Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/x86/linux...
[deliverable/linux.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
29 #define CLONE_NEWNET 0x40000000 /* New network namespace */
30 #define CLONE_IO 0x80000000 /* Clone io context */
31
32 /*
33 * Scheduling policies
34 */
35 #define SCHED_NORMAL 0
36 #define SCHED_FIFO 1
37 #define SCHED_RR 2
38 #define SCHED_BATCH 3
39 /* SCHED_ISO: reserved but not implemented yet */
40 #define SCHED_IDLE 5
41
42 #ifdef __KERNEL__
43
44 struct sched_param {
45 int sched_priority;
46 };
47
48 #include <asm/param.h> /* for HZ */
49
50 #include <linux/capability.h>
51 #include <linux/threads.h>
52 #include <linux/kernel.h>
53 #include <linux/types.h>
54 #include <linux/timex.h>
55 #include <linux/jiffies.h>
56 #include <linux/rbtree.h>
57 #include <linux/thread_info.h>
58 #include <linux/cpumask.h>
59 #include <linux/errno.h>
60 #include <linux/nodemask.h>
61 #include <linux/mm_types.h>
62
63 #include <asm/system.h>
64 #include <asm/page.h>
65 #include <asm/ptrace.h>
66 #include <asm/cputime.h>
67
68 #include <linux/smp.h>
69 #include <linux/sem.h>
70 #include <linux/signal.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compiler.h>
73 #include <linux/completion.h>
74 #include <linux/pid.h>
75 #include <linux/percpu.h>
76 #include <linux/topology.h>
77 #include <linux/proportions.h>
78 #include <linux/seccomp.h>
79 #include <linux/rcupdate.h>
80 #include <linux/rtmutex.h>
81
82 #include <linux/time.h>
83 #include <linux/param.h>
84 #include <linux/resource.h>
85 #include <linux/timer.h>
86 #include <linux/hrtimer.h>
87 #include <linux/task_io_accounting.h>
88 #include <linux/kobject.h>
89 #include <linux/latencytop.h>
90
91 #include <asm/processor.h>
92
93 struct mem_cgroup;
94 struct exec_domain;
95 struct futex_pi_state;
96 struct robust_list_head;
97 struct bio;
98
99 /*
100 * List of flags we want to share for kernel threads,
101 * if only because they are not used by them anyway.
102 */
103 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
104
105 /*
106 * These are the constant used to fake the fixed-point load-average
107 * counting. Some notes:
108 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
109 * a load-average precision of 10 bits integer + 11 bits fractional
110 * - if you want to count load-averages more often, you need more
111 * precision, or rounding will get you. With 2-second counting freq,
112 * the EXP_n values would be 1981, 2034 and 2043 if still using only
113 * 11 bit fractions.
114 */
115 extern unsigned long avenrun[]; /* Load averages */
116
117 #define FSHIFT 11 /* nr of bits of precision */
118 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
119 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
120 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
121 #define EXP_5 2014 /* 1/exp(5sec/5min) */
122 #define EXP_15 2037 /* 1/exp(5sec/15min) */
123
124 #define CALC_LOAD(load,exp,n) \
125 load *= exp; \
126 load += n*(FIXED_1-exp); \
127 load >>= FSHIFT;
128
129 extern unsigned long total_forks;
130 extern int nr_threads;
131 DECLARE_PER_CPU(unsigned long, process_counts);
132 extern int nr_processes(void);
133 extern unsigned long nr_running(void);
134 extern unsigned long nr_uninterruptible(void);
135 extern unsigned long nr_active(void);
136 extern unsigned long nr_iowait(void);
137 extern unsigned long weighted_cpuload(const int cpu);
138
139 struct seq_file;
140 struct cfs_rq;
141 struct task_group;
142 #ifdef CONFIG_SCHED_DEBUG
143 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
144 extern void proc_sched_set_task(struct task_struct *p);
145 extern void
146 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
147 #else
148 static inline void
149 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
150 {
151 }
152 static inline void proc_sched_set_task(struct task_struct *p)
153 {
154 }
155 static inline void
156 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
157 {
158 }
159 #endif
160
161 /*
162 * Task state bitmask. NOTE! These bits are also
163 * encoded in fs/proc/array.c: get_task_state().
164 *
165 * We have two separate sets of flags: task->state
166 * is about runnability, while task->exit_state are
167 * about the task exiting. Confusing, but this way
168 * modifying one set can't modify the other one by
169 * mistake.
170 */
171 #define TASK_RUNNING 0
172 #define TASK_INTERRUPTIBLE 1
173 #define TASK_UNINTERRUPTIBLE 2
174 #define __TASK_STOPPED 4
175 #define __TASK_TRACED 8
176 /* in tsk->exit_state */
177 #define EXIT_ZOMBIE 16
178 #define EXIT_DEAD 32
179 /* in tsk->state again */
180 #define TASK_DEAD 64
181 #define TASK_WAKEKILL 128
182
183 /* Convenience macros for the sake of set_task_state */
184 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
185 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
186 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
187
188 /* Convenience macros for the sake of wake_up */
189 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
190 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
191
192 /* get_task_state() */
193 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
194 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
195 __TASK_TRACED)
196
197 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
198 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
199 #define task_is_stopped_or_traced(task) \
200 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
201 #define task_contributes_to_load(task) \
202 ((task->state & TASK_UNINTERRUPTIBLE) != 0)
203
204 #define __set_task_state(tsk, state_value) \
205 do { (tsk)->state = (state_value); } while (0)
206 #define set_task_state(tsk, state_value) \
207 set_mb((tsk)->state, (state_value))
208
209 /*
210 * set_current_state() includes a barrier so that the write of current->state
211 * is correctly serialised wrt the caller's subsequent test of whether to
212 * actually sleep:
213 *
214 * set_current_state(TASK_UNINTERRUPTIBLE);
215 * if (do_i_need_to_sleep())
216 * schedule();
217 *
218 * If the caller does not need such serialisation then use __set_current_state()
219 */
220 #define __set_current_state(state_value) \
221 do { current->state = (state_value); } while (0)
222 #define set_current_state(state_value) \
223 set_mb(current->state, (state_value))
224
225 /* Task command name length */
226 #define TASK_COMM_LEN 16
227
228 #include <linux/spinlock.h>
229
230 /*
231 * This serializes "schedule()" and also protects
232 * the run-queue from deletions/modifications (but
233 * _adding_ to the beginning of the run-queue has
234 * a separate lock).
235 */
236 extern rwlock_t tasklist_lock;
237 extern spinlock_t mmlist_lock;
238
239 struct task_struct;
240
241 extern void sched_init(void);
242 extern void sched_init_smp(void);
243 extern asmlinkage void schedule_tail(struct task_struct *prev);
244 extern void init_idle(struct task_struct *idle, int cpu);
245 extern void init_idle_bootup_task(struct task_struct *idle);
246
247 extern cpumask_t nohz_cpu_mask;
248 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
249 extern int select_nohz_load_balancer(int cpu);
250 #else
251 static inline int select_nohz_load_balancer(int cpu)
252 {
253 return 0;
254 }
255 #endif
256
257 extern unsigned long rt_needs_cpu(int cpu);
258
259 /*
260 * Only dump TASK_* tasks. (0 for all tasks)
261 */
262 extern void show_state_filter(unsigned long state_filter);
263
264 static inline void show_state(void)
265 {
266 show_state_filter(0);
267 }
268
269 extern void show_regs(struct pt_regs *);
270
271 /*
272 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
273 * task), SP is the stack pointer of the first frame that should be shown in the back
274 * trace (or NULL if the entire call-chain of the task should be shown).
