Merge git://git.kernel.org/pub/scm/linux/kernel/git/sam/kbuild-next
[deliverable/linux.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
29 #define CLONE_NEWNET 0x40000000 /* New network namespace */
30 #define CLONE_IO 0x80000000 /* Clone io context */
31
32 /*
33 * Scheduling policies
34 */
35 #define SCHED_NORMAL 0
36 #define SCHED_FIFO 1
37 #define SCHED_RR 2
38 #define SCHED_BATCH 3
39 /* SCHED_ISO: reserved but not implemented yet */
40 #define SCHED_IDLE 5
41
42 #ifdef __KERNEL__
43
44 struct sched_param {
45 int sched_priority;
46 };
47
48 #include <asm/param.h> /* for HZ */
49
50 #include <linux/capability.h>
51 #include <linux/threads.h>
52 #include <linux/kernel.h>
53 #include <linux/types.h>
54 #include <linux/timex.h>
55 #include <linux/jiffies.h>
56 #include <linux/rbtree.h>
57 #include <linux/thread_info.h>
58 #include <linux/cpumask.h>
59 #include <linux/errno.h>
60 #include <linux/nodemask.h>
61 #include <linux/mm_types.h>
62
63 #include <asm/system.h>
64 #include <asm/page.h>
65 #include <asm/ptrace.h>
66 #include <asm/cputime.h>
67
68 #include <linux/smp.h>
69 #include <linux/sem.h>
70 #include <linux/signal.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compiler.h>
73 #include <linux/completion.h>
74 #include <linux/pid.h>
75 #include <linux/percpu.h>
76 #include <linux/topology.h>
77 #include <linux/proportions.h>
78 #include <linux/seccomp.h>
79 #include <linux/rcupdate.h>
80 #include <linux/rtmutex.h>
81
82 #include <linux/time.h>
83 #include <linux/param.h>
84 #include <linux/resource.h>
85 #include <linux/timer.h>
86 #include <linux/hrtimer.h>
87 #include <linux/task_io_accounting.h>
88 #include <linux/kobject.h>
89 #include <linux/latencytop.h>
90 #include <linux/cred.h>
91
92 #include <asm/processor.h>
93
94 struct mem_cgroup;
95 struct exec_domain;
96 struct futex_pi_state;
97 struct robust_list_head;
98 struct bio;
99 struct bts_tracer;
100
101 /*
102 * List of flags we want to share for kernel threads,
103 * if only because they are not used by them anyway.
104 */
105 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
106
107 /*
108 * These are the constant used to fake the fixed-point load-average
109 * counting. Some notes:
110 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
111 * a load-average precision of 10 bits integer + 11 bits fractional
112 * - if you want to count load-averages more often, you need more
113 * precision, or rounding will get you. With 2-second counting freq,
114 * the EXP_n values would be 1981, 2034 and 2043 if still using only
115 * 11 bit fractions.
116 */
117 extern unsigned long avenrun[]; /* Load averages */
118
119 #define FSHIFT 11 /* nr of bits of precision */
120 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
121 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
122 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
123 #define EXP_5 2014 /* 1/exp(5sec/5min) */
124 #define EXP_15 2037 /* 1/exp(5sec/15min) */
125
126 #define CALC_LOAD(load,exp,n) \
127 load *= exp; \
128 load += n*(FIXED_1-exp); \
129 load >>= FSHIFT;
130
131 extern unsigned long total_forks;
132 extern int nr_threads;
133 DECLARE_PER_CPU(unsigned long, process_counts);
134 extern int nr_processes(void);
135 extern unsigned long nr_running(void);
136 extern unsigned long nr_uninterruptible(void);
137 extern unsigned long nr_active(void);
138 extern unsigned long nr_iowait(void);
139
140 struct seq_file;
141 struct cfs_rq;
142 struct task_group;
143 #ifdef CONFIG_SCHED_DEBUG
144 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
145 extern void proc_sched_set_task(struct task_struct *p);
146 extern void
147 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
148 #else
149 static inline void
150 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
151 {
152 }
153 static inline void proc_sched_set_task(struct task_struct *p)
154 {
155 }
156 static inline void
157 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
158 {
159 }
160 #endif
161
162 extern unsigned long long time_sync_thresh;
163
164 /*
165 * Task state bitmask. NOTE! These bits are also
166 * encoded in fs/proc/array.c: get_task_state().
167 *
168 * We have two separate sets of flags: task->state
169 * is about runnability, while task->exit_state are
170 * about the task exiting. Confusing, but this way
171 * modifying one set can't modify the other one by
172 * mistake.
173 */
174 #define TASK_RUNNING 0
175 #define TASK_INTERRUPTIBLE 1
176 #define TASK_UNINTERRUPTIBLE 2
177 #define __TASK_STOPPED 4
178 #define __TASK_TRACED 8
179 /* in tsk->exit_state */
180 #define EXIT_ZOMBIE 16
181 #define EXIT_DEAD 32
182 /* in tsk->state again */
183 #define TASK_DEAD 64
184 #define TASK_WAKEKILL 128
185
186 /* Convenience macros for the sake of set_task_state */
187 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
188 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
189 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
190
191 /* Convenience macros for the sake of wake_up */
192 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
193 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
194
195 /* get_task_state() */
196 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
197 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
198 __TASK_TRACED)
199
200 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
201 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
202 #define task_is_stopped_or_traced(task) \
203 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
204 #define task_contributes_to_load(task) \
205 ((task->state & TASK_UNINTERRUPTIBLE) != 0)
206
207 #define __set_task_state(tsk, state_value) \
208 do { (tsk)->state = (state_value); } while (0)
209 #define set_task_state(tsk, state_value) \
210 set_mb((tsk)->state, (state_value))
211
212 /*
213 * set_current_state() includes a barrier so that the write of current->state
214 * is correctly serialised wrt the caller's subsequent test of whether to
215 * actually sleep:
216 *
217 * set_current_state(TASK_UNINTERRUPTIBLE);
218 * if (do_i_need_to_sleep())
219 * schedule();
220 *
221 * If the caller does not need such serialisation then use __set_current_state()
222 */
223 #define __set_current_state(state_value) \
224 do { current->state = (state_value); } while (0)
225 #define set_current_state(state_value) \
226 set_mb(current->state, (state_value))
227
228 /* Task command name length */
229 #define TASK_COMM_LEN 16
230
231 #include <linux/spinlock.h>
232
233 /*
234 * This serializes "schedule()" and also protects
235 * the run-queue from deletions/modifications (but
236 * _adding_ to the beginning of the run-queue has
237 * a separate lock).
238 */
239 extern rwlock_t tasklist_lock;
240 extern spinlock_t mmlist_lock;
241
242 struct task_struct;
243
244 extern void sched_init(void);
245 extern void sched_init_smp(void);
246 extern asmlinkage void schedule_tail(struct task_struct *prev);
247 extern void init_idle(struct task_struct *idle, int cpu);
248 extern void init_idle_bootup_task(struct task_struct *idle);
249
250 extern int runqueue_is_locked(void);
251 extern void task_rq_unlock_wait(struct task_struct *p);
252
253 extern cpumask_var_t nohz_cpu_mask;
254 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
255 extern int select_nohz_load_balancer(int cpu);
256 #else
257 static inline int select_nohz_load_balancer(int cpu)
258 {
259 return 0;
260 }
261 #endif
262
263 /*
264 * Only dump TASK_* tasks. (0 for all tasks)
265 */
266 extern void show_state_filter(unsigned long state_filter);
267
268 static inline void show_state(void)
269 {
270 show_state_filter(0);
271 }
272
273 extern void show_regs(struct pt_regs *);
274
275 /*
276 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
277 * task), SP is the stack pointer of the first frame that should be shown in the back
278 * trace (or NULL if the entire call-chain of the task should be shown).
