Merge branch 'x86-ras-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <uapi/linux/sched.h>
5
6
7 struct sched_param {
8 int sched_priority;
9 };
10
11 #include <asm/param.h> /* for HZ */
12
13 #include <linux/capability.h>
14 #include <linux/threads.h>
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/timex.h>
18 #include <linux/jiffies.h>
19 #include <linux/rbtree.h>
20 #include <linux/thread_info.h>
21 #include <linux/cpumask.h>
22 #include <linux/errno.h>
23 #include <linux/nodemask.h>
24 #include <linux/mm_types.h>
25
26 #include <asm/page.h>
27 #include <asm/ptrace.h>
28 #include <asm/cputime.h>
29
30 #include <linux/smp.h>
31 #include <linux/sem.h>
32 #include <linux/signal.h>
33 #include <linux/compiler.h>
34 #include <linux/completion.h>
35 #include <linux/pid.h>
36 #include <linux/percpu.h>
37 #include <linux/topology.h>
38 #include <linux/proportions.h>
39 #include <linux/seccomp.h>
40 #include <linux/rcupdate.h>
41 #include <linux/rculist.h>
42 #include <linux/rtmutex.h>
43
44 #include <linux/time.h>
45 #include <linux/param.h>
46 #include <linux/resource.h>
47 #include <linux/timer.h>
48 #include <linux/hrtimer.h>
49 #include <linux/task_io_accounting.h>
50 #include <linux/latencytop.h>
51 #include <linux/cred.h>
52 #include <linux/llist.h>
53 #include <linux/uidgid.h>
54 #include <linux/gfp.h>
55
56 #include <asm/processor.h>
57
58 struct exec_domain;
59 struct futex_pi_state;
60 struct robust_list_head;
61 struct bio_list;
62 struct fs_struct;
63 struct perf_event_context;
64 struct blk_plug;
65
66 /*
67 * List of flags we want to share for kernel threads,
68 * if only because they are not used by them anyway.
69 */
70 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
71
72 /*
73 * These are the constant used to fake the fixed-point load-average
74 * counting. Some notes:
75 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
76 * a load-average precision of 10 bits integer + 11 bits fractional
77 * - if you want to count load-averages more often, you need more
78 * precision, or rounding will get you. With 2-second counting freq,
79 * the EXP_n values would be 1981, 2034 and 2043 if still using only
80 * 11 bit fractions.
81 */
82 extern unsigned long avenrun[]; /* Load averages */
83 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
84
85 #define FSHIFT 11 /* nr of bits of precision */
86 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
87 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
88 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
89 #define EXP_5 2014 /* 1/exp(5sec/5min) */
90 #define EXP_15 2037 /* 1/exp(5sec/15min) */
91
92 #define CALC_LOAD(load,exp,n) \
93 load *= exp; \
94 load += n*(FIXED_1-exp); \
95 load >>= FSHIFT;
96
97 extern unsigned long total_forks;
98 extern int nr_threads;
99 DECLARE_PER_CPU(unsigned long, process_counts);
100 extern int nr_processes(void);
101 extern unsigned long nr_running(void);
102 extern unsigned long nr_iowait(void);
103 extern unsigned long nr_iowait_cpu(int cpu);
104 extern unsigned long this_cpu_load(void);
105
106
107 extern void calc_global_load(unsigned long ticks);
108 extern void update_cpu_load_nohz(void);
109
110 /* Notifier for when a task gets migrated to a new CPU */
111 struct task_migration_notifier {
112 struct task_struct *task;
113 int from_cpu;
114 int to_cpu;
115 };
116 extern void register_task_migration_notifier(struct notifier_block *n);
117
118 extern unsigned long get_parent_ip(unsigned long addr);
119
120 extern void dump_cpu_task(int cpu);
121
122 struct seq_file;
123 struct cfs_rq;
124 struct task_group;
125 #ifdef CONFIG_SCHED_DEBUG
126 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
127 extern void proc_sched_set_task(struct task_struct *p);
128 extern void
129 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
130 #endif
131
132 /*
133 * Task state bitmask. NOTE! These bits are also
134 * encoded in fs/proc/array.c: get_task_state().
135 *
136 * We have two separate sets of flags: task->state
137 * is about runnability, while task->exit_state are
138 * about the task exiting. Confusing, but this way
139 * modifying one set can't modify the other one by
140 * mistake.
141 */
142 #define TASK_RUNNING 0
143 #define TASK_INTERRUPTIBLE 1
144 #define TASK_UNINTERRUPTIBLE 2
145 #define __TASK_STOPPED 4
146 #define __TASK_TRACED 8
147 /* in tsk->exit_state */
148 #define EXIT_ZOMBIE 16
149 #define EXIT_DEAD 32
150 /* in tsk->state again */
151 #define TASK_DEAD 64
152 #define TASK_WAKEKILL 128
153 #define TASK_WAKING 256
154 #define TASK_PARKED 512
155 #define TASK_STATE_MAX 1024
156
157 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
158
159 extern char ___assert_task_state[1 - 2*!!(
160 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
161
162 /* Convenience macros for the sake of set_task_state */
163 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
164 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
165 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
166
167 /* Convenience macros for the sake of wake_up */
168 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
169 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
170
171 /* get_task_state() */
172 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
173 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
174 __TASK_TRACED)
175
176 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
177 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
178 #define task_is_dead(task) ((task)->exit_state != 0)
179 #define task_is_stopped_or_traced(task) \
180 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
181 #define task_contributes_to_load(task) \
182 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
183 (task->flags & PF_FROZEN) == 0)
184
185 #define __set_task_state(tsk, state_value) \
186 do { (tsk)->state = (state_value); } while (0)
187 #define set_task_state(tsk, state_value) \
188 set_mb((tsk)->state, (state_value))
189
190 /*
191 * set_current_state() includes a barrier so that the write of current->state
192 * is correctly serialised wrt the caller's subsequent test of whether to
193 * actually sleep:
194 *
195 * set_current_state(TASK_UNINTERRUPTIBLE);
196 * if (do_i_need_to_sleep())
197 * schedule();
198 *
199 * If the caller does not need such serialisation then use __set_current_state()
200 */
201 #define __set_current_state(state_value) \
202 do { current->state = (state_value); } while (0)
203 #define set_current_state(state_value) \
204 set_mb(current->state, (state_value))
205
206 /* Task command name length */
207 #define TASK_COMM_LEN 16
208
209 #include <linux/spinlock.h>
210
211 /*
212 * This serializes "schedule()" and also protects
213 * the run-queue from deletions/modifications (but
214 * _adding_ to the beginning of the run-queue has
215 * a separate lock).
216 */
217 extern rwlock_t tasklist_lock;
218 extern spinlock_t mmlist_lock;
219
220 struct task_struct;
221
222 #ifdef CONFIG_PROVE_RCU
223 extern int lockdep_tasklist_lock_is_held(void);
224 #endif /* #ifdef CONFIG_PROVE_RCU */
225
226 extern void sched_init(void);
227 extern void sched_init_smp(void);
228 extern asmlinkage void schedule_tail(struct task_struct *prev);
229 extern void init_idle(struct task_struct *idle, int cpu);
230 extern void init_idle_bootup_task(struct task_struct *idle);
231
232 extern int runqueue_is_locked(int cpu);
233
234 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
235 extern void nohz_balance_enter_idle(int cpu);
236 extern void set_cpu_sd_state_idle(void);
237 extern int get_nohz_timer_target(void);
238 #else
239 static inline void nohz_balance_enter_idle(int cpu) { }
240 static inline void set_cpu_sd_state_idle(void) { }
241 #endif
242
243 /*
244 * Only dump TASK_* tasks. (0 for all tasks)
245 */
246 extern void show_state_filter(unsigned long state_filter);
247
248 static inline void show_state(void)
249 {
250 show_state_filter(0);
251 }
252
253 extern void show_regs(struct pt_regs *);
254
255 /*
256 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
257 * task), SP is the stack pointer of the first frame that should be shown in the back
258 * trace (or NULL if the entire call-chain of the task should be shown).
