Merge branch 'irq-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
29 #define CLONE_NEWNET 0x40000000 /* New network namespace */
30 #define CLONE_IO 0x80000000 /* Clone io context */
31
32 /*
33 * Scheduling policies
34 */
35 #define SCHED_NORMAL 0
36 #define SCHED_FIFO 1
37 #define SCHED_RR 2
38 #define SCHED_BATCH 3
39 /* SCHED_ISO: reserved but not implemented yet */
40 #define SCHED_IDLE 5
41
42 #ifdef __KERNEL__
43
44 struct sched_param {
45 int sched_priority;
46 };
47
48 #include <asm/param.h> /* for HZ */
49
50 #include <linux/capability.h>
51 #include <linux/threads.h>
52 #include <linux/kernel.h>
53 #include <linux/types.h>
54 #include <linux/timex.h>
55 #include <linux/jiffies.h>
56 #include <linux/rbtree.h>
57 #include <linux/thread_info.h>
58 #include <linux/cpumask.h>
59 #include <linux/errno.h>
60 #include <linux/nodemask.h>
61 #include <linux/mm_types.h>
62
63 #include <asm/system.h>
64 #include <asm/page.h>
65 #include <asm/ptrace.h>
66 #include <asm/cputime.h>
67
68 #include <linux/smp.h>
69 #include <linux/sem.h>
70 #include <linux/signal.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compiler.h>
73 #include <linux/completion.h>
74 #include <linux/pid.h>
75 #include <linux/percpu.h>
76 #include <linux/topology.h>
77 #include <linux/proportions.h>
78 #include <linux/seccomp.h>
79 #include <linux/rcupdate.h>
80 #include <linux/rtmutex.h>
81
82 #include <linux/time.h>
83 #include <linux/param.h>
84 #include <linux/resource.h>
85 #include <linux/timer.h>
86 #include <linux/hrtimer.h>
87 #include <linux/task_io_accounting.h>
88 #include <linux/kobject.h>
89 #include <linux/latencytop.h>
90 #include <linux/cred.h>
91
92 #include <asm/processor.h>
93
94 struct mem_cgroup;
95 struct exec_domain;
96 struct futex_pi_state;
97 struct robust_list_head;
98 struct bio;
99 struct bts_tracer;
100
101 /*
102 * List of flags we want to share for kernel threads,
103 * if only because they are not used by them anyway.
104 */
105 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
106
107 /*
108 * These are the constant used to fake the fixed-point load-average
109 * counting. Some notes:
110 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
111 * a load-average precision of 10 bits integer + 11 bits fractional
112 * - if you want to count load-averages more often, you need more
113 * precision, or rounding will get you. With 2-second counting freq,
114 * the EXP_n values would be 1981, 2034 and 2043 if still using only
115 * 11 bit fractions.
116 */
117 extern unsigned long avenrun[]; /* Load averages */
118
119 #define FSHIFT 11 /* nr of bits of precision */
120 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
121 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
122 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
123 #define EXP_5 2014 /* 1/exp(5sec/5min) */
124 #define EXP_15 2037 /* 1/exp(5sec/15min) */
125
126 #define CALC_LOAD(load,exp,n) \
127 load *= exp; \
128 load += n*(FIXED_1-exp); \
129 load >>= FSHIFT;
130
131 extern unsigned long total_forks;
132 extern int nr_threads;
133 DECLARE_PER_CPU(unsigned long, process_counts);
134 extern int nr_processes(void);
135 extern unsigned long nr_running(void);
136 extern unsigned long nr_uninterruptible(void);
137 extern unsigned long nr_active(void);
138 extern unsigned long nr_iowait(void);
139
140 struct seq_file;
141 struct cfs_rq;
142 struct task_group;
143 #ifdef CONFIG_SCHED_DEBUG
144 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
145 extern void proc_sched_set_task(struct task_struct *p);
146 extern void
147 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
148 #else
149 static inline void
150 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
151 {
152 }
153 static inline void proc_sched_set_task(struct task_struct *p)
154 {
155 }
156 static inline void
157 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
158 {
159 }
160 #endif
161
162 extern unsigned long long time_sync_thresh;
163
164 /*
165 * Task state bitmask. NOTE! These bits are also
166 * encoded in fs/proc/array.c: get_task_state().
167 *
168 * We have two separate sets of flags: task->state
169 * is about runnability, while task->exit_state are
170 * about the task exiting. Confusing, but this way
171 * modifying one set can't modify the other one by
172 * mistake.
173 */
174 #define TASK_RUNNING 0
175 #define TASK_INTERRUPTIBLE 1
176 #define TASK_UNINTERRUPTIBLE 2
177 #define __TASK_STOPPED 4
178 #define __TASK_TRACED 8
179 /* in tsk->exit_state */
180 #define EXIT_ZOMBIE 16
181 #define EXIT_DEAD 32
182 /* in tsk->state again */
183 #define TASK_DEAD 64
184 #define TASK_WAKEKILL 128
185
186 /* Convenience macros for the sake of set_task_state */
187 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
188 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
189 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
190
191 /* Convenience macros for the sake of wake_up */
192 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
193 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
194
195 /* get_task_state() */
196 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
197 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
198 __TASK_TRACED)
199
200 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
201 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
202 #define task_is_stopped_or_traced(task) \
203 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
204 #define task_contributes_to_load(task) \
205 ((task->state & TASK_UNINTERRUPTIBLE) != 0)
206
207 #define __set_task_state(tsk, state_value) \
208 do { (tsk)->state = (state_value); } while (0)
209 #define set_task_state(tsk, state_value) \
210 set_mb((tsk)->state, (state_value))
211
212 /*
213 * set_current_state() includes a barrier so that the write of current->state
214 * is correctly serialised wrt the caller's subsequent test of whether to
215 * actually sleep:
216 *
217 * set_current_state(TASK_UNINTERRUPTIBLE);
218 * if (do_i_need_to_sleep())
219 * schedule();
220 *
221 * If the caller does not need such serialisation then use __set_current_state()
222 */
223 #define __set_current_state(state_value) \
224 do { current->state = (state_value); } while (0)
225 #define set_current_state(state_value) \
226 set_mb(current->state, (state_value))
227
228 /* Task command name length */
229 #define TASK_COMM_LEN 16
230
231 #include <linux/spinlock.h>
232
233 /*
234 * This serializes "schedule()" and also protects
235 * the run-queue from deletions/modifications (but
236 * _adding_ to the beginning of the run-queue has
237 * a separate lock).
238 */
239 extern rwlock_t tasklist_lock;
240 extern spinlock_t mmlist_lock;
241
242 struct task_struct;
243
244 extern void sched_init(void);
245 extern void sched_init_smp(void);
246 extern asmlinkage void schedule_tail(struct task_struct *prev);
247 extern void init_idle(struct task_struct *idle, int cpu);
248 extern void init_idle_bootup_task(struct task_struct *idle);
249
250 extern int runqueue_is_locked(void);
251 extern void task_rq_unlock_wait(struct task_struct *p);
252
253 extern cpumask_var_t nohz_cpu_mask;
254 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
255 extern int select_nohz_load_balancer(int cpu);
256 #else
257 static inline int select_nohz_load_balancer(int cpu)
258 {
259 return 0;
260 }
261 #endif
262
263 /*
264 * Only dump TASK_* tasks. (0 for all tasks)
265 */
266 extern void show_state_filter(unsigned long state_filter);
267
268 static inline void show_state(void)
269 {
270 show_state_filter(0);
271 }
272
273 extern void show_regs(struct pt_regs *);
274
275 /*
276 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
277 * task), SP is the stack pointer of the first frame that should be shown in the back
278 * trace (or NULL if the entire call-chain of the task should be shown).
279 */
280 extern void show_stack(struct task_struct *task, unsigned long *sp);
281
282 void io_schedule(void);
283 long io_schedule_timeout(long timeout);
284
285 extern void cpu_init (void);
286 extern void trap_init(void);
287 extern void update_process_times(int user);
288 extern void scheduler_tick(void);
289
290 extern void sched_show_task(struct task_struct *p);
291
292 #ifdef CONFIG_DETECT_SOFTLOCKUP
293 extern void softlockup_tick(void);
294 extern void touch_softlockup_watchdog(void);
295 extern void touch_all_softlockup_watchdogs(void);
296 extern unsigned int softlockup_panic;
297 extern unsigned long sysctl_hung_task_check_count;
298 extern unsigned long sysctl_hung_task_timeout_secs;
299 extern unsigned long sysctl_hung_task_warnings;
300 extern int softlockup_thresh;
301 #else
302 static inline void softlockup_tick(void)
303 {
304 }
305 static inline void spawn_softlockup_task(void)
306 {
307 }
308 static inline void touch_softlockup_watchdog(void)
309 {
310 }
311 static inline void touch_all_softlockup_watchdogs(void)
312 {
313 }
314 #endif
315
316
317 /* Attach to any functions which should be ignored in wchan output. */
318 #define __sched __attribute__((__section__(".sched.text")))
319
320 /* Linker adds these: start and end of __sched functions */
321 extern char __sched_text_start[], __sched_text_end[];
322
323 /* Is this address in the __sched functions? */
324 extern int in_sched_functions(unsigned long addr);
325
326 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
327 extern signed long schedule_timeout(signed long timeout);
328 extern signed long schedule_timeout_interruptible(signed long timeout);
329 extern signed long schedule_timeout_killable(signed long timeout);
330 extern signed long schedule_timeout_uninterruptible(signed long timeout);
331 asmlinkage void schedule(void);
332
333 struct nsproxy;
334 struct user_namespace;
335
336 /* Maximum number of active map areas.. This is a random (large) number */
337 #define DEFAULT_MAX_MAP_COUNT 65536
338
339 extern int sysctl_max_map_count;
340
341 #include <linux/aio.h>
342
343 extern unsigned long
344 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
345 unsigned long, unsigned long);
346 extern unsigned long
347 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
348 unsigned long len, unsigned long pgoff,
349 unsigned long flags);
350 extern void arch_unmap_area(struct mm_struct *, unsigned long);
351 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
352
353 #if USE_SPLIT_PTLOCKS
354 /*
355 * The mm counters are not protected by its page_table_lock,
356 * so must be incremented atomically.
