Merge branch 'fixes' of git://git.infradead.org/users/vkoul/slave-dma
[deliverable/linux.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 /* 0x02000000 was previously the unused CLONE_STOPPED (Start in stopped state)
25 and is now available for re-use. */
26 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
27 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
28 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
29 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
30 #define CLONE_NEWNET 0x40000000 /* New network namespace */
31 #define CLONE_IO 0x80000000 /* Clone io context */
32
33 /*
34 * Scheduling policies
35 */
36 #define SCHED_NORMAL 0
37 #define SCHED_FIFO 1
38 #define SCHED_RR 2
39 #define SCHED_BATCH 3
40 /* SCHED_ISO: reserved but not implemented yet */
41 #define SCHED_IDLE 5
42 /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
43 #define SCHED_RESET_ON_FORK 0x40000000
44
45 #ifdef __KERNEL__
46
47 struct sched_param {
48 int sched_priority;
49 };
50
51 #include <asm/param.h> /* for HZ */
52
53 #include <linux/capability.h>
54 #include <linux/threads.h>
55 #include <linux/kernel.h>
56 #include <linux/types.h>
57 #include <linux/timex.h>
58 #include <linux/jiffies.h>
59 #include <linux/rbtree.h>
60 #include <linux/thread_info.h>
61 #include <linux/cpumask.h>
62 #include <linux/errno.h>
63 #include <linux/nodemask.h>
64 #include <linux/mm_types.h>
65
66 #include <asm/page.h>
67 #include <asm/ptrace.h>
68 #include <asm/cputime.h>
69
70 #include <linux/smp.h>
71 #include <linux/sem.h>
72 #include <linux/signal.h>
73 #include <linux/compiler.h>
74 #include <linux/completion.h>
75 #include <linux/pid.h>
76 #include <linux/percpu.h>
77 #include <linux/topology.h>
78 #include <linux/proportions.h>
79 #include <linux/seccomp.h>
80 #include <linux/rcupdate.h>
81 #include <linux/rculist.h>
82 #include <linux/rtmutex.h>
83
84 #include <linux/time.h>
85 #include <linux/param.h>
86 #include <linux/resource.h>
87 #include <linux/timer.h>
88 #include <linux/hrtimer.h>
89 #include <linux/task_io_accounting.h>
90 #include <linux/latencytop.h>
91 #include <linux/cred.h>
92 #include <linux/llist.h>
93 #include <linux/uidgid.h>
94
95 #include <asm/processor.h>
96
97 struct exec_domain;
98 struct futex_pi_state;
99 struct robust_list_head;
100 struct bio_list;
101 struct fs_struct;
102 struct perf_event_context;
103 struct blk_plug;
104
105 /*
106 * List of flags we want to share for kernel threads,
107 * if only because they are not used by them anyway.
108 */
109 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
110
111 /*
112 * These are the constant used to fake the fixed-point load-average
113 * counting. Some notes:
114 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
115 * a load-average precision of 10 bits integer + 11 bits fractional
116 * - if you want to count load-averages more often, you need more
117 * precision, or rounding will get you. With 2-second counting freq,
118 * the EXP_n values would be 1981, 2034 and 2043 if still using only
119 * 11 bit fractions.
120 */
121 extern unsigned long avenrun[]; /* Load averages */
122 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
123
124 #define FSHIFT 11 /* nr of bits of precision */
125 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
126 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
127 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
128 #define EXP_5 2014 /* 1/exp(5sec/5min) */
129 #define EXP_15 2037 /* 1/exp(5sec/15min) */
130
131 #define CALC_LOAD(load,exp,n) \
132 load *= exp; \
133 load += n*(FIXED_1-exp); \
134 load >>= FSHIFT;
135
136 extern unsigned long total_forks;
137 extern int nr_threads;
138 DECLARE_PER_CPU(unsigned long, process_counts);
139 extern int nr_processes(void);
140 extern unsigned long nr_running(void);
141 extern unsigned long nr_uninterruptible(void);
142 extern unsigned long nr_iowait(void);
143 extern unsigned long nr_iowait_cpu(int cpu);
144 extern unsigned long this_cpu_load(void);
145
146
147 extern void calc_global_load(unsigned long ticks);
148 extern void update_cpu_load_nohz(void);
149
150 extern unsigned long get_parent_ip(unsigned long addr);
151
152 struct seq_file;
153 struct cfs_rq;
154 struct task_group;
155 #ifdef CONFIG_SCHED_DEBUG
156 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
157 extern void proc_sched_set_task(struct task_struct *p);
158 extern void
159 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
160 #else
161 static inline void
162 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
163 {
164 }
165 static inline void proc_sched_set_task(struct task_struct *p)
166 {
167 }
168 static inline void
169 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
170 {
171 }
172 #endif
173
174 /*
175 * Task state bitmask. NOTE! These bits are also
176 * encoded in fs/proc/array.c: get_task_state().