279 */
280 extern void show_stack(struct task_struct *task, unsigned long *sp);
281
282 void io_schedule(void);
283 long io_schedule_timeout(long timeout);
284
285 extern void cpu_init (void);
286 extern void trap_init(void);
287 extern void account_process_tick(struct task_struct *task, int user);
288 extern void update_process_times(int user);
289 extern void scheduler_tick(void);
290
291 extern void sched_show_task(struct task_struct *p);
292
293 #ifdef CONFIG_DETECT_SOFTLOCKUP
294 extern void softlockup_tick(void);
295 extern void touch_softlockup_watchdog(void);
296 extern void touch_all_softlockup_watchdogs(void);
297 extern unsigned int softlockup_panic;
298 extern unsigned long sysctl_hung_task_check_count;
299 extern unsigned long sysctl_hung_task_timeout_secs;
300 extern unsigned long sysctl_hung_task_warnings;
301 extern int softlockup_thresh;
302 #else
303 static inline void softlockup_tick(void)
304 {
305 }
306 static inline void spawn_softlockup_task(void)
307 {
308 }
309 static inline void touch_softlockup_watchdog(void)
310 {
311 }
312 static inline void touch_all_softlockup_watchdogs(void)
313 {
314 }
315 #endif
316
317
318 /* Attach to any functions which should be ignored in wchan output. */
319 #define __sched __attribute__((__section__(".sched.text")))
320
321 /* Linker adds these: start and end of __sched functions */
322 extern char __sched_text_start[], __sched_text_end[];
323
324 /* Is this address in the __sched functions? */
325 extern int in_sched_functions(unsigned long addr);
326
327 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
328 extern signed long schedule_timeout(signed long timeout);
329 extern signed long schedule_timeout_interruptible(signed long timeout);
330 extern signed long schedule_timeout_killable(signed long timeout);
331 extern signed long schedule_timeout_uninterruptible(signed long timeout);
332 asmlinkage void schedule(void);
333
334 struct nsproxy;
335 struct user_namespace;
336
337 /* Maximum number of active map areas.. This is a random (large) number */
338 #define DEFAULT_MAX_MAP_COUNT 65536
339
340 extern int sysctl_max_map_count;
341
342 #include <linux/aio.h>
343
344 extern unsigned long
345 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
346 unsigned long, unsigned long);
347 extern unsigned long
348 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
349 unsigned long len, unsigned long pgoff,
350 unsigned long flags);
351 extern void arch_unmap_area(struct mm_struct *, unsigned long);
352 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
353
354 #if USE_SPLIT_PTLOCKS
355 /*
356 * The mm counters are not protected by its page_table_lock,
357 * so must be incremented atomically.
358 */
359 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
360 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
361 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
362 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
363 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
364
365 #else /* !USE_SPLIT_PTLOCKS */
366 /*
367 * The mm counters are protected by its page_table_lock,
368 * so can be incremented directly.
369 */
370 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
371 #define get_mm_counter(mm, member) ((mm)->_##member)
372 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
373 #define inc_mm_counter(mm, member) (mm)->_##member++
374 #define dec_mm_counter(mm, member) (mm)->_##member--
375
376 #endif /* !USE_SPLIT_PTLOCKS */
377
378 #define get_mm_rss(mm) \
379 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
380 #define update_hiwater_rss(mm) do { \
381 unsigned long _rss = get_mm_rss(mm); \
382 if ((mm)->hiwater_rss < _rss) \
383 (mm)->hiwater_rss = _rss; \
384 } while (0)
385 #define update_hiwater_vm(mm) do { \
386 if ((mm)->hiwater_vm < (mm)->total_vm) \
387 (mm)->hiwater_vm = (mm)->total_vm; \
388 } while (0)
389
390 extern void set_dumpable(struct mm_struct *mm, int value);
391 extern int get_dumpable(struct mm_struct *mm);
392
393 /* mm flags */
394 /* dumpable bits */
395 #define MMF_DUMPABLE 0 /* core dump is permitted */
396 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
397 #define MMF_DUMPABLE_BITS 2
398
399 /* coredump filter bits */
400 #define MMF_DUMP_ANON_PRIVATE 2
401 #define MMF_DUMP_ANON_SHARED 3
402 #define MMF_DUMP_MAPPED_PRIVATE 4
403 #define MMF_DUMP_MAPPED_SHARED 5
404 #define MMF_DUMP_ELF_HEADERS 6
405 #define MMF_DUMP_HUGETLB_PRIVATE 7
406 #define MMF_DUMP_HUGETLB_SHARED 8
407 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
408 #define MMF_DUMP_FILTER_BITS 7
409 #define MMF_DUMP_FILTER_MASK \
410 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
411 #define MMF_DUMP_FILTER_DEFAULT \
412 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
413 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
414
415 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
416 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
417 #else
418 # define MMF_DUMP_MASK_DEFAULT_ELF 0
419 #endif
420
421 struct sighand_struct {
422 atomic_t count;
423 struct k_sigaction action[_NSIG];
424 spinlock_t siglock;
425 wait_queue_head_t signalfd_wqh;
426 };
427
428 struct pacct_struct {
429 int ac_flag;
430 long ac_exitcode;
431 unsigned long ac_mem;
432 cputime_t ac_utime, ac_stime;
433 unsigned long ac_minflt, ac_majflt;
434 };
435
436 /**
437 * struct task_cputime - collected CPU time counts
438 * @utime: time spent in user mode, in &cputime_t units
439 * @stime: time spent in kernel mode, in &cputime_t units
440 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
441 *
442 * This structure groups together three kinds of CPU time that are
443 * tracked for threads and thread groups. Most things considering
444 * CPU time want to group these counts together and treat all three
445 * of them in parallel.
446 */
447 struct task_cputime {
448 cputime_t utime;
449 cputime_t stime;
450 unsigned long long sum_exec_runtime;
451 };
452 /* Alternate field names when used to cache expirations. */
453 #define prof_exp stime
454 #define virt_exp utime
455 #define sched_exp sum_exec_runtime
456
457 /**
458 * struct thread_group_cputime - thread group interval timer counts
459 * @totals: thread group interval timers; substructure for
460 * uniprocessor kernel, per-cpu for SMP kernel.
461 *
462 * This structure contains the version of task_cputime, above, that is
463 * used for thread group CPU clock calculations.
464 */
465 struct thread_group_cputime {
466 struct task_cputime *totals;
467 };
468
469 /*
470 * NOTE! "signal_struct" does not have it's own
471 * locking, because a shared signal_struct always
472 * implies a shared sighand_struct, so locking
473 * sighand_struct is always a proper superset of
474 * the locking of signal_struct.
475 */
476 struct signal_struct {
477 atomic_t count;
478 atomic_t live;
479
480 wait_queue_head_t wait_chldexit; /* for wait4() */
481
482 /* current thread group signal load-balancing target: */
483 struct task_struct *curr_target;
484
485 /* shared signal handling: */
486 struct sigpending shared_pending;
487
488 /* thread group exit support */
489 int group_exit_code;
490 /* overloaded:
491 * - notify group_exit_task when ->count is equal to notify_count
492 * - everyone except group_exit_task is stopped during signal delivery
493 * of fatal signals, group_exit_task processes the signal.
494 */
495 int notify_count;
496 struct task_struct *group_exit_task;
497
498 /* thread group stop support, overloads group_exit_code too */
499 int group_stop_count;
500 unsigned int flags; /* see SIGNAL_* flags below */
501
502 /* POSIX.1b Interval Timers */
503 struct list_head posix_timers;
504
505 /* ITIMER_REAL timer for the process */
506 struct hrtimer real_timer;
507 struct pid *leader_pid;
508 ktime_t it_real_incr;
509
510 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
511 cputime_t it_prof_expires, it_virt_expires;
512 cputime_t it_prof_incr, it_virt_incr;
513
514 /*
515 * Thread group totals for process CPU clocks.
516 * See thread_group_cputime(), et al, for details.
517 */
518 struct thread_group_cputime cputime;
519
520 /* Earliest-expiration cache. */
521 struct task_cputime cputime_expires;
522
523 struct list_head cpu_timers[3];
524
525 /* job control IDs */
526
527 /*
528 * pgrp and session fields are deprecated.
529 * use the task_session_Xnr and task_pgrp_Xnr routines below
530 */
531
532 union {
533 pid_t pgrp __deprecated;
534 pid_t __pgrp;
535 };
536
537 struct pid *tty_old_pgrp;
538
539 union {
540 pid_t session __deprecated;
541 pid_t __session;
542 };
543
544 /* boolean value for session group leader */
545 int leader;
546
547 struct tty_struct *tty; /* NULL if no tty */
548
549 /*
550 * Cumulative resource counters for dead threads in the group,
551 * and for reaped dead child processes forked by this group.
552 * Live threads maintain their own counters and add to these
553 * in __exit_signal, except for the group leader.
554 */
555 cputime_t cutime, cstime;
556 cputime_t gtime;
557 cputime_t cgtime;
558 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
559 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
560 unsigned long inblock, oublock, cinblock, coublock;
561 struct task_io_accounting ioac;
562
563 /*
564 * We don't bother to synchronize most readers of this at all,
565 * because there is no reader checking a limit that actually needs
566 * to get both rlim_cur and rlim_max atomically, and either one
567 * alone is a single word that can safely be read normally.
568 * getrlimit/setrlimit use task_lock(current->group_leader) to
569 * protect this instead of the siglock, because they really
570 * have no need to disable irqs.
571 */
572 struct rlimit rlim[RLIM_NLIMITS];
573
574 #ifdef CONFIG_BSD_PROCESS_ACCT
575 struct pacct_struct pacct; /* per-process accounting information */
576 #endif
577 #ifdef CONFIG_TASKSTATS
578 struct taskstats *stats;
579 #endif
580 #ifdef CONFIG_AUDIT
581 unsigned audit_tty;
582 struct tty_audit_buf *tty_audit_buf;
583 #endif
584 };
585
586 /* Context switch must be unlocked if interrupts are to be enabled */
587 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
588 # define __ARCH_WANT_UNLOCKED_CTXSW
589 #endif
590
591 /*
592 * Bits in flags field of signal_struct.
593 */
594 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
595 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
596 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
597 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
598 /*
599 * Pending notifications to parent.
