sched: Hook sched_balance_self() into sched_class::select_task_rq()
[deliverable/linux.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
29 #define CLONE_NEWNET 0x40000000 /* New network namespace */
30 #define CLONE_IO 0x80000000 /* Clone io context */
31
32 /*
33 * Scheduling policies
34 */
35 #define SCHED_NORMAL 0
36 #define SCHED_FIFO 1
37 #define SCHED_RR 2
38 #define SCHED_BATCH 3
39 /* SCHED_ISO: reserved but not implemented yet */
40 #define SCHED_IDLE 5
41 /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
42 #define SCHED_RESET_ON_FORK 0x40000000
43
44 #ifdef __KERNEL__
45
46 struct sched_param {
47 int sched_priority;
48 };
49
50 #include <asm/param.h> /* for HZ */
51
52 #include <linux/capability.h>
53 #include <linux/threads.h>
54 #include <linux/kernel.h>
55 #include <linux/types.h>
56 #include <linux/timex.h>
57 #include <linux/jiffies.h>
58 #include <linux/rbtree.h>
59 #include <linux/thread_info.h>
60 #include <linux/cpumask.h>
61 #include <linux/errno.h>
62 #include <linux/nodemask.h>
63 #include <linux/mm_types.h>
64
65 #include <asm/system.h>
66 #include <asm/page.h>
67 #include <asm/ptrace.h>
68 #include <asm/cputime.h>
69
70 #include <linux/smp.h>
71 #include <linux/sem.h>
72 #include <linux/signal.h>
73 #include <linux/path.h>
74 #include <linux/compiler.h>
75 #include <linux/completion.h>
76 #include <linux/pid.h>
77 #include <linux/percpu.h>
78 #include <linux/topology.h>
79 #include <linux/proportions.h>
80 #include <linux/seccomp.h>
81 #include <linux/rcupdate.h>
82 #include <linux/rculist.h>
83 #include <linux/rtmutex.h>
84
85 #include <linux/time.h>
86 #include <linux/param.h>
87 #include <linux/resource.h>
88 #include <linux/timer.h>
89 #include <linux/hrtimer.h>
90 #include <linux/task_io_accounting.h>
91 #include <linux/kobject.h>
92 #include <linux/latencytop.h>
93 #include <linux/cred.h>
94
95 #include <asm/processor.h>
96
97 struct exec_domain;
98 struct futex_pi_state;
99 struct robust_list_head;
100 struct bio;
101 struct fs_struct;
102 struct bts_context;
103 struct perf_counter_context;
104
105 /*
106 * List of flags we want to share for kernel threads,
107 * if only because they are not used by them anyway.
108 */
109 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
110
111 /*
112 * These are the constant used to fake the fixed-point load-average
113 * counting. Some notes:
114 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
115 * a load-average precision of 10 bits integer + 11 bits fractional
116 * - if you want to count load-averages more often, you need more
117 * precision, or rounding will get you. With 2-second counting freq,
118 * the EXP_n values would be 1981, 2034 and 2043 if still using only
119 * 11 bit fractions.
120 */
121 extern unsigned long avenrun[]; /* Load averages */
122 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
123
124 #define FSHIFT 11 /* nr of bits of precision */
125 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
126 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
127 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
128 #define EXP_5 2014 /* 1/exp(5sec/5min) */
129 #define EXP_15 2037 /* 1/exp(5sec/15min) */
130
131 #define CALC_LOAD(load,exp,n) \
132 load *= exp; \
133 load += n*(FIXED_1-exp); \
134 load >>= FSHIFT;
135
136 extern unsigned long total_forks;
137 extern int nr_threads;
138 DECLARE_PER_CPU(unsigned long, process_counts);
139 extern int nr_processes(void);
140 extern unsigned long nr_running(void);
141 extern unsigned long nr_uninterruptible(void);
142 extern unsigned long nr_iowait(void);
143 extern void calc_global_load(void);
144 extern u64 cpu_nr_migrations(int cpu);
145
146 extern unsigned long get_parent_ip(unsigned long addr);
147
148 struct seq_file;
149 struct cfs_rq;
150 struct task_group;
151 #ifdef CONFIG_SCHED_DEBUG
152 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
153 extern void proc_sched_set_task(struct task_struct *p);
154 extern void
155 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
156 #else
157 static inline void
158 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
159 {
160 }
161 static inline void proc_sched_set_task(struct task_struct *p)
162 {
163 }
164 static inline void
165 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
166 {
167 }
168 #endif
169
170 extern unsigned long long time_sync_thresh;
171
172 /*
173 * Task state bitmask. NOTE! These bits are also
174 * encoded in fs/proc/array.c: get_task_state().
175 *
176 * We have two separate sets of flags: task->state
177 * is about runnability, while task->exit_state are
178 * about the task exiting. Confusing, but this way
179 * modifying one set can't modify the other one by
180 * mistake.
181 */
182 #define TASK_RUNNING 0
183 #define TASK_INTERRUPTIBLE 1
184 #define TASK_UNINTERRUPTIBLE 2
185 #define __TASK_STOPPED 4
186 #define __TASK_TRACED 8
187 /* in tsk->exit_state */
188 #define EXIT_ZOMBIE 16
189 #define EXIT_DEAD 32
190 /* in tsk->state again */
191 #define TASK_DEAD 64
192 #define TASK_WAKEKILL 128
193
194 /* Convenience macros for the sake of set_task_state */
195 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
196 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
197 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
198
199 /* Convenience macros for the sake of wake_up */
200 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
201 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
202
203 /* get_task_state() */
204 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
205 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
206 __TASK_TRACED)
207
208 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
209 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
210 #define task_is_stopped_or_traced(task) \
211 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
212 #define task_contributes_to_load(task) \
213 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
214 (task->flags & PF_FREEZING) == 0)
215
216 #define __set_task_state(tsk, state_value) \
217 do { (tsk)->state = (state_value); } while (0)
218 #define set_task_state(tsk, state_value) \
219 set_mb((tsk)->state, (state_value))
220
221 /*
222 * set_current_state() includes a barrier so that the write of current->state
223 * is correctly serialised wrt the caller's subsequent test of whether to
224 * actually sleep:
225 *
226 * set_current_state(TASK_UNINTERRUPTIBLE);
227 * if (do_i_need_to_sleep())
228 * schedule();
229 *
230 * If the caller does not need such serialisation then use __set_current_state()
231 */
232 #define __set_current_state(state_value) \
233 do { current->state = (state_value); } while (0)
234 #define set_current_state(state_value) \
235 set_mb(current->state, (state_value))
236
237 /* Task command name length */
238 #define TASK_COMM_LEN 16
239
240 #include <linux/spinlock.h>
241
242 /*
243 * This serializes "schedule()" and also protects
244 * the run-queue from deletions/modifications (but
245 * _adding_ to the beginning of the run-queue has
246 * a separate lock).
247 */
248 extern rwlock_t tasklist_lock;
249 extern spinlock_t mmlist_lock;
250
251 struct task_struct;
252
253 extern void sched_init(void);
254 extern void sched_init_smp(void);
255 extern asmlinkage void schedule_tail(struct task_struct *prev);
256 extern void init_idle(struct task_struct *idle, int cpu);
257 extern void init_idle_bootup_task(struct task_struct *idle);
258
259 extern int runqueue_is_locked(void);
260 extern void task_rq_unlock_wait(struct task_struct *p);
261
262 extern cpumask_var_t nohz_cpu_mask;
263 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
264 extern int select_nohz_load_balancer(int cpu);
265 extern int get_nohz_load_balancer(void);
266 #else
267 static inline int select_nohz_load_balancer(int cpu)
268 {
269 return 0;
270 }
271 #endif
272
273 /*
274 * Only dump TASK_* tasks. (0 for all tasks)
275 */
276 extern void show_state_filter(unsigned long state_filter);
277
278 static inline void show_state(void)
279 {
280 show_state_filter(0);
281 }
282
283 extern void show_regs(struct pt_regs *);
284
285 /*
286 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
287 * task), SP is the stack pointer of the first frame that should be shown in the back
288 * trace (or NULL if the entire call-chain of the task should be shown).
289 */
290 extern void show_stack(struct task_struct *task, unsigned long *sp);
291
292 void io_schedule(void);
293 long io_schedule_timeout(long timeout);
294
295 extern void cpu_init (void);
296 extern void trap_init(void);
297 extern void update_process_times(int user);
298 extern void scheduler_tick(void);
299
300 extern void sched_show_task(struct task_struct *p);
301
302 #ifdef CONFIG_DETECT_SOFTLOCKUP
303 extern void softlockup_tick(void);
304 extern void touch_softlockup_watchdog(void);
305 extern void touch_all_softlockup_watchdogs(void);
306 extern int proc_dosoftlockup_thresh(struct ctl_table *table, int write,
307 struct file *filp, void __user *buffer,
308 size_t *lenp, loff_t *ppos);
309 extern unsigned int softlockup_panic;
310 extern int softlockup_thresh;
311 #else
312 static inline void softlockup_tick(void)
313 {
314 }
315 static inline void touch_softlockup_watchdog(void)
316 {
317 }
318 static inline void touch_all_softlockup_watchdogs(void)
319 {
320 }
321 #endif
322
323 #ifdef CONFIG_DETECT_HUNG_TASK
324 extern unsigned int sysctl_hung_task_panic;
325 extern unsigned long sysctl_hung_task_check_count;
326 extern unsigned long sysctl_hung_task_timeout_secs;
327 extern unsigned long sysctl_hung_task_warnings;
328 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
329 struct file *filp, void __user *buffer,
330 size_t *lenp, loff_t *ppos);
331 #endif
332
333 /* Attach to any functions which should be ignored in wchan output. */
334 #define __sched __attribute__((__section__(".sched.text")))
335
336 /* Linker adds these: start and end of __sched functions */
337 extern char __sched_text_start[], __sched_text_end[];
338
339 /* Is this address in the __sched functions? */
340 extern int in_sched_functions(unsigned long addr);
341
342 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
343 extern signed long schedule_timeout(signed long timeout);
344 extern signed long schedule_timeout_interruptible(signed long timeout);
345 extern signed long schedule_timeout_killable(signed long timeout);
346 extern signed long schedule_timeout_uninterruptible(signed long timeout);
347 asmlinkage void __schedule(void);
348 asmlinkage void schedule(void);
349 extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner);
350
351 struct nsproxy;
352 struct user_namespace;
353
354 /*
355 * Default maximum number of active map areas, this limits the number of vmas
356 * per mm struct. Users can overwrite this number by sysctl but there is a
357 * problem.