275 */
276 extern void show_stack(struct task_struct *task, unsigned long *sp);
277
278 void io_schedule(void);
279 long io_schedule_timeout(long timeout);
280
281 extern void cpu_init (void);
282 extern void trap_init(void);
283 extern void account_process_tick(struct task_struct *task, int user);
284 extern void update_process_times(int user);
285 extern void scheduler_tick(void);
286 extern void hrtick_resched(void);
287
288 extern void sched_show_task(struct task_struct *p);
289
290 #ifdef CONFIG_DETECT_SOFTLOCKUP
291 extern void softlockup_tick(void);
292 extern void spawn_softlockup_task(void);
293 extern void touch_softlockup_watchdog(void);
294 extern void touch_all_softlockup_watchdogs(void);
295 extern unsigned long softlockup_thresh;
296 extern unsigned long sysctl_hung_task_check_count;
297 extern unsigned long sysctl_hung_task_timeout_secs;
298 extern unsigned long sysctl_hung_task_warnings;
299 #else
300 static inline void softlockup_tick(void)
301 {
302 }
303 static inline void spawn_softlockup_task(void)
304 {
305 }
306 static inline void touch_softlockup_watchdog(void)
307 {
308 }
309 static inline void touch_all_softlockup_watchdogs(void)
310 {
311 }
312 #endif
313
314
315 /* Attach to any functions which should be ignored in wchan output. */
316 #define __sched __attribute__((__section__(".sched.text")))
317
318 /* Linker adds these: start and end of __sched functions */
319 extern char __sched_text_start[], __sched_text_end[];
320
321 /* Is this address in the __sched functions? */
322 extern int in_sched_functions(unsigned long addr);
323
324 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
325 extern signed long schedule_timeout(signed long timeout);
326 extern signed long schedule_timeout_interruptible(signed long timeout);
327 extern signed long schedule_timeout_killable(signed long timeout);
328 extern signed long schedule_timeout_uninterruptible(signed long timeout);
329 asmlinkage void schedule(void);
330
331 struct nsproxy;
332 struct user_namespace;
333
334 /* Maximum number of active map areas.. This is a random (large) number */
335 #define DEFAULT_MAX_MAP_COUNT 65536
336
337 extern int sysctl_max_map_count;
338
339 #include <linux/aio.h>
340
341 extern unsigned long
342 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
343 unsigned long, unsigned long);
344 extern unsigned long
345 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
346 unsigned long len, unsigned long pgoff,
347 unsigned long flags);
348 extern void arch_unmap_area(struct mm_struct *, unsigned long);
349 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
350
351 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
352 /*
353 * The mm counters are not protected by its page_table_lock,
354 * so must be incremented atomically.
355 */
356 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
357 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
358 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
359 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
360 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
361
362 #else /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
363 /*
364 * The mm counters are protected by its page_table_lock,
365 * so can be incremented directly.
366 */
367 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
368 #define get_mm_counter(mm, member) ((mm)->_##member)
369 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
370 #define inc_mm_counter(mm, member) (mm)->_##member++
371 #define dec_mm_counter(mm, member) (mm)->_##member--
372
373 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
374
375 #define get_mm_rss(mm) \
376 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
377 #define update_hiwater_rss(mm) do { \
378 unsigned long _rss = get_mm_rss(mm); \
379 if ((mm)->hiwater_rss < _rss) \
380 (mm)->hiwater_rss = _rss; \
381 } while (0)
382 #define update_hiwater_vm(mm) do { \
383 if ((mm)->hiwater_vm < (mm)->total_vm) \
384 (mm)->hiwater_vm = (mm)->total_vm; \
385 } while (0)
386
387 extern void set_dumpable(struct mm_struct *mm, int value);
388 extern int get_dumpable(struct mm_struct *mm);
389
390 /* mm flags */
391 /* dumpable bits */
392 #define MMF_DUMPABLE 0 /* core dump is permitted */
393 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
394 #define MMF_DUMPABLE_BITS 2
395
396 /* coredump filter bits */
397 #define MMF_DUMP_ANON_PRIVATE 2
398 #define MMF_DUMP_ANON_SHARED 3
399 #define MMF_DUMP_MAPPED_PRIVATE 4
400 #define MMF_DUMP_MAPPED_SHARED 5
401 #define MMF_DUMP_ELF_HEADERS 6
402 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
403 #define MMF_DUMP_FILTER_BITS 5
404 #define MMF_DUMP_FILTER_MASK \
405 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
406 #define MMF_DUMP_FILTER_DEFAULT \
407 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED))
408
409 struct sighand_struct {
410 atomic_t count;
411 struct k_sigaction action[_NSIG];
412 spinlock_t siglock;
413 wait_queue_head_t signalfd_wqh;
414 };
415
416 struct pacct_struct {
417 int ac_flag;
418 long ac_exitcode;
419 unsigned long ac_mem;
420 cputime_t ac_utime, ac_stime;
421 unsigned long ac_minflt, ac_majflt;
422 };
423
424 /*
425 * NOTE! "signal_struct" does not have it's own
426 * locking, because a shared signal_struct always
427 * implies a shared sighand_struct, so locking
428 * sighand_struct is always a proper superset of
429 * the locking of signal_struct.
430 */
431 struct signal_struct {
432 atomic_t count;
433 atomic_t live;
434
435 wait_queue_head_t wait_chldexit; /* for wait4() */
436
437 /* current thread group signal load-balancing target: */
438 struct task_struct *curr_target;
439
440 /* shared signal handling: */
441 struct sigpending shared_pending;
442
443 /* thread group exit support */
444 int group_exit_code;
445 /* overloaded:
446 * - notify group_exit_task when ->count is equal to notify_count
447 * - everyone except group_exit_task is stopped during signal delivery
448 * of fatal signals, group_exit_task processes the signal.
449 */
450 struct task_struct *group_exit_task;
451 int notify_count;
452
453 /* thread group stop support, overloads group_exit_code too */
454 int group_stop_count;
455 unsigned int flags; /* see SIGNAL_* flags below */
456
457 /* POSIX.1b Interval Timers */
458 struct list_head posix_timers;
459
460 /* ITIMER_REAL timer for the process */
461 struct hrtimer real_timer;
462 struct pid *leader_pid;
463 ktime_t it_real_incr;
464
465 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
466 cputime_t it_prof_expires, it_virt_expires;
467 cputime_t it_prof_incr, it_virt_incr;
468
469 /* job control IDs */
470
471 /*
472 * pgrp and session fields are deprecated.
473 * use the task_session_Xnr and task_pgrp_Xnr routines below
474 */
475
476 union {
477 pid_t pgrp __deprecated;
478 pid_t __pgrp;
479 };
480
481 struct pid *tty_old_pgrp;
482
483 union {
484 pid_t session __deprecated;
485 pid_t __session;
486 };
487
488 /* boolean value for session group leader */
489 int leader;
490
491 struct tty_struct *tty; /* NULL if no tty */
492
493 /*
494 * Cumulative resource counters for dead threads in the group,
495 * and for reaped dead child processes forked by this group.
496 * Live threads maintain their own counters and add to these
497 * in __exit_signal, except for the group leader.
498 */
499 cputime_t utime, stime, cutime, cstime;
500 cputime_t gtime;
501 cputime_t cgtime;
502 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
503 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
504 unsigned long inblock, oublock, cinblock, coublock;
505
506 /*
507 * Cumulative ns of scheduled CPU time for dead threads in the
508 * group, not including a zombie group leader. (This only differs
509 * from jiffies_to_ns(utime + stime) if sched_clock uses something
510 * other than jiffies.)
511 */
512 unsigned long long sum_sched_runtime;
513
514 /*
515 * We don't bother to synchronize most readers of this at all,
516 * because there is no reader checking a limit that actually needs
517 * to get both rlim_cur and rlim_max atomically, and either one
518 * alone is a single word that can safely be read normally.
519 * getrlimit/setrlimit use task_lock(current->group_leader) to
520 * protect this instead of the siglock, because they really
521 * have no need to disable irqs.
522 */
523 struct rlimit rlim[RLIM_NLIMITS];
524
525 struct list_head cpu_timers[3];
526
527 /* keep the process-shared keyrings here so that they do the right
528 * thing in threads created with CLONE_THREAD */
529 #ifdef CONFIG_KEYS
530 struct key *session_keyring; /* keyring inherited over fork */
531 struct key *process_keyring; /* keyring private to this process */
532 #endif
533 #ifdef CONFIG_BSD_PROCESS_ACCT
534 struct pacct_struct pacct; /* per-process accounting information */
535 #endif
536 #ifdef CONFIG_TASKSTATS
537 struct taskstats *stats;
538 #endif
539 #ifdef CONFIG_AUDIT
540 unsigned audit_tty;
541 struct tty_audit_buf *tty_audit_buf;
542 #endif
543 };
544
545 /* Context switch must be unlocked if interrupts are to be enabled */
546 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
547 # define __ARCH_WANT_UNLOCKED_CTXSW
548 #endif
549
550 /*
551 * Bits in flags field of signal_struct.
552 */
553 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
554 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
555 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
556 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
557
558 /* If true, all threads except ->group_exit_task have pending SIGKILL */
559 static inline int signal_group_exit(const struct signal_struct *sig)
560 {
561 return (sig->flags & SIGNAL_GROUP_EXIT) ||
562 (sig->group_exit_task != NULL);
563 }
564
565 /*
566 * Some day this will be a full-fledged user tracking system..