600 */
601 #define SIGNAL_CLD_STOPPED 0x00000010
602 #define SIGNAL_CLD_CONTINUED 0x00000020
603 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
604
605 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
606
607 /* If true, all threads except ->group_exit_task have pending SIGKILL */
608 static inline int signal_group_exit(const struct signal_struct *sig)
609 {
610 return (sig->flags & SIGNAL_GROUP_EXIT) ||
611 (sig->group_exit_task != NULL);
612 }
613
614 /*
615 * Some day this will be a full-fledged user tracking system..
616 */
617 struct user_struct {
618 atomic_t __count; /* reference count */
619 atomic_t processes; /* How many processes does this user have? */
620 atomic_t files; /* How many open files does this user have? */
621 atomic_t sigpending; /* How many pending signals does this user have? */
622 #ifdef CONFIG_INOTIFY_USER
623 atomic_t inotify_watches; /* How many inotify watches does this user have? */
624 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
625 #endif
626 #ifdef CONFIG_EPOLL
627 atomic_t epoll_devs; /* The number of epoll descriptors currently open */
628 atomic_t epoll_watches; /* The number of file descriptors currently watched */
629 #endif
630 #ifdef CONFIG_POSIX_MQUEUE
631 /* protected by mq_lock */
632 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
633 #endif
634 unsigned long locked_shm; /* How many pages of mlocked shm ? */
635
636 #ifdef CONFIG_KEYS
637 struct key *uid_keyring; /* UID specific keyring */
638 struct key *session_keyring; /* UID's default session keyring */
639 #endif
640
641 /* Hash table maintenance information */
642 struct hlist_node uidhash_node;
643 uid_t uid;
644 struct user_namespace *user_ns;
645
646 #ifdef CONFIG_USER_SCHED
647 struct task_group *tg;
648 #ifdef CONFIG_SYSFS
649 struct kobject kobj;
650 struct work_struct work;
651 #endif
652 #endif
653 };
654
655 extern int uids_sysfs_init(void);
656
657 extern struct user_struct *find_user(uid_t);
658
659 extern struct user_struct root_user;
660 #define INIT_USER (&root_user)
661
662
663 struct backing_dev_info;
664 struct reclaim_state;
665
666 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
667 struct sched_info {
668 /* cumulative counters */
669 unsigned long pcount; /* # of times run on this cpu */
670 unsigned long long run_delay; /* time spent waiting on a runqueue */
671
672 /* timestamps */
673 unsigned long long last_arrival,/* when we last ran on a cpu */
674 last_queued; /* when we were last queued to run */
675 #ifdef CONFIG_SCHEDSTATS
676 /* BKL stats */
677 unsigned int bkl_count;
678 #endif
679 };
680 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
681
682 #ifdef CONFIG_TASK_DELAY_ACCT
683 struct task_delay_info {
684 spinlock_t lock;
685 unsigned int flags; /* Private per-task flags */
686
687 /* For each stat XXX, add following, aligned appropriately
688 *
689 * struct timespec XXX_start, XXX_end;
690 * u64 XXX_delay;
691 * u32 XXX_count;
692 *
693 * Atomicity of updates to XXX_delay, XXX_count protected by
694 * single lock above (split into XXX_lock if contention is an issue).
695 */
696
697 /*
698 * XXX_count is incremented on every XXX operation, the delay
699 * associated with the operation is added to XXX_delay.
700 * XXX_delay contains the accumulated delay time in nanoseconds.
701 */
702 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
703 u64 blkio_delay; /* wait for sync block io completion */
704 u64 swapin_delay; /* wait for swapin block io completion */
705 u32 blkio_count; /* total count of the number of sync block */
706 /* io operations performed */
707 u32 swapin_count; /* total count of the number of swapin block */
708 /* io operations performed */
709
710 struct timespec freepages_start, freepages_end;
711 u64 freepages_delay; /* wait for memory reclaim */
712 u32 freepages_count; /* total count of memory reclaim */
713 };
714 #endif /* CONFIG_TASK_DELAY_ACCT */
715
716 static inline int sched_info_on(void)
717 {
718 #ifdef CONFIG_SCHEDSTATS
719 return 1;
720 #elif defined(CONFIG_TASK_DELAY_ACCT)
721 extern int delayacct_on;
722 return delayacct_on;
723 #else
724 return 0;
725 #endif
726 }
727
728 enum cpu_idle_type {
729 CPU_IDLE,
730 CPU_NOT_IDLE,
731 CPU_NEWLY_IDLE,
732 CPU_MAX_IDLE_TYPES
733 };
734
735 /*
736 * sched-domains (multiprocessor balancing) declarations:
737 */
738
739 /*
740 * Increase resolution of nice-level calculations:
741 */
742 #define SCHED_LOAD_SHIFT 10
743 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
744
745 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
746
747 #ifdef CONFIG_SMP
748 #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */
749 #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */
750 #define SD_BALANCE_EXEC 4 /* Balance on exec */
751 #define SD_BALANCE_FORK 8 /* Balance on fork, clone */
752 #define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */
753 #define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */
754 #define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */
755 #define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */
756 #define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */
757 #define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */
758 #define SD_SERIALIZE 1024 /* Only a single load balancing instance */
759 #define SD_WAKE_IDLE_FAR 2048 /* Gain latency sacrificing cache hit */
760
761 enum powersavings_balance_level {
762 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */
763 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package
764 * first for long running threads
765 */
766 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle
767 * cpu package for power savings
768 */
769 MAX_POWERSAVINGS_BALANCE_LEVELS
770 };
771
772 extern int sched_mc_power_savings, sched_smt_power_savings;
773
774 static inline int sd_balance_for_mc_power(void)
775 {
776 if (sched_smt_power_savings)
777 return SD_POWERSAVINGS_BALANCE;
778
779 return 0;
780 }
781
782 static inline int sd_balance_for_package_power(void)
783 {
784 if (sched_mc_power_savings | sched_smt_power_savings)
785 return SD_POWERSAVINGS_BALANCE;
786
787 return 0;
788 }
789
790 /*
791 * Optimise SD flags for power savings:
792 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings.
793 * Keep default SD flags if sched_{smt,mc}_power_saving=0
794 */
795
796 static inline int sd_power_saving_flags(void)
797 {
798 if (sched_mc_power_savings | sched_smt_power_savings)
799 return SD_BALANCE_NEWIDLE;
800
801 return 0;
802 }
803
804 struct sched_group {
805 struct sched_group *next; /* Must be a circular list */
806
807 /*
808 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
809 * single CPU. This is read only (except for setup, hotplug CPU).