357 */
358 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
359 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
360 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
361 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
362 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
363
364 #else /* !USE_SPLIT_PTLOCKS */
365 /*
366 * The mm counters are protected by its page_table_lock,
367 * so can be incremented directly.
368 */
369 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
370 #define get_mm_counter(mm, member) ((mm)->_##member)
371 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
372 #define inc_mm_counter(mm, member) (mm)->_##member++
373 #define dec_mm_counter(mm, member) (mm)->_##member--
374
375 #endif /* !USE_SPLIT_PTLOCKS */
376
377 #define get_mm_rss(mm) \
378 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
379 #define update_hiwater_rss(mm) do { \
380 unsigned long _rss = get_mm_rss(mm); \
381 if ((mm)->hiwater_rss < _rss) \
382 (mm)->hiwater_rss = _rss; \
383 } while (0)
384 #define update_hiwater_vm(mm) do { \
385 if ((mm)->hiwater_vm < (mm)->total_vm) \
386 (mm)->hiwater_vm = (mm)->total_vm; \
387 } while (0)
388
389 #define get_mm_hiwater_rss(mm) max((mm)->hiwater_rss, get_mm_rss(mm))
390 #define get_mm_hiwater_vm(mm) max((mm)->hiwater_vm, (mm)->total_vm)
391
392 extern void set_dumpable(struct mm_struct *mm, int value);
393 extern int get_dumpable(struct mm_struct *mm);
394
395 /* mm flags */
396 /* dumpable bits */
397 #define MMF_DUMPABLE 0 /* core dump is permitted */
398 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
399 #define MMF_DUMPABLE_BITS 2
400
401 /* coredump filter bits */
402 #define MMF_DUMP_ANON_PRIVATE 2
403 #define MMF_DUMP_ANON_SHARED 3
404 #define MMF_DUMP_MAPPED_PRIVATE 4
405 #define MMF_DUMP_MAPPED_SHARED 5
406 #define MMF_DUMP_ELF_HEADERS 6
407 #define MMF_DUMP_HUGETLB_PRIVATE 7
408 #define MMF_DUMP_HUGETLB_SHARED 8
409 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
410 #define MMF_DUMP_FILTER_BITS 7
411 #define MMF_DUMP_FILTER_MASK \
412 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
413 #define MMF_DUMP_FILTER_DEFAULT \
414 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
415 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
416
417 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
418 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
419 #else
420 # define MMF_DUMP_MASK_DEFAULT_ELF 0
421 #endif
422
423 struct sighand_struct {
424 atomic_t count;
425 struct k_sigaction action[_NSIG];
426 spinlock_t siglock;
427 wait_queue_head_t signalfd_wqh;
428 };
429
430 struct pacct_struct {
431 int ac_flag;
432 long ac_exitcode;
433 unsigned long ac_mem;
434 cputime_t ac_utime, ac_stime;
435 unsigned long ac_minflt, ac_majflt;
436 };
437
438 /**
439 * struct task_cputime - collected CPU time counts
440 * @utime: time spent in user mode, in &cputime_t units
441 * @stime: time spent in kernel mode, in &cputime_t units
442 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
443 *
444 * This structure groups together three kinds of CPU time that are
445 * tracked for threads and thread groups. Most things considering
446 * CPU time want to group these counts together and treat all three
447 * of them in parallel.
448 */
449 struct task_cputime {
450 cputime_t utime;
451 cputime_t stime;
452 unsigned long long sum_exec_runtime;
453 };
454 /* Alternate field names when used to cache expirations. */
455 #define prof_exp stime
456 #define virt_exp utime
457 #define sched_exp sum_exec_runtime
458
459 /**
460 * struct thread_group_cputime - thread group interval timer counts
461 * @totals: thread group interval timers; substructure for
462 * uniprocessor kernel, per-cpu for SMP kernel.
463 *
464 * This structure contains the version of task_cputime, above, that is
465 * used for thread group CPU clock calculations.
466 */
467 struct thread_group_cputime {
468 struct task_cputime *totals;
469 };
470
471 /*
472 * NOTE! "signal_struct" does not have it's own
473 * locking, because a shared signal_struct always
474 * implies a shared sighand_struct, so locking
475 * sighand_struct is always a proper superset of
476 * the locking of signal_struct.
477 */
478 struct signal_struct {
479 atomic_t count;
480 atomic_t live;
481
482 wait_queue_head_t wait_chldexit; /* for wait4() */
483
484 /* current thread group signal load-balancing target: */
485 struct task_struct *curr_target;
486
487 /* shared signal handling: */
488 struct sigpending shared_pending;
489
490 /* thread group exit support */
491 int group_exit_code;
492 /* overloaded:
493 * - notify group_exit_task when ->count is equal to notify_count
494 * - everyone except group_exit_task is stopped during signal delivery
495 * of fatal signals, group_exit_task processes the signal.
496 */
497 int notify_count;
498 struct task_struct *group_exit_task;
499
500 /* thread group stop support, overloads group_exit_code too */
501 int group_stop_count;
502 unsigned int flags; /* see SIGNAL_* flags below */
503
504 /* POSIX.1b Interval Timers */
505 struct list_head posix_timers;
506
507 /* ITIMER_REAL timer for the process */
508 struct hrtimer real_timer;
509 struct pid *leader_pid;
510 ktime_t it_real_incr;
511
512 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
513 cputime_t it_prof_expires, it_virt_expires;
514 cputime_t it_prof_incr, it_virt_incr;
515
516 /*
517 * Thread group totals for process CPU clocks.
518 * See thread_group_cputime(), et al, for details.
519 */
520 struct thread_group_cputime cputime;
521
522 /* Earliest-expiration cache. */
523 struct task_cputime cputime_expires;
524
525 struct list_head cpu_timers[3];
526
527 /* job control IDs */
528
529 /*
530 * pgrp and session fields are deprecated.
531 * use the task_session_Xnr and task_pgrp_Xnr routines below
532 */
533
534 union {
535 pid_t pgrp __deprecated;
536 pid_t __pgrp;
537 };
538
539 struct pid *tty_old_pgrp;
540
541 union {
542 pid_t session __deprecated;
543 pid_t __session;
544 };
545
546 /* boolean value for session group leader */
547 int leader;
548
549 struct tty_struct *tty; /* NULL if no tty */
550
551 /*
552 * Cumulative resource counters for dead threads in the group,
553 * and for reaped dead child processes forked by this group.
554 * Live threads maintain their own counters and add to these
555 * in __exit_signal, except for the group leader.
556 */
557 cputime_t cutime, cstime;
558 cputime_t gtime;
559 cputime_t cgtime;
560 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
561 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
562 unsigned long inblock, oublock, cinblock, coublock;
563 struct task_io_accounting ioac;
564
565 /*
566 * We don't bother to synchronize most readers of this at all,
567 * because there is no reader checking a limit that actually needs
568 * to get both rlim_cur and rlim_max atomically, and either one
569 * alone is a single word that can safely be read normally.
570 * getrlimit/setrlimit use task_lock(current->group_leader) to
571 * protect this instead of the siglock, because they really
572 * have no need to disable irqs.
573 */
574 struct rlimit rlim[RLIM_NLIMITS];
575
576 #ifdef CONFIG_BSD_PROCESS_ACCT
577 struct pacct_struct pacct; /* per-process accounting information */
578 #endif
579 #ifdef CONFIG_TASKSTATS
580 struct taskstats *stats;
581 #endif
582 #ifdef CONFIG_AUDIT
583 unsigned audit_tty;
584 struct tty_audit_buf *tty_audit_buf;
585 #endif
586 };
587
588 /* Context switch must be unlocked if interrupts are to be enabled */
589 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
590 # define __ARCH_WANT_UNLOCKED_CTXSW
591 #endif
592
593 /*
594 * Bits in flags field of signal_struct.
595 */
596 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
597 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
598 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
599 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
600 /*
601 * Pending notifications to parent.