259 */
260 extern void show_stack(struct task_struct *task, unsigned long *sp);
261
262 void io_schedule(void);
263 long io_schedule_timeout(long timeout);
264
265 extern void cpu_init (void);
266 extern void trap_init(void);
267 extern void update_process_times(int user);
268 extern void scheduler_tick(void);
269
270 extern void sched_show_task(struct task_struct *p);
271
272 #ifdef CONFIG_LOCKUP_DETECTOR
273 extern void touch_softlockup_watchdog(void);
274 extern void touch_softlockup_watchdog_sync(void);
275 extern void touch_all_softlockup_watchdogs(void);
276 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
277 void __user *buffer,
278 size_t *lenp, loff_t *ppos);
279 extern unsigned int softlockup_panic;
280 void lockup_detector_init(void);
281 #else
282 static inline void touch_softlockup_watchdog(void)
283 {
284 }
285 static inline void touch_softlockup_watchdog_sync(void)
286 {
287 }
288 static inline void touch_all_softlockup_watchdogs(void)
289 {
290 }
291 static inline void lockup_detector_init(void)
292 {
293 }
294 #endif
295
296 /* Attach to any functions which should be ignored in wchan output. */
297 #define __sched __attribute__((__section__(".sched.text")))
298
299 /* Linker adds these: start and end of __sched functions */
300 extern char __sched_text_start[], __sched_text_end[];
301
302 /* Is this address in the __sched functions? */
303 extern int in_sched_functions(unsigned long addr);
304
305 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
306 extern signed long schedule_timeout(signed long timeout);
307 extern signed long schedule_timeout_interruptible(signed long timeout);
308 extern signed long schedule_timeout_killable(signed long timeout);
309 extern signed long schedule_timeout_uninterruptible(signed long timeout);
310 asmlinkage void schedule(void);
311 extern void schedule_preempt_disabled(void);
312
313 struct nsproxy;
314 struct user_namespace;
315
316 #include <linux/aio.h>
317
318 #ifdef CONFIG_MMU
319 extern void arch_pick_mmap_layout(struct mm_struct *mm);
320 extern unsigned long
321 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
322 unsigned long, unsigned long);
323 extern unsigned long
324 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
325 unsigned long len, unsigned long pgoff,
326 unsigned long flags);
327 extern void arch_unmap_area(struct mm_struct *, unsigned long);
328 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
329 #else
330 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
331 #endif
332
333
334 extern void set_dumpable(struct mm_struct *mm, int value);
335 extern int get_dumpable(struct mm_struct *mm);
336
337 /* mm flags */
338 /* dumpable bits */
339 #define MMF_DUMPABLE 0 /* core dump is permitted */
340 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
341
342 #define MMF_DUMPABLE_BITS 2
343 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
344
345 /* coredump filter bits */
346 #define MMF_DUMP_ANON_PRIVATE 2
347 #define MMF_DUMP_ANON_SHARED 3
348 #define MMF_DUMP_MAPPED_PRIVATE 4
349 #define MMF_DUMP_MAPPED_SHARED 5
350 #define MMF_DUMP_ELF_HEADERS 6
351 #define MMF_DUMP_HUGETLB_PRIVATE 7
352 #define MMF_DUMP_HUGETLB_SHARED 8
353
354 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
355 #define MMF_DUMP_FILTER_BITS 7
356 #define MMF_DUMP_FILTER_MASK \
357 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
358 #define MMF_DUMP_FILTER_DEFAULT \
359 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
360 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
361
362 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
363 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
364 #else
365 # define MMF_DUMP_MASK_DEFAULT_ELF 0
366 #endif
367 /* leave room for more dump flags */
368 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
369 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
370 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
371
372 #define MMF_HAS_UPROBES 19 /* has uprobes */
373 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
374
375 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
376
377 struct sighand_struct {
378 atomic_t count;
379 struct k_sigaction action[_NSIG];
380 spinlock_t siglock;
381 wait_queue_head_t signalfd_wqh;
382 };
383
384 struct pacct_struct {
385 int ac_flag;
386 long ac_exitcode;
387 unsigned long ac_mem;
388 cputime_t ac_utime, ac_stime;
389 unsigned long ac_minflt, ac_majflt;
390 };
391
392 struct cpu_itimer {
393 cputime_t expires;
394 cputime_t incr;
395 u32 error;
396 u32 incr_error;
397 };
398
399 /**
400 * struct cputime - snaphsot of system and user cputime
401 * @utime: time spent in user mode
402 * @stime: time spent in system mode
403 *
404 * Gathers a generic snapshot of user and system time.
405 */
406 struct cputime {
407 cputime_t utime;
408 cputime_t stime;
409 };
410
411 /**
412 * struct task_cputime - collected CPU time counts
413 * @utime: time spent in user mode, in &cputime_t units
414 * @stime: time spent in kernel mode, in &cputime_t units
415 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
416 *
417 * This is an extension of struct cputime that includes the total runtime
418 * spent by the task from the scheduler point of view.
419 *
420 * As a result, this structure groups together three kinds of CPU time
421 * that are tracked for threads and thread groups. Most things considering
422 * CPU time want to group these counts together and treat all three
423 * of them in parallel.
424 */
425 struct task_cputime {
426 cputime_t utime;
427 cputime_t stime;
428 unsigned long long sum_exec_runtime;
429 };
430 /* Alternate field names when used to cache expirations. */
431 #define prof_exp stime
432 #define virt_exp utime
433 #define sched_exp sum_exec_runtime
434
435 #define INIT_CPUTIME \
436 (struct task_cputime) { \
437 .utime = 0, \
438 .stime = 0, \
439 .sum_exec_runtime = 0, \
440 }
441
442 /*
443 * Disable preemption until the scheduler is running.
444 * Reset by start_kernel()->sched_init()->init_idle().
445 *
446 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
447 * before the scheduler is active -- see should_resched().
448 */
449 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
450
451 /**
452 * struct thread_group_cputimer - thread group interval timer counts
453 * @cputime: thread group interval timers.
454 * @running: non-zero when there are timers running and
455 * @cputime receives updates.
456 * @lock: lock for fields in this struct.
457 *
458 * This structure contains the version of task_cputime, above, that is
459 * used for thread group CPU timer calculations.
460 */
461 struct thread_group_cputimer {
462 struct task_cputime cputime;
463 int running;
464 raw_spinlock_t lock;
465 };
466
467 #include <linux/rwsem.h>
468 struct autogroup;
469
470 /*
471 * NOTE! "signal_struct" does not have its own
472 * locking, because a shared signal_struct always
473 * implies a shared sighand_struct, so locking
474 * sighand_struct is always a proper superset of
475 * the locking of signal_struct.
476 */
477 struct signal_struct {
478 atomic_t sigcnt;
479 atomic_t live;
480 int nr_threads;
481
482 wait_queue_head_t wait_chldexit; /* for wait4() */
483
484 /* current thread group signal load-balancing target: */
485 struct task_struct *curr_target;
486
487 /* shared signal handling: */
488 struct sigpending shared_pending;
489
490 /* thread group exit support */
491 int group_exit_code;
492 /* overloaded:
493 * - notify group_exit_task when ->count is equal to notify_count
494 * - everyone except group_exit_task is stopped during signal delivery
495 * of fatal signals, group_exit_task processes the signal.
496 */
497 int notify_count;
498 struct task_struct *group_exit_task;
499
500 /* thread group stop support, overloads group_exit_code too */
501 int group_stop_count;
502 unsigned int flags; /* see SIGNAL_* flags below */
503
504 /*
505 * PR_SET_CHILD_SUBREAPER marks a process, like a service
506 * manager, to re-parent orphan (double-forking) child processes
507 * to this process instead of 'init'. The service manager is
508 * able to receive SIGCHLD signals and is able to investigate
509 * the process until it calls wait(). All children of this
510 * process will inherit a flag if they should look for a
511 * child_subreaper process at exit.
512 */
513 unsigned int is_child_subreaper:1;
514 unsigned int has_child_subreaper:1;
515
516 /* POSIX.1b Interval Timers */
517 int posix_timer_id;
518 struct list_head posix_timers;
519
520 /* ITIMER_REAL timer for the process */
521 struct hrtimer real_timer;
522 struct pid *leader_pid;
523 ktime_t it_real_incr;
524
525 /*
526 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
527 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
528 * values are defined to 0 and 1 respectively
529 */
530 struct cpu_itimer it[2];
531
532 /*
533 * Thread group totals for process CPU timers.
534 * See thread_group_cputimer(), et al, for details.
535 */
536 struct thread_group_cputimer cputimer;
537
538 /* Earliest-expiration cache. */
539 struct task_cputime cputime_expires;
540
541 struct list_head cpu_timers[3];
542
543 struct pid *tty_old_pgrp;
544
545 /* boolean value for session group leader */
546 int leader;
547
548 struct tty_struct *tty; /* NULL if no tty */
549
550 #ifdef CONFIG_SCHED_AUTOGROUP
551 struct autogroup *autogroup;
552 #endif
553 /*
554 * Cumulative resource counters for dead threads in the group,
555 * and for reaped dead child processes forked by this group.
556 * Live threads maintain their own counters and add to these
557 * in __exit_signal, except for the group leader.
558 */
559 cputime_t utime, stime, cutime, cstime;
560 cputime_t gtime;
561 cputime_t cgtime;
562 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
563 struct cputime prev_cputime;
564 #endif
565 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
566 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
567 unsigned long inblock, oublock, cinblock, coublock;
568 unsigned long maxrss, cmaxrss;
569 struct task_io_accounting ioac;
570
571 /*
572 * Cumulative ns of schedule CPU time fo dead threads in the
573 * group, not including a zombie group leader, (This only differs
574 * from jiffies_to_ns(utime + stime) if sched_clock uses something
575 * other than jiffies.)
576 */
577 unsigned long long sum_sched_runtime;
578
579 /*
580 * We don't bother to synchronize most readers of this at all,
581 * because there is no reader checking a limit that actually needs
582 * to get both rlim_cur and rlim_max atomically, and either one
583 * alone is a single word that can safely be read normally.
584 * getrlimit/setrlimit use task_lock(current->group_leader) to
585 * protect this instead of the siglock, because they really
586 * have no need to disable irqs.
587 */
588 struct rlimit rlim[RLIM_NLIMITS];
589
590 #ifdef CONFIG_BSD_PROCESS_ACCT
591 struct pacct_struct pacct; /* per-process accounting information */
592 #endif
593 #ifdef CONFIG_TASKSTATS
594 struct taskstats *stats;
595 #endif
596 #ifdef CONFIG_AUDIT
597 unsigned audit_tty;
598 struct tty_audit_buf *tty_audit_buf;
599 #endif
600 #ifdef CONFIG_CGROUPS
601 /*
602 * group_rwsem prevents new tasks from entering the threadgroup and
603 * member tasks from exiting,a more specifically, setting of
604 * PF_EXITING. fork and exit paths are protected with this rwsem
605 * using threadgroup_change_begin/end(). Users which require
606 * threadgroup to remain stable should use threadgroup_[un]lock()
607 * which also takes care of exec path. Currently, cgroup is the
608 * only user.
609 */
610 struct rw_semaphore group_rwsem;
611 #endif
612
613 oom_flags_t oom_flags;
614 short oom_score_adj; /* OOM kill score adjustment */
615 short oom_score_adj_min; /* OOM kill score adjustment min value.
616 * Only settable by CAP_SYS_RESOURCE. */
617
618 struct mutex cred_guard_mutex; /* guard against foreign influences on
619 * credential calculations
620 * (notably. ptrace) */
621 };
622
623 /*
624 * Bits in flags field of signal_struct.
625 */
626 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
627 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
628 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
629 /*
630 * Pending notifications to parent.
631 */
632 #define SIGNAL_CLD_STOPPED 0x00000010
633 #define SIGNAL_CLD_CONTINUED 0x00000020
634 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
635
636 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
637
638 /* If true, all threads except ->group_exit_task have pending SIGKILL */
639 static inline int signal_group_exit(const struct signal_struct *sig)
640 {
641 return (sig->flags & SIGNAL_GROUP_EXIT) ||
642 (sig->group_exit_task != NULL);
643 }
644
645 /*
646 * Some day this will be a full-fledged user tracking system..