810 * Note : Never change cpu_power without recompute its reciprocal
811 */
812 unsigned int __cpu_power;
813 /*
814 * reciprocal value of cpu_power to avoid expensive divides
815 * (see include/linux/reciprocal_div.h)
816 */
817 u32 reciprocal_cpu_power;
818
819 unsigned long cpumask[];
820 };
821
822 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
823 {
824 return to_cpumask(sg->cpumask);
825 }
826
827 enum sched_domain_level {
828 SD_LV_NONE = 0,
829 SD_LV_SIBLING,
830 SD_LV_MC,
831 SD_LV_CPU,
832 SD_LV_NODE,
833 SD_LV_ALLNODES,
834 SD_LV_MAX
835 };
836
837 struct sched_domain_attr {
838 int relax_domain_level;
839 };
840
841 #define SD_ATTR_INIT (struct sched_domain_attr) { \
842 .relax_domain_level = -1, \
843 }
844
845 struct sched_domain {
846 /* These fields must be setup */
847 struct sched_domain *parent; /* top domain must be null terminated */
848 struct sched_domain *child; /* bottom domain must be null terminated */
849 struct sched_group *groups; /* the balancing groups of the domain */
850 unsigned long min_interval; /* Minimum balance interval ms */
851 unsigned long max_interval; /* Maximum balance interval ms */
852 unsigned int busy_factor; /* less balancing by factor if busy */
853 unsigned int imbalance_pct; /* No balance until over watermark */
854 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
855 unsigned int busy_idx;
856 unsigned int idle_idx;
857 unsigned int newidle_idx;
858 unsigned int wake_idx;
859 unsigned int forkexec_idx;
860 int flags; /* See SD_* */
861 enum sched_domain_level level;
862
863 /* Runtime fields. */
864 unsigned long last_balance; /* init to jiffies. units in jiffies */
865 unsigned int balance_interval; /* initialise to 1. units in ms. */
866 unsigned int nr_balance_failed; /* initialise to 0 */
867
868 u64 last_update;
869
870 #ifdef CONFIG_SCHEDSTATS
871 /* load_balance() stats */
872 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
873 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
874 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
875 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
876 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
877 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
878 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
879 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
880
881 /* Active load balancing */
882 unsigned int alb_count;
883 unsigned int alb_failed;
884 unsigned int alb_pushed;
885
886 /* SD_BALANCE_EXEC stats */
887 unsigned int sbe_count;
888 unsigned int sbe_balanced;
889 unsigned int sbe_pushed;
890
891 /* SD_BALANCE_FORK stats */
892 unsigned int sbf_count;
893 unsigned int sbf_balanced;
894 unsigned int sbf_pushed;
895
896 /* try_to_wake_up() stats */
897 unsigned int ttwu_wake_remote;
898 unsigned int ttwu_move_affine;
899 unsigned int ttwu_move_balance;
900 #endif
901 #ifdef CONFIG_SCHED_DEBUG
902 char *name;
903 #endif
904
905 /* span of all CPUs in this domain */
906 unsigned long span[];
907 };
908
909 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
910 {
911 return to_cpumask(sd->span);
912 }
913
914 extern void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
915 struct sched_domain_attr *dattr_new);
916 extern int arch_reinit_sched_domains(void);
917
918 /* Test a flag in parent sched domain */
919 static inline int test_sd_parent(struct sched_domain *sd, int flag)
920 {
921 if (sd->parent && (sd->parent->flags & flag))
922 return 1;
923
924 return 0;
925 }
926
927 #else /* CONFIG_SMP */
928
929 struct sched_domain_attr;
930
931 static inline void
932 partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
933 struct sched_domain_attr *dattr_new)
934 {
935 }
936 #endif /* !CONFIG_SMP */
937
938 struct io_context; /* See blkdev.h */
939
940
941 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
942 extern void prefetch_stack(struct task_struct *t);
943 #else
944 static inline void prefetch_stack(struct task_struct *t) { }
945 #endif
946
947 struct audit_context; /* See audit.c */
948 struct mempolicy;
949 struct pipe_inode_info;
950 struct uts_namespace;
951
952 struct rq;
953 struct sched_domain;
954
955 struct sched_class {
956 const struct sched_class *next;
957
958 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
959 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
960 void (*yield_task) (struct rq *rq);
961
962 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int sync);
963
964 struct task_struct * (*pick_next_task) (struct rq *rq);
965 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
966
967 #ifdef CONFIG_SMP
968 int (*select_task_rq)(struct task_struct *p, int sync);
969
970 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
971 struct rq *busiest, unsigned long max_load_move,
972 struct sched_domain *sd, enum cpu_idle_type idle,
973 int *all_pinned, int *this_best_prio);
974
975 int (*move_one_task) (struct rq *this_rq, int this_cpu,
976 struct rq *busiest, struct sched_domain *sd,
977 enum cpu_idle_type idle);
978 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
979 void (*post_schedule) (struct rq *this_rq);
980 void (*task_wake_up) (struct rq *this_rq, struct task_struct *task);
981
982 void (*set_cpus_allowed)(struct task_struct *p,
983 const struct cpumask *newmask);
984
985 void (*rq_online)(struct rq *rq);
986 void (*rq_offline)(struct rq *rq);
987 #endif
988
989 void (*set_curr_task) (struct rq *rq);
990 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
991 void (*task_new) (struct rq *rq, struct task_struct *p);
992
993 void (*switched_from) (struct rq *this_rq, struct task_struct *task,
994 int running);
995 void (*switched_to) (struct rq *this_rq, struct task_struct *task,
996 int running);
997 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
998 int oldprio, int running);
999
1000 #ifdef CONFIG_FAIR_GROUP_SCHED
1001 void (*moved_group) (struct task_struct *p);
1002 #endif
1003 };
1004
1005 struct load_weight {
1006 unsigned long weight, inv_weight;
1007 };
1008
1009 /*
1010 * CFS stats for a schedulable entity (task, task-group etc)
1011 *
1012 * Current field usage histogram:
1013 *
1014 * 4 se->block_start
1015 * 4 se->run_node
1016 * 4 se->sleep_start
1017 * 6 se->load.weight
1018 */
1019 struct sched_entity {
1020 struct load_weight load; /* for load-balancing */
1021 struct rb_node run_node;
1022 struct list_head group_node;
1023 unsigned int on_rq;
1024
1025 u64 exec_start;
1026 u64 sum_exec_runtime;
1027 u64 vruntime;
1028 u64 prev_sum_exec_runtime;
1029
1030 u64 last_wakeup;
1031 u64 avg_overlap;
1032
1033 #ifdef CONFIG_SCHEDSTATS
1034 u64 wait_start;
1035 u64 wait_max;
1036 u64 wait_count;
1037 u64 wait_sum;
1038
1039 u64 sleep_start;
1040 u64 sleep_max;
1041 s64 sum_sleep_runtime;
1042
1043 u64 block_start;
1044 u64 block_max;
1045 u64 exec_max;
1046 u64 slice_max;
1047
1048 u64 nr_migrations;
1049 u64 nr_migrations_cold;
1050 u64 nr_failed_migrations_affine;
1051 u64 nr_failed_migrations_running;
1052 u64 nr_failed_migrations_hot;
1053 u64 nr_forced_migrations;
1054 u64 nr_forced2_migrations;
1055
1056 u64 nr_wakeups;
1057 u64 nr_wakeups_sync;
1058 u64 nr_wakeups_migrate;
1059 u64 nr_wakeups_local;
1060 u64 nr_wakeups_remote;
1061 u64 nr_wakeups_affine;
1062 u64 nr_wakeups_affine_attempts;
1063 u64 nr_wakeups_passive;
1064 u64 nr_wakeups_idle;
1065 #endif
1066
1067 #ifdef CONFIG_FAIR_GROUP_SCHED
1068 struct sched_entity *parent;
1069 /* rq on which this entity is (to be) queued: */
1070 struct cfs_rq *cfs_rq;
1071 /* rq "owned" by this entity/group: */
1072 struct cfs_rq *my_q;
1073 #endif
1074 };
1075
1076 struct sched_rt_entity {
1077 struct list_head run_list;
1078 unsigned long timeout;
1079 unsigned int time_slice;
1080 int nr_cpus_allowed;
1081
1082 struct sched_rt_entity *back;
1083 #ifdef CONFIG_RT_GROUP_SCHED
1084 struct sched_rt_entity *parent;
1085 /* rq on which this entity is (to be) queued: */
1086 struct rt_rq *rt_rq;
1087 /* rq "owned" by this entity/group: */
1088 struct rt_rq *my_q;
1089 #endif
1090 };
1091
1092 struct task_struct {
1093 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1094 void *stack;
1095 atomic_t usage;
1096 unsigned int flags; /* per process flags, defined below */
1097 unsigned int ptrace;
1098
1099 int lock_depth; /* BKL lock depth */
1100
1101 #ifdef CONFIG_SMP
1102 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1103 int oncpu;
1104 #endif
1105 #endif
1106
1107 int prio, static_prio, normal_prio;
1108 unsigned int rt_priority;
1109 const struct sched_class *sched_class;
1110 struct sched_entity se;
1111 struct sched_rt_entity rt;
1112
1113 #ifdef CONFIG_PREEMPT_NOTIFIERS
1114 /* list of struct preempt_notifier: */
1115 struct hlist_head preempt_notifiers;
1116 #endif
1117
1118 /*
1119 * fpu_counter contains the number of consecutive context switches
1120 * that the FPU is used. If this is over a threshold, the lazy fpu
1121 * saving becomes unlazy to save the trap. This is an unsigned char
1122 * so that after 256 times the counter wraps and the behavior turns
1123 * lazy again; this to deal with bursty apps that only use FPU for
1124 * a short time
1125 */
1126 unsigned char fpu_counter;
1127 s8 oomkilladj; /* OOM kill score adjustment (bit shift). */
1128 #ifdef CONFIG_BLK_DEV_IO_TRACE
1129 unsigned int btrace_seq;
1130 #endif
1131
1132 unsigned int policy;
1133 cpumask_t cpus_allowed;
1134
1135 #ifdef CONFIG_PREEMPT_RCU
1136 int rcu_read_lock_nesting;
1137 int rcu_flipctr_idx;
1138 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1139
1140 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1141 struct sched_info sched_info;
1142 #endif
1143
1144 struct list_head tasks;
1145
1146 struct mm_struct *mm, *active_mm;
1147
1148 /* task state */
1149 struct linux_binfmt *binfmt;
1150 int exit_state;
1151 int exit_code, exit_signal;
1152 int pdeath_signal; /* The signal sent when the parent dies */
1153 /* ??? */
1154 unsigned int personality;
1155 unsigned did_exec:1;
1156 pid_t pid;
1157 pid_t tgid;
1158
1159 #ifdef CONFIG_CC_STACKPROTECTOR
1160 /* Canary value for the -fstack-protector gcc feature */
1161 unsigned long stack_canary;
1162 #endif
1163 /*
1164 * pointers to (original) parent process, youngest child, younger sibling,
1165 * older sibling, respectively. (p->father can be replaced with
1166 * p->real_parent->pid)
1167 */
1168 struct task_struct *real_parent; /* real parent process */
1169 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1170 /*
1171 * children/sibling forms the list of my natural children
1172 */
1173 struct list_head children; /* list of my children */
1174 struct list_head sibling; /* linkage in my parent's children list */
1175 struct task_struct *group_leader; /* threadgroup leader */
1176
1177 /*
1178 * ptraced is the list of tasks this task is using ptrace on.
1179 * This includes both natural children and PTRACE_ATTACH targets.