567 */
568 struct user_struct {
569 atomic_t __count; /* reference count */
570 atomic_t processes; /* How many processes does this user have? */
571 atomic_t files; /* How many open files does this user have? */
572 atomic_t sigpending; /* How many pending signals does this user have? */
573 #ifdef CONFIG_INOTIFY_USER
574 atomic_t inotify_watches; /* How many inotify watches does this user have? */
575 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
576 #endif
577 #ifdef CONFIG_POSIX_MQUEUE
578 /* protected by mq_lock */
579 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
580 #endif
581 unsigned long locked_shm; /* How many pages of mlocked shm ? */
582
583 #ifdef CONFIG_KEYS
584 struct key *uid_keyring; /* UID specific keyring */
585 struct key *session_keyring; /* UID's default session keyring */
586 #endif
587
588 /* Hash table maintenance information */
589 struct hlist_node uidhash_node;
590 uid_t uid;
591
592 #ifdef CONFIG_USER_SCHED
593 struct task_group *tg;
594 #ifdef CONFIG_SYSFS
595 struct kobject kobj;
596 struct work_struct work;
597 #endif
598 #endif
599 };
600
601 extern int uids_sysfs_init(void);
602
603 extern struct user_struct *find_user(uid_t);
604
605 extern struct user_struct root_user;
606 #define INIT_USER (&root_user)
607
608 struct backing_dev_info;
609 struct reclaim_state;
610
611 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
612 struct sched_info {
613 /* cumulative counters */
614 unsigned long pcount; /* # of times run on this cpu */
615 unsigned long long cpu_time, /* time spent on the cpu */
616 run_delay; /* time spent waiting on a runqueue */
617
618 /* timestamps */
619 unsigned long long last_arrival,/* when we last ran on a cpu */
620 last_queued; /* when we were last queued to run */
621 #ifdef CONFIG_SCHEDSTATS
622 /* BKL stats */
623 unsigned int bkl_count;
624 #endif
625 };
626 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
627
628 #ifdef CONFIG_SCHEDSTATS
629 extern const struct file_operations proc_schedstat_operations;
630 #endif /* CONFIG_SCHEDSTATS */
631
632 #ifdef CONFIG_TASK_DELAY_ACCT
633 struct task_delay_info {
634 spinlock_t lock;
635 unsigned int flags; /* Private per-task flags */
636
637 /* For each stat XXX, add following, aligned appropriately
638 *
639 * struct timespec XXX_start, XXX_end;
640 * u64 XXX_delay;
641 * u32 XXX_count;
642 *
643 * Atomicity of updates to XXX_delay, XXX_count protected by
644 * single lock above (split into XXX_lock if contention is an issue).
645 */
646
647 /*
648 * XXX_count is incremented on every XXX operation, the delay
649 * associated with the operation is added to XXX_delay.
650 * XXX_delay contains the accumulated delay time in nanoseconds.
651 */
652 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
653 u64 blkio_delay; /* wait for sync block io completion */
654 u64 swapin_delay; /* wait for swapin block io completion */
655 u32 blkio_count; /* total count of the number of sync block */
656 /* io operations performed */
657 u32 swapin_count; /* total count of the number of swapin block */
658 /* io operations performed */
659 };
660 #endif /* CONFIG_TASK_DELAY_ACCT */
661
662 static inline int sched_info_on(void)
663 {
664 #ifdef CONFIG_SCHEDSTATS
665 return 1;
666 #elif defined(CONFIG_TASK_DELAY_ACCT)
667 extern int delayacct_on;
668 return delayacct_on;
669 #else
670 return 0;
671 #endif
672 }
673
674 enum cpu_idle_type {
675 CPU_IDLE,
676 CPU_NOT_IDLE,
677 CPU_NEWLY_IDLE,
678 CPU_MAX_IDLE_TYPES
679 };
680
681 /*
682 * sched-domains (multiprocessor balancing) declarations:
683 */
684
685 /*
686 * Increase resolution of nice-level calculations:
687 */
688 #define SCHED_LOAD_SHIFT 10
689 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
690
691 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
692
693 #ifdef CONFIG_SMP
694 #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */
695 #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */
696 #define SD_BALANCE_EXEC 4 /* Balance on exec */
697 #define SD_BALANCE_FORK 8 /* Balance on fork, clone */
698 #define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */
699 #define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */
700 #define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */
701 #define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */
702 #define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */
703 #define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */
704 #define SD_SERIALIZE 1024 /* Only a single load balancing instance */
705 #define SD_WAKE_IDLE_FAR 2048 /* Gain latency sacrificing cache hit */
706
707 #define BALANCE_FOR_MC_POWER \
708 (sched_smt_power_savings ? SD_POWERSAVINGS_BALANCE : 0)
709
710 #define BALANCE_FOR_PKG_POWER \
711 ((sched_mc_power_savings || sched_smt_power_savings) ? \
712 SD_POWERSAVINGS_BALANCE : 0)
713
714 #define test_sd_parent(sd, flag) ((sd->parent && \
715 (sd->parent->flags & flag)) ? 1 : 0)
716
717
718 struct sched_group {
719 struct sched_group *next; /* Must be a circular list */
720 cpumask_t cpumask;
721
722 /*
723 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
724 * single CPU. This is read only (except for setup, hotplug CPU).
725 * Note : Never change cpu_power without recompute its reciprocal
726 */
727 unsigned int __cpu_power;
728 /*
729 * reciprocal value of cpu_power to avoid expensive divides
730 * (see include/linux/reciprocal_div.h)
731 */
732 u32 reciprocal_cpu_power;
733 };
734
735 enum sched_domain_level {
736 SD_LV_NONE = 0,
737 SD_LV_SIBLING,
738 SD_LV_MC,
739 SD_LV_CPU,
740 SD_LV_NODE,
741 SD_LV_ALLNODES,
742 SD_LV_MAX
743 };
744
745 struct sched_domain_attr {
746 int relax_domain_level;
747 };
748
749 #define SD_ATTR_INIT (struct sched_domain_attr) { \
750 .relax_domain_level = -1, \
751 }
752
753 struct sched_domain {
754 /* These fields must be setup */
755 struct sched_domain *parent; /* top domain must be null terminated */
756 struct sched_domain *child; /* bottom domain must be null terminated */
757 struct sched_group *groups; /* the balancing groups of the domain */
758 cpumask_t span; /* span of all CPUs in this domain */
759 int first_cpu; /* cache of the first cpu in this domain */
760 unsigned long min_interval; /* Minimum balance interval ms */
761 unsigned long max_interval; /* Maximum balance interval ms */
762 unsigned int busy_factor; /* less balancing by factor if busy */
763 unsigned int imbalance_pct; /* No balance until over watermark */
764 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
765 unsigned int busy_idx;
766 unsigned int idle_idx;
767 unsigned int newidle_idx;
768 unsigned int wake_idx;
769 unsigned int forkexec_idx;
770 int flags; /* See SD_* */
771 enum sched_domain_level level;
772
773 /* Runtime fields. */
774 unsigned long last_balance; /* init to jiffies. units in jiffies */
775 unsigned int balance_interval; /* initialise to 1. units in ms. */
776 unsigned int nr_balance_failed; /* initialise to 0 */
777
778 #ifdef CONFIG_SCHEDSTATS
779 /* load_balance() stats */
780 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
781 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
782 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
783 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
784 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
785 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
786 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
787 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
788
789 /* Active load balancing */
790 unsigned int alb_count;
791 unsigned int alb_failed;
792 unsigned int alb_pushed;
793
794 /* SD_BALANCE_EXEC stats */
795 unsigned int sbe_count;
796 unsigned int sbe_balanced;
797 unsigned int sbe_pushed;
798
799 /* SD_BALANCE_FORK stats */
800 unsigned int sbf_count;
801 unsigned int sbf_balanced;
802 unsigned int sbf_pushed;
803
804 /* try_to_wake_up() stats */
805 unsigned int ttwu_wake_remote;
806 unsigned int ttwu_move_affine;
807 unsigned int ttwu_move_balance;
808 #endif
809 };
810
811 extern void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
812 struct sched_domain_attr *dattr_new);
813 extern int arch_reinit_sched_domains(void);
814
815 #endif /* CONFIG_SMP */
816
817 /*
818 * A runqueue laden with a single nice 0 task scores a weighted_cpuload of
819 * SCHED_LOAD_SCALE. This function returns 1 if any cpu is laden with a
820 * task of nice 0 or enough lower priority tasks to bring up the
821 * weighted_cpuload
822 */
823 static inline int above_background_load(void)
824 {
825 unsigned long cpu;
826
827 for_each_online_cpu(cpu) {
828 if (weighted_cpuload(cpu) >= SCHED_LOAD_SCALE)
829 return 1;
830 }
831 return 0;
832 }
833
834 struct io_context; /* See blkdev.h */
835 #define NGROUPS_SMALL 32
836 #define NGROUPS_PER_BLOCK ((unsigned int)(PAGE_SIZE / sizeof(gid_t)))
837 struct group_info {
838 int ngroups;
839 atomic_t usage;
840 gid_t small_block[NGROUPS_SMALL];
841 int nblocks;
842 gid_t *blocks[0];
843 };
844
845 /*
846 * get_group_info() must be called with the owning task locked (via task_lock())
847 * when task != current. The reason being that the vast majority of callers are
848 * looking at current->group_info, which can not be changed except by the
849 * current task. Changing current->group_info requires the task lock, too.