358 *
359 * When a program's coredump is generated as ELF format, a section is created
360 * per a vma. In ELF, the number of sections is represented in unsigned short.
361 * This means the number of sections should be smaller than 65535 at coredump.
362 * Because the kernel adds some informative sections to a image of program at
363 * generating coredump, we need some margin. The number of extra sections is
364 * 1-3 now and depends on arch. We use "5" as safe margin, here.
365 */
366 #define MAPCOUNT_ELF_CORE_MARGIN (5)
367 #define DEFAULT_MAX_MAP_COUNT (USHORT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
368
369 extern int sysctl_max_map_count;
370
371 #include <linux/aio.h>
372
373 extern unsigned long
374 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
375 unsigned long, unsigned long);
376 extern unsigned long
377 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
378 unsigned long len, unsigned long pgoff,
379 unsigned long flags);
380 extern void arch_unmap_area(struct mm_struct *, unsigned long);
381 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
382
383 #if USE_SPLIT_PTLOCKS
384 /*
385 * The mm counters are not protected by its page_table_lock,
386 * so must be incremented atomically.
387 */
388 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
389 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
390 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
391 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
392 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
393
394 #else /* !USE_SPLIT_PTLOCKS */
395 /*
396 * The mm counters are protected by its page_table_lock,
397 * so can be incremented directly.
398 */
399 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
400 #define get_mm_counter(mm, member) ((mm)->_##member)
401 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
402 #define inc_mm_counter(mm, member) (mm)->_##member++
403 #define dec_mm_counter(mm, member) (mm)->_##member--
404
405 #endif /* !USE_SPLIT_PTLOCKS */
406
407 #define get_mm_rss(mm) \
408 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
409 #define update_hiwater_rss(mm) do { \
410 unsigned long _rss = get_mm_rss(mm); \
411 if ((mm)->hiwater_rss < _rss) \
412 (mm)->hiwater_rss = _rss; \
413 } while (0)
414 #define update_hiwater_vm(mm) do { \
415 if ((mm)->hiwater_vm < (mm)->total_vm) \
416 (mm)->hiwater_vm = (mm)->total_vm; \
417 } while (0)
418
419 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
420 {
421 return max(mm->hiwater_rss, get_mm_rss(mm));
422 }
423
424 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
425 {
426 return max(mm->hiwater_vm, mm->total_vm);
427 }
428
429 extern void set_dumpable(struct mm_struct *mm, int value);
430 extern int get_dumpable(struct mm_struct *mm);
431
432 /* mm flags */
433 /* dumpable bits */
434 #define MMF_DUMPABLE 0 /* core dump is permitted */
435 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
436 #define MMF_DUMPABLE_BITS 2
437
438 /* coredump filter bits */
439 #define MMF_DUMP_ANON_PRIVATE 2
440 #define MMF_DUMP_ANON_SHARED 3
441 #define MMF_DUMP_MAPPED_PRIVATE 4
442 #define MMF_DUMP_MAPPED_SHARED 5
443 #define MMF_DUMP_ELF_HEADERS 6
444 #define MMF_DUMP_HUGETLB_PRIVATE 7
445 #define MMF_DUMP_HUGETLB_SHARED 8
446 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
447 #define MMF_DUMP_FILTER_BITS 7
448 #define MMF_DUMP_FILTER_MASK \
449 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
450 #define MMF_DUMP_FILTER_DEFAULT \
451 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
452 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
453
454 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
455 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
456 #else
457 # define MMF_DUMP_MASK_DEFAULT_ELF 0
458 #endif
459
460 struct sighand_struct {
461 atomic_t count;
462 struct k_sigaction action[_NSIG];
463 spinlock_t siglock;
464 wait_queue_head_t signalfd_wqh;
465 };
466
467 struct pacct_struct {
468 int ac_flag;
469 long ac_exitcode;
470 unsigned long ac_mem;
471 cputime_t ac_utime, ac_stime;
472 unsigned long ac_minflt, ac_majflt;
473 };
474
475 /**
476 * struct task_cputime - collected CPU time counts
477 * @utime: time spent in user mode, in &cputime_t units
478 * @stime: time spent in kernel mode, in &cputime_t units
479 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
480 *
481 * This structure groups together three kinds of CPU time that are
482 * tracked for threads and thread groups. Most things considering
483 * CPU time want to group these counts together and treat all three
484 * of them in parallel.
485 */
486 struct task_cputime {
487 cputime_t utime;
488 cputime_t stime;
489 unsigned long long sum_exec_runtime;
490 };
491 /* Alternate field names when used to cache expirations. */
492 #define prof_exp stime
493 #define virt_exp utime
494 #define sched_exp sum_exec_runtime
495
496 #define INIT_CPUTIME \
497 (struct task_cputime) { \
498 .utime = cputime_zero, \
499 .stime = cputime_zero, \
500 .sum_exec_runtime = 0, \
501 }
502
503 /*
504 * Disable preemption until the scheduler is running.
505 * Reset by start_kernel()->sched_init()->init_idle().
506 *
507 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
508 * before the scheduler is active -- see should_resched().
509 */
510 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
511
512 /**
513 * struct thread_group_cputimer - thread group interval timer counts
514 * @cputime: thread group interval timers.
515 * @running: non-zero when there are timers running and
516 * @cputime receives updates.
517 * @lock: lock for fields in this struct.
518 *
519 * This structure contains the version of task_cputime, above, that is
520 * used for thread group CPU timer calculations.
521 */
522 struct thread_group_cputimer {
523 struct task_cputime cputime;
524 int running;
525 spinlock_t lock;
526 };
527
528 /*
529 * NOTE! "signal_struct" does not have it's own
530 * locking, because a shared signal_struct always
531 * implies a shared sighand_struct, so locking
532 * sighand_struct is always a proper superset of
533 * the locking of signal_struct.
534 */
535 struct signal_struct {
536 atomic_t count;
537 atomic_t live;
538
539 wait_queue_head_t wait_chldexit; /* for wait4() */
540
541 /* current thread group signal load-balancing target: */
542 struct task_struct *curr_target;
543
544 /* shared signal handling: */
545 struct sigpending shared_pending;
546
547 /* thread group exit support */
548 int group_exit_code;
549 /* overloaded:
550 * - notify group_exit_task when ->count is equal to notify_count
551 * - everyone except group_exit_task is stopped during signal delivery
552 * of fatal signals, group_exit_task processes the signal.
553 */
554 int notify_count;
555 struct task_struct *group_exit_task;
556
557 /* thread group stop support, overloads group_exit_code too */
558 int group_stop_count;
559 unsigned int flags; /* see SIGNAL_* flags below */
560
561 /* POSIX.1b Interval Timers */
562 struct list_head posix_timers;
563
564 /* ITIMER_REAL timer for the process */
565 struct hrtimer real_timer;
566 struct pid *leader_pid;
567 ktime_t it_real_incr;
568
569 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
570 cputime_t it_prof_expires, it_virt_expires;
571 cputime_t it_prof_incr, it_virt_incr;
572
573 /*
574 * Thread group totals for process CPU timers.
575 * See thread_group_cputimer(), et al, for details.
576 */
577 struct thread_group_cputimer cputimer;
578
579 /* Earliest-expiration cache. */
580 struct task_cputime cputime_expires;
581
582 struct list_head cpu_timers[3];
583
584 struct pid *tty_old_pgrp;
585
586 /* boolean value for session group leader */
587 int leader;
588
589 struct tty_struct *tty; /* NULL if no tty */
590
591 /*
592 * Cumulative resource counters for dead threads in the group,
593 * and for reaped dead child processes forked by this group.
594 * Live threads maintain their own counters and add to these
595 * in __exit_signal, except for the group leader.
596 */
597 cputime_t utime, stime, cutime, cstime;
598 cputime_t gtime;
599 cputime_t cgtime;
600 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
601 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
602 unsigned long inblock, oublock, cinblock, coublock;
603 struct task_io_accounting ioac;
604
605 /*
606 * Cumulative ns of schedule CPU time fo dead threads in the
607 * group, not including a zombie group leader, (This only differs
608 * from jiffies_to_ns(utime + stime) if sched_clock uses something
609 * other than jiffies.)
610 */
611 unsigned long long sum_sched_runtime;
612
613 /*
614 * We don't bother to synchronize most readers of this at all,
615 * because there is no reader checking a limit that actually needs
616 * to get both rlim_cur and rlim_max atomically, and either one
617 * alone is a single word that can safely be read normally.
618 * getrlimit/setrlimit use task_lock(current->group_leader) to
619 * protect this instead of the siglock, because they really
620 * have no need to disable irqs.