602 */
603 #define SIGNAL_CLD_STOPPED 0x00000010
604 #define SIGNAL_CLD_CONTINUED 0x00000020
605 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
606
607 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
608
609 /* If true, all threads except ->group_exit_task have pending SIGKILL */
610 static inline int signal_group_exit(const struct signal_struct *sig)
611 {
612 return (sig->flags & SIGNAL_GROUP_EXIT) ||
613 (sig->group_exit_task != NULL);
614 }
615
616 /*
617 * Some day this will be a full-fledged user tracking system..
618 */
619 struct user_struct {
620 atomic_t __count; /* reference count */
621 atomic_t processes; /* How many processes does this user have? */
622 atomic_t files; /* How many open files does this user have? */
623 atomic_t sigpending; /* How many pending signals does this user have? */
624 #ifdef CONFIG_INOTIFY_USER
625 atomic_t inotify_watches; /* How many inotify watches does this user have? */
626 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
627 #endif
628 #ifdef CONFIG_EPOLL
629 atomic_t epoll_devs; /* The number of epoll descriptors currently open */
630 atomic_t epoll_watches; /* The number of file descriptors currently watched */
631 #endif
632 #ifdef CONFIG_POSIX_MQUEUE
633 /* protected by mq_lock */
634 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
635 #endif
636 unsigned long locked_shm; /* How many pages of mlocked shm ? */
637
638 #ifdef CONFIG_KEYS
639 struct key *uid_keyring; /* UID specific keyring */
640 struct key *session_keyring; /* UID's default session keyring */
641 #endif
642
643 /* Hash table maintenance information */
644 struct hlist_node uidhash_node;
645 uid_t uid;
646 struct user_namespace *user_ns;
647
648 #ifdef CONFIG_USER_SCHED
649 struct task_group *tg;
650 #ifdef CONFIG_SYSFS
651 struct kobject kobj;
652 struct work_struct work;
653 #endif
654 #endif
655 };
656
657 extern int uids_sysfs_init(void);
658
659 extern struct user_struct *find_user(uid_t);
660
661 extern struct user_struct root_user;
662 #define INIT_USER (&root_user)
663
664
665 struct backing_dev_info;
666 struct reclaim_state;
667
668 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
669 struct sched_info {
670 /* cumulative counters */
671 unsigned long pcount; /* # of times run on this cpu */
672 unsigned long long run_delay; /* time spent waiting on a runqueue */
673
674 /* timestamps */
675 unsigned long long last_arrival,/* when we last ran on a cpu */
676 last_queued; /* when we were last queued to run */
677 #ifdef CONFIG_SCHEDSTATS
678 /* BKL stats */
679 unsigned int bkl_count;
680 #endif
681 };
682 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
683
684 #ifdef CONFIG_TASK_DELAY_ACCT
685 struct task_delay_info {
686 spinlock_t lock;
687 unsigned int flags; /* Private per-task flags */
688
689 /* For each stat XXX, add following, aligned appropriately
690 *
691 * struct timespec XXX_start, XXX_end;
692 * u64 XXX_delay;
693 * u32 XXX_count;
694 *
695 * Atomicity of updates to XXX_delay, XXX_count protected by
696 * single lock above (split into XXX_lock if contention is an issue).
697 */
698
699 /*
700 * XXX_count is incremented on every XXX operation, the delay
701 * associated with the operation is added to XXX_delay.
702 * XXX_delay contains the accumulated delay time in nanoseconds.
703 */
704 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
705 u64 blkio_delay; /* wait for sync block io completion */
706 u64 swapin_delay; /* wait for swapin block io completion */
707 u32 blkio_count; /* total count of the number of sync block */
708 /* io operations performed */
709 u32 swapin_count; /* total count of the number of swapin block */
710 /* io operations performed */
711
712 struct timespec freepages_start, freepages_end;
713 u64 freepages_delay; /* wait for memory reclaim */
714 u32 freepages_count; /* total count of memory reclaim */
715 };
716 #endif /* CONFIG_TASK_DELAY_ACCT */
717
718 static inline int sched_info_on(void)
719 {
720 #ifdef CONFIG_SCHEDSTATS
721 return 1;
722 #elif defined(CONFIG_TASK_DELAY_ACCT)
723 extern int delayacct_on;
724 return delayacct_on;
725 #else
726 return 0;
727 #endif
728 }
729
730 enum cpu_idle_type {
731 CPU_IDLE,
732 CPU_NOT_IDLE,
733 CPU_NEWLY_IDLE,
734 CPU_MAX_IDLE_TYPES
735 };
736
737 /*
738 * sched-domains (multiprocessor balancing) declarations:
739 */
740
741 /*
742 * Increase resolution of nice-level calculations:
743 */
744 #define SCHED_LOAD_SHIFT 10
745 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
746
747 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
748
749 #ifdef CONFIG_SMP
750 #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */
751 #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */
752 #define SD_BALANCE_EXEC 4 /* Balance on exec */
753 #define SD_BALANCE_FORK 8 /* Balance on fork, clone */
754 #define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */
755 #define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */
756 #define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */
757 #define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */
758 #define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */
759 #define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */
760 #define SD_SERIALIZE 1024 /* Only a single load balancing instance */
761 #define SD_WAKE_IDLE_FAR 2048 /* Gain latency sacrificing cache hit */
762
763 enum powersavings_balance_level {
764 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */
765 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package
766 * first for long running threads
767 */
768 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle
769 * cpu package for power savings
770 */
771 MAX_POWERSAVINGS_BALANCE_LEVELS
772 };
773
774 extern int sched_mc_power_savings, sched_smt_power_savings;
775
776 static inline int sd_balance_for_mc_power(void)
777 {
778 if (sched_smt_power_savings)
779 return SD_POWERSAVINGS_BALANCE;
780
781 return 0;
782 }
783
784 static inline int sd_balance_for_package_power(void)
785 {
786 if (sched_mc_power_savings | sched_smt_power_savings)
787 return SD_POWERSAVINGS_BALANCE;
788
789 return 0;
790 }
791
792 /*
793 * Optimise SD flags for power savings:
794 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings.
795 * Keep default SD flags if sched_{smt,mc}_power_saving=0
796 */
797
798 static inline int sd_power_saving_flags(void)
799 {
800 if (sched_mc_power_savings | sched_smt_power_savings)
801 return SD_BALANCE_NEWIDLE;
802
803 return 0;
804 }
805
806 struct sched_group {
807 struct sched_group *next; /* Must be a circular list */
808
809 /*
810 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
811 * single CPU. This is read only (except for setup, hotplug CPU).