850 */
851 #define get_group_info(group_info) do { \
852 atomic_inc(&(group_info)->usage); \
853 } while (0)
854
855 #define put_group_info(group_info) do { \
856 if (atomic_dec_and_test(&(group_info)->usage)) \
857 groups_free(group_info); \
858 } while (0)
859
860 extern struct group_info *groups_alloc(int gidsetsize);
861 extern void groups_free(struct group_info *group_info);
862 extern int set_current_groups(struct group_info *group_info);
863 extern int groups_search(struct group_info *group_info, gid_t grp);
864 /* access the groups "array" with this macro */
865 #define GROUP_AT(gi, i) \
866 ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK])
867
868 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
869 extern void prefetch_stack(struct task_struct *t);
870 #else
871 static inline void prefetch_stack(struct task_struct *t) { }
872 #endif
873
874 struct audit_context; /* See audit.c */
875 struct mempolicy;
876 struct pipe_inode_info;
877 struct uts_namespace;
878
879 struct rq;
880 struct sched_domain;
881
882 struct sched_class {
883 const struct sched_class *next;
884
885 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
886 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
887 void (*yield_task) (struct rq *rq);
888 int (*select_task_rq)(struct task_struct *p, int sync);
889
890 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p);
891
892 struct task_struct * (*pick_next_task) (struct rq *rq);
893 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
894
895 #ifdef CONFIG_SMP
896 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
897 struct rq *busiest, unsigned long max_load_move,
898 struct sched_domain *sd, enum cpu_idle_type idle,
899 int *all_pinned, int *this_best_prio);
900
901 int (*move_one_task) (struct rq *this_rq, int this_cpu,
902 struct rq *busiest, struct sched_domain *sd,
903 enum cpu_idle_type idle);
904 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
905 void (*post_schedule) (struct rq *this_rq);
906 void (*task_wake_up) (struct rq *this_rq, struct task_struct *task);
907 #endif
908
909 void (*set_curr_task) (struct rq *rq);
910 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
911 void (*task_new) (struct rq *rq, struct task_struct *p);
912 void (*set_cpus_allowed)(struct task_struct *p,
913 const cpumask_t *newmask);
914
915 void (*join_domain)(struct rq *rq);
916 void (*leave_domain)(struct rq *rq);
917
918 void (*switched_from) (struct rq *this_rq, struct task_struct *task,
919 int running);
920 void (*switched_to) (struct rq *this_rq, struct task_struct *task,
921 int running);
922 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
923 int oldprio, int running);
924
925 #ifdef CONFIG_FAIR_GROUP_SCHED
926 void (*moved_group) (struct task_struct *p);
927 #endif
928 };
929
930 struct load_weight {
931 unsigned long weight, inv_weight;
932 };
933
934 /*
935 * CFS stats for a schedulable entity (task, task-group etc)
936 *
937 * Current field usage histogram:
938 *
939 * 4 se->block_start
940 * 4 se->run_node
941 * 4 se->sleep_start
942 * 6 se->load.weight
943 */
944 struct sched_entity {
945 struct load_weight load; /* for load-balancing */
946 struct rb_node run_node;
947 struct list_head group_node;
948 unsigned int on_rq;
949
950 u64 exec_start;
951 u64 sum_exec_runtime;
952 u64 vruntime;
953 u64 prev_sum_exec_runtime;
954
955 u64 last_wakeup;
956 u64 avg_overlap;
957
958 #ifdef CONFIG_SCHEDSTATS
959 u64 wait_start;
960 u64 wait_max;
961 u64 wait_count;
962 u64 wait_sum;
963
964 u64 sleep_start;
965 u64 sleep_max;
966 s64 sum_sleep_runtime;
967
968 u64 block_start;
969 u64 block_max;
970 u64 exec_max;
971 u64 slice_max;
972
973 u64 nr_migrations;
974 u64 nr_migrations_cold;
975 u64 nr_failed_migrations_affine;
976 u64 nr_failed_migrations_running;
977 u64 nr_failed_migrations_hot;
978 u64 nr_forced_migrations;
979 u64 nr_forced2_migrations;
980
981 u64 nr_wakeups;
982 u64 nr_wakeups_sync;
983 u64 nr_wakeups_migrate;
984 u64 nr_wakeups_local;
985 u64 nr_wakeups_remote;
986 u64 nr_wakeups_affine;
987 u64 nr_wakeups_affine_attempts;
988 u64 nr_wakeups_passive;
989 u64 nr_wakeups_idle;
990 #endif
991
992 #ifdef CONFIG_FAIR_GROUP_SCHED
993 struct sched_entity *parent;
994 /* rq on which this entity is (to be) queued: */
995 struct cfs_rq *cfs_rq;
996 /* rq "owned" by this entity/group: */
997 struct cfs_rq *my_q;
998 #endif
999 };
1000
1001 struct sched_rt_entity {
1002 struct list_head run_list;
1003 unsigned int time_slice;
1004 unsigned long timeout;
1005 int nr_cpus_allowed;
1006
1007 struct sched_rt_entity *back;
1008 #ifdef CONFIG_RT_GROUP_SCHED
1009 struct sched_rt_entity *parent;
1010 /* rq on which this entity is (to be) queued: */
1011 struct rt_rq *rt_rq;
1012 /* rq "owned" by this entity/group: */
1013 struct rt_rq *my_q;
1014 #endif
1015 };
1016
1017 struct task_struct {
1018 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1019 void *stack;
1020 atomic_t usage;
1021 unsigned int flags; /* per process flags, defined below */
1022 unsigned int ptrace;
1023
1024 int lock_depth; /* BKL lock depth */
1025
1026 #ifdef CONFIG_SMP
1027 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1028 int oncpu;
1029 #endif
1030 #endif
1031
1032 int prio, static_prio, normal_prio;
1033 const struct sched_class *sched_class;
1034 struct sched_entity se;
1035 struct sched_rt_entity rt;
1036
1037 #ifdef CONFIG_PREEMPT_NOTIFIERS
1038 /* list of struct preempt_notifier: */
1039 struct hlist_head preempt_notifiers;
1040 #endif
1041
1042 /*
1043 * fpu_counter contains the number of consecutive context switches
1044 * that the FPU is used. If this is over a threshold, the lazy fpu
1045 * saving becomes unlazy to save the trap. This is an unsigned char
1046 * so that after 256 times the counter wraps and the behavior turns
1047 * lazy again; this to deal with bursty apps that only use FPU for
1048 * a short time
1049 */
1050 unsigned char fpu_counter;
1051 s8 oomkilladj; /* OOM kill score adjustment (bit shift). */
1052 #ifdef CONFIG_BLK_DEV_IO_TRACE
1053 unsigned int btrace_seq;
1054 #endif
1055
1056 unsigned int policy;
1057 cpumask_t cpus_allowed;
1058
1059 #ifdef CONFIG_PREEMPT_RCU
1060 int rcu_read_lock_nesting;
1061 int rcu_flipctr_idx;
1062 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1063
1064 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1065 struct sched_info sched_info;
1066 #endif
1067
1068 struct list_head tasks;
1069 /*
1070 * ptrace_list/ptrace_children forms the list of my children
1071 * that were stolen by a ptracer.
1072 */
1073 struct list_head ptrace_children;
1074 struct list_head ptrace_list;
1075
1076 struct mm_struct *mm, *active_mm;
1077
1078 /* task state */
1079 struct linux_binfmt *binfmt;
1080 int exit_state;
1081 int exit_code, exit_signal;
1082 int pdeath_signal; /* The signal sent when the parent dies */
1083 /* ??? */
1084 unsigned int personality;
1085 unsigned did_exec:1;
1086 pid_t pid;
1087 pid_t tgid;
1088
1089 #ifdef CONFIG_CC_STACKPROTECTOR
1090 /* Canary value for the -fstack-protector gcc feature */
1091 unsigned long stack_canary;
1092 #endif
1093 /*
1094 * pointers to (original) parent process, youngest child, younger sibling,
1095 * older sibling, respectively. (p->father can be replaced with
1096 * p->parent->pid)
1097 */
1098 struct task_struct *real_parent; /* real parent process (when being debugged) */
1099 struct task_struct *parent; /* parent process */
1100 /*
1101 * children/sibling forms the list of my children plus the
1102 * tasks I'm ptracing.