647 */
648 struct user_struct {
649 atomic_t __count; /* reference count */
650 atomic_t processes; /* How many processes does this user have? */
651 atomic_t files; /* How many open files does this user have? */
652 atomic_t sigpending; /* How many pending signals does this user have? */
653 #ifdef CONFIG_INOTIFY_USER
654 atomic_t inotify_watches; /* How many inotify watches does this user have? */
655 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
656 #endif
657 #ifdef CONFIG_FANOTIFY
658 atomic_t fanotify_listeners;
659 #endif
660 #ifdef CONFIG_EPOLL
661 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
662 #endif
663 #ifdef CONFIG_POSIX_MQUEUE
664 /* protected by mq_lock */
665 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
666 #endif
667 unsigned long locked_shm; /* How many pages of mlocked shm ? */
668
669 #ifdef CONFIG_KEYS
670 struct key *uid_keyring; /* UID specific keyring */
671 struct key *session_keyring; /* UID's default session keyring */
672 #endif
673
674 /* Hash table maintenance information */
675 struct hlist_node uidhash_node;
676 kuid_t uid;
677
678 #ifdef CONFIG_PERF_EVENTS
679 atomic_long_t locked_vm;
680 #endif
681 };
682
683 extern int uids_sysfs_init(void);
684
685 extern struct user_struct *find_user(kuid_t);
686
687 extern struct user_struct root_user;
688 #define INIT_USER (&root_user)
689
690
691 struct backing_dev_info;
692 struct reclaim_state;
693
694 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
695 struct sched_info {
696 /* cumulative counters */
697 unsigned long pcount; /* # of times run on this cpu */
698 unsigned long long run_delay; /* time spent waiting on a runqueue */
699
700 /* timestamps */
701 unsigned long long last_arrival,/* when we last ran on a cpu */
702 last_queued; /* when we were last queued to run */
703 };
704 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
705
706 #ifdef CONFIG_TASK_DELAY_ACCT
707 struct task_delay_info {
708 spinlock_t lock;
709 unsigned int flags; /* Private per-task flags */
710
711 /* For each stat XXX, add following, aligned appropriately
712 *
713 * struct timespec XXX_start, XXX_end;
714 * u64 XXX_delay;
715 * u32 XXX_count;
716 *
717 * Atomicity of updates to XXX_delay, XXX_count protected by
718 * single lock above (split into XXX_lock if contention is an issue).
719 */
720
721 /*
722 * XXX_count is incremented on every XXX operation, the delay
723 * associated with the operation is added to XXX_delay.
724 * XXX_delay contains the accumulated delay time in nanoseconds.
725 */
726 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
727 u64 blkio_delay; /* wait for sync block io completion */
728 u64 swapin_delay; /* wait for swapin block io completion */
729 u32 blkio_count; /* total count of the number of sync block */
730 /* io operations performed */
731 u32 swapin_count; /* total count of the number of swapin block */
732 /* io operations performed */
733
734 struct timespec freepages_start, freepages_end;
735 u64 freepages_delay; /* wait for memory reclaim */
736 u32 freepages_count; /* total count of memory reclaim */
737 };
738 #endif /* CONFIG_TASK_DELAY_ACCT */
739
740 static inline int sched_info_on(void)
741 {
742 #ifdef CONFIG_SCHEDSTATS
743 return 1;
744 #elif defined(CONFIG_TASK_DELAY_ACCT)
745 extern int delayacct_on;
746 return delayacct_on;
747 #else
748 return 0;
749 #endif
750 }
751
752 enum cpu_idle_type {
753 CPU_IDLE,
754 CPU_NOT_IDLE,
755 CPU_NEWLY_IDLE,
756 CPU_MAX_IDLE_TYPES
757 };
758
759 /*
760 * Increase resolution of cpu_power calculations
761 */
762 #define SCHED_POWER_SHIFT 10
763 #define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT)
764
765 /*
766 * sched-domains (multiprocessor balancing) declarations:
767 */
768 #ifdef CONFIG_SMP
769 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
770 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
771 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
772 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
773 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
774 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
775 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
776 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
777 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
778 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
779 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
780 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
781
782 extern int __weak arch_sd_sibiling_asym_packing(void);
783
784 struct sched_domain_attr {
785 int relax_domain_level;
786 };
787
788 #define SD_ATTR_INIT (struct sched_domain_attr) { \
789 .relax_domain_level = -1, \
790 }
791
792 extern int sched_domain_level_max;
793
794 struct sched_group;
795
796 struct sched_domain {
797 /* These fields must be setup */
798 struct sched_domain *parent; /* top domain must be null terminated */
799 struct sched_domain *child; /* bottom domain must be null terminated */
800 struct sched_group *groups; /* the balancing groups of the domain */
801 unsigned long min_interval; /* Minimum balance interval ms */
802 unsigned long max_interval; /* Maximum balance interval ms */
803 unsigned int busy_factor; /* less balancing by factor if busy */
804 unsigned int imbalance_pct; /* No balance until over watermark */
805 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
806 unsigned int busy_idx;
807 unsigned int idle_idx;
808 unsigned int newidle_idx;
809 unsigned int wake_idx;
810 unsigned int forkexec_idx;
811 unsigned int smt_gain;
812
813 int nohz_idle; /* NOHZ IDLE status */
814 int flags; /* See SD_* */
815 int level;
816
817 /* Runtime fields. */
818 unsigned long last_balance; /* init to jiffies. units in jiffies */
819 unsigned int balance_interval; /* initialise to 1. units in ms. */
820 unsigned int nr_balance_failed; /* initialise to 0 */
821
822 u64 last_update;
823
824 #ifdef CONFIG_SCHEDSTATS
825 /* load_balance() stats */
826 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
827 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
828 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
829 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
830 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
831 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
832 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
833 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
834
835 /* Active load balancing */
836 unsigned int alb_count;
837 unsigned int alb_failed;
838 unsigned int alb_pushed;
839
840 /* SD_BALANCE_EXEC stats */
841 unsigned int sbe_count;
842 unsigned int sbe_balanced;
843 unsigned int sbe_pushed;
844
845 /* SD_BALANCE_FORK stats */
846 unsigned int sbf_count;
847 unsigned int sbf_balanced;
848 unsigned int sbf_pushed;
849
850 /* try_to_wake_up() stats */
851 unsigned int ttwu_wake_remote;
852 unsigned int ttwu_move_affine;
853 unsigned int ttwu_move_balance;
854 #endif
855 #ifdef CONFIG_SCHED_DEBUG
856 char *name;
857 #endif
858 union {
859 void *private; /* used during construction */
860 struct rcu_head rcu; /* used during destruction */
861 };
862
863 unsigned int span_weight;
864 /*
865 * Span of all CPUs in this domain.
866 *
867 * NOTE: this field is variable length. (Allocated dynamically
868 * by attaching extra space to the end of the structure,
869 * depending on how many CPUs the kernel has booted up with)
870 */
871 unsigned long span[0];
872 };
873
874 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
875 {
876 return to_cpumask(sd->span);
877 }
878
879 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
880 struct sched_domain_attr *dattr_new);
881
882 /* Allocate an array of sched domains, for partition_sched_domains(). */
883 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
884 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
885
886 bool cpus_share_cache(int this_cpu, int that_cpu);
887
888 #else /* CONFIG_SMP */
889
890 struct sched_domain_attr;
891
892 static inline void
893 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
894 struct sched_domain_attr *dattr_new)
895 {
896 }
897
898 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
899 {
900 return true;
901 }
902
903 #endif /* !CONFIG_SMP */
904
905
906 struct io_context; /* See blkdev.h */
907
908
909 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
910 extern void prefetch_stack(struct task_struct *t);
911 #else
912 static inline void prefetch_stack(struct task_struct *t) { }
913 #endif
914
915 struct audit_context; /* See audit.c */
916 struct mempolicy;
917 struct pipe_inode_info;
918 struct uts_namespace;
919
920 struct load_weight {
921 unsigned long weight, inv_weight;
922 };
923
924 struct sched_avg {
925 /*
926 * These sums represent an infinite geometric series and so are bound
927 * above by 1024/(1-y). Thus we only need a u32 to store them for for all
928 * choices of y < 1-2^(-32)*1024.
929 */
930 u32 runnable_avg_sum, runnable_avg_period;
931 u64 last_runnable_update;
932 s64 decay_count;
933 unsigned long load_avg_contrib;
934 };
935
936 #ifdef CONFIG_SCHEDSTATS
937 struct sched_statistics {
938 u64 wait_start;
939 u64 wait_max;
940 u64 wait_count;
941 u64 wait_sum;
942 u64 iowait_count;
943 u64 iowait_sum;
944
945 u64 sleep_start;
946 u64 sleep_max;
947 s64 sum_sleep_runtime;
948
949 u64 block_start;
950 u64 block_max;
951 u64 exec_max;
952 u64 slice_max;
953
954 u64 nr_migrations_cold;
955 u64 nr_failed_migrations_affine;
956 u64 nr_failed_migrations_running;
957 u64 nr_failed_migrations_hot;
958 u64 nr_forced_migrations;
959
960 u64 nr_wakeups;
961 u64 nr_wakeups_sync;
962 u64 nr_wakeups_migrate;
963 u64 nr_wakeups_local;
964 u64 nr_wakeups_remote;
965 u64 nr_wakeups_affine;
966 u64 nr_wakeups_affine_attempts;
967 u64 nr_wakeups_passive;
968 u64 nr_wakeups_idle;
969 };
970 #endif
971
972 struct sched_entity {
973 struct load_weight load; /* for load-balancing */
974 struct rb_node run_node;
975 struct list_head group_node;
976 unsigned int on_rq;
977
978 u64 exec_start;
979 u64 sum_exec_runtime;
980 u64 vruntime;
981 u64 prev_sum_exec_runtime;
982
983 u64 nr_migrations;
984
985 #ifdef CONFIG_SCHEDSTATS
986 struct sched_statistics statistics;
987 #endif
988
989 #ifdef CONFIG_FAIR_GROUP_SCHED
990 struct sched_entity *parent;
991 /* rq on which this entity is (to be) queued: */
992 struct cfs_rq *cfs_rq;
993 /* rq "owned" by this entity/group: */
994 struct cfs_rq *my_q;
995 #endif
996
997 /*
998 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
999 * removed when useful for applications beyond shares distribution (e.g.