812 * Note : Never change cpu_power without recompute its reciprocal
813 */
814 unsigned int __cpu_power;
815 /*
816 * reciprocal value of cpu_power to avoid expensive divides
817 * (see include/linux/reciprocal_div.h)
818 */
819 u32 reciprocal_cpu_power;
820
821 unsigned long cpumask[];
822 };
823
824 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
825 {
826 return to_cpumask(sg->cpumask);
827 }
828
829 enum sched_domain_level {
830 SD_LV_NONE = 0,
831 SD_LV_SIBLING,
832 SD_LV_MC,
833 SD_LV_CPU,
834 SD_LV_NODE,
835 SD_LV_ALLNODES,
836 SD_LV_MAX
837 };
838
839 struct sched_domain_attr {
840 int relax_domain_level;
841 };
842
843 #define SD_ATTR_INIT (struct sched_domain_attr) { \
844 .relax_domain_level = -1, \
845 }
846
847 struct sched_domain {
848 /* These fields must be setup */
849 struct sched_domain *parent; /* top domain must be null terminated */
850 struct sched_domain *child; /* bottom domain must be null terminated */
851 struct sched_group *groups; /* the balancing groups of the domain */
852 unsigned long min_interval; /* Minimum balance interval ms */
853 unsigned long max_interval; /* Maximum balance interval ms */
854 unsigned int busy_factor; /* less balancing by factor if busy */
855 unsigned int imbalance_pct; /* No balance until over watermark */
856 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
857 unsigned int busy_idx;
858 unsigned int idle_idx;
859 unsigned int newidle_idx;
860 unsigned int wake_idx;
861 unsigned int forkexec_idx;
862 int flags; /* See SD_* */
863 enum sched_domain_level level;
864
865 /* Runtime fields. */
866 unsigned long last_balance; /* init to jiffies. units in jiffies */
867 unsigned int balance_interval; /* initialise to 1. units in ms. */
868 unsigned int nr_balance_failed; /* initialise to 0 */
869
870 u64 last_update;
871
872 #ifdef CONFIG_SCHEDSTATS
873 /* load_balance() stats */
874 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
875 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
876 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
877 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
878 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
879 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
880 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
881 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
882
883 /* Active load balancing */
884 unsigned int alb_count;
885 unsigned int alb_failed;
886 unsigned int alb_pushed;
887
888 /* SD_BALANCE_EXEC stats */
889 unsigned int sbe_count;
890 unsigned int sbe_balanced;
891 unsigned int sbe_pushed;
892
893 /* SD_BALANCE_FORK stats */
894 unsigned int sbf_count;
895 unsigned int sbf_balanced;
896 unsigned int sbf_pushed;
897
898 /* try_to_wake_up() stats */
899 unsigned int ttwu_wake_remote;
900 unsigned int ttwu_move_affine;
901 unsigned int ttwu_move_balance;
902 #endif
903 #ifdef CONFIG_SCHED_DEBUG
904 char *name;
905 #endif
906
907 /* span of all CPUs in this domain */
908 unsigned long span[];
909 };
910
911 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
912 {
913 return to_cpumask(sd->span);
914 }
915
916 extern void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
917 struct sched_domain_attr *dattr_new);
918 extern int arch_reinit_sched_domains(void);
919
920 /* Test a flag in parent sched domain */
921 static inline int test_sd_parent(struct sched_domain *sd, int flag)
922 {
923 if (sd->parent && (sd->parent->flags & flag))
924 return 1;
925
926 return 0;
927 }
928
929 #else /* CONFIG_SMP */
930
931 struct sched_domain_attr;
932
933 static inline void
934 partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
935 struct sched_domain_attr *dattr_new)
936 {
937 }
938 #endif /* !CONFIG_SMP */
939
940 struct io_context; /* See blkdev.h */
941
942
943 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
944 extern void prefetch_stack(struct task_struct *t);
945 #else
946 static inline void prefetch_stack(struct task_struct *t) { }
947 #endif
948
949 struct audit_context; /* See audit.c */
950 struct mempolicy;
951 struct pipe_inode_info;
952 struct uts_namespace;
953
954 struct rq;
955 struct sched_domain;
956
957 struct sched_class {
958 const struct sched_class *next;
959
960 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
961 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
962 void (*yield_task) (struct rq *rq);
963
964 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int sync);
965
966 struct task_struct * (*pick_next_task) (struct rq *rq);
967 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
968
969 #ifdef CONFIG_SMP
970 int (*select_task_rq)(struct task_struct *p, int sync);
971
972 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
973 struct rq *busiest, unsigned long max_load_move,
974 struct sched_domain *sd, enum cpu_idle_type idle,
975 int *all_pinned, int *this_best_prio);
976
977 int (*move_one_task) (struct rq *this_rq, int this_cpu,
978 struct rq *busiest, struct sched_domain *sd,
979 enum cpu_idle_type idle);
980 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
981 void (*post_schedule) (struct rq *this_rq);
982 void (*task_wake_up) (struct rq *this_rq, struct task_struct *task);
983
984 void (*set_cpus_allowed)(struct task_struct *p,
985 const struct cpumask *newmask);
986
987 void (*rq_online)(struct rq *rq);
988 void (*rq_offline)(struct rq *rq);
989 #endif
990
991 void (*set_curr_task) (struct rq *rq);
992 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
993 void (*task_new) (struct rq *rq, struct task_struct *p);
994
995 void (*switched_from) (struct rq *this_rq, struct task_struct *task,
996 int running);
997 void (*switched_to) (struct rq *this_rq, struct task_struct *task,
998 int running);
999 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1000 int oldprio, int running);
1001
1002 #ifdef CONFIG_FAIR_GROUP_SCHED
1003 void (*moved_group) (struct task_struct *p);
1004 #endif
1005 };
1006
1007 struct load_weight {
1008 unsigned long weight, inv_weight;
1009 };
1010
1011 /*
1012 * CFS stats for a schedulable entity (task, task-group etc)
1013 *
1014 * Current field usage histogram:
1015 *
1016 * 4 se->block_start
1017 * 4 se->run_node
1018 * 4 se->sleep_start
1019 * 6 se->load.weight
1020 */
1021 struct sched_entity {
1022 struct load_weight load; /* for load-balancing */
1023 struct rb_node run_node;
1024 struct list_head group_node;
1025 unsigned int on_rq;
1026
1027 u64 exec_start;
1028 u64 sum_exec_runtime;
1029 u64 vruntime;
1030 u64 prev_sum_exec_runtime;
1031
1032 u64 last_wakeup;
1033 u64 avg_overlap;
1034
1035 #ifdef CONFIG_SCHEDSTATS
1036 u64 wait_start;
1037 u64 wait_max;
1038 u64 wait_count;
1039 u64 wait_sum;
1040
1041 u64 sleep_start;
1042 u64 sleep_max;
1043 s64 sum_sleep_runtime;
1044
1045 u64 block_start;
1046 u64 block_max;
1047 u64 exec_max;
1048 u64 slice_max;
1049
1050 u64 nr_migrations;
1051 u64 nr_migrations_cold;
1052 u64 nr_failed_migrations_affine;
1053 u64 nr_failed_migrations_running;
1054 u64 nr_failed_migrations_hot;
1055 u64 nr_forced_migrations;
1056 u64 nr_forced2_migrations;
1057
1058 u64 nr_wakeups;
1059 u64 nr_wakeups_sync;
1060 u64 nr_wakeups_migrate;
1061 u64 nr_wakeups_local;
1062 u64 nr_wakeups_remote;
1063 u64 nr_wakeups_affine;
1064 u64 nr_wakeups_affine_attempts;
1065 u64 nr_wakeups_passive;
1066 u64 nr_wakeups_idle;
1067 #endif
1068
1069 #ifdef CONFIG_FAIR_GROUP_SCHED
1070 struct sched_entity *parent;
1071 /* rq on which this entity is (to be) queued: */
1072 struct cfs_rq *cfs_rq;
1073 /* rq "owned" by this entity/group: */
1074 struct cfs_rq *my_q;
1075 #endif
1076 };
1077
1078 struct sched_rt_entity {
1079 struct list_head run_list;
1080 unsigned long timeout;
1081 unsigned int time_slice;
1082 int nr_cpus_allowed;
1083
1084 struct sched_rt_entity *back;
1085 #ifdef CONFIG_RT_GROUP_SCHED
1086 struct sched_rt_entity *parent;
1087 /* rq on which this entity is (to be) queued: */
1088 struct rt_rq *rt_rq;
1089 /* rq "owned" by this entity/group: */
1090 struct rt_rq *my_q;
1091 #endif
1092 };
1093
1094 struct task_struct {
1095 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1096 void *stack;
1097 atomic_t usage;
1098 unsigned int flags; /* per process flags, defined below */
1099 unsigned int ptrace;
1100
1101 int lock_depth; /* BKL lock depth */
1102
1103 #ifdef CONFIG_SMP
1104 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1105 int oncpu;
1106 #endif
1107 #endif
1108
1109 int prio, static_prio, normal_prio;
1110 unsigned int rt_priority;
1111 const struct sched_class *sched_class;
1112 struct sched_entity se;
1113 struct sched_rt_entity rt;
1114
1115 #ifdef CONFIG_PREEMPT_NOTIFIERS
1116 /* list of struct preempt_notifier: */
1117 struct hlist_head preempt_notifiers;
1118 #endif
1119
1120 /*
1121 * fpu_counter contains the number of consecutive context switches
1122 * that the FPU is used. If this is over a threshold, the lazy fpu
1123 * saving becomes unlazy to save the trap. This is an unsigned char
1124 * so that after 256 times the counter wraps and the behavior turns
1125 * lazy again; this to deal with bursty apps that only use FPU for
1126 * a short time
1127 */
1128 unsigned char fpu_counter;
1129 s8 oomkilladj; /* OOM kill score adjustment (bit shift). */
1130 #ifdef CONFIG_BLK_DEV_IO_TRACE
1131 unsigned int btrace_seq;
1132 #endif
1133
1134 unsigned int policy;
1135 cpumask_t cpus_allowed;
1136
1137 #ifdef CONFIG_PREEMPT_RCU
1138 int rcu_read_lock_nesting;
1139 int rcu_flipctr_idx;
1140 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1141
1142 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1143 struct sched_info sched_info;
1144 #endif
1145
1146 struct list_head tasks;
1147
1148 struct mm_struct *mm, *active_mm;
1149
1150 /* task state */
1151 struct linux_binfmt *binfmt;
1152 int exit_state;
1153 int exit_code, exit_signal;
1154 int pdeath_signal; /* The signal sent when the parent dies */
1155 /* ??? */
1156 unsigned int personality;
1157 unsigned did_exec:1;
1158 pid_t pid;
1159 pid_t tgid;
1160
1161 #ifdef CONFIG_CC_STACKPROTECTOR
1162 /* Canary value for the -fstack-protector gcc feature */
1163 unsigned long stack_canary;
1164 #endif
1165 /*
1166 * pointers to (original) parent process, youngest child, younger sibling,
1167 * older sibling, respectively. (p->father can be replaced with
1168 * p->real_parent->pid)
1169 */
1170 struct task_struct *real_parent; /* real parent process */
1171 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1172 /*
1173 * children/sibling forms the list of my natural children
1174 */
1175 struct list_head children; /* list of my children */
1176 struct list_head sibling; /* linkage in my parent's children list */
1177 struct task_struct *group_leader; /* threadgroup leader */
1178
1179 /*
1180 * ptraced is the list of tasks this task is using ptrace on.