1103 */
1104 struct list_head children; /* list of my children */
1105 struct list_head sibling; /* linkage in my parent's children list */
1106 struct task_struct *group_leader; /* threadgroup leader */
1107
1108 /* PID/PID hash table linkage. */
1109 struct pid_link pids[PIDTYPE_MAX];
1110 struct list_head thread_group;
1111
1112 struct completion *vfork_done; /* for vfork() */
1113 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1114 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1115
1116 unsigned int rt_priority;
1117 cputime_t utime, stime, utimescaled, stimescaled;
1118 cputime_t gtime;
1119 cputime_t prev_utime, prev_stime;
1120 unsigned long nvcsw, nivcsw; /* context switch counts */
1121 struct timespec start_time; /* monotonic time */
1122 struct timespec real_start_time; /* boot based time */
1123 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1124 unsigned long min_flt, maj_flt;
1125
1126 cputime_t it_prof_expires, it_virt_expires;
1127 unsigned long long it_sched_expires;
1128 struct list_head cpu_timers[3];
1129
1130 /* process credentials */
1131 uid_t uid,euid,suid,fsuid;
1132 gid_t gid,egid,sgid,fsgid;
1133 struct group_info *group_info;
1134 kernel_cap_t cap_effective, cap_inheritable, cap_permitted, cap_bset;
1135 unsigned securebits;
1136 struct user_struct *user;
1137 #ifdef CONFIG_KEYS
1138 struct key *request_key_auth; /* assumed request_key authority */
1139 struct key *thread_keyring; /* keyring private to this thread */
1140 unsigned char jit_keyring; /* default keyring to attach requested keys to */
1141 #endif
1142 char comm[TASK_COMM_LEN]; /* executable name excluding path
1143 - access with [gs]et_task_comm (which lock
1144 it with task_lock())
1145 - initialized normally by flush_old_exec */
1146 /* file system info */
1147 int link_count, total_link_count;
1148 #ifdef CONFIG_SYSVIPC
1149 /* ipc stuff */
1150 struct sysv_sem sysvsem;
1151 #endif
1152 #ifdef CONFIG_DETECT_SOFTLOCKUP
1153 /* hung task detection */
1154 unsigned long last_switch_timestamp;
1155 unsigned long last_switch_count;
1156 #endif
1157 /* CPU-specific state of this task */
1158 struct thread_struct thread;
1159 /* filesystem information */
1160 struct fs_struct *fs;
1161 /* open file information */
1162 struct files_struct *files;
1163 /* namespaces */
1164 struct nsproxy *nsproxy;
1165 /* signal handlers */
1166 struct signal_struct *signal;
1167 struct sighand_struct *sighand;
1168
1169 sigset_t blocked, real_blocked;
1170 sigset_t saved_sigmask; /* To be restored with TIF_RESTORE_SIGMASK */
1171 struct sigpending pending;
1172
1173 unsigned long sas_ss_sp;
1174 size_t sas_ss_size;
1175 int (*notifier)(void *priv);
1176 void *notifier_data;
1177 sigset_t *notifier_mask;
1178 #ifdef CONFIG_SECURITY
1179 void *security;
1180 #endif
1181 struct audit_context *audit_context;
1182 #ifdef CONFIG_AUDITSYSCALL
1183 uid_t loginuid;
1184 unsigned int sessionid;
1185 #endif
1186 seccomp_t seccomp;
1187
1188 /* Thread group tracking */
1189 u32 parent_exec_id;
1190 u32 self_exec_id;
1191 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
1192 spinlock_t alloc_lock;
1193
1194 /* Protection of the PI data structures: */
1195 spinlock_t pi_lock;
1196
1197 #ifdef CONFIG_RT_MUTEXES
1198 /* PI waiters blocked on a rt_mutex held by this task */
1199 struct plist_head pi_waiters;
1200 /* Deadlock detection and priority inheritance handling */
1201 struct rt_mutex_waiter *pi_blocked_on;
1202 #endif
1203
1204 #ifdef CONFIG_DEBUG_MUTEXES
1205 /* mutex deadlock detection */
1206 struct mutex_waiter *blocked_on;
1207 #endif
1208 #ifdef CONFIG_TRACE_IRQFLAGS
1209 unsigned int irq_events;
1210 int hardirqs_enabled;
1211 unsigned long hardirq_enable_ip;
1212 unsigned int hardirq_enable_event;
1213 unsigned long hardirq_disable_ip;
1214 unsigned int hardirq_disable_event;
1215 int softirqs_enabled;
1216 unsigned long softirq_disable_ip;
1217 unsigned int softirq_disable_event;
1218 unsigned long softirq_enable_ip;
1219 unsigned int softirq_enable_event;
1220 int hardirq_context;
1221 int softirq_context;
1222 #endif
1223 #ifdef CONFIG_LOCKDEP
1224 # define MAX_LOCK_DEPTH 48UL
1225 u64 curr_chain_key;
1226 int lockdep_depth;
1227 struct held_lock held_locks[MAX_LOCK_DEPTH];
1228 unsigned int lockdep_recursion;
1229 #endif
1230
1231 /* journalling filesystem info */
1232 void *journal_info;
1233
1234 /* stacked block device info */
1235 struct bio *bio_list, **bio_tail;
1236
1237 /* VM state */
1238 struct reclaim_state *reclaim_state;
1239
1240 struct backing_dev_info *backing_dev_info;
1241
1242 struct io_context *io_context;
1243
1244 unsigned long ptrace_message;
1245 siginfo_t *last_siginfo; /* For ptrace use. */
1246 #ifdef CONFIG_TASK_XACCT
1247 /* i/o counters(bytes read/written, #syscalls */
1248 u64 rchar, wchar, syscr, syscw;
1249 #endif
1250 struct task_io_accounting ioac;
1251 #if defined(CONFIG_TASK_XACCT)
1252 u64 acct_rss_mem1; /* accumulated rss usage */
1253 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1254 cputime_t acct_stimexpd;/* stime since last update */
1255 #endif
1256 #ifdef CONFIG_NUMA
1257 struct mempolicy *mempolicy;
1258 short il_next;
1259 #endif
1260 #ifdef CONFIG_CPUSETS
1261 nodemask_t mems_allowed;
1262 int cpuset_mems_generation;
1263 int cpuset_mem_spread_rotor;
1264 #endif
1265 #ifdef CONFIG_CGROUPS
1266 /* Control Group info protected by css_set_lock */
1267 struct css_set *cgroups;
1268 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1269 struct list_head cg_list;
1270 #endif
1271 #ifdef CONFIG_FUTEX
1272 struct robust_list_head __user *robust_list;
1273 #ifdef CONFIG_COMPAT
1274 struct compat_robust_list_head __user *compat_robust_list;
1275 #endif
1276 struct list_head pi_state_list;
1277 struct futex_pi_state *pi_state_cache;
1278 #endif
1279 atomic_t fs_excl; /* holding fs exclusive resources */
1280 struct rcu_head rcu;
1281
1282 /*
1283 * cache last used pipe for splice
1284 */
1285 struct pipe_inode_info *splice_pipe;
1286 #ifdef CONFIG_TASK_DELAY_ACCT
1287 struct task_delay_info *delays;
1288 #endif
1289 #ifdef CONFIG_FAULT_INJECTION
1290 int make_it_fail;
1291 #endif
1292 struct prop_local_single dirties;
1293 #ifdef CONFIG_LATENCYTOP
1294 int latency_record_count;
1295 struct latency_record latency_record[LT_SAVECOUNT];
1296 #endif
1297 };
1298
1299 /*
1300 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1301 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1302 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1303 * values are inverted: lower p->prio value means higher priority.