1000 * load-balance).
1001 */
1002 #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1003 /* Per-entity load-tracking */
1004 struct sched_avg avg;
1005 #endif
1006 };
1007
1008 struct sched_rt_entity {
1009 struct list_head run_list;
1010 unsigned long timeout;
1011 unsigned long watchdog_stamp;
1012 unsigned int time_slice;
1013
1014 struct sched_rt_entity *back;
1015 #ifdef CONFIG_RT_GROUP_SCHED
1016 struct sched_rt_entity *parent;
1017 /* rq on which this entity is (to be) queued: */
1018 struct rt_rq *rt_rq;
1019 /* rq "owned" by this entity/group: */
1020 struct rt_rq *my_q;
1021 #endif
1022 };
1023
1024
1025 struct rcu_node;
1026
1027 enum perf_event_task_context {
1028 perf_invalid_context = -1,
1029 perf_hw_context = 0,
1030 perf_sw_context,
1031 perf_nr_task_contexts,
1032 };
1033
1034 struct task_struct {
1035 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1036 void *stack;
1037 atomic_t usage;
1038 unsigned int flags; /* per process flags, defined below */
1039 unsigned int ptrace;
1040
1041 #ifdef CONFIG_SMP
1042 struct llist_node wake_entry;
1043 int on_cpu;
1044 #endif
1045 int on_rq;
1046
1047 int prio, static_prio, normal_prio;
1048 unsigned int rt_priority;
1049 const struct sched_class *sched_class;
1050 struct sched_entity se;
1051 struct sched_rt_entity rt;
1052 #ifdef CONFIG_CGROUP_SCHED
1053 struct task_group *sched_task_group;
1054 #endif
1055
1056 #ifdef CONFIG_PREEMPT_NOTIFIERS
1057 /* list of struct preempt_notifier: */
1058 struct hlist_head preempt_notifiers;
1059 #endif
1060
1061 /*
1062 * fpu_counter contains the number of consecutive context switches
1063 * that the FPU is used. If this is over a threshold, the lazy fpu
1064 * saving becomes unlazy to save the trap. This is an unsigned char
1065 * so that after 256 times the counter wraps and the behavior turns
1066 * lazy again; this to deal with bursty apps that only use FPU for
1067 * a short time
1068 */
1069 unsigned char fpu_counter;
1070 #ifdef CONFIG_BLK_DEV_IO_TRACE
1071 unsigned int btrace_seq;
1072 #endif
1073
1074 unsigned int policy;
1075 int nr_cpus_allowed;
1076 cpumask_t cpus_allowed;
1077
1078 #ifdef CONFIG_PREEMPT_RCU
1079 int rcu_read_lock_nesting;
1080 char rcu_read_unlock_special;
1081 struct list_head rcu_node_entry;
1082 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1083 #ifdef CONFIG_TREE_PREEMPT_RCU
1084 struct rcu_node *rcu_blocked_node;
1085 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1086 #ifdef CONFIG_RCU_BOOST
1087 struct rt_mutex *rcu_boost_mutex;
1088 #endif /* #ifdef CONFIG_RCU_BOOST */
1089
1090 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1091 struct sched_info sched_info;
1092 #endif
1093
1094 struct list_head tasks;
1095 #ifdef CONFIG_SMP
1096 struct plist_node pushable_tasks;
1097 #endif
1098
1099 struct mm_struct *mm, *active_mm;
1100 #ifdef CONFIG_COMPAT_BRK
1101 unsigned brk_randomized:1;
1102 #endif
1103 #if defined(SPLIT_RSS_COUNTING)
1104 struct task_rss_stat rss_stat;
1105 #endif
1106 /* task state */
1107 int exit_state;
1108 int exit_code, exit_signal;
1109 int pdeath_signal; /* The signal sent when the parent dies */
1110 unsigned int jobctl; /* JOBCTL_*, siglock protected */
1111
1112 /* Used for emulating ABI behavior of previous Linux versions */
1113 unsigned int personality;
1114
1115 unsigned did_exec:1;
1116 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1117 * execve */
1118 unsigned in_iowait:1;
1119
1120 /* task may not gain privileges */
1121 unsigned no_new_privs:1;
1122
1123 /* Revert to default priority/policy when forking */
1124 unsigned sched_reset_on_fork:1;
1125 unsigned sched_contributes_to_load:1;
1126
1127 pid_t pid;
1128 pid_t tgid;
1129
1130 #ifdef CONFIG_CC_STACKPROTECTOR
1131 /* Canary value for the -fstack-protector gcc feature */
1132 unsigned long stack_canary;
1133 #endif
1134 /*
1135 * pointers to (original) parent process, youngest child, younger sibling,
1136 * older sibling, respectively. (p->father can be replaced with
1137 * p->real_parent->pid)
1138 */
1139 struct task_struct __rcu *real_parent; /* real parent process */
1140 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1141 /*
1142 * children/sibling forms the list of my natural children
1143 */
1144 struct list_head children; /* list of my children */
1145 struct list_head sibling; /* linkage in my parent's children list */
1146 struct task_struct *group_leader; /* threadgroup leader */
1147
1148 /*
1149 * ptraced is the list of tasks this task is using ptrace on.
1150 * This includes both natural children and PTRACE_ATTACH targets.
1151 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1152 */
1153 struct list_head ptraced;
1154 struct list_head ptrace_entry;
1155
1156 /* PID/PID hash table linkage. */
1157 struct pid_link pids[PIDTYPE_MAX];
1158 struct list_head thread_group;
1159
1160 struct completion *vfork_done; /* for vfork() */
1161 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1162 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1163
1164 cputime_t utime, stime, utimescaled, stimescaled;
1165 cputime_t gtime;
1166 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1167 struct cputime prev_cputime;
1168 #endif
1169 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1170 seqlock_t vtime_seqlock;
1171 unsigned long long vtime_snap;
1172 enum {
1173 VTIME_SLEEPING = 0,
1174 VTIME_USER,
1175 VTIME_SYS,
1176 } vtime_snap_whence;
1177 #endif
1178 unsigned long nvcsw, nivcsw; /* context switch counts */
1179 struct timespec start_time; /* monotonic time */
1180 struct timespec real_start_time; /* boot based time */
1181 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1182 unsigned long min_flt, maj_flt;
1183
1184 struct task_cputime cputime_expires;
1185 struct list_head cpu_timers[3];
1186
1187 /* process credentials */
1188 const struct cred __rcu *real_cred; /* objective and real subjective task
1189 * credentials (COW) */
1190 const struct cred __rcu *cred; /* effective (overridable) subjective task
1191 * credentials (COW) */
1192 char comm[TASK_COMM_LEN]; /* executable name excluding path
1193 - access with [gs]et_task_comm (which lock
1194 it with task_lock())
1195 - initialized normally by setup_new_exec */
1196 /* file system info */
1197 int link_count, total_link_count;
1198 #ifdef CONFIG_SYSVIPC
1199 /* ipc stuff */
1200 struct sysv_sem sysvsem;
1201 #endif
1202 #ifdef CONFIG_DETECT_HUNG_TASK
1203 /* hung task detection */
1204 unsigned long last_switch_count;
1205 #endif
1206 /* CPU-specific state of this task */
1207 struct thread_struct thread;
1208 /* filesystem information */
1209 struct fs_struct *fs;
1210 /* open file information */
1211 struct files_struct *files;
1212 /* namespaces */
1213 struct nsproxy *nsproxy;
1214 /* signal handlers */
1215 struct signal_struct *signal;
1216 struct sighand_struct *sighand;
1217
1218 sigset_t blocked, real_blocked;
1219 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1220 struct sigpending pending;
1221
1222 unsigned long sas_ss_sp;
1223 size_t sas_ss_size;
1224 int (*notifier)(void *priv);
1225 void *notifier_data;
1226 sigset_t *notifier_mask;
1227 struct callback_head *task_works;
1228
1229 struct audit_context *audit_context;
1230 #ifdef CONFIG_AUDITSYSCALL
1231 kuid_t loginuid;
1232 unsigned int sessionid;
1233 #endif
1234 struct seccomp seccomp;
1235
1236 /* Thread group tracking */
1237 u32 parent_exec_id;
1238 u32 self_exec_id;
1239 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1240 * mempolicy */
1241 spinlock_t alloc_lock;
1242
1243 /* Protection of the PI data structures: */
1244 raw_spinlock_t pi_lock;
1245
1246 #ifdef CONFIG_RT_MUTEXES
1247 /* PI waiters blocked on a rt_mutex held by this task */
1248 struct plist_head pi_waiters;
1249 /* Deadlock detection and priority inheritance handling */
1250 struct rt_mutex_waiter *pi_blocked_on;
1251 #endif
1252
1253 #ifdef CONFIG_DEBUG_MUTEXES
1254 /* mutex deadlock detection */
1255 struct mutex_waiter *blocked_on;
1256 #endif
1257 #ifdef CONFIG_TRACE_IRQFLAGS
1258 unsigned int irq_events;
1259 unsigned long hardirq_enable_ip;
1260 unsigned long hardirq_disable_ip;
1261 unsigned int hardirq_enable_event;
1262 unsigned int hardirq_disable_event;
1263 int hardirqs_enabled;
1264 int hardirq_context;
1265 unsigned long softirq_disable_ip;
1266 unsigned long softirq_enable_ip;
1267 unsigned int softirq_disable_event;
1268 unsigned int softirq_enable_event;
1269 int softirqs_enabled;
1270 int softirq_context;
1271 #endif
1272 #ifdef CONFIG_LOCKDEP
1273 # define MAX_LOCK_DEPTH 48UL
1274 u64 curr_chain_key;
1275 int lockdep_depth;
1276 unsigned int lockdep_recursion;
1277 struct held_lock held_locks[MAX_LOCK_DEPTH];
1278 gfp_t lockdep_reclaim_gfp;
1279 #endif
1280
1281 /* journalling filesystem info */
1282 void *journal_info;
1283
1284 /* stacked block device info */
1285 struct bio_list *bio_list;
1286
1287 #ifdef CONFIG_BLOCK
1288 /* stack plugging */
1289 struct blk_plug *plug;
1290 #endif
1291
1292 /* VM state */
1293 struct reclaim_state *reclaim_state;
1294
1295 struct backing_dev_info *backing_dev_info;
1296
1297 struct io_context *io_context;
1298
1299 unsigned long ptrace_message;
1300 siginfo_t *last_siginfo; /* For ptrace use. */
1301 struct task_io_accounting ioac;
1302 #if defined(CONFIG_TASK_XACCT)
1303 u64 acct_rss_mem1; /* accumulated rss usage */
1304 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1305 cputime_t acct_timexpd; /* stime + utime since last update */
1306 #endif
1307 #ifdef CONFIG_CPUSETS
1308 nodemask_t mems_allowed; /* Protected by alloc_lock */
1309 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
1310 int cpuset_mem_spread_rotor;
1311 int cpuset_slab_spread_rotor;
1312 #endif
1313 #ifdef CONFIG_CGROUPS
1314 /* Control Group info protected by css_set_lock */
1315 struct css_set __rcu *cgroups;
1316 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1317 struct list_head cg_list;
1318 #endif
1319 #ifdef CONFIG_FUTEX
1320 struct robust_list_head __user *robust_list;
1321 #ifdef CONFIG_COMPAT
1322 struct compat_robust_list_head __user *compat_robust_list;
1323 #endif
1324 struct list_head pi_state_list;
1325 struct futex_pi_state *pi_state_cache;
1326 #endif