1181 * This includes both natural children and PTRACE_ATTACH targets.
1182 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1183 */
1184 struct list_head ptraced;
1185 struct list_head ptrace_entry;
1186
1187 #ifdef CONFIG_X86_PTRACE_BTS
1188 /*
1189 * This is the tracer handle for the ptrace BTS extension.
1190 * This field actually belongs to the ptracer task.
1191 */
1192 struct bts_tracer *bts;
1193 /*
1194 * The buffer to hold the BTS data.
1195 */
1196 void *bts_buffer;
1197 size_t bts_size;
1198 #endif /* CONFIG_X86_PTRACE_BTS */
1199
1200 /* PID/PID hash table linkage. */
1201 struct pid_link pids[PIDTYPE_MAX];
1202 struct list_head thread_group;
1203
1204 struct completion *vfork_done; /* for vfork() */
1205 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1206 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1207
1208 cputime_t utime, stime, utimescaled, stimescaled;
1209 cputime_t gtime;
1210 cputime_t prev_utime, prev_stime;
1211 unsigned long nvcsw, nivcsw; /* context switch counts */
1212 struct timespec start_time; /* monotonic time */
1213 struct timespec real_start_time; /* boot based time */
1214 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1215 unsigned long min_flt, maj_flt;
1216
1217 struct task_cputime cputime_expires;
1218 struct list_head cpu_timers[3];
1219
1220 /* process credentials */
1221 const struct cred *real_cred; /* objective and real subjective task
1222 * credentials (COW) */
1223 const struct cred *cred; /* effective (overridable) subjective task
1224 * credentials (COW) */
1225 struct mutex cred_exec_mutex; /* execve vs ptrace cred calculation mutex */
1226
1227 char comm[TASK_COMM_LEN]; /* executable name excluding path
1228 - access with [gs]et_task_comm (which lock
1229 it with task_lock())
1230 - initialized normally by flush_old_exec */
1231 /* file system info */
1232 int link_count, total_link_count;
1233 #ifdef CONFIG_SYSVIPC
1234 /* ipc stuff */
1235 struct sysv_sem sysvsem;
1236 #endif
1237 #ifdef CONFIG_DETECT_SOFTLOCKUP
1238 /* hung task detection */
1239 unsigned long last_switch_timestamp;
1240 unsigned long last_switch_count;
1241 #endif
1242 /* CPU-specific state of this task */
1243 struct thread_struct thread;
1244 /* filesystem information */
1245 struct fs_struct *fs;
1246 /* open file information */
1247 struct files_struct *files;
1248 /* namespaces */
1249 struct nsproxy *nsproxy;
1250 /* signal handlers */
1251 struct signal_struct *signal;
1252 struct sighand_struct *sighand;
1253
1254 sigset_t blocked, real_blocked;
1255 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1256 struct sigpending pending;
1257
1258 unsigned long sas_ss_sp;
1259 size_t sas_ss_size;
1260 int (*notifier)(void *priv);
1261 void *notifier_data;
1262 sigset_t *notifier_mask;
1263 struct audit_context *audit_context;
1264 #ifdef CONFIG_AUDITSYSCALL
1265 uid_t loginuid;
1266 unsigned int sessionid;
1267 #endif
1268 seccomp_t seccomp;
1269
1270 /* Thread group tracking */
1271 u32 parent_exec_id;
1272 u32 self_exec_id;
1273 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
1274 spinlock_t alloc_lock;
1275
1276 /* Protection of the PI data structures: */
1277 spinlock_t pi_lock;
1278
1279 #ifdef CONFIG_RT_MUTEXES
1280 /* PI waiters blocked on a rt_mutex held by this task */
1281 struct plist_head pi_waiters;
1282 /* Deadlock detection and priority inheritance handling */
1283 struct rt_mutex_waiter *pi_blocked_on;
1284 #endif
1285
1286 #ifdef CONFIG_DEBUG_MUTEXES
1287 /* mutex deadlock detection */
1288 struct mutex_waiter *blocked_on;
1289 #endif
1290 #ifdef CONFIG_TRACE_IRQFLAGS
1291 unsigned int irq_events;
1292 int hardirqs_enabled;
1293 unsigned long hardirq_enable_ip;
1294 unsigned int hardirq_enable_event;
1295 unsigned long hardirq_disable_ip;
1296 unsigned int hardirq_disable_event;
1297 int softirqs_enabled;
1298 unsigned long softirq_disable_ip;
1299 unsigned int softirq_disable_event;
1300 unsigned long softirq_enable_ip;
1301 unsigned int softirq_enable_event;
1302 int hardirq_context;
1303 int softirq_context;
1304 #endif
1305 #ifdef CONFIG_LOCKDEP
1306 # define MAX_LOCK_DEPTH 48UL
1307 u64 curr_chain_key;
1308 int lockdep_depth;
1309 unsigned int lockdep_recursion;
1310 struct held_lock held_locks[MAX_LOCK_DEPTH];
1311 #endif
1312
1313 /* journalling filesystem info */
1314 void *journal_info;
1315
1316 /* stacked block device info */
1317 struct bio *bio_list, **bio_tail;
1318
1319 /* VM state */
1320 struct reclaim_state *reclaim_state;
1321
1322 struct backing_dev_info *backing_dev_info;
1323
1324 struct io_context *io_context;
1325
1326 unsigned long ptrace_message;
1327 siginfo_t *last_siginfo; /* For ptrace use. */
1328 struct task_io_accounting ioac;
1329 #if defined(CONFIG_TASK_XACCT)
1330 u64 acct_rss_mem1; /* accumulated rss usage */
1331 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1332 cputime_t acct_timexpd; /* stime + utime since last update */
1333 #endif
1334 #ifdef CONFIG_CPUSETS
1335 nodemask_t mems_allowed;
1336 int cpuset_mems_generation;
1337 int cpuset_mem_spread_rotor;
1338 #endif
1339 #ifdef CONFIG_CGROUPS
1340 /* Control Group info protected by css_set_lock */
1341 struct css_set *cgroups;
1342 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1343 struct list_head cg_list;
1344 #endif
1345 #ifdef CONFIG_FUTEX
1346 struct robust_list_head __user *robust_list;
1347 #ifdef CONFIG_COMPAT
1348 struct compat_robust_list_head __user *compat_robust_list;
1349 #endif
1350 struct list_head pi_state_list;
1351 struct futex_pi_state *pi_state_cache;
1352 #endif
1353 #ifdef CONFIG_NUMA
1354 struct mempolicy *mempolicy;
1355 short il_next;
1356 #endif
1357 atomic_t fs_excl; /* holding fs exclusive resources */
1358 struct rcu_head rcu;
1359
1360 /*
1361 * cache last used pipe for splice
1362 */
1363 struct pipe_inode_info *splice_pipe;
1364 #ifdef CONFIG_TASK_DELAY_ACCT
1365 struct task_delay_info *delays;
1366 #endif
1367 #ifdef CONFIG_FAULT_INJECTION
1368 int make_it_fail;
1369 #endif
1370 struct prop_local_single dirties;
1371 #ifdef CONFIG_LATENCYTOP
1372 int latency_record_count;
1373 struct latency_record latency_record[LT_SAVECOUNT];
1374 #endif
1375 /*
1376 * time slack values; these are used to round up poll() and
1377 * select() etc timeout values. These are in nanoseconds.
1378 */
1379 unsigned long timer_slack_ns;
1380 unsigned long default_timer_slack_ns;
1381
1382 struct list_head *scm_work_list;
1383 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1384 /* Index of current stored adress in ret_stack */
1385 int curr_ret_stack;
1386 /* Stack of return addresses for return function tracing */
1387 struct ftrace_ret_stack *ret_stack;
1388 /*
1389 * Number of functions that haven't been traced
1390 * because of depth overrun.
1391 */
1392 atomic_t trace_overrun;
1393 /* Pause for the tracing */
1394 atomic_t tracing_graph_pause;
1395 #endif
1396 #ifdef CONFIG_TRACING
1397 /* state flags for use by tracers */
1398 unsigned long trace;
1399 #endif
1400 };
1401
1402 /*
1403 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1404 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1405 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1406 * values are inverted: lower p->prio value means higher priority.