1304 *
1305 * The MAX_USER_RT_PRIO value allows the actual maximum
1306 * RT priority to be separate from the value exported to
1307 * user-space. This allows kernel threads to set their
1308 * priority to a value higher than any user task. Note:
1309 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1310 */
1311
1312 #define MAX_USER_RT_PRIO 100
1313 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1314
1315 #define MAX_PRIO (MAX_RT_PRIO + 40)
1316 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1317
1318 static inline int rt_prio(int prio)
1319 {
1320 if (unlikely(prio < MAX_RT_PRIO))
1321 return 1;
1322 return 0;
1323 }
1324
1325 static inline int rt_task(struct task_struct *p)
1326 {
1327 return rt_prio(p->prio);
1328 }
1329
1330 static inline void set_task_session(struct task_struct *tsk, pid_t session)
1331 {
1332 tsk->signal->__session = session;
1333 }
1334
1335 static inline void set_task_pgrp(struct task_struct *tsk, pid_t pgrp)
1336 {
1337 tsk->signal->__pgrp = pgrp;
1338 }
1339
1340 static inline struct pid *task_pid(struct task_struct *task)
1341 {
1342 return task->pids[PIDTYPE_PID].pid;
1343 }
1344
1345 static inline struct pid *task_tgid(struct task_struct *task)
1346 {
1347 return task->group_leader->pids[PIDTYPE_PID].pid;
1348 }
1349
1350 static inline struct pid *task_pgrp(struct task_struct *task)
1351 {
1352 return task->group_leader->pids[PIDTYPE_PGID].pid;
1353 }
1354
1355 static inline struct pid *task_session(struct task_struct *task)
1356 {
1357 return task->group_leader->pids[PIDTYPE_SID].pid;
1358 }
1359
1360 struct pid_namespace;
1361
1362 /*
1363 * the helpers to get the task's different pids as they are seen
1364 * from various namespaces
1365 *
1366 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1367 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1368 * current.
1369 * task_xid_nr_ns() : id seen from the ns specified;
1370 *
1371 * set_task_vxid() : assigns a virtual id to a task;
1372 *
1373 * see also pid_nr() etc in include/linux/pid.h
1374 */
1375
1376 static inline pid_t task_pid_nr(struct task_struct *tsk)
1377 {
1378 return tsk->pid;
1379 }
1380
1381 pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1382
1383 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1384 {
1385 return pid_vnr(task_pid(tsk));
1386 }
1387
1388
1389 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1390 {
1391 return tsk->tgid;
1392 }
1393
1394 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1395
1396 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1397 {
1398 return pid_vnr(task_tgid(tsk));
1399 }
1400
1401
1402 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1403 {
1404 return tsk->signal->__pgrp;
1405 }
1406
1407 pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1408
1409 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1410 {
1411 return pid_vnr(task_pgrp(tsk));
1412 }
1413
1414
1415 static inline pid_t task_session_nr(struct task_struct *tsk)
1416 {
1417 return tsk->signal->__session;
1418 }
1419
1420 pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1421
1422 static inline pid_t task_session_vnr(struct task_struct *tsk)
1423 {
1424 return pid_vnr(task_session(tsk));
1425 }
1426
1427
1428 /**
1429 * pid_alive - check that a task structure is not stale
1430 * @p: Task structure to be checked.
1431 *
1432 * Test if a process is not yet dead (at most zombie state)
1433 * If pid_alive fails, then pointers within the task structure
1434 * can be stale and must not be dereferenced.
1435 */
1436 static inline int pid_alive(struct task_struct *p)
1437 {
1438 return p->pids[PIDTYPE_PID].pid != NULL;
1439 }
1440
1441 /**
1442 * is_global_init - check if a task structure is init
1443 * @tsk: Task structure to be checked.
1444 *
1445 * Check if a task structure is the first user space task the kernel created.
1446 */
1447 static inline int is_global_init(struct task_struct *tsk)
1448 {
1449 return tsk->pid == 1;
1450 }
1451
1452 /*
1453 * is_container_init:
1454 * check whether in the task is init in its own pid namespace.
1455 */
1456 extern int is_container_init(struct task_struct *tsk);
1457
1458 extern struct pid *cad_pid;
1459
1460 extern void free_task(struct task_struct *tsk);
1461 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1462
1463 extern void __put_task_struct(struct task_struct *t);
1464
1465 static inline void put_task_struct(struct task_struct *t)
1466 {
1467 if (atomic_dec_and_test(&t->usage))
1468 __put_task_struct(t);
1469 }
1470
1471 /*
1472 * Per process flags
1473 */
1474 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1475 /* Not implemented yet, only for 486*/
1476 #define PF_STARTING 0x00000002 /* being created */
1477 #define PF_EXITING 0x00000004 /* getting shut down */
1478 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1479 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1480 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1481 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1482 #define PF_DUMPCORE 0x00000200 /* dumped core */
1483 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1484 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1485 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1486 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1487 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1488 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1489 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1490 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1491 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */
1492 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1493 #define PF_BORROWED_MM 0x00200000 /* I am a kthread doing use_mm */
1494 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1495 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1496 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1497 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1498 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1499 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1500 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1501
1502 /*
1503 * Only the _current_ task can read/write to tsk->flags, but other
1504 * tasks can access tsk->flags in readonly mode for example
1505 * with tsk_used_math (like during threaded core dumping).
1506 * There is however an exception to this rule during ptrace
1507 * or during fork: the ptracer task is allowed to write to the
1508 * child->flags of its traced child (same goes for fork, the parent
1509 * can write to the child->flags), because we're guaranteed the
1510 * child is not running and in turn not changing child->flags
1511 * at the same time the parent does it.
1512 */
1513 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1514 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1515 #define clear_used_math() clear_stopped_child_used_math(current)
1516 #define set_used_math() set_stopped_child_used_math(current)
1517 #define conditional_stopped_child_used_math(condition, child) \
1518 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1519 #define conditional_used_math(condition) \
1520 conditional_stopped_child_used_math(condition, current)
1521 #define copy_to_stopped_child_used_math(child) \
1522 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1523 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1524 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1525 #define used_math() tsk_used_math(current)
1526
1527 #ifdef CONFIG_SMP
1528 extern int set_cpus_allowed_ptr(struct task_struct *p,
1529 const cpumask_t *new_mask);
1530 #else
1531 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1532 const cpumask_t *new_mask)
1533 {
1534 if (!cpu_isset(0, *new_mask))
1535 return -EINVAL;
1536 return 0;
1537 }
1538 #endif
1539 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1540 {
1541 return set_cpus_allowed_ptr(p, &new_mask);
1542 }
1543
1544 extern unsigned long long sched_clock(void);
1545
1546 /*
1547 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1548 * clock constructed from sched_clock():
1549 */
1550 extern unsigned long long cpu_clock(int cpu);
1551
1552 extern unsigned long long
1553 task_sched_runtime(struct task_struct *task);
1554
1555 /* sched_exec is called by processes performing an exec */
1556 #ifdef CONFIG_SMP
1557 extern void sched_exec(void);
1558 #else
1559 #define sched_exec() {}
1560 #endif
1561
1562 extern void sched_clock_idle_sleep_event(void);
1563 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1564
1565 #ifdef CONFIG_HOTPLUG_CPU
1566 extern void idle_task_exit(void);
1567 #else
1568 static inline void idle_task_exit(void) {}
1569 #endif
1570
1571 extern void sched_idle_next(void);
1572
1573 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1574 extern void wake_up_idle_cpu(int cpu);
1575 #else
1576 static inline void wake_up_idle_cpu(int cpu) { }
1577 #endif
1578
1579 #ifdef CONFIG_SCHED_DEBUG
1580 extern unsigned int sysctl_sched_latency;
1581 extern unsigned int sysctl_sched_min_granularity;
1582 extern unsigned int sysctl_sched_wakeup_granularity;
1583 extern unsigned int sysctl_sched_child_runs_first;
1584 extern unsigned int sysctl_sched_features;
1585 extern unsigned int sysctl_sched_migration_cost;
1586 extern unsigned int sysctl_sched_nr_migrate;
1587
1588 int sched_nr_latency_handler(struct ctl_table *table, int write,
1589 struct file *file, void __user *buffer, size_t *length,
1590 loff_t *ppos);
1591 #endif
1592 extern unsigned int sysctl_sched_rt_period;
1593 extern int sysctl_sched_rt_runtime;
1594
1595 int sched_rt_handler(struct ctl_table *table, int write,
1596 struct file *filp, void __user *buffer, size_t *lenp,
1597 loff_t *ppos);
1598
1599 extern unsigned int sysctl_sched_compat_yield;
1600
1601 #ifdef CONFIG_RT_MUTEXES
1602 extern int rt_mutex_getprio(struct task_struct *p);
1603 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1604 extern void rt_mutex_adjust_pi(struct task_struct *p);
1605 #else
1606 static inline int rt_mutex_getprio(struct task_struct *p)
1607 {
1608 return p->normal_prio;
1609 }
1610 # define rt_mutex_adjust_pi(p) do { } while (0)
1611 #endif
1612
1613 extern void set_user_nice(struct task_struct *p, long nice);
1614 extern int task_prio(const struct task_struct *p);
1615 extern int task_nice(const struct task_struct *p);
1616 extern int can_nice(const struct task_struct *p, const int nice);
1617 extern int task_curr(const struct task_struct *p);
1618 extern int idle_cpu(int cpu);
1619 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1620 extern struct task_struct *idle_task(int cpu);
1621 extern struct task_struct *curr_task(int cpu);
1622 extern void set_curr_task(int cpu, struct task_struct *p);
1623
1624 void yield(void);
1625
1626 /*
1627 * The default (Linux) execution domain.