621 */
622 struct rlimit rlim[RLIM_NLIMITS];
623
624 #ifdef CONFIG_BSD_PROCESS_ACCT
625 struct pacct_struct pacct; /* per-process accounting information */
626 #endif
627 #ifdef CONFIG_TASKSTATS
628 struct taskstats *stats;
629 #endif
630 #ifdef CONFIG_AUDIT
631 unsigned audit_tty;
632 struct tty_audit_buf *tty_audit_buf;
633 #endif
634 };
635
636 /* Context switch must be unlocked if interrupts are to be enabled */
637 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
638 # define __ARCH_WANT_UNLOCKED_CTXSW
639 #endif
640
641 /*
642 * Bits in flags field of signal_struct.
643 */
644 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
645 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
646 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
647 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
648 /*
649 * Pending notifications to parent.
650 */
651 #define SIGNAL_CLD_STOPPED 0x00000010
652 #define SIGNAL_CLD_CONTINUED 0x00000020
653 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
654
655 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
656
657 /* If true, all threads except ->group_exit_task have pending SIGKILL */
658 static inline int signal_group_exit(const struct signal_struct *sig)
659 {
660 return (sig->flags & SIGNAL_GROUP_EXIT) ||
661 (sig->group_exit_task != NULL);
662 }
663
664 /*
665 * Some day this will be a full-fledged user tracking system..
666 */
667 struct user_struct {
668 atomic_t __count; /* reference count */
669 atomic_t processes; /* How many processes does this user have? */
670 atomic_t files; /* How many open files does this user have? */
671 atomic_t sigpending; /* How many pending signals does this user have? */
672 #ifdef CONFIG_INOTIFY_USER
673 atomic_t inotify_watches; /* How many inotify watches does this user have? */
674 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
675 #endif
676 #ifdef CONFIG_EPOLL
677 atomic_t epoll_watches; /* The number of file descriptors currently watched */
678 #endif
679 #ifdef CONFIG_POSIX_MQUEUE
680 /* protected by mq_lock */
681 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
682 #endif
683 unsigned long locked_shm; /* How many pages of mlocked shm ? */
684
685 #ifdef CONFIG_KEYS
686 struct key *uid_keyring; /* UID specific keyring */
687 struct key *session_keyring; /* UID's default session keyring */
688 #endif
689
690 /* Hash table maintenance information */
691 struct hlist_node uidhash_node;
692 uid_t uid;
693 struct user_namespace *user_ns;
694
695 #ifdef CONFIG_USER_SCHED
696 struct task_group *tg;
697 #ifdef CONFIG_SYSFS
698 struct kobject kobj;
699 struct delayed_work work;
700 #endif
701 #endif
702
703 #ifdef CONFIG_PERF_COUNTERS
704 atomic_long_t locked_vm;
705 #endif
706 };
707
708 extern int uids_sysfs_init(void);
709
710 extern struct user_struct *find_user(uid_t);
711
712 extern struct user_struct root_user;
713 #define INIT_USER (&root_user)
714
715
716 struct backing_dev_info;
717 struct reclaim_state;
718
719 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
720 struct sched_info {
721 /* cumulative counters */
722 unsigned long pcount; /* # of times run on this cpu */
723 unsigned long long run_delay; /* time spent waiting on a runqueue */
724
725 /* timestamps */
726 unsigned long long last_arrival,/* when we last ran on a cpu */
727 last_queued; /* when we were last queued to run */
728 #ifdef CONFIG_SCHEDSTATS
729 /* BKL stats */
730 unsigned int bkl_count;
731 #endif
732 };
733 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
734
735 #ifdef CONFIG_TASK_DELAY_ACCT
736 struct task_delay_info {
737 spinlock_t lock;
738 unsigned int flags; /* Private per-task flags */
739
740 /* For each stat XXX, add following, aligned appropriately
741 *
742 * struct timespec XXX_start, XXX_end;
743 * u64 XXX_delay;
744 * u32 XXX_count;
745 *
746 * Atomicity of updates to XXX_delay, XXX_count protected by
747 * single lock above (split into XXX_lock if contention is an issue).
748 */
749
750 /*
751 * XXX_count is incremented on every XXX operation, the delay
752 * associated with the operation is added to XXX_delay.
753 * XXX_delay contains the accumulated delay time in nanoseconds.
754 */
755 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
756 u64 blkio_delay; /* wait for sync block io completion */
757 u64 swapin_delay; /* wait for swapin block io completion */
758 u32 blkio_count; /* total count of the number of sync block */
759 /* io operations performed */
760 u32 swapin_count; /* total count of the number of swapin block */
761 /* io operations performed */
762
763 struct timespec freepages_start, freepages_end;
764 u64 freepages_delay; /* wait for memory reclaim */
765 u32 freepages_count; /* total count of memory reclaim */
766 };
767 #endif /* CONFIG_TASK_DELAY_ACCT */
768
769 static inline int sched_info_on(void)
770 {
771 #ifdef CONFIG_SCHEDSTATS
772 return 1;
773 #elif defined(CONFIG_TASK_DELAY_ACCT)
774 extern int delayacct_on;
775 return delayacct_on;
776 #else
777 return 0;
778 #endif
779 }
780
781 enum cpu_idle_type {
782 CPU_IDLE,
783 CPU_NOT_IDLE,
784 CPU_NEWLY_IDLE,
785 CPU_MAX_IDLE_TYPES
786 };
787
788 /*
789 * sched-domains (multiprocessor balancing) declarations:
790 */
791
792 /*
793 * Increase resolution of nice-level calculations:
794 */
795 #define SCHED_LOAD_SHIFT 10
796 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
797
798 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
799
800 #ifdef CONFIG_SMP
801 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
802 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
803 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
804 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
805 #define SD_WAKE_IDLE 0x0010 /* Wake to idle CPU on task wakeup */
806 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
807 #define SD_WAKE_BALANCE 0x0040 /* Perform balancing at task wakeup */
808 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
809 #define SD_POWERSAVINGS_BALANCE 0x0100 /* Balance for power savings */
810 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
811 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
812 #define SD_WAKE_IDLE_FAR 0x0800 /* Gain latency sacrificing cache hit */
813 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
814 #define SD_BALANCE_WAKE 0x2000 /* Balance on wakeup */
815
816 enum powersavings_balance_level {
817 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */
818 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package
819 * first for long running threads
820 */
821 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle
822 * cpu package for power savings
823 */
824 MAX_POWERSAVINGS_BALANCE_LEVELS
825 };
826
827 extern int sched_mc_power_savings, sched_smt_power_savings;
828
829 static inline int sd_balance_for_mc_power(void)
830 {
831 if (sched_smt_power_savings)
832 return SD_POWERSAVINGS_BALANCE;
833
834 return SD_PREFER_SIBLING;
835 }
836
837 static inline int sd_balance_for_package_power(void)
838 {
839 if (sched_mc_power_savings | sched_smt_power_savings)
840 return SD_POWERSAVINGS_BALANCE;
841
842 return SD_PREFER_SIBLING;
843 }
844
845 /*
846 * Optimise SD flags for power savings:
847 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings.
848 * Keep default SD flags if sched_{smt,mc}_power_saving=0
849 */
850
851 static inline int sd_power_saving_flags(void)
852 {
853 if (sched_mc_power_savings | sched_smt_power_savings)
854 return SD_BALANCE_NEWIDLE;
855
856 return 0;
857 }
858
859 struct sched_group {
860 struct sched_group *next; /* Must be a circular list */
861
862 /*
863 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
864 * single CPU.
865 */
866 unsigned int cpu_power;
867
868 /*
869 * The CPUs this group covers.
870 *
871 * NOTE: this field is variable length. (Allocated dynamically
872 * by attaching extra space to the end of the structure,
873 * depending on how many CPUs the kernel has booted up with)
874 *
875 * It is also be embedded into static data structures at build
876 * time. (See 'struct static_sched_group' in kernel/sched.c)
877 */
878 unsigned long cpumask[0];
879 };
880
881 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
882 {
883 return to_cpumask(sg->cpumask);
884 }
885
886 enum sched_domain_level {
887 SD_LV_NONE = 0,
888 SD_LV_SIBLING,
889 SD_LV_MC,
890 SD_LV_CPU,
891 SD_LV_NODE,
892 SD_LV_ALLNODES,
893 SD_LV_MAX
894 };
895
896 struct sched_domain_attr {
897 int relax_domain_level;
898 };
899
900 #define SD_ATTR_INIT (struct sched_domain_attr) { \
901 .relax_domain_level = -1, \
902 }
903
904 struct sched_domain {
905 /* These fields must be setup */
906 struct sched_domain *parent; /* top domain must be null terminated */
907 struct sched_domain *child; /* bottom domain must be null terminated */
908 struct sched_group *groups; /* the balancing groups of the domain */
909 unsigned long min_interval; /* Minimum balance interval ms */
910 unsigned long max_interval; /* Maximum balance interval ms */
911 unsigned int busy_factor; /* less balancing by factor if busy */
912 unsigned int imbalance_pct; /* No balance until over watermark */
913 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
914 unsigned int busy_idx;
915 unsigned int idle_idx;
916 unsigned int newidle_idx;
917 unsigned int wake_idx;
918 unsigned int forkexec_idx;
919 unsigned int smt_gain;
920 int flags; /* See SD_* */
921 enum sched_domain_level level;
922
923 /* Runtime fields. */
924 unsigned long last_balance; /* init to jiffies. units in jiffies */
925 unsigned int balance_interval; /* initialise to 1. units in ms. */
926 unsigned int nr_balance_failed; /* initialise to 0 */
927
928 u64 last_update;
929
930 #ifdef CONFIG_SCHEDSTATS
931 /* load_balance() stats */
932 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
933 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
934 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
935 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
936 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
937 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
938 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
939 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
940
941 /* Active load balancing */
942 unsigned int alb_count;
943 unsigned int alb_failed;
944 unsigned int alb_pushed;
945
946 /* SD_BALANCE_EXEC stats */
947 unsigned int sbe_count;
948 unsigned int sbe_balanced;
949 unsigned int sbe_pushed;
950
951 /* SD_BALANCE_FORK stats */
952 unsigned int sbf_count;
953 unsigned int sbf_balanced;
954 unsigned int sbf_pushed;
955
956 /* try_to_wake_up() stats */
957 unsigned int ttwu_wake_remote;
958 unsigned int ttwu_move_affine;
959 unsigned int ttwu_move_balance;
960 #endif
961 #ifdef CONFIG_SCHED_DEBUG
962 char *name;
963 #endif
964
965 /*
966 * Span of all CPUs in this domain.