1327 #ifdef CONFIG_PERF_EVENTS
1328 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1329 struct mutex perf_event_mutex;
1330 struct list_head perf_event_list;
1331 #endif
1332 #ifdef CONFIG_NUMA
1333 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1334 short il_next;
1335 short pref_node_fork;
1336 #endif
1337 #ifdef CONFIG_NUMA_BALANCING
1338 int numa_scan_seq;
1339 int numa_migrate_seq;
1340 unsigned int numa_scan_period;
1341 u64 node_stamp; /* migration stamp */
1342 struct callback_head numa_work;
1343 #endif /* CONFIG_NUMA_BALANCING */
1344
1345 struct rcu_head rcu;
1346
1347 /*
1348 * cache last used pipe for splice
1349 */
1350 struct pipe_inode_info *splice_pipe;
1351
1352 struct page_frag task_frag;
1353
1354 #ifdef CONFIG_TASK_DELAY_ACCT
1355 struct task_delay_info *delays;
1356 #endif
1357 #ifdef CONFIG_FAULT_INJECTION
1358 int make_it_fail;
1359 #endif
1360 /*
1361 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1362 * balance_dirty_pages() for some dirty throttling pause
1363 */
1364 int nr_dirtied;
1365 int nr_dirtied_pause;
1366 unsigned long dirty_paused_when; /* start of a write-and-pause period */
1367
1368 #ifdef CONFIG_LATENCYTOP
1369 int latency_record_count;
1370 struct latency_record latency_record[LT_SAVECOUNT];
1371 #endif
1372 /*
1373 * time slack values; these are used to round up poll() and
1374 * select() etc timeout values. These are in nanoseconds.
1375 */
1376 unsigned long timer_slack_ns;
1377 unsigned long default_timer_slack_ns;
1378
1379 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1380 /* Index of current stored address in ret_stack */
1381 int curr_ret_stack;
1382 /* Stack of return addresses for return function tracing */
1383 struct ftrace_ret_stack *ret_stack;
1384 /* time stamp for last schedule */
1385 unsigned long long ftrace_timestamp;
1386 /*
1387 * Number of functions that haven't been traced
1388 * because of depth overrun.
1389 */
1390 atomic_t trace_overrun;
1391 /* Pause for the tracing */
1392 atomic_t tracing_graph_pause;
1393 #endif
1394 #ifdef CONFIG_TRACING
1395 /* state flags for use by tracers */
1396 unsigned long trace;
1397 /* bitmask and counter of trace recursion */
1398 unsigned long trace_recursion;
1399 #endif /* CONFIG_TRACING */
1400 #ifdef CONFIG_MEMCG /* memcg uses this to do batch job */
1401 struct memcg_batch_info {
1402 int do_batch; /* incremented when batch uncharge started */
1403 struct mem_cgroup *memcg; /* target memcg of uncharge */
1404 unsigned long nr_pages; /* uncharged usage */
1405 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1406 } memcg_batch;
1407 unsigned int memcg_kmem_skip_account;
1408 #endif
1409 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1410 atomic_t ptrace_bp_refcnt;
1411 #endif
1412 #ifdef CONFIG_UPROBES
1413 struct uprobe_task *utask;
1414 #endif
1415 };
1416
1417 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1418 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1419
1420 #ifdef CONFIG_NUMA_BALANCING
1421 extern void task_numa_fault(int node, int pages, bool migrated);
1422 extern void set_numabalancing_state(bool enabled);
1423 #else
1424 static inline void task_numa_fault(int node, int pages, bool migrated)
1425 {
1426 }
1427 static inline void set_numabalancing_state(bool enabled)
1428 {
1429 }
1430 #endif
1431
1432 static inline struct pid *task_pid(struct task_struct *task)
1433 {
1434 return task->pids[PIDTYPE_PID].pid;
1435 }
1436
1437 static inline struct pid *task_tgid(struct task_struct *task)
1438 {
1439 return task->group_leader->pids[PIDTYPE_PID].pid;
1440 }
1441
1442 /*
1443 * Without tasklist or rcu lock it is not safe to dereference
1444 * the result of task_pgrp/task_session even if task == current,
1445 * we can race with another thread doing sys_setsid/sys_setpgid.
1446 */
1447 static inline struct pid *task_pgrp(struct task_struct *task)
1448 {
1449 return task->group_leader->pids[PIDTYPE_PGID].pid;
1450 }
1451
1452 static inline struct pid *task_session(struct task_struct *task)
1453 {
1454 return task->group_leader->pids[PIDTYPE_SID].pid;
1455 }
1456
1457 struct pid_namespace;
1458
1459 /*
1460 * the helpers to get the task's different pids as they are seen
1461 * from various namespaces
1462 *
1463 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1464 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1465 * current.
1466 * task_xid_nr_ns() : id seen from the ns specified;
1467 *
1468 * set_task_vxid() : assigns a virtual id to a task;
1469 *
1470 * see also pid_nr() etc in include/linux/pid.h
1471 */
1472 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1473 struct pid_namespace *ns);
1474
1475 static inline pid_t task_pid_nr(struct task_struct *tsk)
1476 {
1477 return tsk->pid;
1478 }
1479
1480 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1481 struct pid_namespace *ns)
1482 {
1483 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1484 }
1485
1486 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1487 {
1488 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1489 }
1490
1491
1492 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1493 {
1494 return tsk->tgid;
1495 }
1496
1497 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1498
1499 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1500 {
1501 return pid_vnr(task_tgid(tsk));
1502 }
1503
1504
1505 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1506 struct pid_namespace *ns)
1507 {
1508 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1509 }
1510
1511 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1512 {
1513 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1514 }
1515
1516
1517 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1518 struct pid_namespace *ns)
1519 {
1520 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1521 }
1522
1523 static inline pid_t task_session_vnr(struct task_struct *tsk)
1524 {
1525 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1526 }
1527
1528 /* obsolete, do not use */
1529 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1530 {
1531 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1532 }
1533
1534 /**
1535 * pid_alive - check that a task structure is not stale
1536 * @p: Task structure to be checked.
1537 *
1538 * Test if a process is not yet dead (at most zombie state)
1539 * If pid_alive fails, then pointers within the task structure
1540 * can be stale and must not be dereferenced.
1541 */
1542 static inline int pid_alive(struct task_struct *p)
1543 {
1544 return p->pids[PIDTYPE_PID].pid != NULL;
1545 }
1546
1547 /**
1548 * is_global_init - check if a task structure is init
1549 * @tsk: Task structure to be checked.
1550 *
1551 * Check if a task structure is the first user space task the kernel created.
1552 */
1553 static inline int is_global_init(struct task_struct *tsk)
1554 {
1555 return tsk->pid == 1;
1556 }
1557
1558 extern struct pid *cad_pid;
1559
1560 extern void free_task(struct task_struct *tsk);
1561 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1562
1563 extern void __put_task_struct(struct task_struct *t);
1564
1565 static inline void put_task_struct(struct task_struct *t)
1566 {
1567 if (atomic_dec_and_test(&t->usage))
1568 __put_task_struct(t);
1569 }
1570
1571 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1572 extern void task_cputime(struct task_struct *t,
1573 cputime_t *utime, cputime_t *stime);
1574 extern void task_cputime_scaled(struct task_struct *t,
1575 cputime_t *utimescaled, cputime_t *stimescaled);
1576 extern cputime_t task_gtime(struct task_struct *t);
1577 #else
1578 static inline void task_cputime(struct task_struct *t,
1579 cputime_t *utime, cputime_t *stime)
1580 {
1581 if (utime)
1582 *utime = t->utime;
1583 if (stime)
1584 *stime = t->stime;
1585 }
1586
1587 static inline void task_cputime_scaled(struct task_struct *t,
1588 cputime_t *utimescaled,
1589 cputime_t *stimescaled)
1590 {
1591 if (utimescaled)
1592 *utimescaled = t->utimescaled;
1593 if (stimescaled)
1594 *stimescaled = t->stimescaled;
1595 }
1596
1597 static inline cputime_t task_gtime(struct task_struct *t)
1598 {
1599 return t->gtime;
1600 }
1601 #endif
1602 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1603 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1604
1605 /*
1606 * Per process flags
1607 */
1608 #define PF_EXITING 0x00000004 /* getting shut down */
1609 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1610 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1611 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1612 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1613 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1614 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1615 #define PF_DUMPCORE 0x00000200 /* dumped core */
1616 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1617 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1618 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1619 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1620 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1621 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1622 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1623 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1624 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1625 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1626 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1627 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1628 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1629 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1630 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1631 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1632 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
1633 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1634 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1635 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1636 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1637
1638 /*
1639 * Only the _current_ task can read/write to tsk->flags, but other
1640 * tasks can access tsk->flags in readonly mode for example
1641 * with tsk_used_math (like during threaded core dumping).