177 *
178 * We have two separate sets of flags: task->state
179 * is about runnability, while task->exit_state are
180 * about the task exiting. Confusing, but this way
181 * modifying one set can't modify the other one by
182 * mistake.
183 */
184 #define TASK_RUNNING 0
185 #define TASK_INTERRUPTIBLE 1
186 #define TASK_UNINTERRUPTIBLE 2
187 #define __TASK_STOPPED 4
188 #define __TASK_TRACED 8
189 /* in tsk->exit_state */
190 #define EXIT_ZOMBIE 16
191 #define EXIT_DEAD 32
192 /* in tsk->state again */
193 #define TASK_DEAD 64
194 #define TASK_WAKEKILL 128
195 #define TASK_WAKING 256
196 #define TASK_STATE_MAX 512
197
198 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW"
199
200 extern char ___assert_task_state[1 - 2*!!(
201 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
202
203 /* Convenience macros for the sake of set_task_state */
204 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
205 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
206 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
207
208 /* Convenience macros for the sake of wake_up */
209 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
210 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
211
212 /* get_task_state() */
213 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
214 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
215 __TASK_TRACED)
216
217 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
218 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
219 #define task_is_dead(task) ((task)->exit_state != 0)
220 #define task_is_stopped_or_traced(task) \
221 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
222 #define task_contributes_to_load(task) \
223 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
224 (task->flags & PF_FROZEN) == 0)
225
226 #define __set_task_state(tsk, state_value) \
227 do { (tsk)->state = (state_value); } while (0)
228 #define set_task_state(tsk, state_value) \
229 set_mb((tsk)->state, (state_value))
230
231 /*
232 * set_current_state() includes a barrier so that the write of current->state
233 * is correctly serialised wrt the caller's subsequent test of whether to
234 * actually sleep:
235 *
236 * set_current_state(TASK_UNINTERRUPTIBLE);
237 * if (do_i_need_to_sleep())
238 * schedule();
239 *
240 * If the caller does not need such serialisation then use __set_current_state()
241 */
242 #define __set_current_state(state_value) \
243 do { current->state = (state_value); } while (0)
244 #define set_current_state(state_value) \
245 set_mb(current->state, (state_value))
246
247 /* Task command name length */
248 #define TASK_COMM_LEN 16
249
250 #include <linux/spinlock.h>
251
252 /*
253 * This serializes "schedule()" and also protects
254 * the run-queue from deletions/modifications (but
255 * _adding_ to the beginning of the run-queue has
256 * a separate lock).
257 */
258 extern rwlock_t tasklist_lock;
259 extern spinlock_t mmlist_lock;
260
261 struct task_struct;
262
263 #ifdef CONFIG_PROVE_RCU
264 extern int lockdep_tasklist_lock_is_held(void);
265 #endif /* #ifdef CONFIG_PROVE_RCU */
266
267 extern void sched_init(void);
268 extern void sched_init_smp(void);
269 extern asmlinkage void schedule_tail(struct task_struct *prev);
270 extern void init_idle(struct task_struct *idle, int cpu);
271 extern void init_idle_bootup_task(struct task_struct *idle);
272
273 extern int runqueue_is_locked(int cpu);
274
275 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
276 extern void select_nohz_load_balancer(int stop_tick);
277 extern void set_cpu_sd_state_idle(void);
278 extern int get_nohz_timer_target(void);
279 #else
280 static inline void select_nohz_load_balancer(int stop_tick) { }
281 static inline void set_cpu_sd_state_idle(void) { }
282 #endif
283
284 /*
285 * Only dump TASK_* tasks. (0 for all tasks)
286 */
287 extern void show_state_filter(unsigned long state_filter);
288
289 static inline void show_state(void)
290 {
291 show_state_filter(0);
292 }
293
294 extern void show_regs(struct pt_regs *);
295
296 /*
297 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
298 * task), SP is the stack pointer of the first frame that should be shown in the back
299 * trace (or NULL if the entire call-chain of the task should be shown).