967 *
968 * NOTE: this field is variable length. (Allocated dynamically
969 * by attaching extra space to the end of the structure,
970 * depending on how many CPUs the kernel has booted up with)
971 *
972 * It is also be embedded into static data structures at build
973 * time. (See 'struct static_sched_domain' in kernel/sched.c)
974 */
975 unsigned long span[0];
976 };
977
978 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
979 {
980 return to_cpumask(sd->span);
981 }
982
983 extern void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
984 struct sched_domain_attr *dattr_new);
985
986 /* Test a flag in parent sched domain */
987 static inline int test_sd_parent(struct sched_domain *sd, int flag)
988 {
989 if (sd->parent && (sd->parent->flags & flag))
990 return 1;
991
992 return 0;
993 }
994
995 #else /* CONFIG_SMP */
996
997 struct sched_domain_attr;
998
999 static inline void
1000 partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1001 struct sched_domain_attr *dattr_new)
1002 {
1003 }
1004 #endif /* !CONFIG_SMP */
1005
1006 struct io_context; /* See blkdev.h */
1007
1008
1009 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1010 extern void prefetch_stack(struct task_struct *t);
1011 #else
1012 static inline void prefetch_stack(struct task_struct *t) { }
1013 #endif
1014
1015 struct audit_context; /* See audit.c */
1016 struct mempolicy;
1017 struct pipe_inode_info;
1018 struct uts_namespace;
1019
1020 struct rq;
1021 struct sched_domain;
1022
1023 struct sched_class {
1024 const struct sched_class *next;
1025
1026 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
1027 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
1028 void (*yield_task) (struct rq *rq);
1029
1030 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int sync);
1031
1032 struct task_struct * (*pick_next_task) (struct rq *rq);
1033 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1034
1035 #ifdef CONFIG_SMP
1036 int (*select_task_rq)(struct task_struct *p, int flag, int sync);
1037
1038 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
1039 struct rq *busiest, unsigned long max_load_move,
1040 struct sched_domain *sd, enum cpu_idle_type idle,
1041 int *all_pinned, int *this_best_prio);
1042
1043 int (*move_one_task) (struct rq *this_rq, int this_cpu,
1044 struct rq *busiest, struct sched_domain *sd,
1045 enum cpu_idle_type idle);
1046 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1047 void (*post_schedule) (struct rq *this_rq);
1048 void (*task_wake_up) (struct rq *this_rq, struct task_struct *task);
1049
1050 void (*set_cpus_allowed)(struct task_struct *p,
1051 const struct cpumask *newmask);
1052
1053 void (*rq_online)(struct rq *rq);
1054 void (*rq_offline)(struct rq *rq);
1055 #endif
1056
1057 void (*set_curr_task) (struct rq *rq);
1058 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1059 void (*task_new) (struct rq *rq, struct task_struct *p);
1060
1061 void (*switched_from) (struct rq *this_rq, struct task_struct *task,
1062 int running);
1063 void (*switched_to) (struct rq *this_rq, struct task_struct *task,
1064 int running);
1065 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1066 int oldprio, int running);
1067
1068 #ifdef CONFIG_FAIR_GROUP_SCHED
1069 void (*moved_group) (struct task_struct *p);
1070 #endif
1071 };
1072
1073 struct load_weight {
1074 unsigned long weight, inv_weight;
1075 };
1076
1077 /*
1078 * CFS stats for a schedulable entity (task, task-group etc)
1079 *
1080 * Current field usage histogram:
1081 *
1082 * 4 se->block_start
1083 * 4 se->run_node
1084 * 4 se->sleep_start
1085 * 6 se->load.weight
1086 */
1087 struct sched_entity {
1088 struct load_weight load; /* for load-balancing */
1089 struct rb_node run_node;
1090 struct list_head group_node;
1091 unsigned int on_rq;
1092
1093 u64 exec_start;
1094 u64 sum_exec_runtime;
1095 u64 vruntime;
1096 u64 prev_sum_exec_runtime;
1097
1098 u64 last_wakeup;
1099 u64 avg_overlap;
1100
1101 u64 nr_migrations;
1102
1103 u64 start_runtime;
1104 u64 avg_wakeup;
1105
1106 #ifdef CONFIG_SCHEDSTATS
1107 u64 wait_start;
1108 u64 wait_max;
1109 u64 wait_count;
1110 u64 wait_sum;
1111 u64 iowait_count;
1112 u64 iowait_sum;
1113
1114 u64 sleep_start;
1115 u64 sleep_max;
1116 s64 sum_sleep_runtime;
1117
1118 u64 block_start;
1119 u64 block_max;
1120 u64 exec_max;
1121 u64 slice_max;
1122
1123 u64 nr_migrations_cold;
1124 u64 nr_failed_migrations_affine;
1125 u64 nr_failed_migrations_running;
1126 u64 nr_failed_migrations_hot;
1127 u64 nr_forced_migrations;
1128 u64 nr_forced2_migrations;
1129
1130 u64 nr_wakeups;
1131 u64 nr_wakeups_sync;
1132 u64 nr_wakeups_migrate;
1133 u64 nr_wakeups_local;
1134 u64 nr_wakeups_remote;
1135 u64 nr_wakeups_affine;
1136 u64 nr_wakeups_affine_attempts;
1137 u64 nr_wakeups_passive;
1138 u64 nr_wakeups_idle;
1139 #endif
1140
1141 #ifdef CONFIG_FAIR_GROUP_SCHED
1142 struct sched_entity *parent;
1143 /* rq on which this entity is (to be) queued: */
1144 struct cfs_rq *cfs_rq;
1145 /* rq "owned" by this entity/group: */
1146 struct cfs_rq *my_q;
1147 #endif
1148 };
1149
1150 struct sched_rt_entity {
1151 struct list_head run_list;
1152 unsigned long timeout;
1153 unsigned int time_slice;
1154 int nr_cpus_allowed;
1155
1156 struct sched_rt_entity *back;
1157 #ifdef CONFIG_RT_GROUP_SCHED
1158 struct sched_rt_entity *parent;
1159 /* rq on which this entity is (to be) queued: */
1160 struct rt_rq *rt_rq;
1161 /* rq "owned" by this entity/group: */
1162 struct rt_rq *my_q;
1163 #endif
1164 };
1165
1166 struct rcu_node;
1167
1168 struct task_struct {
1169 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1170 void *stack;
1171 atomic_t usage;
1172 unsigned int flags; /* per process flags, defined below */
1173 unsigned int ptrace;
1174
1175 int lock_depth; /* BKL lock depth */
1176
1177 #ifdef CONFIG_SMP
1178 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1179 int oncpu;
1180 #endif
1181 #endif
1182
1183 int prio, static_prio, normal_prio;
1184 unsigned int rt_priority;
1185 const struct sched_class *sched_class;
1186 struct sched_entity se;
1187 struct sched_rt_entity rt;
1188
1189 #ifdef CONFIG_PREEMPT_NOTIFIERS
1190 /* list of struct preempt_notifier: */
1191 struct hlist_head preempt_notifiers;
1192 #endif
1193
1194 /*
1195 * fpu_counter contains the number of consecutive context switches
1196 * that the FPU is used. If this is over a threshold, the lazy fpu
1197 * saving becomes unlazy to save the trap. This is an unsigned char
1198 * so that after 256 times the counter wraps and the behavior turns
1199 * lazy again; this to deal with bursty apps that only use FPU for
1200 * a short time
1201 */
1202 unsigned char fpu_counter;
1203 s8 oomkilladj; /* OOM kill score adjustment (bit shift). */
1204 #ifdef CONFIG_BLK_DEV_IO_TRACE
1205 unsigned int btrace_seq;
1206 #endif
1207
1208 unsigned int policy;
1209 cpumask_t cpus_allowed;
1210
1211 #ifdef CONFIG_TREE_PREEMPT_RCU
1212 int rcu_read_lock_nesting;
1213 char rcu_read_unlock_special;
1214 struct rcu_node *rcu_blocked_node;
1215 struct list_head rcu_node_entry;
1216 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1217
1218 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1219 struct sched_info sched_info;
1220 #endif
1221
1222 struct list_head tasks;
1223 struct plist_node pushable_tasks;
1224
1225 struct mm_struct *mm, *active_mm;
1226
1227 /* task state */
1228 struct linux_binfmt *binfmt;
1229 int exit_state;
1230 int exit_code, exit_signal;
1231 int pdeath_signal; /* The signal sent when the parent dies */
1232 /* ??? */
1233 unsigned int personality;
1234 unsigned did_exec:1;
1235 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1236 * execve */
1237 unsigned in_iowait:1;
1238
1239
1240 /* Revert to default priority/policy when forking */
1241 unsigned sched_reset_on_fork:1;
1242
1243 pid_t pid;
1244 pid_t tgid;
1245
1246 #ifdef CONFIG_CC_STACKPROTECTOR
1247 /* Canary value for the -fstack-protector gcc feature */
1248 unsigned long stack_canary;
1249 #endif
1250
1251 /*
1252 * pointers to (original) parent process, youngest child, younger sibling,
1253 * older sibling, respectively. (p->father can be replaced with
1254 * p->real_parent->pid)
1255 */
1256 struct task_struct *real_parent; /* real parent process */
1257 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1258 /*
1259 * children/sibling forms the list of my natural children
1260 */
1261 struct list_head children; /* list of my children */
1262 struct list_head sibling; /* linkage in my parent's children list */
1263 struct task_struct *group_leader; /* threadgroup leader */
1264
1265 /*
1266 * ptraced is the list of tasks this task is using ptrace on.