1180 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1181 */
1182 struct list_head ptraced;
1183 struct list_head ptrace_entry;
1184
1185 #ifdef CONFIG_X86_PTRACE_BTS
1186 /*
1187 * This is the tracer handle for the ptrace BTS extension.
1188 * This field actually belongs to the ptracer task.
1189 */
1190 struct bts_tracer *bts;
1191 /*
1192 * The buffer to hold the BTS data.
1193 */
1194 void *bts_buffer;
1195 size_t bts_size;
1196 #endif /* CONFIG_X86_PTRACE_BTS */
1197
1198 /* PID/PID hash table linkage. */
1199 struct pid_link pids[PIDTYPE_MAX];
1200 struct list_head thread_group;
1201
1202 struct completion *vfork_done; /* for vfork() */
1203 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1204 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1205
1206 cputime_t utime, stime, utimescaled, stimescaled;
1207 cputime_t gtime;
1208 cputime_t prev_utime, prev_stime;
1209 unsigned long nvcsw, nivcsw; /* context switch counts */
1210 struct timespec start_time; /* monotonic time */
1211 struct timespec real_start_time; /* boot based time */
1212 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1213 unsigned long min_flt, maj_flt;
1214
1215 struct task_cputime cputime_expires;
1216 struct list_head cpu_timers[3];
1217
1218 /* process credentials */
1219 const struct cred *real_cred; /* objective and real subjective task
1220 * credentials (COW) */
1221 const struct cred *cred; /* effective (overridable) subjective task
1222 * credentials (COW) */
1223 struct mutex cred_exec_mutex; /* execve vs ptrace cred calculation mutex */
1224
1225 char comm[TASK_COMM_LEN]; /* executable name excluding path
1226 - access with [gs]et_task_comm (which lock
1227 it with task_lock())
1228 - initialized normally by flush_old_exec */
1229 /* file system info */
1230 int link_count, total_link_count;
1231 #ifdef CONFIG_SYSVIPC
1232 /* ipc stuff */
1233 struct sysv_sem sysvsem;
1234 #endif
1235 #ifdef CONFIG_DETECT_SOFTLOCKUP
1236 /* hung task detection */
1237 unsigned long last_switch_timestamp;
1238 unsigned long last_switch_count;
1239 #endif
1240 /* CPU-specific state of this task */
1241 struct thread_struct thread;
1242 /* filesystem information */
1243 struct fs_struct *fs;
1244 /* open file information */
1245 struct files_struct *files;
1246 /* namespaces */
1247 struct nsproxy *nsproxy;
1248 /* signal handlers */
1249 struct signal_struct *signal;
1250 struct sighand_struct *sighand;
1251
1252 sigset_t blocked, real_blocked;
1253 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1254 struct sigpending pending;
1255
1256 unsigned long sas_ss_sp;
1257 size_t sas_ss_size;
1258 int (*notifier)(void *priv);
1259 void *notifier_data;
1260 sigset_t *notifier_mask;
1261 struct audit_context *audit_context;
1262 #ifdef CONFIG_AUDITSYSCALL
1263 uid_t loginuid;
1264 unsigned int sessionid;
1265 #endif
1266 seccomp_t seccomp;
1267
1268 /* Thread group tracking */
1269 u32 parent_exec_id;
1270 u32 self_exec_id;
1271 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
1272 spinlock_t alloc_lock;
1273
1274 /* Protection of the PI data structures: */
1275 spinlock_t pi_lock;
1276
1277 #ifdef CONFIG_RT_MUTEXES
1278 /* PI waiters blocked on a rt_mutex held by this task */
1279 struct plist_head pi_waiters;
1280 /* Deadlock detection and priority inheritance handling */
1281 struct rt_mutex_waiter *pi_blocked_on;
1282 #endif
1283
1284 #ifdef CONFIG_DEBUG_MUTEXES
1285 /* mutex deadlock detection */
1286 struct mutex_waiter *blocked_on;
1287 #endif
1288 #ifdef CONFIG_TRACE_IRQFLAGS
1289 unsigned int irq_events;
1290 int hardirqs_enabled;
1291 unsigned long hardirq_enable_ip;
1292 unsigned int hardirq_enable_event;
1293 unsigned long hardirq_disable_ip;
1294 unsigned int hardirq_disable_event;
1295 int softirqs_enabled;
1296 unsigned long softirq_disable_ip;
1297 unsigned int softirq_disable_event;
1298 unsigned long softirq_enable_ip;
1299 unsigned int softirq_enable_event;
1300 int hardirq_context;
1301 int softirq_context;
1302 #endif
1303 #ifdef CONFIG_LOCKDEP
1304 # define MAX_LOCK_DEPTH 48UL
1305 u64 curr_chain_key;
1306 int lockdep_depth;
1307 unsigned int lockdep_recursion;
1308 struct held_lock held_locks[MAX_LOCK_DEPTH];
1309 #endif
1310
1311 /* journalling filesystem info */
1312 void *journal_info;
1313
1314 /* stacked block device info */
1315 struct bio *bio_list, **bio_tail;
1316
1317 /* VM state */
1318 struct reclaim_state *reclaim_state;
1319
1320 struct backing_dev_info *backing_dev_info;
1321
1322 struct io_context *io_context;
1323
1324 unsigned long ptrace_message;
1325 siginfo_t *last_siginfo; /* For ptrace use. */
1326 struct task_io_accounting ioac;
1327 #if defined(CONFIG_TASK_XACCT)
1328 u64 acct_rss_mem1; /* accumulated rss usage */
1329 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1330 cputime_t acct_timexpd; /* stime + utime since last update */
1331 #endif
1332 #ifdef CONFIG_CPUSETS
1333 nodemask_t mems_allowed;
1334 int cpuset_mems_generation;
1335 int cpuset_mem_spread_rotor;
1336 #endif
1337 #ifdef CONFIG_CGROUPS
1338 /* Control Group info protected by css_set_lock */
1339 struct css_set *cgroups;
1340 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1341 struct list_head cg_list;
1342 #endif
1343 #ifdef CONFIG_FUTEX
1344 struct robust_list_head __user *robust_list;
1345 #ifdef CONFIG_COMPAT
1346 struct compat_robust_list_head __user *compat_robust_list;
1347 #endif
1348 struct list_head pi_state_list;
1349 struct futex_pi_state *pi_state_cache;
1350 #endif
1351 #ifdef CONFIG_NUMA
1352 struct mempolicy *mempolicy;
1353 short il_next;
1354 #endif
1355 atomic_t fs_excl; /* holding fs exclusive resources */
1356 struct rcu_head rcu;
1357
1358 /*
1359 * cache last used pipe for splice
1360 */
1361 struct pipe_inode_info *splice_pipe;
1362 #ifdef CONFIG_TASK_DELAY_ACCT
1363 struct task_delay_info *delays;
1364 #endif
1365 #ifdef CONFIG_FAULT_INJECTION
1366 int make_it_fail;
1367 #endif
1368 struct prop_local_single dirties;
1369 #ifdef CONFIG_LATENCYTOP
1370 int latency_record_count;
1371 struct latency_record latency_record[LT_SAVECOUNT];
1372 #endif
1373 /*
1374 * time slack values; these are used to round up poll() and
1375 * select() etc timeout values. These are in nanoseconds.
1376 */
1377 unsigned long timer_slack_ns;
1378 unsigned long default_timer_slack_ns;
1379
1380 struct list_head *scm_work_list;
1381 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1382 /* Index of current stored adress in ret_stack */
1383 int curr_ret_stack;
1384 /* Stack of return addresses for return function tracing */
1385 struct ftrace_ret_stack *ret_stack;
1386 /*
1387 * Number of functions that haven't been traced
1388 * because of depth overrun.
1389 */
1390 atomic_t trace_overrun;
1391 /* Pause for the tracing */
1392 atomic_t tracing_graph_pause;
1393 #endif
1394 #ifdef CONFIG_TRACING
1395 /* state flags for use by tracers */
1396 unsigned long trace;
1397 #endif
1398 };
1399
1400 /*
1401 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1402 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1403 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1404 * values are inverted: lower p->prio value means higher priority.