1407 *
1408 * The MAX_USER_RT_PRIO value allows the actual maximum
1409 * RT priority to be separate from the value exported to
1410 * user-space. This allows kernel threads to set their
1411 * priority to a value higher than any user task. Note:
1412 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1413 */
1414
1415 #define MAX_USER_RT_PRIO 100
1416 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1417
1418 #define MAX_PRIO (MAX_RT_PRIO + 40)
1419 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1420
1421 static inline int rt_prio(int prio)
1422 {
1423 if (unlikely(prio < MAX_RT_PRIO))
1424 return 1;
1425 return 0;
1426 }
1427
1428 static inline int rt_task(struct task_struct *p)
1429 {
1430 return rt_prio(p->prio);
1431 }
1432
1433 static inline void set_task_session(struct task_struct *tsk, pid_t session)
1434 {
1435 tsk->signal->__session = session;
1436 }
1437
1438 static inline void set_task_pgrp(struct task_struct *tsk, pid_t pgrp)
1439 {
1440 tsk->signal->__pgrp = pgrp;
1441 }
1442
1443 static inline struct pid *task_pid(struct task_struct *task)
1444 {
1445 return task->pids[PIDTYPE_PID].pid;
1446 }
1447
1448 static inline struct pid *task_tgid(struct task_struct *task)
1449 {
1450 return task->group_leader->pids[PIDTYPE_PID].pid;
1451 }
1452
1453 static inline struct pid *task_pgrp(struct task_struct *task)
1454 {
1455 return task->group_leader->pids[PIDTYPE_PGID].pid;
1456 }
1457
1458 static inline struct pid *task_session(struct task_struct *task)
1459 {
1460 return task->group_leader->pids[PIDTYPE_SID].pid;
1461 }
1462
1463 struct pid_namespace;
1464
1465 /*
1466 * the helpers to get the task's different pids as they are seen
1467 * from various namespaces
1468 *
1469 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1470 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1471 * current.
1472 * task_xid_nr_ns() : id seen from the ns specified;
1473 *
1474 * set_task_vxid() : assigns a virtual id to a task;
1475 *
1476 * see also pid_nr() etc in include/linux/pid.h
1477 */
1478
1479 static inline pid_t task_pid_nr(struct task_struct *tsk)
1480 {
1481 return tsk->pid;
1482 }
1483
1484 pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1485
1486 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1487 {
1488 return pid_vnr(task_pid(tsk));
1489 }
1490
1491
1492 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1493 {
1494 return tsk->tgid;
1495 }
1496
1497 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1498
1499 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1500 {
1501 return pid_vnr(task_tgid(tsk));
1502 }
1503
1504
1505 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1506 {
1507 return tsk->signal->__pgrp;
1508 }
1509
1510 pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1511
1512 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1513 {
1514 return pid_vnr(task_pgrp(tsk));
1515 }
1516
1517
1518 static inline pid_t task_session_nr(struct task_struct *tsk)
1519 {
1520 return tsk->signal->__session;
1521 }
1522
1523 pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1524
1525 static inline pid_t task_session_vnr(struct task_struct *tsk)
1526 {
1527 return pid_vnr(task_session(tsk));
1528 }
1529
1530
1531 /**
1532 * pid_alive - check that a task structure is not stale
1533 * @p: Task structure to be checked.
1534 *
1535 * Test if a process is not yet dead (at most zombie state)
1536 * If pid_alive fails, then pointers within the task structure
1537 * can be stale and must not be dereferenced.
1538 */
1539 static inline int pid_alive(struct task_struct *p)
1540 {
1541 return p->pids[PIDTYPE_PID].pid != NULL;
1542 }
1543
1544 /**
1545 * is_global_init - check if a task structure is init
1546 * @tsk: Task structure to be checked.
1547 *
1548 * Check if a task structure is the first user space task the kernel created.
1549 */
1550 static inline int is_global_init(struct task_struct *tsk)
1551 {
1552 return tsk->pid == 1;
1553 }
1554
1555 /*
1556 * is_container_init:
1557 * check whether in the task is init in its own pid namespace.
1558 */
1559 extern int is_container_init(struct task_struct *tsk);
1560
1561 extern struct pid *cad_pid;
1562
1563 extern void free_task(struct task_struct *tsk);
1564 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1565
1566 extern void __put_task_struct(struct task_struct *t);
1567
1568 static inline void put_task_struct(struct task_struct *t)
1569 {
1570 if (atomic_dec_and_test(&t->usage))
1571 __put_task_struct(t);
1572 }
1573
1574 extern cputime_t task_utime(struct task_struct *p);
1575 extern cputime_t task_stime(struct task_struct *p);
1576 extern cputime_t task_gtime(struct task_struct *p);
1577
1578 /*
1579 * Per process flags
1580 */
1581 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1582 /* Not implemented yet, only for 486*/
1583 #define PF_STARTING 0x00000002 /* being created */
1584 #define PF_EXITING 0x00000004 /* getting shut down */
1585 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1586 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1587 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1588 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1589 #define PF_DUMPCORE 0x00000200 /* dumped core */
1590 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1591 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1592 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1593 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1594 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1595 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1596 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1597 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1598 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */
1599 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1600 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1601 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1602 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1603 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1604 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1605 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1606 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1607 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1608 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1609 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */
1610
1611 /*
1612 * Only the _current_ task can read/write to tsk->flags, but other
1613 * tasks can access tsk->flags in readonly mode for example
1614 * with tsk_used_math (like during threaded core dumping).
1615 * There is however an exception to this rule during ptrace
1616 * or during fork: the ptracer task is allowed to write to the
1617 * child->flags of its traced child (same goes for fork, the parent
1618 * can write to the child->flags), because we're guaranteed the
1619 * child is not running and in turn not changing child->flags
1620 * at the same time the parent does it.
1621 */
1622 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1623 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1624 #define clear_used_math() clear_stopped_child_used_math(current)
1625 #define set_used_math() set_stopped_child_used_math(current)
1626 #define conditional_stopped_child_used_math(condition, child) \
1627 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1628 #define conditional_used_math(condition) \
1629 conditional_stopped_child_used_math(condition, current)
1630 #define copy_to_stopped_child_used_math(child) \
1631 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1632 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1633 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1634 #define used_math() tsk_used_math(current)
1635
1636 #ifdef CONFIG_SMP
1637 extern int set_cpus_allowed_ptr(struct task_struct *p,
1638 const struct cpumask *new_mask);
1639 #else
1640 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1641 const struct cpumask *new_mask)
1642 {
1643 if (!cpumask_test_cpu(0, new_mask))
1644 return -EINVAL;
1645 return 0;
1646 }
1647 #endif
1648 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1649 {
1650 return set_cpus_allowed_ptr(p, &new_mask);
1651 }
1652
1653 extern unsigned long long sched_clock(void);
1654
1655 extern void sched_clock_init(void);
1656 extern u64 sched_clock_cpu(int cpu);
1657
1658 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1659 static inline void sched_clock_tick(void)
1660 {
1661 }
1662
1663 static inline void sched_clock_idle_sleep_event(void)
1664 {
1665 }
1666
1667 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1668 {
1669 }
1670 #else
1671 extern void sched_clock_tick(void);
1672 extern void sched_clock_idle_sleep_event(void);
1673 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1674 #endif
1675
1676 /*
1677 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1678 * clock constructed from sched_clock():
1679 */
1680 extern unsigned long long cpu_clock(int cpu);
1681
1682 extern unsigned long long
1683 task_sched_runtime(struct task_struct *task);
1684 extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1685
1686 /* sched_exec is called by processes performing an exec */
1687 #ifdef CONFIG_SMP
1688 extern void sched_exec(void);
1689 #else
1690 #define sched_exec() {}
1691 #endif
1692
1693 extern void sched_clock_idle_sleep_event(void);
1694 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1695
1696 #ifdef CONFIG_HOTPLUG_CPU
1697 extern void idle_task_exit(void);
1698 #else
1699 static inline void idle_task_exit(void) {}
1700 #endif
1701
1702 extern void sched_idle_next(void);
1703
1704 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1705 extern void wake_up_idle_cpu(int cpu);
1706 #else
1707 static inline void wake_up_idle_cpu(int cpu) { }
1708 #endif
1709
1710 #ifdef CONFIG_SCHED_DEBUG
1711 extern unsigned int sysctl_sched_latency;
1712 extern unsigned int sysctl_sched_min_granularity;
1713 extern unsigned int sysctl_sched_wakeup_granularity;
1714 extern unsigned int sysctl_sched_child_runs_first;
1715 extern unsigned int sysctl_sched_features;
1716 extern unsigned int sysctl_sched_migration_cost;
1717 extern unsigned int sysctl_sched_nr_migrate;
1718 extern unsigned int sysctl_sched_shares_ratelimit;
1719 extern unsigned int sysctl_sched_shares_thresh;
1720
1721 int sched_nr_latency_handler(struct ctl_table *table, int write,
1722 struct file *file, void __user *buffer, size_t *length,
1723 loff_t *ppos);
1724 #endif
1725 extern unsigned int sysctl_sched_rt_period;
1726 extern int sysctl_sched_rt_runtime;
1727
1728 int sched_rt_handler(struct ctl_table *table, int write,
1729 struct file *filp, void __user *buffer, size_t *lenp,
1730 loff_t *ppos);
1731
1732 extern unsigned int sysctl_sched_compat_yield;
1733
1734 #ifdef CONFIG_RT_MUTEXES
1735 extern int rt_mutex_getprio(struct task_struct *p);
1736 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1737 extern void rt_mutex_adjust_pi(struct task_struct *p);
1738 #else
1739 static inline int rt_mutex_getprio(struct task_struct *p)
1740 {
1741 return p->normal_prio;
1742 }
1743 # define rt_mutex_adjust_pi(p) do { } while (0)
1744 #endif
1745
1746 extern void set_user_nice(struct task_struct *p, long nice);
1747 extern int task_prio(const struct task_struct *p);
1748 extern int task_nice(const struct task_struct *p);
1749 extern int can_nice(const struct task_struct *p, const int nice);
1750 extern int task_curr(const struct task_struct *p);
1751 extern int idle_cpu(int cpu);
1752 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1753 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1754 struct sched_param *);
1755 extern struct task_struct *idle_task(int cpu);
1756 extern struct task_struct *curr_task(int cpu);
1757 extern void set_curr_task(int cpu, struct task_struct *p);
1758
1759 void yield(void);
1760
1761 /*
1762 * The default (Linux) execution domain.