300 */
301 extern void show_stack(struct task_struct *task, unsigned long *sp);
302
303 void io_schedule(void);
304 long io_schedule_timeout(long timeout);
305
306 extern void cpu_init (void);
307 extern void trap_init(void);
308 extern void update_process_times(int user);
309 extern void scheduler_tick(void);
310
311 extern void sched_show_task(struct task_struct *p);
312
313 #ifdef CONFIG_LOCKUP_DETECTOR
314 extern void touch_softlockup_watchdog(void);
315 extern void touch_softlockup_watchdog_sync(void);
316 extern void touch_all_softlockup_watchdogs(void);
317 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
318 void __user *buffer,
319 size_t *lenp, loff_t *ppos);
320 extern unsigned int softlockup_panic;
321 void lockup_detector_init(void);
322 #else
323 static inline void touch_softlockup_watchdog(void)
324 {
325 }
326 static inline void touch_softlockup_watchdog_sync(void)
327 {
328 }
329 static inline void touch_all_softlockup_watchdogs(void)
330 {
331 }
332 static inline void lockup_detector_init(void)
333 {
334 }
335 #endif
336
337 #ifdef CONFIG_DETECT_HUNG_TASK
338 extern unsigned int sysctl_hung_task_panic;
339 extern unsigned long sysctl_hung_task_check_count;
340 extern unsigned long sysctl_hung_task_timeout_secs;
341 extern unsigned long sysctl_hung_task_warnings;
342 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
343 void __user *buffer,
344 size_t *lenp, loff_t *ppos);
345 #else
346 /* Avoid need for ifdefs elsewhere in the code */
347 enum { sysctl_hung_task_timeout_secs = 0 };
348 #endif
349
350 /* Attach to any functions which should be ignored in wchan output. */
351 #define __sched __attribute__((__section__(".sched.text")))
352
353 /* Linker adds these: start and end of __sched functions */
354 extern char __sched_text_start[], __sched_text_end[];
355
356 /* Is this address in the __sched functions? */
357 extern int in_sched_functions(unsigned long addr);
358
359 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
360 extern signed long schedule_timeout(signed long timeout);
361 extern signed long schedule_timeout_interruptible(signed long timeout);
362 extern signed long schedule_timeout_killable(signed long timeout);
363 extern signed long schedule_timeout_uninterruptible(signed long timeout);
364 asmlinkage void schedule(void);
365 extern void schedule_preempt_disabled(void);
366 extern int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner);
367
368 struct nsproxy;
369 struct user_namespace;
370
371 /*
372 * Default maximum number of active map areas, this limits the number of vmas
373 * per mm struct. Users can overwrite this number by sysctl but there is a
374 * problem.
375 *
376 * When a program's coredump is generated as ELF format, a section is created
377 * per a vma. In ELF, the number of sections is represented in unsigned short.
378 * This means the number of sections should be smaller than 65535 at coredump.
379 * Because the kernel adds some informative sections to a image of program at
380 * generating coredump, we need some margin. The number of extra sections is
381 * 1-3 now and depends on arch. We use "5" as safe margin, here.