1405 *
1406 * The MAX_USER_RT_PRIO value allows the actual maximum
1407 * RT priority to be separate from the value exported to
1408 * user-space. This allows kernel threads to set their
1409 * priority to a value higher than any user task. Note:
1410 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1411 */
1412
1413 #define MAX_USER_RT_PRIO 100
1414 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1415
1416 #define MAX_PRIO (MAX_RT_PRIO + 40)
1417 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1418
1419 static inline int rt_prio(int prio)
1420 {
1421 if (unlikely(prio < MAX_RT_PRIO))
1422 return 1;
1423 return 0;
1424 }
1425
1426 static inline int rt_task(struct task_struct *p)
1427 {
1428 return rt_prio(p->prio);
1429 }
1430
1431 static inline void set_task_session(struct task_struct *tsk, pid_t session)
1432 {
1433 tsk->signal->__session = session;
1434 }
1435
1436 static inline void set_task_pgrp(struct task_struct *tsk, pid_t pgrp)
1437 {
1438 tsk->signal->__pgrp = pgrp;
1439 }
1440
1441 static inline struct pid *task_pid(struct task_struct *task)
1442 {
1443 return task->pids[PIDTYPE_PID].pid;
1444 }
1445
1446 static inline struct pid *task_tgid(struct task_struct *task)
1447 {
1448 return task->group_leader->pids[PIDTYPE_PID].pid;
1449 }
1450
1451 static inline struct pid *task_pgrp(struct task_struct *task)
1452 {
1453 return task->group_leader->pids[PIDTYPE_PGID].pid;
1454 }
1455
1456 static inline struct pid *task_session(struct task_struct *task)
1457 {
1458 return task->group_leader->pids[PIDTYPE_SID].pid;
1459 }
1460
1461 struct pid_namespace;
1462
1463 /*
1464 * the helpers to get the task's different pids as they are seen
1465 * from various namespaces
1466 *
1467 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1468 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1469 * current.
1470 * task_xid_nr_ns() : id seen from the ns specified;
1471 *
1472 * set_task_vxid() : assigns a virtual id to a task;
1473 *
1474 * see also pid_nr() etc in include/linux/pid.h
1475 */
1476
1477 static inline pid_t task_pid_nr(struct task_struct *tsk)
1478 {
1479 return tsk->pid;
1480 }
1481
1482 pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1483
1484 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1485 {
1486 return pid_vnr(task_pid(tsk));
1487 }
1488
1489
1490 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1491 {
1492 return tsk->tgid;
1493 }
1494
1495 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1496
1497 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1498 {
1499 return pid_vnr(task_tgid(tsk));
1500 }
1501
1502
1503 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1504 {
1505 return tsk->signal->__pgrp;
1506 }
1507
1508 pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1509
1510 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1511 {
1512 return pid_vnr(task_pgrp(tsk));
1513 }
1514
1515
1516 static inline pid_t task_session_nr(struct task_struct *tsk)
1517 {
1518 return tsk->signal->__session;
1519 }
1520
1521 pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1522
1523 static inline pid_t task_session_vnr(struct task_struct *tsk)
1524 {
1525 return pid_vnr(task_session(tsk));
1526 }
1527
1528
1529 /**
1530 * pid_alive - check that a task structure is not stale
1531 * @p: Task structure to be checked.
1532 *
1533 * Test if a process is not yet dead (at most zombie state)
1534 * If pid_alive fails, then pointers within the task structure
1535 * can be stale and must not be dereferenced.
1536 */
1537 static inline int pid_alive(struct task_struct *p)
1538 {
1539 return p->pids[PIDTYPE_PID].pid != NULL;
1540 }
1541
1542 /**
1543 * is_global_init - check if a task structure is init
1544 * @tsk: Task structure to be checked.
1545 *
1546 * Check if a task structure is the first user space task the kernel created.
1547 */
1548 static inline int is_global_init(struct task_struct *tsk)
1549 {
1550 return tsk->pid == 1;
1551 }
1552
1553 /*
1554 * is_container_init:
1555 * check whether in the task is init in its own pid namespace.
1556 */
1557 extern int is_container_init(struct task_struct *tsk);
1558
1559 extern struct pid *cad_pid;
1560
1561 extern void free_task(struct task_struct *tsk);
1562 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1563
1564 extern void __put_task_struct(struct task_struct *t);
1565
1566 static inline void put_task_struct(struct task_struct *t)
1567 {
1568 if (atomic_dec_and_test(&t->usage))
1569 __put_task_struct(t);
1570 }
1571
1572 extern cputime_t task_utime(struct task_struct *p);
1573 extern cputime_t task_stime(struct task_struct *p);
1574 extern cputime_t task_gtime(struct task_struct *p);
1575
1576 /*
1577 * Per process flags
1578 */
1579 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1580 /* Not implemented yet, only for 486*/
1581 #define PF_STARTING 0x00000002 /* being created */
1582 #define PF_EXITING 0x00000004 /* getting shut down */
1583 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1584 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1585 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1586 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1587 #define PF_DUMPCORE 0x00000200 /* dumped core */
1588 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1589 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1590 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1591 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1592 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1593 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1594 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1595 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1596 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */
1597 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1598 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1599 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1600 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1601 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1602 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1603 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1604 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1605 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1606 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1607 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */
1608
1609 /*
1610 * Only the _current_ task can read/write to tsk->flags, but other
1611 * tasks can access tsk->flags in readonly mode for example
1612 * with tsk_used_math (like during threaded core dumping).
1613 * There is however an exception to this rule during ptrace
1614 * or during fork: the ptracer task is allowed to write to the
1615 * child->flags of its traced child (same goes for fork, the parent
1616 * can write to the child->flags), because we're guaranteed the
1617 * child is not running and in turn not changing child->flags
1618 * at the same time the parent does it.
1619 */
1620 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1621 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1622 #define clear_used_math() clear_stopped_child_used_math(current)
1623 #define set_used_math() set_stopped_child_used_math(current)
1624 #define conditional_stopped_child_used_math(condition, child) \
1625 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1626 #define conditional_used_math(condition) \
1627 conditional_stopped_child_used_math(condition, current)
1628 #define copy_to_stopped_child_used_math(child) \
1629 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1630 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1631 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1632 #define used_math() tsk_used_math(current)
1633
1634 #ifdef CONFIG_SMP
1635 extern int set_cpus_allowed_ptr(struct task_struct *p,
1636 const struct cpumask *new_mask);
1637 #else
1638 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1639 const struct cpumask *new_mask)
1640 {
1641 if (!cpumask_test_cpu(0, new_mask))
1642 return -EINVAL;
1643 return 0;
1644 }
1645 #endif
1646 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1647 {
1648 return set_cpus_allowed_ptr(p, &new_mask);
1649 }
1650
1651 extern unsigned long long sched_clock(void);
1652
1653 extern void sched_clock_init(void);
1654 extern u64 sched_clock_cpu(int cpu);
1655
1656 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1657 static inline void sched_clock_tick(void)
1658 {
1659 }
1660
1661 static inline void sched_clock_idle_sleep_event(void)
1662 {
1663 }
1664
1665 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1666 {
1667 }
1668 #else
1669 extern void sched_clock_tick(void);
1670 extern void sched_clock_idle_sleep_event(void);
1671 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1672 #endif
1673
1674 /*
1675 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1676 * clock constructed from sched_clock():
1677 */
1678 extern unsigned long long cpu_clock(int cpu);
1679
1680 extern unsigned long long
1681 task_sched_runtime(struct task_struct *task);
1682 extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1683
1684 /* sched_exec is called by processes performing an exec */
1685 #ifdef CONFIG_SMP
1686 extern void sched_exec(void);
1687 #else
1688 #define sched_exec() {}
1689 #endif
1690
1691 extern void sched_clock_idle_sleep_event(void);
1692 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1693
1694 #ifdef CONFIG_HOTPLUG_CPU
1695 extern void idle_task_exit(void);
1696 #else
1697 static inline void idle_task_exit(void) {}
1698 #endif
1699
1700 extern void sched_idle_next(void);
1701
1702 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1703 extern void wake_up_idle_cpu(int cpu);
1704 #else
1705 static inline void wake_up_idle_cpu(int cpu) { }
1706 #endif
1707
1708 #ifdef CONFIG_SCHED_DEBUG
1709 extern unsigned int sysctl_sched_latency;
1710 extern unsigned int sysctl_sched_min_granularity;
1711 extern unsigned int sysctl_sched_wakeup_granularity;
1712 extern unsigned int sysctl_sched_child_runs_first;
1713 extern unsigned int sysctl_sched_features;
1714 extern unsigned int sysctl_sched_migration_cost;
1715 extern unsigned int sysctl_sched_nr_migrate;
1716 extern unsigned int sysctl_sched_shares_ratelimit;
1717 extern unsigned int sysctl_sched_shares_thresh;
1718
1719 int sched_nr_latency_handler(struct ctl_table *table, int write,
1720 struct file *file, void __user *buffer, size_t *length,
1721 loff_t *ppos);
1722 #endif
1723 extern unsigned int sysctl_sched_rt_period;
1724 extern int sysctl_sched_rt_runtime;
1725
1726 int sched_rt_handler(struct ctl_table *table, int write,
1727 struct file *filp, void __user *buffer, size_t *lenp,
1728 loff_t *ppos);
1729
1730 extern unsigned int sysctl_sched_compat_yield;
1731
1732 #ifdef CONFIG_RT_MUTEXES
1733 extern int rt_mutex_getprio(struct task_struct *p);
1734 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1735 extern void rt_mutex_adjust_pi(struct task_struct *p);
1736 #else
1737 static inline int rt_mutex_getprio(struct task_struct *p)
1738 {
1739 return p->normal_prio;
1740 }
1741 # define rt_mutex_adjust_pi(p) do { } while (0)
1742 #endif
1743
1744 extern void set_user_nice(struct task_struct *p, long nice);
1745 extern int task_prio(const struct task_struct *p);
1746 extern int task_nice(const struct task_struct *p);
1747 extern int can_nice(const struct task_struct *p, const int nice);
1748 extern int task_curr(const struct task_struct *p);
1749 extern int idle_cpu(int cpu);
1750 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1751 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1752 struct sched_param *);
1753 extern struct task_struct *idle_task(int cpu);
1754 extern struct task_struct *curr_task(int cpu);
1755 extern void set_curr_task(int cpu, struct task_struct *p);
1756
1757 void yield(void);
1758
1759 /*
1760 * The default (Linux) execution domain.