1763 */
1764 extern struct exec_domain default_exec_domain;
1765
1766 union thread_union {
1767 struct thread_info thread_info;
1768 unsigned long stack[THREAD_SIZE/sizeof(long)];
1769 };
1770
1771 #ifndef __HAVE_ARCH_KSTACK_END
1772 static inline int kstack_end(void *addr)
1773 {
1774 /* Reliable end of stack detection:
1775 * Some APM bios versions misalign the stack
1776 */
1777 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1778 }
1779 #endif
1780
1781 extern union thread_union init_thread_union;
1782 extern struct task_struct init_task;
1783
1784 extern struct mm_struct init_mm;
1785
1786 extern struct pid_namespace init_pid_ns;
1787
1788 /*
1789 * find a task by one of its numerical ids
1790 *
1791 * find_task_by_pid_type_ns():
1792 * it is the most generic call - it finds a task by all id,
1793 * type and namespace specified
1794 * find_task_by_pid_ns():
1795 * finds a task by its pid in the specified namespace
1796 * find_task_by_vpid():
1797 * finds a task by its virtual pid
1798 *
1799 * see also find_vpid() etc in include/linux/pid.h
1800 */
1801
1802 extern struct task_struct *find_task_by_pid_type_ns(int type, int pid,
1803 struct pid_namespace *ns);
1804
1805 extern struct task_struct *find_task_by_vpid(pid_t nr);
1806 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1807 struct pid_namespace *ns);
1808
1809 extern void __set_special_pids(struct pid *pid);
1810
1811 /* per-UID process charging. */
1812 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1813 static inline struct user_struct *get_uid(struct user_struct *u)
1814 {
1815 atomic_inc(&u->__count);
1816 return u;
1817 }
1818 extern void free_uid(struct user_struct *);
1819 extern void release_uids(struct user_namespace *ns);
1820
1821 #include <asm/current.h>
1822
1823 extern void do_timer(unsigned long ticks);
1824
1825 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1826 extern int wake_up_process(struct task_struct *tsk);
1827 extern void wake_up_new_task(struct task_struct *tsk,
1828 unsigned long clone_flags);
1829 #ifdef CONFIG_SMP
1830 extern void kick_process(struct task_struct *tsk);
1831 #else
1832 static inline void kick_process(struct task_struct *tsk) { }
1833 #endif
1834 extern void sched_fork(struct task_struct *p, int clone_flags);
1835 extern void sched_dead(struct task_struct *p);
1836
1837 extern void proc_caches_init(void);
1838 extern void flush_signals(struct task_struct *);
1839 extern void ignore_signals(struct task_struct *);
1840 extern void flush_signal_handlers(struct task_struct *, int force_default);
1841 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1842
1843 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1844 {
1845 unsigned long flags;
1846 int ret;
1847
1848 spin_lock_irqsave(&tsk->sighand->siglock, flags);
1849 ret = dequeue_signal(tsk, mask, info);
1850 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1851
1852 return ret;
1853 }
1854
1855 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1856 sigset_t *mask);
1857 extern void unblock_all_signals(void);
1858 extern void release_task(struct task_struct * p);
1859 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1860 extern int force_sigsegv(int, struct task_struct *);
1861 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1862 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1863 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
1864 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
1865 extern int kill_pgrp(struct pid *pid, int sig, int priv);
1866 extern int kill_pid(struct pid *pid, int sig, int priv);
1867 extern int kill_proc_info(int, struct siginfo *, pid_t);
1868 extern int do_notify_parent(struct task_struct *, int);
1869 extern void force_sig(int, struct task_struct *);
1870 extern void force_sig_specific(int, struct task_struct *);
1871 extern int send_sig(int, struct task_struct *, int);
1872 extern void zap_other_threads(struct task_struct *p);
1873 extern struct sigqueue *sigqueue_alloc(void);
1874 extern void sigqueue_free(struct sigqueue *);
1875 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
1876 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1877 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1878
1879 static inline int kill_cad_pid(int sig, int priv)
1880 {
1881 return kill_pid(cad_pid, sig, priv);
1882 }
1883
1884 /* These can be the second arg to send_sig_info/send_group_sig_info. */
1885 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
1886 #define SEND_SIG_PRIV ((struct siginfo *) 1)
1887 #define SEND_SIG_FORCED ((struct siginfo *) 2)
1888
1889 static inline int is_si_special(const struct siginfo *info)
1890 {
1891 return info <= SEND_SIG_FORCED;
1892 }
1893
1894 /* True if we are on the alternate signal stack. */
1895
1896 static inline int on_sig_stack(unsigned long sp)
1897 {
1898 return (sp - current->sas_ss_sp < current->sas_ss_size);
1899 }
1900
1901 static inline int sas_ss_flags(unsigned long sp)
1902 {
1903 return (current->sas_ss_size == 0 ? SS_DISABLE
1904 : on_sig_stack(sp) ? SS_ONSTACK : 0);
1905 }
1906
1907 /*
1908 * Routines for handling mm_structs
1909 */
1910 extern struct mm_struct * mm_alloc(void);
1911
1912 /* mmdrop drops the mm and the page tables */
1913 extern void __mmdrop(struct mm_struct *);
1914 static inline void mmdrop(struct mm_struct * mm)
1915 {
1916 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1917 __mmdrop(mm);
1918 }
1919
1920 /* mmput gets rid of the mappings and all user-space */
1921 extern void mmput(struct mm_struct *);
1922 /* Grab a reference to a task's mm, if it is not already going away */
1923 extern struct mm_struct *get_task_mm(struct task_struct *task);
1924 /* Remove the current tasks stale references to the old mm_struct */
1925 extern void mm_release(struct task_struct *, struct mm_struct *);
1926 /* Allocate a new mm structure and copy contents from tsk->mm */
1927 extern struct mm_struct *dup_mm(struct task_struct *tsk);
1928
1929 extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
1930 extern void flush_thread(void);
1931 extern void exit_thread(void);
1932
1933 extern void exit_files(struct task_struct *);
1934 extern void __cleanup_signal(struct signal_struct *);
1935 extern void __cleanup_sighand(struct sighand_struct *);
1936
1937 extern void exit_itimers(struct signal_struct *);
1938 extern void flush_itimer_signals(void);
1939
1940 extern NORET_TYPE void do_group_exit(int);
1941
1942 extern void daemonize(const char *, ...);
1943 extern int allow_signal(int);
1944 extern int disallow_signal(int);
1945
1946 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
1947 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
1948 struct task_struct *fork_idle(int);
1949
1950 extern void set_task_comm(struct task_struct *tsk, char *from);
1951 extern char *get_task_comm(char *to, struct task_struct *tsk);
1952
1953 #ifdef CONFIG_SMP
1954 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1955 #else
1956 static inline unsigned long wait_task_inactive(struct task_struct *p,
1957 long match_state)
1958 {
1959 return 1;
1960 }
1961 #endif
1962
1963 #define next_task(p) list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks)
1964
1965 #define for_each_process(p) \
1966 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
1967
1968 extern bool is_single_threaded(struct task_struct *);
1969
1970 /*
1971 * Careful: do_each_thread/while_each_thread is a double loop so
1972 * 'break' will not work as expected - use goto instead.
1973 */
1974 #define do_each_thread(g, t) \
1975 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
1976
1977 #define while_each_thread(g, t) \
1978 while ((t = next_thread(t)) != g)
1979
1980 /* de_thread depends on thread_group_leader not being a pid based check */
1981 #define thread_group_leader(p) (p == p->group_leader)
1982
1983 /* Do to the insanities of de_thread it is possible for a process
1984 * to have the pid of the thread group leader without actually being
1985 * the thread group leader. For iteration through the pids in proc
1986 * all we care about is that we have a task with the appropriate
1987 * pid, we don't actually care if we have the right task.
1988 */
1989 static inline int has_group_leader_pid(struct task_struct *p)
1990 {
1991 return p->pid == p->tgid;
1992 }
1993
1994 static inline
1995 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
1996 {
1997 return p1->tgid == p2->tgid;
1998 }
1999
2000 static inline struct task_struct *next_thread(const struct task_struct *p)
2001 {
2002 return list_entry(rcu_dereference(p->thread_group.next),
2003 struct task_struct, thread_group);
2004 }
2005
2006 static inline int thread_group_empty(struct task_struct *p)
2007 {
2008 return list_empty(&p->thread_group);
2009 }
2010
2011 #define delay_group_leader(p) \
2012 (thread_group_leader(p) && !thread_group_empty(p))
2013
2014 /*
2015 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2016 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2017 * pins the final release of task.io_context. Also protects ->cpuset and
2018 * ->cgroup.subsys[].