1642 * There is however an exception to this rule during ptrace
1643 * or during fork: the ptracer task is allowed to write to the
1644 * child->flags of its traced child (same goes for fork, the parent
1645 * can write to the child->flags), because we're guaranteed the
1646 * child is not running and in turn not changing child->flags
1647 * at the same time the parent does it.
1648 */
1649 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1650 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1651 #define clear_used_math() clear_stopped_child_used_math(current)
1652 #define set_used_math() set_stopped_child_used_math(current)
1653 #define conditional_stopped_child_used_math(condition, child) \
1654 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1655 #define conditional_used_math(condition) \
1656 conditional_stopped_child_used_math(condition, current)
1657 #define copy_to_stopped_child_used_math(child) \
1658 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1659 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1660 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1661 #define used_math() tsk_used_math(current)
1662
1663 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags */
1664 static inline gfp_t memalloc_noio_flags(gfp_t flags)
1665 {
1666 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
1667 flags &= ~__GFP_IO;
1668 return flags;
1669 }
1670
1671 static inline unsigned int memalloc_noio_save(void)
1672 {
1673 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
1674 current->flags |= PF_MEMALLOC_NOIO;
1675 return flags;
1676 }
1677
1678 static inline void memalloc_noio_restore(unsigned int flags)
1679 {
1680 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
1681 }
1682
1683 /*
1684 * task->jobctl flags
1685 */
1686 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
1687
1688 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
1689 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
1690 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
1691 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
1692 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
1693 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
1694 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
1695
1696 #define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT)
1697 #define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT)
1698 #define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT)
1699 #define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT)
1700 #define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT)
1701 #define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT)
1702 #define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT)
1703
1704 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1705 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1706
1707 extern bool task_set_jobctl_pending(struct task_struct *task,
1708 unsigned int mask);
1709 extern void task_clear_jobctl_trapping(struct task_struct *task);
1710 extern void task_clear_jobctl_pending(struct task_struct *task,
1711 unsigned int mask);
1712
1713 #ifdef CONFIG_PREEMPT_RCU
1714
1715 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1716 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1717
1718 static inline void rcu_copy_process(struct task_struct *p)
1719 {
1720 p->rcu_read_lock_nesting = 0;
1721 p->rcu_read_unlock_special = 0;
1722 #ifdef CONFIG_TREE_PREEMPT_RCU
1723 p->rcu_blocked_node = NULL;
1724 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1725 #ifdef CONFIG_RCU_BOOST
1726 p->rcu_boost_mutex = NULL;
1727 #endif /* #ifdef CONFIG_RCU_BOOST */
1728 INIT_LIST_HEAD(&p->rcu_node_entry);
1729 }
1730
1731 #else
1732
1733 static inline void rcu_copy_process(struct task_struct *p)
1734 {
1735 }
1736
1737 #endif
1738
1739 static inline void tsk_restore_flags(struct task_struct *task,
1740 unsigned long orig_flags, unsigned long flags)
1741 {
1742 task->flags &= ~flags;
1743 task->flags |= orig_flags & flags;
1744 }
1745
1746 #ifdef CONFIG_SMP
1747 extern void do_set_cpus_allowed(struct task_struct *p,
1748 const struct cpumask *new_mask);
1749
1750 extern int set_cpus_allowed_ptr(struct task_struct *p,
1751 const struct cpumask *new_mask);
1752 #else
1753 static inline void do_set_cpus_allowed(struct task_struct *p,
1754 const struct cpumask *new_mask)
1755 {
1756 }
1757 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1758 const struct cpumask *new_mask)
1759 {
1760 if (!cpumask_test_cpu(0, new_mask))
1761 return -EINVAL;
1762 return 0;
1763 }
1764 #endif
1765
1766 #ifdef CONFIG_NO_HZ
1767 void calc_load_enter_idle(void);
1768 void calc_load_exit_idle(void);
1769 #else
1770 static inline void calc_load_enter_idle(void) { }
1771 static inline void calc_load_exit_idle(void) { }
1772 #endif /* CONFIG_NO_HZ */
1773
1774 #ifndef CONFIG_CPUMASK_OFFSTACK
1775 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1776 {
1777 return set_cpus_allowed_ptr(p, &new_mask);
1778 }
1779 #endif
1780
1781 /*
1782 * Do not use outside of architecture code which knows its limitations.
1783 *
1784 * sched_clock() has no promise of monotonicity or bounded drift between
1785 * CPUs, use (which you should not) requires disabling IRQs.
1786 *
1787 * Please use one of the three interfaces below.
1788 */
1789 extern unsigned long long notrace sched_clock(void);
1790 /*
1791 * See the comment in kernel/sched/clock.c
1792 */
1793 extern u64 cpu_clock(int cpu);
1794 extern u64 local_clock(void);
1795 extern u64 sched_clock_cpu(int cpu);
1796
1797
1798 extern void sched_clock_init(void);
1799
1800 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1801 static inline void sched_clock_tick(void)
1802 {
1803 }
1804
1805 static inline void sched_clock_idle_sleep_event(void)
1806 {
1807 }
1808
1809 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1810 {
1811 }
1812 #else
1813 /*
1814 * Architectures can set this to 1 if they have specified
1815 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1816 * but then during bootup it turns out that sched_clock()
1817 * is reliable after all:
1818 */
1819 extern int sched_clock_stable;
1820
1821 extern void sched_clock_tick(void);
1822 extern void sched_clock_idle_sleep_event(void);
1823 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1824 #endif
1825
1826 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1827 /*
1828 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1829 * The reason for this explicit opt-in is not to have perf penalty with
1830 * slow sched_clocks.
1831 */
1832 extern void enable_sched_clock_irqtime(void);
1833 extern void disable_sched_clock_irqtime(void);
1834 #else
1835 static inline void enable_sched_clock_irqtime(void) {}
1836 static inline void disable_sched_clock_irqtime(void) {}
1837 #endif
1838
1839 extern unsigned long long
1840 task_sched_runtime(struct task_struct *task);
1841
1842 /* sched_exec is called by processes performing an exec */
1843 #ifdef CONFIG_SMP
1844 extern void sched_exec(void);
1845 #else
1846 #define sched_exec() {}
1847 #endif
1848
1849 extern void sched_clock_idle_sleep_event(void);
1850 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1851
1852 #ifdef CONFIG_HOTPLUG_CPU
1853 extern void idle_task_exit(void);
1854 #else
1855 static inline void idle_task_exit(void) {}
1856 #endif
1857
1858 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1859 extern void wake_up_idle_cpu(int cpu);
1860 #else
1861 static inline void wake_up_idle_cpu(int cpu) { }
1862 #endif
1863
1864 #ifdef CONFIG_SCHED_AUTOGROUP
1865 extern void sched_autogroup_create_attach(struct task_struct *p);
1866 extern void sched_autogroup_detach(struct task_struct *p);
1867 extern void sched_autogroup_fork(struct signal_struct *sig);
1868 extern void sched_autogroup_exit(struct signal_struct *sig);
1869 #ifdef CONFIG_PROC_FS
1870 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
1871 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
1872 #endif
1873 #else
1874 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
1875 static inline void sched_autogroup_detach(struct task_struct *p) { }
1876 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
1877 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
1878 #endif
1879
1880 extern bool yield_to(struct task_struct *p, bool preempt);
1881 extern void set_user_nice(struct task_struct *p, long nice);
1882 extern int task_prio(const struct task_struct *p);
1883 extern int task_nice(const struct task_struct *p);
1884 extern int can_nice(const struct task_struct *p, const int nice);
1885 extern int task_curr(const struct task_struct *p);
1886 extern int idle_cpu(int cpu);
1887 extern int sched_setscheduler(struct task_struct *, int,
1888 const struct sched_param *);
1889 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1890 const struct sched_param *);
1891 extern struct task_struct *idle_task(int cpu);
1892 /**
1893 * is_idle_task - is the specified task an idle task?
1894 * @p: the task in question.
1895 */
1896 static inline bool is_idle_task(const struct task_struct *p)
1897 {
1898 return p->pid == 0;
1899 }
1900 extern struct task_struct *curr_task(int cpu);
1901 extern void set_curr_task(int cpu, struct task_struct *p);
1902
1903 void yield(void);
1904
1905 /*
1906 * The default (Linux) execution domain.