1628 */
1629 extern struct exec_domain default_exec_domain;
1630
1631 union thread_union {
1632 struct thread_info thread_info;
1633 unsigned long stack[THREAD_SIZE/sizeof(long)];
1634 };
1635
1636 #ifndef __HAVE_ARCH_KSTACK_END
1637 static inline int kstack_end(void *addr)
1638 {
1639 /* Reliable end of stack detection:
1640 * Some APM bios versions misalign the stack
1641 */
1642 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1643 }
1644 #endif
1645
1646 extern union thread_union init_thread_union;
1647 extern struct task_struct init_task;
1648
1649 extern struct mm_struct init_mm;
1650
1651 extern struct pid_namespace init_pid_ns;
1652
1653 /*
1654 * find a task by one of its numerical ids
1655 *
1656 * find_task_by_pid_type_ns():
1657 * it is the most generic call - it finds a task by all id,
1658 * type and namespace specified
1659 * find_task_by_pid_ns():
1660 * finds a task by its pid in the specified namespace
1661 * find_task_by_vpid():
1662 * finds a task by its virtual pid
1663 * find_task_by_pid():
1664 * finds a task by its global pid
1665 *
1666 * see also find_pid() etc in include/linux/pid.h
1667 */
1668
1669 extern struct task_struct *find_task_by_pid_type_ns(int type, int pid,
1670 struct pid_namespace *ns);
1671
1672 extern struct task_struct *find_task_by_pid(pid_t nr);
1673 extern struct task_struct *find_task_by_vpid(pid_t nr);
1674 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1675 struct pid_namespace *ns);
1676
1677 extern void __set_special_pids(struct pid *pid);
1678
1679 /* per-UID process charging. */
1680 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1681 static inline struct user_struct *get_uid(struct user_struct *u)
1682 {
1683 atomic_inc(&u->__count);
1684 return u;
1685 }
1686 extern void free_uid(struct user_struct *);
1687 extern void switch_uid(struct user_struct *);
1688 extern void release_uids(struct user_namespace *ns);
1689
1690 #include <asm/current.h>
1691
1692 extern void do_timer(unsigned long ticks);
1693
1694 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1695 extern int wake_up_process(struct task_struct *tsk);
1696 extern void wake_up_new_task(struct task_struct *tsk,
1697 unsigned long clone_flags);
1698 #ifdef CONFIG_SMP
1699 extern void kick_process(struct task_struct *tsk);
1700 #else
1701 static inline void kick_process(struct task_struct *tsk) { }
1702 #endif
1703 extern void sched_fork(struct task_struct *p, int clone_flags);
1704 extern void sched_dead(struct task_struct *p);
1705
1706 extern int in_group_p(gid_t);
1707 extern int in_egroup_p(gid_t);
1708
1709 extern void proc_caches_init(void);
1710 extern void flush_signals(struct task_struct *);
1711 extern void ignore_signals(struct task_struct *);
1712 extern void flush_signal_handlers(struct task_struct *, int force_default);
1713 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1714
1715 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1716 {
1717 unsigned long flags;
1718 int ret;
1719
1720 spin_lock_irqsave(&tsk->sighand->siglock, flags);
1721 ret = dequeue_signal(tsk, mask, info);
1722 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1723
1724 return ret;
1725 }
1726
1727 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1728 sigset_t *mask);
1729 extern void unblock_all_signals(void);
1730 extern void release_task(struct task_struct * p);
1731 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1732 extern int force_sigsegv(int, struct task_struct *);
1733 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1734 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1735 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
1736 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
1737 extern int kill_pgrp(struct pid *pid, int sig, int priv);
1738 extern int kill_pid(struct pid *pid, int sig, int priv);
1739 extern int kill_proc_info(int, struct siginfo *, pid_t);
1740 extern void do_notify_parent(struct task_struct *, int);
1741 extern void force_sig(int, struct task_struct *);
1742 extern void force_sig_specific(int, struct task_struct *);
1743 extern int send_sig(int, struct task_struct *, int);
1744 extern void zap_other_threads(struct task_struct *p);
1745 extern int kill_proc(pid_t, int, int);
1746 extern struct sigqueue *sigqueue_alloc(void);
1747 extern void sigqueue_free(struct sigqueue *);
1748 extern int send_sigqueue(int, struct sigqueue *, struct task_struct *);
1749 extern int send_group_sigqueue(int, struct sigqueue *, struct task_struct *);
1750 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1751 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1752
1753 static inline int kill_cad_pid(int sig, int priv)
1754 {
1755 return kill_pid(cad_pid, sig, priv);
1756 }
1757
1758 /* These can be the second arg to send_sig_info/send_group_sig_info. */
1759 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
1760 #define SEND_SIG_PRIV ((struct siginfo *) 1)
1761 #define SEND_SIG_FORCED ((struct siginfo *) 2)
1762
1763 static inline int is_si_special(const struct siginfo *info)
1764 {
1765 return info <= SEND_SIG_FORCED;
1766 }
1767
1768 /* True if we are on the alternate signal stack. */
1769
1770 static inline int on_sig_stack(unsigned long sp)
1771 {
1772 return (sp - current->sas_ss_sp < current->sas_ss_size);
1773 }
1774
1775 static inline int sas_ss_flags(unsigned long sp)
1776 {
1777 return (current->sas_ss_size == 0 ? SS_DISABLE
1778 : on_sig_stack(sp) ? SS_ONSTACK : 0);
1779 }
1780
1781 /*
1782 * Routines for handling mm_structs
1783 */
1784 extern struct mm_struct * mm_alloc(void);
1785
1786 /* mmdrop drops the mm and the page tables */
1787 extern void __mmdrop(struct mm_struct *);
1788 static inline void mmdrop(struct mm_struct * mm)
1789 {
1790 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1791 __mmdrop(mm);
1792 }
1793
1794 /* mmput gets rid of the mappings and all user-space */
1795 extern void mmput(struct mm_struct *);
1796 /* Grab a reference to a task's mm, if it is not already going away */
1797 extern struct mm_struct *get_task_mm(struct task_struct *task);
1798 /* Remove the current tasks stale references to the old mm_struct */
1799 extern void mm_release(struct task_struct *, struct mm_struct *);
1800 /* Allocate a new mm structure and copy contents from tsk->mm */
1801 extern struct mm_struct *dup_mm(struct task_struct *tsk);
1802
1803 extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
1804 extern void flush_thread(void);
1805 extern void exit_thread(void);
1806
1807 extern void exit_files(struct task_struct *);
1808 extern void __cleanup_signal(struct signal_struct *);
1809 extern void __cleanup_sighand(struct sighand_struct *);
1810 extern void exit_itimers(struct signal_struct *);
1811
1812 extern NORET_TYPE void do_group_exit(int);
1813
1814 extern void daemonize(const char *, ...);
1815 extern int allow_signal(int);
1816 extern int disallow_signal(int);
1817
1818 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
1819 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
1820 struct task_struct *fork_idle(int);
1821
1822 extern void set_task_comm(struct task_struct *tsk, char *from);
1823 extern char *get_task_comm(char *to, struct task_struct *tsk);
1824
1825 #ifdef CONFIG_SMP
1826 extern void wait_task_inactive(struct task_struct * p);
1827 #else
1828 #define wait_task_inactive(p) do { } while (0)
1829 #endif
1830
1831 #define remove_parent(p) list_del_init(&(p)->sibling)
1832 #define add_parent(p) list_add_tail(&(p)->sibling,&(p)->parent->children)
1833
1834 #define next_task(p) list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks)
1835
1836 #define for_each_process(p) \
1837 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
1838
1839 /*
1840 * Careful: do_each_thread/while_each_thread is a double loop so
1841 * 'break' will not work as expected - use goto instead.
1842 */
1843 #define do_each_thread(g, t) \
1844 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
1845
1846 #define while_each_thread(g, t) \
1847 while ((t = next_thread(t)) != g)
1848
1849 /* de_thread depends on thread_group_leader not being a pid based check */
1850 #define thread_group_leader(p) (p == p->group_leader)
1851
1852 /* Do to the insanities of de_thread it is possible for a process
1853 * to have the pid of the thread group leader without actually being
1854 * the thread group leader. For iteration through the pids in proc
1855 * all we care about is that we have a task with the appropriate
1856 * pid, we don't actually care if we have the right task.