1267 * This includes both natural children and PTRACE_ATTACH targets.
1268 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1269 */
1270 struct list_head ptraced;
1271 struct list_head ptrace_entry;
1272
1273 /*
1274 * This is the tracer handle for the ptrace BTS extension.
1275 * This field actually belongs to the ptracer task.
1276 */
1277 struct bts_context *bts;
1278
1279 /* PID/PID hash table linkage. */
1280 struct pid_link pids[PIDTYPE_MAX];
1281 struct list_head thread_group;
1282
1283 struct completion *vfork_done; /* for vfork() */
1284 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1285 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1286
1287 cputime_t utime, stime, utimescaled, stimescaled;
1288 cputime_t gtime;
1289 cputime_t prev_utime, prev_stime;
1290 unsigned long nvcsw, nivcsw; /* context switch counts */
1291 struct timespec start_time; /* monotonic time */
1292 struct timespec real_start_time; /* boot based time */
1293 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1294 unsigned long min_flt, maj_flt;
1295
1296 struct task_cputime cputime_expires;
1297 struct list_head cpu_timers[3];
1298
1299 /* process credentials */
1300 const struct cred *real_cred; /* objective and real subjective task
1301 * credentials (COW) */
1302 const struct cred *cred; /* effective (overridable) subjective task
1303 * credentials (COW) */
1304 struct mutex cred_guard_mutex; /* guard against foreign influences on
1305 * credential calculations
1306 * (notably. ptrace) */
1307 struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */
1308
1309 char comm[TASK_COMM_LEN]; /* executable name excluding path
1310 - access with [gs]et_task_comm (which lock
1311 it with task_lock())
1312 - initialized normally by flush_old_exec */
1313 /* file system info */
1314 int link_count, total_link_count;
1315 #ifdef CONFIG_SYSVIPC
1316 /* ipc stuff */
1317 struct sysv_sem sysvsem;
1318 #endif
1319 #ifdef CONFIG_DETECT_HUNG_TASK
1320 /* hung task detection */
1321 unsigned long last_switch_count;
1322 #endif
1323 /* CPU-specific state of this task */
1324 struct thread_struct thread;
1325 /* filesystem information */
1326 struct fs_struct *fs;
1327 /* open file information */
1328 struct files_struct *files;
1329 /* namespaces */
1330 struct nsproxy *nsproxy;
1331 /* signal handlers */
1332 struct signal_struct *signal;
1333 struct sighand_struct *sighand;
1334
1335 sigset_t blocked, real_blocked;
1336 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1337 struct sigpending pending;
1338
1339 unsigned long sas_ss_sp;
1340 size_t sas_ss_size;
1341 int (*notifier)(void *priv);
1342 void *notifier_data;
1343 sigset_t *notifier_mask;
1344 struct audit_context *audit_context;
1345 #ifdef CONFIG_AUDITSYSCALL
1346 uid_t loginuid;
1347 unsigned int sessionid;
1348 #endif
1349 seccomp_t seccomp;
1350
1351 /* Thread group tracking */
1352 u32 parent_exec_id;
1353 u32 self_exec_id;
1354 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1355 * mempolicy */
1356 spinlock_t alloc_lock;
1357
1358 #ifdef CONFIG_GENERIC_HARDIRQS
1359 /* IRQ handler threads */
1360 struct irqaction *irqaction;
1361 #endif
1362
1363 /* Protection of the PI data structures: */
1364 spinlock_t pi_lock;
1365
1366 #ifdef CONFIG_RT_MUTEXES
1367 /* PI waiters blocked on a rt_mutex held by this task */
1368 struct plist_head pi_waiters;
1369 /* Deadlock detection and priority inheritance handling */
1370 struct rt_mutex_waiter *pi_blocked_on;
1371 #endif
1372
1373 #ifdef CONFIG_DEBUG_MUTEXES
1374 /* mutex deadlock detection */
1375 struct mutex_waiter *blocked_on;
1376 #endif
1377 #ifdef CONFIG_TRACE_IRQFLAGS
1378 unsigned int irq_events;
1379 int hardirqs_enabled;
1380 unsigned long hardirq_enable_ip;
1381 unsigned int hardirq_enable_event;
1382 unsigned long hardirq_disable_ip;
1383 unsigned int hardirq_disable_event;
1384 int softirqs_enabled;
1385 unsigned long softirq_disable_ip;
1386 unsigned int softirq_disable_event;
1387 unsigned long softirq_enable_ip;
1388 unsigned int softirq_enable_event;
1389 int hardirq_context;
1390 int softirq_context;
1391 #endif
1392 #ifdef CONFIG_LOCKDEP
1393 # define MAX_LOCK_DEPTH 48UL
1394 u64 curr_chain_key;
1395 int lockdep_depth;
1396 unsigned int lockdep_recursion;
1397 struct held_lock held_locks[MAX_LOCK_DEPTH];
1398 gfp_t lockdep_reclaim_gfp;
1399 #endif
1400
1401 /* journalling filesystem info */
1402 void *journal_info;
1403
1404 /* stacked block device info */
1405 struct bio *bio_list, **bio_tail;
1406
1407 /* VM state */
1408 struct reclaim_state *reclaim_state;
1409
1410 struct backing_dev_info *backing_dev_info;
1411
1412 struct io_context *io_context;
1413
1414 unsigned long ptrace_message;
1415 siginfo_t *last_siginfo; /* For ptrace use. */
1416 struct task_io_accounting ioac;
1417 #if defined(CONFIG_TASK_XACCT)
1418 u64 acct_rss_mem1; /* accumulated rss usage */
1419 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1420 cputime_t acct_timexpd; /* stime + utime since last update */
1421 #endif
1422 #ifdef CONFIG_CPUSETS
1423 nodemask_t mems_allowed; /* Protected by alloc_lock */
1424 int cpuset_mem_spread_rotor;
1425 #endif
1426 #ifdef CONFIG_CGROUPS
1427 /* Control Group info protected by css_set_lock */
1428 struct css_set *cgroups;
1429 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1430 struct list_head cg_list;
1431 #endif
1432 #ifdef CONFIG_FUTEX
1433 struct robust_list_head __user *robust_list;
1434 #ifdef CONFIG_COMPAT
1435 struct compat_robust_list_head __user *compat_robust_list;
1436 #endif
1437 struct list_head pi_state_list;
1438 struct futex_pi_state *pi_state_cache;
1439 #endif
1440 #ifdef CONFIG_PERF_COUNTERS
1441 struct perf_counter_context *perf_counter_ctxp;
1442 struct mutex perf_counter_mutex;
1443 struct list_head perf_counter_list;
1444 #endif
1445 #ifdef CONFIG_NUMA
1446 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1447 short il_next;
1448 #endif
1449 atomic_t fs_excl; /* holding fs exclusive resources */
1450 struct rcu_head rcu;
1451
1452 /*
1453 * cache last used pipe for splice
1454 */
1455 struct pipe_inode_info *splice_pipe;
1456 #ifdef CONFIG_TASK_DELAY_ACCT
1457 struct task_delay_info *delays;
1458 #endif
1459 #ifdef CONFIG_FAULT_INJECTION
1460 int make_it_fail;
1461 #endif
1462 struct prop_local_single dirties;
1463 #ifdef CONFIG_LATENCYTOP
1464 int latency_record_count;
1465 struct latency_record latency_record[LT_SAVECOUNT];
1466 #endif
1467 /*
1468 * time slack values; these are used to round up poll() and
1469 * select() etc timeout values. These are in nanoseconds.
1470 */
1471 unsigned long timer_slack_ns;
1472 unsigned long default_timer_slack_ns;
1473
1474 struct list_head *scm_work_list;
1475 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1476 /* Index of current stored adress in ret_stack */
1477 int curr_ret_stack;
1478 /* Stack of return addresses for return function tracing */
1479 struct ftrace_ret_stack *ret_stack;
1480 /* time stamp for last schedule */
1481 unsigned long long ftrace_timestamp;
1482 /*
1483 * Number of functions that haven't been traced
1484 * because of depth overrun.
1485 */
1486 atomic_t trace_overrun;
1487 /* Pause for the tracing */
1488 atomic_t tracing_graph_pause;
1489 #endif
1490 #ifdef CONFIG_TRACING
1491 /* state flags for use by tracers */
1492 unsigned long trace;
1493 /* bitmask of trace recursion */
1494 unsigned long trace_recursion;
1495 #endif /* CONFIG_TRACING */
1496 };
1497
1498 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1499 #define tsk_cpumask(tsk) (&(tsk)->cpus_allowed)
1500
1501 /*
1502 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1503 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1504 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1505 * values are inverted: lower p->prio value means higher priority.
1506 *
1507 * The MAX_USER_RT_PRIO value allows the actual maximum
1508 * RT priority to be separate from the value exported to
1509 * user-space. This allows kernel threads to set their
1510 * priority to a value higher than any user task. Note:
1511 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1512 */
1513
1514 #define MAX_USER_RT_PRIO 100
1515 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1516
1517 #define MAX_PRIO (MAX_RT_PRIO + 40)
1518 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1519
1520 static inline int rt_prio(int prio)
1521 {
1522 if (unlikely(prio < MAX_RT_PRIO))
1523 return 1;
1524 return 0;
1525 }
1526
1527 static inline int rt_task(struct task_struct *p)
1528 {
1529 return rt_prio(p->prio);
1530 }
1531
1532 static inline struct pid *task_pid(struct task_struct *task)
1533 {
1534 return task->pids[PIDTYPE_PID].pid;
1535 }
1536
1537 static inline struct pid *task_tgid(struct task_struct *task)
1538 {
1539 return task->group_leader->pids[PIDTYPE_PID].pid;
1540 }
1541
1542 /*
1543 * Without tasklist or rcu lock it is not safe to dereference
1544 * the result of task_pgrp/task_session even if task == current,
1545 * we can race with another thread doing sys_setsid/sys_setpgid.