1907 */
1908 extern struct exec_domain default_exec_domain;
1909
1910 union thread_union {
1911 struct thread_info thread_info;
1912 unsigned long stack[THREAD_SIZE/sizeof(long)];
1913 };
1914
1915 #ifndef __HAVE_ARCH_KSTACK_END
1916 static inline int kstack_end(void *addr)
1917 {
1918 /* Reliable end of stack detection:
1919 * Some APM bios versions misalign the stack
1920 */
1921 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1922 }
1923 #endif
1924
1925 extern union thread_union init_thread_union;
1926 extern struct task_struct init_task;
1927
1928 extern struct mm_struct init_mm;
1929
1930 extern struct pid_namespace init_pid_ns;
1931
1932 /*
1933 * find a task by one of its numerical ids
1934 *
1935 * find_task_by_pid_ns():
1936 * finds a task by its pid in the specified namespace
1937 * find_task_by_vpid():
1938 * finds a task by its virtual pid
1939 *
1940 * see also find_vpid() etc in include/linux/pid.h
1941 */
1942
1943 extern struct task_struct *find_task_by_vpid(pid_t nr);
1944 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1945 struct pid_namespace *ns);
1946
1947 extern void __set_special_pids(struct pid *pid);
1948
1949 /* per-UID process charging. */
1950 extern struct user_struct * alloc_uid(kuid_t);
1951 static inline struct user_struct *get_uid(struct user_struct *u)
1952 {
1953 atomic_inc(&u->__count);
1954 return u;
1955 }
1956 extern void free_uid(struct user_struct *);
1957
1958 #include <asm/current.h>
1959
1960 extern void xtime_update(unsigned long ticks);
1961
1962 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1963 extern int wake_up_process(struct task_struct *tsk);
1964 extern void wake_up_new_task(struct task_struct *tsk);
1965 #ifdef CONFIG_SMP
1966 extern void kick_process(struct task_struct *tsk);
1967 #else
1968 static inline void kick_process(struct task_struct *tsk) { }
1969 #endif
1970 extern void sched_fork(struct task_struct *p);
1971 extern void sched_dead(struct task_struct *p);
1972
1973 extern void proc_caches_init(void);
1974 extern void flush_signals(struct task_struct *);
1975 extern void __flush_signals(struct task_struct *);
1976 extern void ignore_signals(struct task_struct *);
1977 extern void flush_signal_handlers(struct task_struct *, int force_default);
1978 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1979
1980 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1981 {
1982 unsigned long flags;
1983 int ret;
1984
1985 spin_lock_irqsave(&tsk->sighand->siglock, flags);
1986 ret = dequeue_signal(tsk, mask, info);
1987 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1988
1989 return ret;
1990 }
1991
1992 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1993 sigset_t *mask);
1994 extern void unblock_all_signals(void);
1995 extern void release_task(struct task_struct * p);
1996 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1997 extern int force_sigsegv(int, struct task_struct *);
1998 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1999 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2000 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2001 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2002 const struct cred *, u32);
2003 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2004 extern int kill_pid(struct pid *pid, int sig, int priv);
2005 extern int kill_proc_info(int, struct siginfo *, pid_t);
2006 extern __must_check bool do_notify_parent(struct task_struct *, int);
2007 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2008 extern void force_sig(int, struct task_struct *);
2009 extern int send_sig(int, struct task_struct *, int);
2010 extern int zap_other_threads(struct task_struct *p);
2011 extern struct sigqueue *sigqueue_alloc(void);
2012 extern void sigqueue_free(struct sigqueue *);
2013 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2014 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2015
2016 static inline void restore_saved_sigmask(void)
2017 {
2018 if (test_and_clear_restore_sigmask())
2019 __set_current_blocked(&current->saved_sigmask);
2020 }
2021
2022 static inline sigset_t *sigmask_to_save(void)
2023 {
2024 sigset_t *res = &current->blocked;
2025 if (unlikely(test_restore_sigmask()))
2026 res = &current->saved_sigmask;
2027 return res;
2028 }
2029
2030 static inline int kill_cad_pid(int sig, int priv)
2031 {
2032 return kill_pid(cad_pid, sig, priv);
2033 }
2034
2035 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2036 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2037 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2038 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2039
2040 /*
2041 * True if we are on the alternate signal stack.
2042 */
2043 static inline int on_sig_stack(unsigned long sp)
2044 {
2045 #ifdef CONFIG_STACK_GROWSUP
2046 return sp >= current->sas_ss_sp &&
2047 sp - current->sas_ss_sp < current->sas_ss_size;
2048 #else
2049 return sp > current->sas_ss_sp &&
2050 sp - current->sas_ss_sp <= current->sas_ss_size;
2051 #endif
2052 }
2053
2054 static inline int sas_ss_flags(unsigned long sp)
2055 {
2056 return (current->sas_ss_size == 0 ? SS_DISABLE
2057 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2058 }
2059
2060 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2061 {
2062 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2063 #ifdef CONFIG_STACK_GROWSUP
2064 return current->sas_ss_sp;
2065 #else
2066 return current->sas_ss_sp + current->sas_ss_size;
2067 #endif
2068 return sp;
2069 }
2070
2071 /*
2072 * Routines for handling mm_structs
2073 */
2074 extern struct mm_struct * mm_alloc(void);
2075
2076 /* mmdrop drops the mm and the page tables */
2077 extern void __mmdrop(struct mm_struct *);
2078 static inline void mmdrop(struct mm_struct * mm)
2079 {
2080 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2081 __mmdrop(mm);
2082 }
2083
2084 /* mmput gets rid of the mappings and all user-space */
2085 extern void mmput(struct mm_struct *);
2086 /* Grab a reference to a task's mm, if it is not already going away */
2087 extern struct mm_struct *get_task_mm(struct task_struct *task);
2088 /*
2089 * Grab a reference to a task's mm, if it is not already going away
2090 * and ptrace_may_access with the mode parameter passed to it
2091 * succeeds.
2092 */
2093 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2094 /* Remove the current tasks stale references to the old mm_struct */
2095 extern void mm_release(struct task_struct *, struct mm_struct *);
2096 /* Allocate a new mm structure and copy contents from tsk->mm */
2097 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2098
2099 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2100 struct task_struct *);
2101 extern void flush_thread(void);
2102 extern void exit_thread(void);
2103
2104 extern void exit_files(struct task_struct *);
2105 extern void __cleanup_sighand(struct sighand_struct *);
2106
2107 extern void exit_itimers(struct signal_struct *);
2108 extern void flush_itimer_signals(void);
2109
2110 extern void do_group_exit(int);
2111
2112 extern int allow_signal(int);
2113 extern int disallow_signal(int);
2114
2115 extern int do_execve(const char *,
2116 const char __user * const __user *,
2117 const char __user * const __user *);
2118 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2119 struct task_struct *fork_idle(int);
2120 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2121
2122 extern void set_task_comm(struct task_struct *tsk, char *from);
2123 extern char *get_task_comm(char *to, struct task_struct *tsk);
2124
2125 #ifdef CONFIG_SMP
2126 void scheduler_ipi(void);
2127 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2128 #else
2129 static inline void scheduler_ipi(void) { }
2130 static inline unsigned long wait_task_inactive(struct task_struct *p,
2131 long match_state)
2132 {
2133 return 1;
2134 }
2135 #endif
2136
2137 #define next_task(p) \
2138 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2139
2140 #define for_each_process(p) \
2141 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2142
2143 extern bool current_is_single_threaded(void);
2144
2145 /*
2146 * Careful: do_each_thread/while_each_thread is a double loop so
2147 * 'break' will not work as expected - use goto instead.
2148 */
2149 #define do_each_thread(g, t) \
2150 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2151
2152 #define while_each_thread(g, t) \
2153 while ((t = next_thread(t)) != g)
2154
2155 static inline int get_nr_threads(struct task_struct *tsk)
2156 {
2157 return tsk->signal->nr_threads;
2158 }
2159
2160 static inline bool thread_group_leader(struct task_struct *p)
2161 {
2162 return p->exit_signal >= 0;
2163 }
2164
2165 /* Do to the insanities of de_thread it is possible for a process
2166 * to have the pid of the thread group leader without actually being
2167 * the thread group leader. For iteration through the pids in proc
2168 * all we care about is that we have a task with the appropriate
2169 * pid, we don't actually care if we have the right task.
2170 */
2171 static inline int has_group_leader_pid(struct task_struct *p)
2172 {
2173 return p->pid == p->tgid;
2174 }
2175
2176 static inline
2177 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2178 {
2179 return p1->tgid == p2->tgid;
2180 }
2181
2182 static inline struct task_struct *next_thread(const struct task_struct *p)
2183 {
2184 return list_entry_rcu(p->thread_group.next,
2185 struct task_struct, thread_group);
2186 }
2187
2188 static inline int thread_group_empty(struct task_struct *p)
2189 {
2190 return list_empty(&p->thread_group);
2191 }
2192
2193 #define delay_group_leader(p) \
2194 (thread_group_leader(p) && !thread_group_empty(p))
2195
2196 /*
2197 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2198 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2199 * pins the final release of task.io_context. Also protects ->cpuset and
2200 * ->cgroup.subsys[]. And ->vfork_done.
2201 *
2202 * Nests both inside and outside of read_lock(&tasklist_lock).
2203 * It must not be nested with write_lock_irq(&tasklist_lock),
2204 * neither inside nor outside.
2205 */
2206 static inline void task_lock(struct task_struct *p)
2207 {
2208 spin_lock(&p->alloc_lock);
2209 }
2210
2211 static inline void task_unlock(struct task_struct *p)
2212 {
2213 spin_unlock(&p->alloc_lock);
2214 }
2215
2216 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2217 unsigned long *flags);
2218
2219 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2220 unsigned long *flags)
2221 {
2222 struct sighand_struct *ret;
2223
2224 ret = __lock_task_sighand(tsk, flags);
2225 (void)__cond_lock(&tsk->sighand->siglock, ret);
2226 return ret;
2227 }
2228
2229 static inline void unlock_task_sighand(struct task_struct *tsk,
2230 unsigned long *flags)
2231 {
2232 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2233 }
2234
2235 #ifdef CONFIG_CGROUPS
2236 static inline void threadgroup_change_begin(struct task_struct *tsk)
2237 {
2238 down_read(&tsk->signal->group_rwsem);
2239 }
2240 static inline void threadgroup_change_end(struct task_struct *tsk)
2241 {
2242 up_read(&tsk->signal->group_rwsem);
2243 }
2244
2245 /**
2246 * threadgroup_lock - lock threadgroup
2247 * @tsk: member task of the threadgroup to lock
2248 *
2249 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter
2250 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2251 * perform exec. This is useful for cases where the threadgroup needs to
2252 * stay stable across blockable operations.
2253 *
2254 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2255 * synchronization. While held, no new task will be added to threadgroup
2256 * and no existing live task will have its PF_EXITING set.
2257 *
2258 * During exec, a task goes and puts its thread group through unusual
2259 * changes. After de-threading, exclusive access is assumed to resources
2260 * which are usually shared by tasks in the same group - e.g. sighand may
2261 * be replaced with a new one. Also, the exec'ing task takes over group
2262 * leader role including its pid. Exclude these changes while locked by
2263 * grabbing cred_guard_mutex which is used to synchronize exec path.
2264 */
2265 static inline void threadgroup_lock(struct task_struct *tsk)
2266 {
2267 /*
2268 * exec uses exit for de-threading nesting group_rwsem inside
2269 * cred_guard_mutex. Grab cred_guard_mutex first.