382 */
383 #define MAPCOUNT_ELF_CORE_MARGIN (5)
384 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
385
386 extern int sysctl_max_map_count;
387
388 #include <linux/aio.h>
389
390 #ifdef CONFIG_MMU
391 extern void arch_pick_mmap_layout(struct mm_struct *mm);
392 extern unsigned long
393 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
394 unsigned long, unsigned long);
395 extern unsigned long
396 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
397 unsigned long len, unsigned long pgoff,
398 unsigned long flags);
399 extern void arch_unmap_area(struct mm_struct *, unsigned long);
400 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
401 #else
402 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
403 #endif
404
405
406 extern void set_dumpable(struct mm_struct *mm, int value);
407 extern int get_dumpable(struct mm_struct *mm);
408
409 /* mm flags */
410 /* dumpable bits */
411 #define MMF_DUMPABLE 0 /* core dump is permitted */
412 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
413
414 #define MMF_DUMPABLE_BITS 2
415 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
416
417 /* coredump filter bits */
418 #define MMF_DUMP_ANON_PRIVATE 2
419 #define MMF_DUMP_ANON_SHARED 3
420 #define MMF_DUMP_MAPPED_PRIVATE 4
421 #define MMF_DUMP_MAPPED_SHARED 5
422 #define MMF_DUMP_ELF_HEADERS 6
423 #define MMF_DUMP_HUGETLB_PRIVATE 7
424 #define MMF_DUMP_HUGETLB_SHARED 8
425
426 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
427 #define MMF_DUMP_FILTER_BITS 7
428 #define MMF_DUMP_FILTER_MASK \
429 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
430 #define MMF_DUMP_FILTER_DEFAULT \
431 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
432 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
433
434 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
435 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
436 #else
437 # define MMF_DUMP_MASK_DEFAULT_ELF 0
438 #endif
439 /* leave room for more dump flags */
440 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
441 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
442 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
443
444 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
445
446 struct sighand_struct {
447 atomic_t count;
448 struct k_sigaction action[_NSIG];
449 spinlock_t siglock;
450 wait_queue_head_t signalfd_wqh;
451 };
452
453 struct pacct_struct {
454 int ac_flag;
455 long ac_exitcode;
456 unsigned long ac_mem;
457 cputime_t ac_utime, ac_stime;
458 unsigned long ac_minflt, ac_majflt;
459 };
460
461 struct cpu_itimer {
462 cputime_t expires;
463 cputime_t incr;
464 u32 error;
465 u32 incr_error;
466 };
467
468 /**
469 * struct task_cputime - collected CPU time counts
470 * @utime: time spent in user mode, in &cputime_t units
471 * @stime: time spent in kernel mode, in &cputime_t units
472 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
473 *
474 * This structure groups together three kinds of CPU time that are
475 * tracked for threads and thread groups. Most things considering
476 * CPU time want to group these counts together and treat all three
477 * of them in parallel.
478 */
479 struct task_cputime {
480 cputime_t utime;
481 cputime_t stime;
482 unsigned long long sum_exec_runtime;
483 };
484 /* Alternate field names when used to cache expirations. */
485 #define prof_exp stime
486 #define virt_exp utime
487 #define sched_exp sum_exec_runtime
488
489 #define INIT_CPUTIME \
490 (struct task_cputime) { \
491 .utime = 0, \
492 .stime = 0, \
493 .sum_exec_runtime = 0, \
494 }
495
496 /*
497 * Disable preemption until the scheduler is running.
498 * Reset by start_kernel()->sched_init()->init_idle().
499 *
500 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
501 * before the scheduler is active -- see should_resched().
502 */
503 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
504
505 /**
506 * struct thread_group_cputimer - thread group interval timer counts
507 * @cputime: thread group interval timers.
508 * @running: non-zero when there are timers running and
509 * @cputime receives updates.
510 * @lock: lock for fields in this struct.
511 *
512 * This structure contains the version of task_cputime, above, that is
513 * used for thread group CPU timer calculations.
514 */
515 struct thread_group_cputimer {
516 struct task_cputime cputime;
517 int running;
518 raw_spinlock_t lock;
519 };
520
521 #include <linux/rwsem.h>
522 struct autogroup;
523
524 /*
525 * NOTE! "signal_struct" does not have its own
526 * locking, because a shared signal_struct always
527 * implies a shared sighand_struct, so locking
528 * sighand_struct is always a proper superset of
529 * the locking of signal_struct.
530 */
531 struct signal_struct {
532 atomic_t sigcnt;
533 atomic_t live;
534 int nr_threads;
535
536 wait_queue_head_t wait_chldexit; /* for wait4() */
537
538 /* current thread group signal load-balancing target: */
539 struct task_struct *curr_target;
540
541 /* shared signal handling: */
542 struct sigpending shared_pending;
543
544 /* thread group exit support */
545 int group_exit_code;
546 /* overloaded:
547 * - notify group_exit_task when ->count is equal to notify_count
548 * - everyone except group_exit_task is stopped during signal delivery
549 * of fatal signals, group_exit_task processes the signal.
550 */
551 int notify_count;
552 struct task_struct *group_exit_task;
553
554 /* thread group stop support, overloads group_exit_code too */
555 int group_stop_count;
556 unsigned int flags; /* see SIGNAL_* flags below */
557
558 /*
559 * PR_SET_CHILD_SUBREAPER marks a process, like a service
560 * manager, to re-parent orphan (double-forking) child processes
561 * to this process instead of 'init'. The service manager is
562 * able to receive SIGCHLD signals and is able to investigate
563 * the process until it calls wait(). All children of this
564 * process will inherit a flag if they should look for a
565 * child_subreaper process at exit.