2019 *
2020 * Nests both inside and outside of read_lock(&tasklist_lock).
2021 * It must not be nested with write_lock_irq(&tasklist_lock),
2022 * neither inside nor outside.
2023 */
2024 static inline void task_lock(struct task_struct *p)
2025 {
2026 spin_lock(&p->alloc_lock);
2027 }
2028
2029 static inline void task_unlock(struct task_struct *p)
2030 {
2031 spin_unlock(&p->alloc_lock);
2032 }
2033
2034 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2035 unsigned long *flags);
2036
2037 static inline void unlock_task_sighand(struct task_struct *tsk,
2038 unsigned long *flags)
2039 {
2040 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2041 }
2042
2043 #ifndef __HAVE_THREAD_FUNCTIONS
2044
2045 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2046 #define task_stack_page(task) ((task)->stack)
2047
2048 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2049 {
2050 *task_thread_info(p) = *task_thread_info(org);
2051 task_thread_info(p)->task = p;
2052 }
2053
2054 static inline unsigned long *end_of_stack(struct task_struct *p)
2055 {
2056 return (unsigned long *)(task_thread_info(p) + 1);
2057 }
2058
2059 #endif
2060
2061 static inline int object_is_on_stack(void *obj)
2062 {
2063 void *stack = task_stack_page(current);
2064
2065 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2066 }
2067
2068 extern void thread_info_cache_init(void);
2069
2070 /* set thread flags in other task's structures
2071 * - see asm/thread_info.h for TIF_xxxx flags available
2072 */
2073 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2074 {
2075 set_ti_thread_flag(task_thread_info(tsk), flag);
2076 }
2077
2078 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2079 {
2080 clear_ti_thread_flag(task_thread_info(tsk), flag);
2081 }
2082
2083 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2084 {
2085 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2086 }
2087
2088 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2089 {
2090 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2091 }
2092
2093 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2094 {
2095 return test_ti_thread_flag(task_thread_info(tsk), flag);
2096 }
2097
2098 static inline void set_tsk_need_resched(struct task_struct *tsk)
2099 {
2100 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2101 }
2102
2103 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2104 {
2105 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2106 }
2107
2108 static inline int test_tsk_need_resched(struct task_struct *tsk)
2109 {
2110 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2111 }
2112
2113 static inline int signal_pending(struct task_struct *p)
2114 {
2115 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2116 }
2117
2118 extern int __fatal_signal_pending(struct task_struct *p);
2119
2120 static inline int fatal_signal_pending(struct task_struct *p)
2121 {
2122 return signal_pending(p) && __fatal_signal_pending(p);
2123 }
2124
2125 static inline int signal_pending_state(long state, struct task_struct *p)
2126 {
2127 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2128 return 0;
2129 if (!signal_pending(p))
2130 return 0;
2131
2132 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2133 }
2134
2135 static inline int need_resched(void)
2136 {
2137 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2138 }
2139
2140 /*
2141 * cond_resched() and cond_resched_lock(): latency reduction via
2142 * explicit rescheduling in places that are safe. The return
2143 * value indicates whether a reschedule was done in fact.
2144 * cond_resched_lock() will drop the spinlock before scheduling,
2145 * cond_resched_softirq() will enable bhs before scheduling.
2146 */
2147 extern int _cond_resched(void);
2148 #ifdef CONFIG_PREEMPT_BKL
2149 static inline int cond_resched(void)
2150 {
2151 return 0;
2152 }
2153 #else
2154 static inline int cond_resched(void)
2155 {
2156 return _cond_resched();
2157 }
2158 #endif
2159 extern int cond_resched_lock(spinlock_t * lock);
2160 extern int cond_resched_softirq(void);
2161 static inline int cond_resched_bkl(void)
2162 {
2163 return _cond_resched();
2164 }
2165
2166 /*
2167 * Does a critical section need to be broken due to another
2168 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2169 * but a general need for low latency)
2170 */
2171 static inline int spin_needbreak(spinlock_t *lock)
2172 {
2173 #ifdef CONFIG_PREEMPT
2174 return spin_is_contended(lock);
2175 #else
2176 return 0;
2177 #endif
2178 }
2179
2180 /*
2181 * Thread group CPU time accounting.
2182 */
2183
2184 extern int thread_group_cputime_alloc(struct task_struct *);
2185 extern void thread_group_cputime(struct task_struct *, struct task_cputime *);
2186
2187 static inline void thread_group_cputime_init(struct signal_struct *sig)
2188 {
2189 sig->cputime.totals = NULL;
2190 }
2191
2192 static inline int thread_group_cputime_clone_thread(struct task_struct *curr)
2193 {
2194 if (curr->signal->cputime.totals)
2195 return 0;
2196 return thread_group_cputime_alloc(curr);
2197 }
2198
2199 static inline void thread_group_cputime_free(struct signal_struct *sig)
2200 {
2201 free_percpu(sig->cputime.totals);
2202 }
2203
2204 /*
2205 * Reevaluate whether the task has signals pending delivery.
2206 * Wake the task if so.
2207 * This is required every time the blocked sigset_t changes.
2208 * callers must hold sighand->siglock.
2209 */
2210 extern void recalc_sigpending_and_wake(struct task_struct *t);
2211 extern void recalc_sigpending(void);
2212
2213 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2214
2215 /*
2216 * Wrappers for p->thread_info->cpu access. No-op on UP.
2217 */
2218 #ifdef CONFIG_SMP
2219
2220 static inline unsigned int task_cpu(const struct task_struct *p)
2221 {
2222 return task_thread_info(p)->cpu;
2223 }
2224
2225 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2226
2227 #else
2228
2229 static inline unsigned int task_cpu(const struct task_struct *p)
2230 {
2231 return 0;
2232 }
2233
2234 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2235 {
2236 }
2237
2238 #endif /* CONFIG_SMP */
2239
2240 extern void arch_pick_mmap_layout(struct mm_struct *mm);
2241
2242 #ifdef CONFIG_TRACING
2243 extern void
2244 __trace_special(void *__tr, void *__data,
2245 unsigned long arg1, unsigned long arg2, unsigned long arg3);
2246 #else
2247 static inline void
2248 __trace_special(void *__tr, void *__data,
2249 unsigned long arg1, unsigned long arg2, unsigned long arg3)
2250 {
2251 }
2252 #endif
2253
2254 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2255 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2256
2257 extern void normalize_rt_tasks(void);
2258
2259 #ifdef CONFIG_GROUP_SCHED
2260
2261 extern struct task_group init_task_group;
2262 #ifdef CONFIG_USER_SCHED
2263 extern struct task_group root_task_group;
2264 extern void set_tg_uid(struct user_struct *user);
2265 #endif
2266
2267 extern struct task_group *sched_create_group(struct task_group *parent);
2268 extern void sched_destroy_group(struct task_group *tg);
2269 extern void sched_move_task(struct task_struct *tsk);
2270 #ifdef CONFIG_FAIR_GROUP_SCHED
2271 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2272 extern unsigned long sched_group_shares(struct task_group *tg);
2273 #endif
2274 #ifdef CONFIG_RT_GROUP_SCHED
2275 extern int sched_group_set_rt_runtime(struct task_group *tg,
2276 long rt_runtime_us);
2277 extern long sched_group_rt_runtime(struct task_group *tg);
2278 extern int sched_group_set_rt_period(struct task_group *tg,
2279 long rt_period_us);
2280 extern long sched_group_rt_period(struct task_group *tg);
2281 #endif
2282 #endif
2283
2284 #ifdef CONFIG_TASK_XACCT
2285 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2286 {
2287 tsk->ioac.rchar += amt;
2288 }
2289
2290 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2291 {
2292 tsk->ioac.wchar += amt;
2293 }
2294
2295 static inline void inc_syscr(struct task_struct *tsk)
2296 {
2297 tsk->ioac.syscr++;
2298 }
2299
2300 static inline void inc_syscw(struct task_struct *tsk)
2301 {
2302 tsk->ioac.syscw++;
2303 }
2304 #else
2305 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2306 {
2307 }
2308
2309 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2310 {
2311 }
2312
2313 static inline void inc_syscr(struct task_struct *tsk)
2314 {
2315 }
2316
2317 static inline void inc_syscw(struct task_struct *tsk)
2318 {
2319 }
2320 #endif
2321
2322 #ifndef TASK_SIZE_OF
2323 #define TASK_SIZE_OF(tsk) TASK_SIZE
2324 #endif
2325
2326 #ifdef CONFIG_MM_OWNER
2327 extern void mm_update_next_owner(struct mm_struct *mm);
2328 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2329 #else
2330 static inline void mm_update_next_owner(struct mm_struct *mm)
2331 {
2332 }
2333
2334 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2335 {
2336 }
2337 #endif /* CONFIG_MM_OWNER */
2338
2339 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
2340
2341 #endif /* __KERNEL__ */
2342
2343 #endif
This page took 0.078501 seconds and 6 git commands to generate.