2270 */
2271 mutex_lock(&tsk->signal->cred_guard_mutex);
2272 down_write(&tsk->signal->group_rwsem);
2273 }
2274
2275 /**
2276 * threadgroup_unlock - unlock threadgroup
2277 * @tsk: member task of the threadgroup to unlock
2278 *
2279 * Reverse threadgroup_lock().
2280 */
2281 static inline void threadgroup_unlock(struct task_struct *tsk)
2282 {
2283 up_write(&tsk->signal->group_rwsem);
2284 mutex_unlock(&tsk->signal->cred_guard_mutex);
2285 }
2286 #else
2287 static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2288 static inline void threadgroup_change_end(struct task_struct *tsk) {}
2289 static inline void threadgroup_lock(struct task_struct *tsk) {}
2290 static inline void threadgroup_unlock(struct task_struct *tsk) {}
2291 #endif
2292
2293 #ifndef __HAVE_THREAD_FUNCTIONS
2294
2295 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2296 #define task_stack_page(task) ((task)->stack)
2297
2298 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2299 {
2300 *task_thread_info(p) = *task_thread_info(org);
2301 task_thread_info(p)->task = p;
2302 }
2303
2304 static inline unsigned long *end_of_stack(struct task_struct *p)
2305 {
2306 return (unsigned long *)(task_thread_info(p) + 1);
2307 }
2308
2309 #endif
2310
2311 static inline int object_is_on_stack(void *obj)
2312 {
2313 void *stack = task_stack_page(current);
2314
2315 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2316 }
2317
2318 extern void thread_info_cache_init(void);
2319
2320 #ifdef CONFIG_DEBUG_STACK_USAGE
2321 static inline unsigned long stack_not_used(struct task_struct *p)
2322 {
2323 unsigned long *n = end_of_stack(p);
2324
2325 do { /* Skip over canary */
2326 n++;
2327 } while (!*n);
2328
2329 return (unsigned long)n - (unsigned long)end_of_stack(p);
2330 }
2331 #endif
2332
2333 /* set thread flags in other task's structures
2334 * - see asm/thread_info.h for TIF_xxxx flags available
2335 */
2336 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2337 {
2338 set_ti_thread_flag(task_thread_info(tsk), flag);
2339 }
2340
2341 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2342 {
2343 clear_ti_thread_flag(task_thread_info(tsk), flag);
2344 }
2345
2346 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2347 {
2348 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2349 }
2350
2351 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2352 {
2353 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2354 }
2355
2356 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2357 {
2358 return test_ti_thread_flag(task_thread_info(tsk), flag);
2359 }
2360
2361 static inline void set_tsk_need_resched(struct task_struct *tsk)
2362 {
2363 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2364 }
2365
2366 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2367 {
2368 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2369 }
2370
2371 static inline int test_tsk_need_resched(struct task_struct *tsk)
2372 {
2373 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2374 }
2375
2376 static inline int restart_syscall(void)
2377 {
2378 set_tsk_thread_flag(current, TIF_SIGPENDING);
2379 return -ERESTARTNOINTR;
2380 }
2381
2382 static inline int signal_pending(struct task_struct *p)
2383 {
2384 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2385 }
2386
2387 static inline int __fatal_signal_pending(struct task_struct *p)
2388 {
2389 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2390 }
2391
2392 static inline int fatal_signal_pending(struct task_struct *p)
2393 {
2394 return signal_pending(p) && __fatal_signal_pending(p);
2395 }
2396
2397 static inline int signal_pending_state(long state, struct task_struct *p)
2398 {
2399 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2400 return 0;
2401 if (!signal_pending(p))
2402 return 0;
2403
2404 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2405 }
2406
2407 static inline int need_resched(void)
2408 {
2409 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2410 }
2411
2412 /*
2413 * cond_resched() and cond_resched_lock(): latency reduction via
2414 * explicit rescheduling in places that are safe. The return
2415 * value indicates whether a reschedule was done in fact.
2416 * cond_resched_lock() will drop the spinlock before scheduling,
2417 * cond_resched_softirq() will enable bhs before scheduling.
2418 */
2419 extern int _cond_resched(void);
2420
2421 #define cond_resched() ({ \
2422 __might_sleep(__FILE__, __LINE__, 0); \
2423 _cond_resched(); \
2424 })
2425
2426 extern int __cond_resched_lock(spinlock_t *lock);
2427
2428 #ifdef CONFIG_PREEMPT_COUNT
2429 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2430 #else
2431 #define PREEMPT_LOCK_OFFSET 0
2432 #endif
2433
2434 #define cond_resched_lock(lock) ({ \
2435 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2436 __cond_resched_lock(lock); \
2437 })
2438
2439 extern int __cond_resched_softirq(void);
2440
2441 #define cond_resched_softirq() ({ \
2442 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2443 __cond_resched_softirq(); \
2444 })
2445
2446 /*
2447 * Does a critical section need to be broken due to another
2448 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2449 * but a general need for low latency)
2450 */
2451 static inline int spin_needbreak(spinlock_t *lock)
2452 {
2453 #ifdef CONFIG_PREEMPT
2454 return spin_is_contended(lock);
2455 #else
2456 return 0;
2457 #endif
2458 }
2459
2460 /*
2461 * Idle thread specific functions to determine the need_resched
2462 * polling state. We have two versions, one based on TS_POLLING in
2463 * thread_info.status and one based on TIF_POLLING_NRFLAG in
2464 * thread_info.flags
2465 */
2466 #ifdef TS_POLLING
2467 static inline int tsk_is_polling(struct task_struct *p)
2468 {
2469 return task_thread_info(p)->status & TS_POLLING;
2470 }
2471 static inline void current_set_polling(void)
2472 {
2473 current_thread_info()->status |= TS_POLLING;
2474 }
2475
2476 static inline void current_clr_polling(void)
2477 {
2478 current_thread_info()->status &= ~TS_POLLING;
2479 smp_mb__after_clear_bit();
2480 }
2481 #elif defined(TIF_POLLING_NRFLAG)
2482 static inline int tsk_is_polling(struct task_struct *p)
2483 {
2484 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2485 }
2486 static inline void current_set_polling(void)
2487 {
2488 set_thread_flag(TIF_POLLING_NRFLAG);
2489 }
2490
2491 static inline void current_clr_polling(void)
2492 {
2493 clear_thread_flag(TIF_POLLING_NRFLAG);
2494 }
2495 #else
2496 static inline int tsk_is_polling(struct task_struct *p) { return 0; }
2497 static inline void current_set_polling(void) { }
2498 static inline void current_clr_polling(void) { }
2499 #endif
2500
2501 /*
2502 * Thread group CPU time accounting.
2503 */
2504 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2505 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2506
2507 static inline void thread_group_cputime_init(struct signal_struct *sig)
2508 {
2509 raw_spin_lock_init(&sig->cputimer.lock);
2510 }
2511
2512 /*
2513 * Reevaluate whether the task has signals pending delivery.
2514 * Wake the task if so.
2515 * This is required every time the blocked sigset_t changes.
2516 * callers must hold sighand->siglock.
2517 */
2518 extern void recalc_sigpending_and_wake(struct task_struct *t);
2519 extern void recalc_sigpending(void);
2520
2521 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
2522
2523 static inline void signal_wake_up(struct task_struct *t, bool resume)
2524 {
2525 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
2526 }
2527 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
2528 {
2529 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
2530 }
2531
2532 /*
2533 * Wrappers for p->thread_info->cpu access. No-op on UP.
2534 */
2535 #ifdef CONFIG_SMP
2536
2537 static inline unsigned int task_cpu(const struct task_struct *p)
2538 {
2539 return task_thread_info(p)->cpu;
2540 }
2541
2542 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2543
2544 #else
2545
2546 static inline unsigned int task_cpu(const struct task_struct *p)
2547 {
2548 return 0;
2549 }
2550
2551 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2552 {
2553 }
2554
2555 #endif /* CONFIG_SMP */
2556
2557 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2558 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2559
2560 #ifdef CONFIG_CGROUP_SCHED
2561 extern struct task_group root_task_group;
2562 #endif /* CONFIG_CGROUP_SCHED */
2563
2564 extern int task_can_switch_user(struct user_struct *up,
2565 struct task_struct *tsk);
2566
2567 #ifdef CONFIG_TASK_XACCT
2568 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2569 {
2570 tsk->ioac.rchar += amt;
2571 }
2572
2573 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2574 {
2575 tsk->ioac.wchar += amt;
2576 }
2577
2578 static inline void inc_syscr(struct task_struct *tsk)
2579 {
2580 tsk->ioac.syscr++;
2581 }
2582
2583 static inline void inc_syscw(struct task_struct *tsk)
2584 {
2585 tsk->ioac.syscw++;
2586 }
2587 #else
2588 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2589 {
2590 }
2591
2592 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2593 {
2594 }
2595
2596 static inline void inc_syscr(struct task_struct *tsk)
2597 {
2598 }
2599
2600 static inline void inc_syscw(struct task_struct *tsk)
2601 {
2602 }
2603 #endif
2604
2605 #ifndef TASK_SIZE_OF
2606 #define TASK_SIZE_OF(tsk) TASK_SIZE
2607 #endif
2608
2609 #ifdef CONFIG_MM_OWNER
2610 extern void mm_update_next_owner(struct mm_struct *mm);
2611 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2612 #else
2613 static inline void mm_update_next_owner(struct mm_struct *mm)
2614 {
2615 }
2616
2617 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2618 {
2619 }
2620 #endif /* CONFIG_MM_OWNER */
2621
2622 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2623 unsigned int limit)
2624 {
2625 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2626 }
2627
2628 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2629 unsigned int limit)
2630 {
2631 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2632 }
2633
2634 static inline unsigned long rlimit(unsigned int limit)
2635 {
2636 return task_rlimit(current, limit);
2637 }
2638
2639 static inline unsigned long rlimit_max(unsigned int limit)
2640 {
2641 return task_rlimit_max(current, limit);
2642 }
2643
2644 #endif
This page took 0.158858 seconds and 6 git commands to generate.