1857 */
1858 static inline int has_group_leader_pid(struct task_struct *p)
1859 {
1860 return p->pid == p->tgid;
1861 }
1862
1863 static inline
1864 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
1865 {
1866 return p1->tgid == p2->tgid;
1867 }
1868
1869 static inline struct task_struct *next_thread(const struct task_struct *p)
1870 {
1871 return list_entry(rcu_dereference(p->thread_group.next),
1872 struct task_struct, thread_group);
1873 }
1874
1875 static inline int thread_group_empty(struct task_struct *p)
1876 {
1877 return list_empty(&p->thread_group);
1878 }
1879
1880 #define delay_group_leader(p) \
1881 (thread_group_leader(p) && !thread_group_empty(p))
1882
1883 /*
1884 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
1885 * subscriptions and synchronises with wait4(). Also used in procfs. Also
1886 * pins the final release of task.io_context. Also protects ->cpuset and
1887 * ->cgroup.subsys[].
1888 *
1889 * Nests both inside and outside of read_lock(&tasklist_lock).
1890 * It must not be nested with write_lock_irq(&tasklist_lock),
1891 * neither inside nor outside.
1892 */
1893 static inline void task_lock(struct task_struct *p)
1894 {
1895 spin_lock(&p->alloc_lock);
1896 }
1897
1898 static inline void task_unlock(struct task_struct *p)
1899 {
1900 spin_unlock(&p->alloc_lock);
1901 }
1902
1903 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
1904 unsigned long *flags);
1905
1906 static inline void unlock_task_sighand(struct task_struct *tsk,
1907 unsigned long *flags)
1908 {
1909 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
1910 }
1911
1912 #ifndef __HAVE_THREAD_FUNCTIONS
1913
1914 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
1915 #define task_stack_page(task) ((task)->stack)
1916
1917 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
1918 {
1919 *task_thread_info(p) = *task_thread_info(org);
1920 task_thread_info(p)->task = p;
1921 }
1922
1923 static inline unsigned long *end_of_stack(struct task_struct *p)
1924 {
1925 return (unsigned long *)(task_thread_info(p) + 1);
1926 }
1927
1928 #endif
1929
1930 extern void thread_info_cache_init(void);
1931
1932 /* set thread flags in other task's structures
1933 * - see asm/thread_info.h for TIF_xxxx flags available
1934 */
1935 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1936 {
1937 set_ti_thread_flag(task_thread_info(tsk), flag);
1938 }
1939
1940 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1941 {
1942 clear_ti_thread_flag(task_thread_info(tsk), flag);
1943 }
1944
1945 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1946 {
1947 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1948 }
1949
1950 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1951 {
1952 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1953 }
1954
1955 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1956 {
1957 return test_ti_thread_flag(task_thread_info(tsk), flag);
1958 }
1959
1960 static inline void set_tsk_need_resched(struct task_struct *tsk)
1961 {
1962 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1963 }
1964
1965 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1966 {
1967 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1968 }
1969
1970 static inline int signal_pending(struct task_struct *p)
1971 {
1972 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
1973 }
1974
1975 extern int __fatal_signal_pending(struct task_struct *p);
1976
1977 static inline int fatal_signal_pending(struct task_struct *p)
1978 {
1979 return signal_pending(p) && __fatal_signal_pending(p);
1980 }
1981
1982 static inline int need_resched(void)
1983 {
1984 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
1985 }
1986
1987 /*
1988 * cond_resched() and cond_resched_lock(): latency reduction via
1989 * explicit rescheduling in places that are safe. The return
1990 * value indicates whether a reschedule was done in fact.
1991 * cond_resched_lock() will drop the spinlock before scheduling,
1992 * cond_resched_softirq() will enable bhs before scheduling.
1993 */
1994 #ifdef CONFIG_PREEMPT
1995 static inline int cond_resched(void)
1996 {
1997 return 0;
1998 }
1999 #else
2000 extern int _cond_resched(void);
2001 static inline int cond_resched(void)
2002 {
2003 return _cond_resched();
2004 }
2005 #endif
2006 extern int cond_resched_lock(spinlock_t * lock);
2007 extern int cond_resched_softirq(void);
2008
2009 /*
2010 * Does a critical section need to be broken due to another
2011 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2012 * but a general need for low latency)
2013 */
2014 static inline int spin_needbreak(spinlock_t *lock)
2015 {
2016 #ifdef CONFIG_PREEMPT
2017 return spin_is_contended(lock);
2018 #else
2019 return 0;
2020 #endif
2021 }
2022
2023 /*
2024 * Reevaluate whether the task has signals pending delivery.
2025 * Wake the task if so.
2026 * This is required every time the blocked sigset_t changes.
2027 * callers must hold sighand->siglock.
2028 */
2029 extern void recalc_sigpending_and_wake(struct task_struct *t);
2030 extern void recalc_sigpending(void);
2031
2032 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2033
2034 /*
2035 * Wrappers for p->thread_info->cpu access. No-op on UP.
2036 */
2037 #ifdef CONFIG_SMP
2038
2039 static inline unsigned int task_cpu(const struct task_struct *p)
2040 {
2041 return task_thread_info(p)->cpu;
2042 }
2043
2044 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2045
2046 #else
2047
2048 static inline unsigned int task_cpu(const struct task_struct *p)
2049 {
2050 return 0;
2051 }
2052
2053 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2054 {
2055 }
2056
2057 #endif /* CONFIG_SMP */
2058
2059 #ifdef HAVE_ARCH_PICK_MMAP_LAYOUT
2060 extern void arch_pick_mmap_layout(struct mm_struct *mm);
2061 #else
2062 static inline void arch_pick_mmap_layout(struct mm_struct *mm)
2063 {
2064 mm->mmap_base = TASK_UNMAPPED_BASE;
2065 mm->get_unmapped_area = arch_get_unmapped_area;
2066 mm->unmap_area = arch_unmap_area;
2067 }
2068 #endif
2069
2070 extern long sched_setaffinity(pid_t pid, const cpumask_t *new_mask);
2071 extern long sched_getaffinity(pid_t pid, cpumask_t *mask);
2072
2073 extern int sched_mc_power_savings, sched_smt_power_savings;
2074
2075 extern void normalize_rt_tasks(void);
2076
2077 #ifdef CONFIG_GROUP_SCHED
2078
2079 extern struct task_group init_task_group;
2080 #ifdef CONFIG_USER_SCHED
2081 extern struct task_group root_task_group;
2082 #endif
2083
2084 extern struct task_group *sched_create_group(struct task_group *parent);
2085 extern void sched_destroy_group(struct task_group *tg);
2086 extern void sched_move_task(struct task_struct *tsk);
2087 #ifdef CONFIG_FAIR_GROUP_SCHED
2088 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2089 extern unsigned long sched_group_shares(struct task_group *tg);
2090 #endif
2091 #ifdef CONFIG_RT_GROUP_SCHED
2092 extern int sched_group_set_rt_runtime(struct task_group *tg,
2093 long rt_runtime_us);
2094 extern long sched_group_rt_runtime(struct task_group *tg);
2095 extern int sched_group_set_rt_period(struct task_group *tg,
2096 long rt_period_us);
2097 extern long sched_group_rt_period(struct task_group *tg);
2098 #endif
2099 #endif
2100
2101 #ifdef CONFIG_TASK_XACCT
2102 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2103 {
2104 tsk->rchar += amt;
2105 }
2106
2107 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2108 {
2109 tsk->wchar += amt;
2110 }
2111
2112 static inline void inc_syscr(struct task_struct *tsk)
2113 {
2114 tsk->syscr++;
2115 }
2116
2117 static inline void inc_syscw(struct task_struct *tsk)
2118 {
2119 tsk->syscw++;
2120 }
2121 #else
2122 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2123 {
2124 }
2125
2126 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2127 {
2128 }
2129
2130 static inline void inc_syscr(struct task_struct *tsk)
2131 {
2132 }
2133
2134 static inline void inc_syscw(struct task_struct *tsk)
2135 {
2136 }
2137 #endif
2138
2139 #ifdef CONFIG_SMP
2140 void migration_init(void);
2141 #else
2142 static inline void migration_init(void)
2143 {
2144 }
2145 #endif
2146
2147 #ifndef TASK_SIZE_OF
2148 #define TASK_SIZE_OF(tsk) TASK_SIZE
2149 #endif
2150
2151 #ifdef CONFIG_MM_OWNER
2152 extern void mm_update_next_owner(struct mm_struct *mm);
2153 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2154 #else
2155 static inline void mm_update_next_owner(struct mm_struct *mm)
2156 {
2157 }
2158
2159 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2160 {
2161 }
2162 #endif /* CONFIG_MM_OWNER */
2163
2164 #endif /* __KERNEL__ */
2165
2166 #endif
This page took 0.077882 seconds and 6 git commands to generate.