1761 */
1762 extern struct exec_domain default_exec_domain;
1763
1764 union thread_union {
1765 struct thread_info thread_info;
1766 unsigned long stack[THREAD_SIZE/sizeof(long)];
1767 };
1768
1769 #ifndef __HAVE_ARCH_KSTACK_END
1770 static inline int kstack_end(void *addr)
1771 {
1772 /* Reliable end of stack detection:
1773 * Some APM bios versions misalign the stack
1774 */
1775 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1776 }
1777 #endif
1778
1779 extern union thread_union init_thread_union;
1780 extern struct task_struct init_task;
1781
1782 extern struct mm_struct init_mm;
1783
1784 extern struct pid_namespace init_pid_ns;
1785
1786 /*
1787 * find a task by one of its numerical ids
1788 *
1789 * find_task_by_pid_type_ns():
1790 * it is the most generic call - it finds a task by all id,
1791 * type and namespace specified
1792 * find_task_by_pid_ns():
1793 * finds a task by its pid in the specified namespace
1794 * find_task_by_vpid():
1795 * finds a task by its virtual pid
1796 *
1797 * see also find_vpid() etc in include/linux/pid.h
1798 */
1799
1800 extern struct task_struct *find_task_by_pid_type_ns(int type, int pid,
1801 struct pid_namespace *ns);
1802
1803 extern struct task_struct *find_task_by_vpid(pid_t nr);
1804 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1805 struct pid_namespace *ns);
1806
1807 extern void __set_special_pids(struct pid *pid);
1808
1809 /* per-UID process charging. */
1810 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1811 static inline struct user_struct *get_uid(struct user_struct *u)
1812 {
1813 atomic_inc(&u->__count);
1814 return u;
1815 }
1816 extern void free_uid(struct user_struct *);
1817 extern void release_uids(struct user_namespace *ns);
1818
1819 #include <asm/current.h>
1820
1821 extern void do_timer(unsigned long ticks);
1822
1823 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1824 extern int wake_up_process(struct task_struct *tsk);
1825 extern void wake_up_new_task(struct task_struct *tsk,
1826 unsigned long clone_flags);
1827 #ifdef CONFIG_SMP
1828 extern void kick_process(struct task_struct *tsk);
1829 #else
1830 static inline void kick_process(struct task_struct *tsk) { }
1831 #endif
1832 extern void sched_fork(struct task_struct *p, int clone_flags);
1833 extern void sched_dead(struct task_struct *p);
1834
1835 extern void proc_caches_init(void);
1836 extern void flush_signals(struct task_struct *);
1837 extern void ignore_signals(struct task_struct *);
1838 extern void flush_signal_handlers(struct task_struct *, int force_default);
1839 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1840
1841 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1842 {
1843 unsigned long flags;
1844 int ret;
1845
1846 spin_lock_irqsave(&tsk->sighand->siglock, flags);
1847 ret = dequeue_signal(tsk, mask, info);
1848 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1849
1850 return ret;
1851 }
1852
1853 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1854 sigset_t *mask);
1855 extern void unblock_all_signals(void);
1856 extern void release_task(struct task_struct * p);
1857 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1858 extern int force_sigsegv(int, struct task_struct *);
1859 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1860 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1861 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
1862 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
1863 extern int kill_pgrp(struct pid *pid, int sig, int priv);
1864 extern int kill_pid(struct pid *pid, int sig, int priv);
1865 extern int kill_proc_info(int, struct siginfo *, pid_t);
1866 extern int do_notify_parent(struct task_struct *, int);
1867 extern void force_sig(int, struct task_struct *);
1868 extern void force_sig_specific(int, struct task_struct *);
1869 extern int send_sig(int, struct task_struct *, int);
1870 extern void zap_other_threads(struct task_struct *p);
1871 extern struct sigqueue *sigqueue_alloc(void);
1872 extern void sigqueue_free(struct sigqueue *);
1873 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
1874 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1875 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1876
1877 static inline int kill_cad_pid(int sig, int priv)
1878 {
1879 return kill_pid(cad_pid, sig, priv);
1880 }
1881
1882 /* These can be the second arg to send_sig_info/send_group_sig_info. */
1883 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
1884 #define SEND_SIG_PRIV ((struct siginfo *) 1)
1885 #define SEND_SIG_FORCED ((struct siginfo *) 2)
1886
1887 static inline int is_si_special(const struct siginfo *info)
1888 {
1889 return info <= SEND_SIG_FORCED;
1890 }
1891
1892 /* True if we are on the alternate signal stack. */
1893
1894 static inline int on_sig_stack(unsigned long sp)
1895 {
1896 return (sp - current->sas_ss_sp < current->sas_ss_size);
1897 }
1898
1899 static inline int sas_ss_flags(unsigned long sp)
1900 {
1901 return (current->sas_ss_size == 0 ? SS_DISABLE
1902 : on_sig_stack(sp) ? SS_ONSTACK : 0);
1903 }
1904
1905 /*
1906 * Routines for handling mm_structs
1907 */
1908 extern struct mm_struct * mm_alloc(void);
1909
1910 /* mmdrop drops the mm and the page tables */
1911 extern void __mmdrop(struct mm_struct *);
1912 static inline void mmdrop(struct mm_struct * mm)
1913 {
1914 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1915 __mmdrop(mm);
1916 }
1917
1918 /* mmput gets rid of the mappings and all user-space */
1919 extern void mmput(struct mm_struct *);
1920 /* Grab a reference to a task's mm, if it is not already going away */
1921 extern struct mm_struct *get_task_mm(struct task_struct *task);
1922 /* Remove the current tasks stale references to the old mm_struct */
1923 extern void mm_release(struct task_struct *, struct mm_struct *);
1924 /* Allocate a new mm structure and copy contents from tsk->mm */
1925 extern struct mm_struct *dup_mm(struct task_struct *tsk);
1926
1927 extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
1928 extern void flush_thread(void);
1929 extern void exit_thread(void);
1930
1931 extern void exit_files(struct task_struct *);
1932 extern void __cleanup_signal(struct signal_struct *);
1933 extern void __cleanup_sighand(struct sighand_struct *);
1934
1935 extern void exit_itimers(struct signal_struct *);
1936 extern void flush_itimer_signals(void);
1937
1938 extern NORET_TYPE void do_group_exit(int);
1939
1940 extern void daemonize(const char *, ...);
1941 extern int allow_signal(int);
1942 extern int disallow_signal(int);
1943
1944 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
1945 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
1946 struct task_struct *fork_idle(int);
1947
1948 extern void set_task_comm(struct task_struct *tsk, char *from);
1949 extern char *get_task_comm(char *to, struct task_struct *tsk);
1950
1951 #ifdef CONFIG_SMP
1952 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1953 #else
1954 static inline unsigned long wait_task_inactive(struct task_struct *p,
1955 long match_state)
1956 {
1957 return 1;
1958 }
1959 #endif
1960
1961 #define next_task(p) list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks)
1962
1963 #define for_each_process(p) \
1964 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
1965
1966 extern bool is_single_threaded(struct task_struct *);
1967
1968 /*
1969 * Careful: do_each_thread/while_each_thread is a double loop so
1970 * 'break' will not work as expected - use goto instead.
1971 */
1972 #define do_each_thread(g, t) \
1973 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
1974
1975 #define while_each_thread(g, t) \
1976 while ((t = next_thread(t)) != g)
1977
1978 /* de_thread depends on thread_group_leader not being a pid based check */
1979 #define thread_group_leader(p) (p == p->group_leader)
1980
1981 /* Do to the insanities of de_thread it is possible for a process
1982 * to have the pid of the thread group leader without actually being
1983 * the thread group leader. For iteration through the pids in proc
1984 * all we care about is that we have a task with the appropriate
1985 * pid, we don't actually care if we have the right task.
1986 */
1987 static inline int has_group_leader_pid(struct task_struct *p)
1988 {
1989 return p->pid == p->tgid;
1990 }
1991
1992 static inline
1993 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
1994 {
1995 return p1->tgid == p2->tgid;
1996 }
1997
1998 static inline struct task_struct *next_thread(const struct task_struct *p)
1999 {
2000 return list_entry(rcu_dereference(p->thread_group.next),
2001 struct task_struct, thread_group);
2002 }
2003
2004 static inline int thread_group_empty(struct task_struct *p)
2005 {
2006 return list_empty(&p->thread_group);
2007 }
2008
2009 #define delay_group_leader(p) \
2010 (thread_group_leader(p) && !thread_group_empty(p))
2011
2012 /*
2013 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2014 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2015 * pins the final release of task.io_context. Also protects ->cpuset and
2016 * ->cgroup.subsys[].