1546 */
1547 static inline struct pid *task_pgrp(struct task_struct *task)
1548 {
1549 return task->group_leader->pids[PIDTYPE_PGID].pid;
1550 }
1551
1552 static inline struct pid *task_session(struct task_struct *task)
1553 {
1554 return task->group_leader->pids[PIDTYPE_SID].pid;
1555 }
1556
1557 struct pid_namespace;
1558
1559 /*
1560 * the helpers to get the task's different pids as they are seen
1561 * from various namespaces
1562 *
1563 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1564 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1565 * current.
1566 * task_xid_nr_ns() : id seen from the ns specified;
1567 *
1568 * set_task_vxid() : assigns a virtual id to a task;
1569 *
1570 * see also pid_nr() etc in include/linux/pid.h
1571 */
1572 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1573 struct pid_namespace *ns);
1574
1575 static inline pid_t task_pid_nr(struct task_struct *tsk)
1576 {
1577 return tsk->pid;
1578 }
1579
1580 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1581 struct pid_namespace *ns)
1582 {
1583 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1584 }
1585
1586 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1587 {
1588 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1589 }
1590
1591
1592 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1593 {
1594 return tsk->tgid;
1595 }
1596
1597 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1598
1599 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1600 {
1601 return pid_vnr(task_tgid(tsk));
1602 }
1603
1604
1605 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1606 struct pid_namespace *ns)
1607 {
1608 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1609 }
1610
1611 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1612 {
1613 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1614 }
1615
1616
1617 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1618 struct pid_namespace *ns)
1619 {
1620 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1621 }
1622
1623 static inline pid_t task_session_vnr(struct task_struct *tsk)
1624 {
1625 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1626 }
1627
1628 /* obsolete, do not use */
1629 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1630 {
1631 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1632 }
1633
1634 /**
1635 * pid_alive - check that a task structure is not stale
1636 * @p: Task structure to be checked.
1637 *
1638 * Test if a process is not yet dead (at most zombie state)
1639 * If pid_alive fails, then pointers within the task structure
1640 * can be stale and must not be dereferenced.
1641 */
1642 static inline int pid_alive(struct task_struct *p)
1643 {
1644 return p->pids[PIDTYPE_PID].pid != NULL;
1645 }
1646
1647 /**
1648 * is_global_init - check if a task structure is init
1649 * @tsk: Task structure to be checked.
1650 *
1651 * Check if a task structure is the first user space task the kernel created.
1652 */
1653 static inline int is_global_init(struct task_struct *tsk)
1654 {
1655 return tsk->pid == 1;
1656 }
1657
1658 /*
1659 * is_container_init:
1660 * check whether in the task is init in its own pid namespace.
1661 */
1662 extern int is_container_init(struct task_struct *tsk);
1663
1664 extern struct pid *cad_pid;
1665
1666 extern void free_task(struct task_struct *tsk);
1667 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1668
1669 extern void __put_task_struct(struct task_struct *t);
1670
1671 static inline void put_task_struct(struct task_struct *t)
1672 {
1673 if (atomic_dec_and_test(&t->usage))
1674 __put_task_struct(t);
1675 }
1676
1677 extern cputime_t task_utime(struct task_struct *p);
1678 extern cputime_t task_stime(struct task_struct *p);
1679 extern cputime_t task_gtime(struct task_struct *p);
1680
1681 /*
1682 * Per process flags
1683 */
1684 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1685 /* Not implemented yet, only for 486*/
1686 #define PF_STARTING 0x00000002 /* being created */
1687 #define PF_EXITING 0x00000004 /* getting shut down */
1688 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1689 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1690 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1691 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1692 #define PF_DUMPCORE 0x00000200 /* dumped core */
1693 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1694 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1695 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1696 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1697 #define PF_FREEZING 0x00004000 /* freeze in progress. do not account to load */
1698 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1699 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1700 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1701 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1702 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */
1703 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1704 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1705 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1706 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1707 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1708 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1709 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1710 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1711 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1712 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1713 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */
1714
1715 /*
1716 * Only the _current_ task can read/write to tsk->flags, but other
1717 * tasks can access tsk->flags in readonly mode for example
1718 * with tsk_used_math (like during threaded core dumping).
1719 * There is however an exception to this rule during ptrace
1720 * or during fork: the ptracer task is allowed to write to the
1721 * child->flags of its traced child (same goes for fork, the parent
1722 * can write to the child->flags), because we're guaranteed the
1723 * child is not running and in turn not changing child->flags
1724 * at the same time the parent does it.
1725 */
1726 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1727 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1728 #define clear_used_math() clear_stopped_child_used_math(current)
1729 #define set_used_math() set_stopped_child_used_math(current)
1730 #define conditional_stopped_child_used_math(condition, child) \
1731 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1732 #define conditional_used_math(condition) \
1733 conditional_stopped_child_used_math(condition, current)
1734 #define copy_to_stopped_child_used_math(child) \
1735 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1736 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1737 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1738 #define used_math() tsk_used_math(current)
1739
1740 #ifdef CONFIG_TREE_PREEMPT_RCU
1741
1742 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1743 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1744 #define RCU_READ_UNLOCK_GOT_QS (1 << 2) /* CPU has responded to RCU core. */
1745
1746 static inline void rcu_copy_process(struct task_struct *p)
1747 {
1748 p->rcu_read_lock_nesting = 0;
1749 p->rcu_read_unlock_special = 0;
1750 p->rcu_blocked_node = NULL;
1751 INIT_LIST_HEAD(&p->rcu_node_entry);
1752 }
1753
1754 #else
1755
1756 static inline void rcu_copy_process(struct task_struct *p)
1757 {
1758 }
1759
1760 #endif
1761
1762 #ifdef CONFIG_SMP
1763 extern int set_cpus_allowed_ptr(struct task_struct *p,
1764 const struct cpumask *new_mask);
1765 #else
1766 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1767 const struct cpumask *new_mask)
1768 {
1769 if (!cpumask_test_cpu(0, new_mask))
1770 return -EINVAL;
1771 return 0;
1772 }
1773 #endif
1774 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1775 {
1776 return set_cpus_allowed_ptr(p, &new_mask);
1777 }
1778
1779 /*
1780 * Architectures can set this to 1 if they have specified
1781 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1782 * but then during bootup it turns out that sched_clock()
1783 * is reliable after all:
1784 */
1785 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1786 extern int sched_clock_stable;
1787 #endif
1788
1789 extern unsigned long long sched_clock(void);
1790
1791 extern void sched_clock_init(void);
1792 extern u64 sched_clock_cpu(int cpu);
1793
1794 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1795 static inline void sched_clock_tick(void)
1796 {
1797 }
1798
1799 static inline void sched_clock_idle_sleep_event(void)
1800 {
1801 }
1802
1803 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1804 {
1805 }
1806 #else
1807 extern void sched_clock_tick(void);
1808 extern void sched_clock_idle_sleep_event(void);
1809 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1810 #endif
1811
1812 /*
1813 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1814 * clock constructed from sched_clock():
1815 */
1816 extern unsigned long long cpu_clock(int cpu);
1817
1818 extern unsigned long long
1819 task_sched_runtime(struct task_struct *task);
1820 extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1821
1822 /* sched_exec is called by processes performing an exec */
1823 #ifdef CONFIG_SMP
1824 extern void sched_exec(void);
1825 #else
1826 #define sched_exec() {}
1827 #endif
1828
1829 extern void sched_clock_idle_sleep_event(void);
1830 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1831
1832 #ifdef CONFIG_HOTPLUG_CPU
1833 extern void idle_task_exit(void);
1834 #else
1835 static inline void idle_task_exit(void) {}
1836 #endif
1837
1838 extern void sched_idle_next(void);
1839
1840 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1841 extern void wake_up_idle_cpu(int cpu);
1842 #else
1843 static inline void wake_up_idle_cpu(int cpu) { }
1844 #endif
1845
1846 extern unsigned int sysctl_sched_latency;
1847 extern unsigned int sysctl_sched_min_granularity;
1848 extern unsigned int sysctl_sched_wakeup_granularity;
1849 extern unsigned int sysctl_sched_shares_ratelimit;
1850 extern unsigned int sysctl_sched_shares_thresh;
1851 extern unsigned int sysctl_sched_child_runs_first;
1852 #ifdef CONFIG_SCHED_DEBUG
1853 extern unsigned int sysctl_sched_features;
1854 extern unsigned int sysctl_sched_migration_cost;
1855 extern unsigned int sysctl_sched_nr_migrate;
1856 extern unsigned int sysctl_sched_time_avg;
1857 extern unsigned int sysctl_timer_migration;
1858
1859 int sched_nr_latency_handler(struct ctl_table *table, int write,
1860 struct file *file, void __user *buffer, size_t *length,
1861 loff_t *ppos);
1862 #endif
1863 #ifdef CONFIG_SCHED_DEBUG
1864 static inline unsigned int get_sysctl_timer_migration(void)
1865 {
1866 return sysctl_timer_migration;
1867 }
1868 #else
1869 static inline unsigned int get_sysctl_timer_migration(void)
1870 {
1871 return 1;
1872 }
1873 #endif
1874 extern unsigned int sysctl_sched_rt_period;
1875 extern int sysctl_sched_rt_runtime;
1876
1877 int sched_rt_handler(struct ctl_table *table, int write,
1878 struct file *filp, void __user *buffer, size_t *lenp,
1879 loff_t *ppos);
1880
1881 extern unsigned int sysctl_sched_compat_yield;
1882
1883 #ifdef CONFIG_RT_MUTEXES
1884 extern int rt_mutex_getprio(struct task_struct *p);
1885 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1886 extern void rt_mutex_adjust_pi(struct task_struct *p);
1887 #else
1888 static inline int rt_mutex_getprio(struct task_struct *p)
1889 {
1890 return p->normal_prio;
1891 }
1892 # define rt_mutex_adjust_pi(p) do { } while (0)
1893 #endif
1894
1895 extern void set_user_nice(struct task_struct *p, long nice);
1896 extern int task_prio(const struct task_struct *p);
1897 extern int task_nice(const struct task_struct *p);
1898 extern int can_nice(const struct task_struct *p, const int nice);
1899 extern int task_curr(const struct task_struct *p);
1900 extern int idle_cpu(int cpu);
1901 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1902 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1903 struct sched_param *);
1904 extern struct task_struct *idle_task(int cpu);
1905 extern struct task_struct *curr_task(int cpu);
1906 extern void set_curr_task(int cpu, struct task_struct *p);
1907
1908 void yield(void);
1909
1910 /*
1911 * The default (Linux) execution domain.
