1574 #ifdef HAVE_ARCH_PICK_MMAP_LAYOUT
1575 extern void arch_pick_mmap_layout(struct mm_struct *mm);
1576 #else
1577 static inline void arch_pick_mmap_layout(struct mm_struct *mm)
1578 {
1579 mm->mmap_base = TASK_UNMAPPED_BASE;
1580 mm->get_unmapped_area = arch_get_unmapped_area;
1581 mm->unmap_area = arch_unmap_area;
1582 }
1583 #endif
1584
1585 extern long sched_setaffinity(pid_t pid, cpumask_t new_mask);
1586 extern long sched_getaffinity(pid_t pid, cpumask_t *mask);
1587
1588 #include <linux/sysdev.h>
1589 extern int sched_mc_power_savings, sched_smt_power_savings;
1590 extern struct sysdev_attribute attr_sched_mc_power_savings, attr_sched_smt_power_savings;
1591 extern int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls);
1592
1593 extern void normalize_rt_tasks(void);
1594
1595 #ifdef CONFIG_PM
1596 /*
1597 * Check if a process has been frozen
1598 */
1599 static inline int frozen(struct task_struct *p)
1600 {
1601 return p->flags & PF_FROZEN;
1602 }
1603
1604 /*
1605 * Check if there is a request to freeze a process
1606 */
1607 static inline int freezing(struct task_struct *p)
1608 {
1609 return p->flags & PF_FREEZE;
1610 }
1611
1612 /*
1613 * Request that a process be frozen
1614 * FIXME: SMP problem. We may not modify other process' flags!
1615 */
1616 static inline void freeze(struct task_struct *p)
1617 {
1618 p->flags |= PF_FREEZE;
1619 }
1620
1621 /*
1622 * Sometimes we may need to cancel the previous 'freeze' request
1623 */
1624 static inline void do_not_freeze(struct task_struct *p)
1625 {
1626 p->flags &= ~PF_FREEZE;
1627 }
1628
1629 /*
1630 * Wake up a frozen process
1631 */
1632 static inline int thaw_process(struct task_struct *p)
1633 {
1634 if (frozen(p)) {
1635 p->flags &= ~PF_FROZEN;
1636 wake_up_process(p);
1637 return 1;
1638 }
1639 return 0;
1640 }
1641
1642 /*
1643 * freezing is complete, mark process as frozen
1644 */
1645 static inline void frozen_process(struct task_struct *p)
1646 {
1647 p->flags = (p->flags & ~PF_FREEZE) | PF_FROZEN;
1648 }
1649
1650 extern void refrigerator(void);
1651 extern int freeze_processes(void);
1652 extern void thaw_processes(void);
1653
1654 static inline int try_to_freeze(void)
1655 {
1656 if (freezing(current)) {
1657 refrigerator();
1658 return 1;
1659 } else
1660 return 0;
1661 }
1662 #else
1663 static inline int frozen(struct task_struct *p) { return 0; }
1664 static inline int freezing(struct task_struct *p) { return 0; }
1665 static inline void freeze(struct task_struct *p) { BUG(); }
1666 static inline int thaw_process(struct task_struct *p) { return 1; }
1667 static inline void frozen_process(struct task_struct *p) { BUG(); }
1668
1669 static inline void refrigerator(void) {}
1670 static inline int freeze_processes(void) { BUG(); return 0; }
1671 static inline void thaw_processes(void) {}
1672
1673 static inline int try_to_freeze(void) { return 0; }
1674
1675 #endif /* CONFIG_PM */
1676 #endif /* __KERNEL__ */
1677
1678 #endif
This page took 0.083795 seconds and 6 git commands to generate.