2017 *
2018 * Nests both inside and outside of read_lock(&tasklist_lock).
2019 * It must not be nested with write_lock_irq(&tasklist_lock),
2020 * neither inside nor outside.
2021 */
2022 static inline void task_lock(struct task_struct *p)
2023 {
2024 spin_lock(&p->alloc_lock);
2025 }
2026
2027 static inline void task_unlock(struct task_struct *p)
2028 {
2029 spin_unlock(&p->alloc_lock);
2030 }
2031
2032 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2033 unsigned long *flags);
2034
2035 static inline void unlock_task_sighand(struct task_struct *tsk,
2036 unsigned long *flags)
2037 {
2038 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2039 }
2040
2041 #ifndef __HAVE_THREAD_FUNCTIONS
2042
2043 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2044 #define task_stack_page(task) ((task)->stack)
2045
2046 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2047 {
2048 *task_thread_info(p) = *task_thread_info(org);
2049 task_thread_info(p)->task = p;
2050 }
2051
2052 static inline unsigned long *end_of_stack(struct task_struct *p)
2053 {
2054 return (unsigned long *)(task_thread_info(p) + 1);
2055 }
2056
2057 #endif
2058
2059 static inline int object_is_on_stack(void *obj)
2060 {
2061 void *stack = task_stack_page(current);
2062
2063 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2064 }
2065
2066 extern void thread_info_cache_init(void);
2067
2068 /* set thread flags in other task's structures
2069 * - see asm/thread_info.h for TIF_xxxx flags available
2070 */
2071 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2072 {
2073 set_ti_thread_flag(task_thread_info(tsk), flag);
2074 }
2075
2076 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2077 {
2078 clear_ti_thread_flag(task_thread_info(tsk), flag);
2079 }
2080
2081 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2082 {
2083 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2084 }
2085
2086 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2087 {
2088 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2089 }
2090
2091 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2092 {
2093 return test_ti_thread_flag(task_thread_info(tsk), flag);
2094 }
2095
2096 static inline void set_tsk_need_resched(struct task_struct *tsk)
2097 {
2098 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2099 }
2100
2101 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2102 {
2103 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2104 }
2105
2106 static inline int test_tsk_need_resched(struct task_struct *tsk)
2107 {
2108 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2109 }
2110
2111 static inline int signal_pending(struct task_struct *p)
2112 {
2113 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2114 }
2115
2116 extern int __fatal_signal_pending(struct task_struct *p);
2117
2118 static inline int fatal_signal_pending(struct task_struct *p)
2119 {
2120 return signal_pending(p) && __fatal_signal_pending(p);
2121 }
2122
2123 static inline int signal_pending_state(long state, struct task_struct *p)
2124 {
2125 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2126 return 0;
2127 if (!signal_pending(p))
2128 return 0;
2129
2130 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2131 }
2132
2133 static inline int need_resched(void)
2134 {
2135 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2136 }
2137
2138 /*
2139 * cond_resched() and cond_resched_lock(): latency reduction via
2140 * explicit rescheduling in places that are safe. The return
2141 * value indicates whether a reschedule was done in fact.
2142 * cond_resched_lock() will drop the spinlock before scheduling,
2143 * cond_resched_softirq() will enable bhs before scheduling.
2144 */
2145 extern int _cond_resched(void);
2146 #ifdef CONFIG_PREEMPT_BKL
2147 static inline int cond_resched(void)
2148 {
2149 return 0;
2150 }
2151 #else
2152 static inline int cond_resched(void)
2153 {
2154 return _cond_resched();
2155 }
2156 #endif
2157 extern int cond_resched_lock(spinlock_t * lock);
2158 extern int cond_resched_softirq(void);
2159 static inline int cond_resched_bkl(void)
2160 {
2161 return _cond_resched();
2162 }
2163
2164 /*
2165 * Does a critical section need to be broken due to another
2166 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2167 * but a general need for low latency)
2168 */
2169 static inline int spin_needbreak(spinlock_t *lock)
2170 {
2171 #ifdef CONFIG_PREEMPT
2172 return spin_is_contended(lock);
2173 #else
2174 return 0;
2175 #endif
2176 }
2177
2178 /*
2179 * Thread group CPU time accounting.
2180 */
2181
2182 extern int thread_group_cputime_alloc(struct task_struct *);
2183 extern void thread_group_cputime(struct task_struct *, struct task_cputime *);
2184
2185 static inline void thread_group_cputime_init(struct signal_struct *sig)
2186 {
2187 sig->cputime.totals = NULL;
2188 }
2189
2190 static inline int thread_group_cputime_clone_thread(struct task_struct *curr)
2191 {
2192 if (curr->signal->cputime.totals)
2193 return 0;
2194 return thread_group_cputime_alloc(curr);
2195 }
2196
2197 static inline void thread_group_cputime_free(struct signal_struct *sig)
2198 {
2199 free_percpu(sig->cputime.totals);
2200 }
2201
2202 /*
2203 * Reevaluate whether the task has signals pending delivery.
2204 * Wake the task if so.
2205 * This is required every time the blocked sigset_t changes.
2206 * callers must hold sighand->siglock.
2207 */
2208 extern void recalc_sigpending_and_wake(struct task_struct *t);
2209 extern void recalc_sigpending(void);
2210
2211 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2212
2213 /*
2214 * Wrappers for p->thread_info->cpu access. No-op on UP.
2215 */
2216 #ifdef CONFIG_SMP
2217
2218 static inline unsigned int task_cpu(const struct task_struct *p)
2219 {
2220 return task_thread_info(p)->cpu;
2221 }
2222
2223 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2224
2225 #else
2226
2227 static inline unsigned int task_cpu(const struct task_struct *p)
2228 {
2229 return 0;
2230 }
2231
2232 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2233 {
2234 }
2235
2236 #endif /* CONFIG_SMP */
2237
2238 extern void arch_pick_mmap_layout(struct mm_struct *mm);
2239
2240 #ifdef CONFIG_TRACING
2241 extern void
2242 __trace_special(void *__tr, void *__data,
2243 unsigned long arg1, unsigned long arg2, unsigned long arg3);
2244 #else
2245 static inline void
2246 __trace_special(void *__tr, void *__data,
2247 unsigned long arg1, unsigned long arg2, unsigned long arg3)
2248 {
2249 }
2250 #endif
2251
2252 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2253 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2254
2255 extern void normalize_rt_tasks(void);
2256
2257 #ifdef CONFIG_GROUP_SCHED
2258
2259 extern struct task_group init_task_group;
2260 #ifdef CONFIG_USER_SCHED
2261 extern struct task_group root_task_group;
2262 extern void set_tg_uid(struct user_struct *user);
2263 #endif
2264
2265 extern struct task_group *sched_create_group(struct task_group *parent);
2266 extern void sched_destroy_group(struct task_group *tg);
2267 extern void sched_move_task(struct task_struct *tsk);
2268 #ifdef CONFIG_FAIR_GROUP_SCHED
2269 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2270 extern unsigned long sched_group_shares(struct task_group *tg);
2271 #endif
2272 #ifdef CONFIG_RT_GROUP_SCHED
2273 extern int sched_group_set_rt_runtime(struct task_group *tg,
2274 long rt_runtime_us);
2275 extern long sched_group_rt_runtime(struct task_group *tg);
2276 extern int sched_group_set_rt_period(struct task_group *tg,
2277 long rt_period_us);
2278 extern long sched_group_rt_period(struct task_group *tg);
2279 #endif
2280 #endif
2281
2282 #ifdef CONFIG_TASK_XACCT
2283 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2284 {
2285 tsk->ioac.rchar += amt;
2286 }
2287
2288 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2289 {
2290 tsk->ioac.wchar += amt;
2291 }
2292
2293 static inline void inc_syscr(struct task_struct *tsk)
2294 {
2295 tsk->ioac.syscr++;
2296 }
2297
2298 static inline void inc_syscw(struct task_struct *tsk)
2299 {
2300 tsk->ioac.syscw++;
2301 }
2302 #else
2303 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2304 {
2305 }
2306
2307 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2308 {
2309 }
2310
2311 static inline void inc_syscr(struct task_struct *tsk)
2312 {
2313 }
2314
2315 static inline void inc_syscw(struct task_struct *tsk)
2316 {
2317 }
2318 #endif
2319
2320 #ifndef TASK_SIZE_OF
2321 #define TASK_SIZE_OF(tsk) TASK_SIZE
2322 #endif
2323
2324 #ifdef CONFIG_MM_OWNER
2325 extern void mm_update_next_owner(struct mm_struct *mm);
2326 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2327 #else
2328 static inline void mm_update_next_owner(struct mm_struct *mm)
2329 {
2330 }
2331
2332 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2333 {
2334 }
2335 #endif /* CONFIG_MM_OWNER */
2336
2337 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
2338
2339 #endif /* __KERNEL__ */
2340
2341 #endif
This page took 0.074995 seconds and 6 git commands to generate.