1912 */
1913 extern struct exec_domain default_exec_domain;
1914
1915 union thread_union {
1916 struct thread_info thread_info;
1917 unsigned long stack[THREAD_SIZE/sizeof(long)];
1918 };
1919
1920 #ifndef __HAVE_ARCH_KSTACK_END
1921 static inline int kstack_end(void *addr)
1922 {
1923 /* Reliable end of stack detection:
1924 * Some APM bios versions misalign the stack
1925 */
1926 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1927 }
1928 #endif
1929
1930 extern union thread_union init_thread_union;
1931 extern struct task_struct init_task;
1932
1933 extern struct mm_struct init_mm;
1934
1935 extern struct pid_namespace init_pid_ns;
1936
1937 /*
1938 * find a task by one of its numerical ids
1939 *
1940 * find_task_by_pid_ns():
1941 * finds a task by its pid in the specified namespace
1942 * find_task_by_vpid():
1943 * finds a task by its virtual pid
1944 *
1945 * see also find_vpid() etc in include/linux/pid.h
1946 */
1947
1948 extern struct task_struct *find_task_by_vpid(pid_t nr);
1949 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1950 struct pid_namespace *ns);
1951
1952 extern void __set_special_pids(struct pid *pid);
1953
1954 /* per-UID process charging. */
1955 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1956 static inline struct user_struct *get_uid(struct user_struct *u)
1957 {
1958 atomic_inc(&u->__count);
1959 return u;
1960 }
1961 extern void free_uid(struct user_struct *);
1962 extern void release_uids(struct user_namespace *ns);
1963
1964 #include <asm/current.h>
1965
1966 extern void do_timer(unsigned long ticks);
1967
1968 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1969 extern int wake_up_process(struct task_struct *tsk);
1970 extern void wake_up_new_task(struct task_struct *tsk,
1971 unsigned long clone_flags);
1972 #ifdef CONFIG_SMP
1973 extern void kick_process(struct task_struct *tsk);
1974 #else
1975 static inline void kick_process(struct task_struct *tsk) { }
1976 #endif
1977 extern void sched_fork(struct task_struct *p, int clone_flags);
1978 extern void sched_dead(struct task_struct *p);
1979
1980 extern void proc_caches_init(void);
1981 extern void flush_signals(struct task_struct *);
1982 extern void __flush_signals(struct task_struct *);
1983 extern void ignore_signals(struct task_struct *);
1984 extern void flush_signal_handlers(struct task_struct *, int force_default);
1985 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1986
1987 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1988 {
1989 unsigned long flags;
1990 int ret;
1991
1992 spin_lock_irqsave(&tsk->sighand->siglock, flags);
1993 ret = dequeue_signal(tsk, mask, info);
1994 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1995
1996 return ret;
1997 }
1998
1999 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2000 sigset_t *mask);
2001 extern void unblock_all_signals(void);
2002 extern void release_task(struct task_struct * p);
2003 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2004 extern int force_sigsegv(int, struct task_struct *);
2005 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2006 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2007 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2008 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
2009 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2010 extern int kill_pid(struct pid *pid, int sig, int priv);
2011 extern int kill_proc_info(int, struct siginfo *, pid_t);
2012 extern int do_notify_parent(struct task_struct *, int);
2013 extern void force_sig(int, struct task_struct *);
2014 extern void force_sig_specific(int, struct task_struct *);
2015 extern int send_sig(int, struct task_struct *, int);
2016 extern void zap_other_threads(struct task_struct *p);
2017 extern struct sigqueue *sigqueue_alloc(void);
2018 extern void sigqueue_free(struct sigqueue *);
2019 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2020 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2021 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2022
2023 static inline int kill_cad_pid(int sig, int priv)
2024 {
2025 return kill_pid(cad_pid, sig, priv);
2026 }
2027
2028 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2029 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2030 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2031 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2032
2033 static inline int is_si_special(const struct siginfo *info)
2034 {
2035 return info <= SEND_SIG_FORCED;
2036 }
2037
2038 /* True if we are on the alternate signal stack. */
2039
2040 static inline int on_sig_stack(unsigned long sp)
2041 {
2042 return (sp - current->sas_ss_sp < current->sas_ss_size);
2043 }
2044
2045 static inline int sas_ss_flags(unsigned long sp)
2046 {
2047 return (current->sas_ss_size == 0 ? SS_DISABLE
2048 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2049 }
2050
2051 /*
2052 * Routines for handling mm_structs
2053 */
2054 extern struct mm_struct * mm_alloc(void);
2055
2056 /* mmdrop drops the mm and the page tables */
2057 extern void __mmdrop(struct mm_struct *);
2058 static inline void mmdrop(struct mm_struct * mm)
2059 {
2060 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2061 __mmdrop(mm);
2062 }
2063
2064 /* mmput gets rid of the mappings and all user-space */
2065 extern void mmput(struct mm_struct *);
2066 /* Grab a reference to a task's mm, if it is not already going away */
2067 extern struct mm_struct *get_task_mm(struct task_struct *task);
2068 /* Remove the current tasks stale references to the old mm_struct */
2069 extern void mm_release(struct task_struct *, struct mm_struct *);
2070 /* Allocate a new mm structure and copy contents from tsk->mm */
2071 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2072
2073 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2074 struct task_struct *, struct pt_regs *);
2075 extern void flush_thread(void);
2076 extern void exit_thread(void);
2077
2078 extern void exit_files(struct task_struct *);
2079 extern void __cleanup_signal(struct signal_struct *);
2080 extern void __cleanup_sighand(struct sighand_struct *);
2081
2082 extern void exit_itimers(struct signal_struct *);
2083 extern void flush_itimer_signals(void);
2084
2085 extern NORET_TYPE void do_group_exit(int);
2086
2087 extern void daemonize(const char *, ...);
2088 extern int allow_signal(int);
2089 extern int disallow_signal(int);
2090
2091 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
2092 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2093 struct task_struct *fork_idle(int);
2094
2095 extern void set_task_comm(struct task_struct *tsk, char *from);
2096 extern char *get_task_comm(char *to, struct task_struct *tsk);
2097
2098 #ifdef CONFIG_SMP
2099 extern void wait_task_context_switch(struct task_struct *p);
2100 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2101 #else
2102 static inline void wait_task_context_switch(struct task_struct *p) {}
2103 static inline unsigned long wait_task_inactive(struct task_struct *p,
2104 long match_state)
2105 {
2106 return 1;
2107 }
2108 #endif
2109
2110 #define next_task(p) \
2111 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2112
2113 #define for_each_process(p) \
2114 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2115
2116 extern bool current_is_single_threaded(void);
2117
2118 /*
2119 * Careful: do_each_thread/while_each_thread is a double loop so
2120 * 'break' will not work as expected - use goto instead.
2121 */
2122 #define do_each_thread(g, t) \
2123 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2124
2125 #define while_each_thread(g, t) \
2126 while ((t = next_thread(t)) != g)
2127
2128 /* de_thread depends on thread_group_leader not being a pid based check */
2129 #define thread_group_leader(p) (p == p->group_leader)
2130
2131 /* Do to the insanities of de_thread it is possible for a process
2132 * to have the pid of the thread group leader without actually being
2133 * the thread group leader. For iteration through the pids in proc
2134 * all we care about is that we have a task with the appropriate
2135 * pid, we don't actually care if we have the right task.
2136 */
2137 static inline int has_group_leader_pid(struct task_struct *p)
2138 {
2139 return p->pid == p->tgid;
2140 }
2141
2142 static inline
2143 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2144 {
2145 return p1->tgid == p2->tgid;
2146 }
2147
2148 static inline struct task_struct *next_thread(const struct task_struct *p)
2149 {
2150 return list_entry_rcu(p->thread_group.next,
2151 struct task_struct, thread_group);
2152 }
2153
2154 static inline int thread_group_empty(struct task_struct *p)
2155 {
2156 return list_empty(&p->thread_group);
2157 }
2158
2159 #define delay_group_leader(p) \
2160 (thread_group_leader(p) && !thread_group_empty(p))
2161
2162 static inline int task_detached(struct task_struct *p)
2163 {
2164 return p->exit_signal == -1;
2165 }
2166
2167 /*
2168 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2169 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2170 * pins the final release of task.io_context. Also protects ->cpuset and
2171 * ->cgroup.subsys[].
2172 *
2173 * Nests both inside and outside of read_lock(&tasklist_lock).
2174 * It must not be nested with write_lock_irq(&tasklist_lock),
2175 * neither inside nor outside.
2176 */
2177 static inline void task_lock(struct task_struct *p)
2178 {
2179 spin_lock(&p->alloc_lock);
2180 }
2181
2182 static inline void task_unlock(struct task_struct *p)
2183 {
2184 spin_unlock(&p->alloc_lock);
2185 }
2186
2187 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2188 unsigned long *flags);
2189
2190 static inline void unlock_task_sighand(struct task_struct *tsk,
2191 unsigned long *flags)
2192 {
2193 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2194 }
2195
2196 #ifndef __HAVE_THREAD_FUNCTIONS
2197
2198 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2199 #define task_stack_page(task) ((task)->stack)
2200
2201 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2202 {
2203 *task_thread_info(p) = *task_thread_info(org);
2204 task_thread_info(p)->task = p;
2205 }
2206
2207 static inline unsigned long *end_of_stack(struct task_struct *p)
2208 {
2209 return (unsigned long *)(task_thread_info(p) + 1);
2210 }
2211
2212 #endif
2213
2214 static inline int object_is_on_stack(void *obj)
2215 {
2216 void *stack = task_stack_page(current);
2217
2218 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2219 }
2220
2221 extern void thread_info_cache_init(void);
2222
2223 #ifdef CONFIG_DEBUG_STACK_USAGE
2224 static inline unsigned long stack_not_used(struct task_struct *p)
2225 {
2226 unsigned long *n = end_of_stack(p);
2227
2228 do { /* Skip over canary */
2229 n++;
2230 } while (!*n);
2231
2232 return (unsigned long)n - (unsigned long)end_of_stack(p);
2233 }
2234 #endif
2235
2236 /* set thread flags in other task's structures
2237 * - see asm/thread_info.h for TIF_xxxx flags available
2238 */
2239 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2240 {
2241 set_ti_thread_flag(task_thread_info(tsk), flag);
2242 }
2243
2244 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2245 {
2246 clear_ti_thread_flag(task_thread_info(tsk), flag);
2247 }
2248
2249 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2250 {
2251 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2252 }
2253
2254 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2255 {
2256 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2257 }
2258
2259 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2260 {
2261 return test_ti_thread_flag(task_thread_info(tsk), flag);
2262 }
2263
2264 static inline void set_tsk_need_resched(struct task_struct *tsk)
2265 {
2266 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2267 }
2268
2269 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2270 {
2271 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2272 }
2273
2274 static inline int test_tsk_need_resched(struct task_struct *tsk)
2275 {
2276 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2277 }
2278
2279 static inline int restart_syscall(void)
2280 {
2281 set_tsk_thread_flag(current, TIF_SIGPENDING);
2282 return -ERESTARTNOINTR;
2283 }
2284
2285 static inline int signal_pending(struct task_struct *p)
2286 {
2287 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2288 }
2289
2290 extern int __fatal_signal_pending(struct task_struct *p);
2291
2292 static inline int fatal_signal_pending(struct task_struct *p)
2293 {
2294 return signal_pending(p) && __fatal_signal_pending(p);
2295 }
2296
2297 static inline int signal_pending_state(long state, struct task_struct *p)
2298 {
2299 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2300 return 0;
2301 if (!signal_pending(p))
2302 return 0;
2303
2304 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2305 }
2306
2307 static inline int need_resched(void)
2308 {
2309 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2310 }
2311
2312 /*
2313 * cond_resched() and cond_resched_lock(): latency reduction via
2314 * explicit rescheduling in places that are safe. The return
2315 * value indicates whether a reschedule was done in fact.
2316 * cond_resched_lock() will drop the spinlock before scheduling,
2317 * cond_resched_softirq() will enable bhs before scheduling.
2318 */
2319 extern int _cond_resched(void);
2320
2321 #define cond_resched() ({ \
2322 __might_sleep(__FILE__, __LINE__, 0); \
2323 _cond_resched(); \
2324 })
2325
2326 extern int __cond_resched_lock(spinlock_t *lock);
2327
2328 #ifdef CONFIG_PREEMPT
2329 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2330 #else
2331 #define PREEMPT_LOCK_OFFSET 0
2332 #endif
2333
2334 #define cond_resched_lock(lock) ({ \
2335 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2336 __cond_resched_lock(lock); \
2337 })
2338
2339 extern int __cond_resched_softirq(void);
2340
2341 #define cond_resched_softirq() ({ \
2342 __might_sleep(__FILE__, __LINE__, SOFTIRQ_OFFSET); \
2343 __cond_resched_softirq(); \
2344 })
2345
2346 /*
2347 * Does a critical section need to be broken due to another
2348 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2349 * but a general need for low latency)
2350 */
2351 static inline int spin_needbreak(spinlock_t *lock)
2352 {
2353 #ifdef CONFIG_PREEMPT
2354 return spin_is_contended(lock);
2355 #else
2356 return 0;
2357 #endif
2358 }
2359
2360 /*
2361 * Thread group CPU time accounting.
2362 */
2363 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2364 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2365
2366 static inline void thread_group_cputime_init(struct signal_struct *sig)
2367 {
2368 sig->cputimer.cputime = INIT_CPUTIME;
2369 spin_lock_init(&sig->cputimer.lock);
2370 sig->cputimer.running = 0;
2371 }
2372
2373 static inline void thread_group_cputime_free(struct signal_struct *sig)
2374 {
2375 }
2376
2377 /*
2378 * Reevaluate whether the task has signals pending delivery.
2379 * Wake the task if so.
2380 * This is required every time the blocked sigset_t changes.
2381 * callers must hold sighand->siglock.
2382 */
2383 extern void recalc_sigpending_and_wake(struct task_struct *t);
2384 extern void recalc_sigpending(void);
2385
2386 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2387
2388 /*
2389 * Wrappers for p->thread_info->cpu access. No-op on UP.
2390 */
2391 #ifdef CONFIG_SMP
2392
2393 static inline unsigned int task_cpu(const struct task_struct *p)
2394 {
2395 return task_thread_info(p)->cpu;
2396 }
2397
2398 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2399
2400 #else
2401
2402 static inline unsigned int task_cpu(const struct task_struct *p)
2403 {
2404 return 0;
2405 }
2406
2407 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2408 {
2409 }
2410
2411 #endif /* CONFIG_SMP */
2412
2413 extern void arch_pick_mmap_layout(struct mm_struct *mm);
2414
2415 #ifdef CONFIG_TRACING
2416 extern void
2417 __trace_special(void *__tr, void *__data,
2418 unsigned long arg1, unsigned long arg2, unsigned long arg3);
2419 #else
2420 static inline void
2421 __trace_special(void *__tr, void *__data,
2422 unsigned long arg1, unsigned long arg2, unsigned long arg3)
2423 {
2424 }
2425 #endif
2426
2427 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2428 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2429
2430 extern void normalize_rt_tasks(void);
2431
2432 #ifdef CONFIG_GROUP_SCHED
2433
2434 extern struct task_group init_task_group;
2435 #ifdef CONFIG_USER_SCHED
2436 extern struct task_group root_task_group;
2437 extern void set_tg_uid(struct user_struct *user);
2438 #endif
2439
2440 extern struct task_group *sched_create_group(struct task_group *parent);
2441 extern void sched_destroy_group(struct task_group *tg);
2442 extern void sched_move_task(struct task_struct *tsk);
2443 #ifdef CONFIG_FAIR_GROUP_SCHED
2444 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2445 extern unsigned long sched_group_shares(struct task_group *tg);
2446 #endif
2447 #ifdef CONFIG_RT_GROUP_SCHED
2448 extern int sched_group_set_rt_runtime(struct task_group *tg,
2449 long rt_runtime_us);
2450 extern long sched_group_rt_runtime(struct task_group *tg);
2451 extern int sched_group_set_rt_period(struct task_group *tg,
2452 long rt_period_us);
2453 extern long sched_group_rt_period(struct task_group *tg);
2454 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2455 #endif
2456 #endif
2457
2458 extern int task_can_switch_user(struct user_struct *up,
2459 struct task_struct *tsk);
2460
2461 #ifdef CONFIG_TASK_XACCT
2462 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2463 {
2464 tsk->ioac.rchar += amt;
2465 }
2466
2467 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2468 {
2469 tsk->ioac.wchar += amt;
2470 }
2471
2472 static inline void inc_syscr(struct task_struct *tsk)
2473 {
2474 tsk->ioac.syscr++;
2475 }
2476
2477 static inline void inc_syscw(struct task_struct *tsk)
2478 {
2479 tsk->ioac.syscw++;
2480 }
2481 #else
2482 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2483 {
2484 }
2485
2486 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2487 {
2488 }
2489
2490 static inline void inc_syscr(struct task_struct *tsk)
2491 {
2492 }
2493
2494 static inline void inc_syscw(struct task_struct *tsk)
2495 {
2496 }
2497 #endif
2498
2499 #ifndef TASK_SIZE_OF
2500 #define TASK_SIZE_OF(tsk) TASK_SIZE
2501 #endif
2502
2503 /*
2504 * Call the function if the target task is executing on a CPU right now:
2505 */
2506 extern void task_oncpu_function_call(struct task_struct *p,
2507 void (*func) (void *info), void *info);
2508
2509
2510 #ifdef CONFIG_MM_OWNER
2511 extern void mm_update_next_owner(struct mm_struct *mm);
2512 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2513 #else
2514 static inline void mm_update_next_owner(struct mm_struct *mm)
2515 {
2516 }
2517
2518 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2519 {
2520 }
2521 #endif /* CONFIG_MM_OWNER */
2522
2523 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
2524
2525 #endif /* __KERNEL__ */
2526
2527 #endif
This page took 0.080477 seconds and 6 git commands to generate.