566 */
567 unsigned int is_child_subreaper:1;
568 unsigned int has_child_subreaper:1;
569
570 /* POSIX.1b Interval Timers */
571 struct list_head posix_timers;
572
573 /* ITIMER_REAL timer for the process */
574 struct hrtimer real_timer;
575 struct pid *leader_pid;
576 ktime_t it_real_incr;
577
578 /*
579 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
580 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
581 * values are defined to 0 and 1 respectively
582 */
583 struct cpu_itimer it[2];
584
585 /*
586 * Thread group totals for process CPU timers.
587 * See thread_group_cputimer(), et al, for details.
588 */
589 struct thread_group_cputimer cputimer;
590
591 /* Earliest-expiration cache. */
592 struct task_cputime cputime_expires;
593
594 struct list_head cpu_timers[3];
595
596 struct pid *tty_old_pgrp;
597
598 /* boolean value for session group leader */
599 int leader;
600
601 struct tty_struct *tty; /* NULL if no tty */
602
603 #ifdef CONFIG_SCHED_AUTOGROUP
604 struct autogroup *autogroup;
605 #endif
606 /*
607 * Cumulative resource counters for dead threads in the group,
608 * and for reaped dead child processes forked by this group.
609 * Live threads maintain their own counters and add to these
610 * in __exit_signal, except for the group leader.
611 */
612 cputime_t utime, stime, cutime, cstime;
613 cputime_t gtime;
614 cputime_t cgtime;
615 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
616 cputime_t prev_utime, prev_stime;
617 #endif
618 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
619 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
620 unsigned long inblock, oublock, cinblock, coublock;
621 unsigned long maxrss, cmaxrss;
622 struct task_io_accounting ioac;
623
624 /*
625 * Cumulative ns of schedule CPU time fo dead threads in the
626 * group, not including a zombie group leader, (This only differs
627 * from jiffies_to_ns(utime + stime) if sched_clock uses something
628 * other than jiffies.)
629 */
630 unsigned long long sum_sched_runtime;
631
632 /*
633 * We don't bother to synchronize most readers of this at all,
634 * because there is no reader checking a limit that actually needs
635 * to get both rlim_cur and rlim_max atomically, and either one
636 * alone is a single word that can safely be read normally.
637 * getrlimit/setrlimit use task_lock(current->group_leader) to
638 * protect this instead of the siglock, because they really
639 * have no need to disable irqs.
640 */
641 struct rlimit rlim[RLIM_NLIMITS];
642
643 #ifdef CONFIG_BSD_PROCESS_ACCT
644 struct pacct_struct pacct; /* per-process accounting information */
645 #endif
646 #ifdef CONFIG_TASKSTATS
647 struct taskstats *stats;
648 #endif
649 #ifdef CONFIG_AUDIT
650 unsigned audit_tty;
651 struct tty_audit_buf *tty_audit_buf;
652 #endif
653 #ifdef CONFIG_CGROUPS
654 /*
655 * group_rwsem prevents new tasks from entering the threadgroup and
656 * member tasks from exiting,a more specifically, setting of
657 * PF_EXITING. fork and exit paths are protected with this rwsem
658 * using threadgroup_change_begin/end(). Users which require
659 * threadgroup to remain stable should use threadgroup_[un]lock()
660 * which also takes care of exec path. Currently, cgroup is the
661 * only user.
662 */
663 struct rw_semaphore group_rwsem;
664 #endif
665
666 int oom_adj; /* OOM kill score adjustment (bit shift) */
667 int oom_score_adj; /* OOM kill score adjustment */
668 int oom_score_adj_min; /* OOM kill score adjustment minimum value.
669 * Only settable by CAP_SYS_RESOURCE. */
670
671 struct mutex cred_guard_mutex; /* guard against foreign influences on
672 * credential calculations
673 * (notably. ptrace) */
674 };
675
676 /* Context switch must be unlocked if interrupts are to be enabled */
677 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
678 # define __ARCH_WANT_UNLOCKED_CTXSW
679 #endif
680
681 /*
682 * Bits in flags field of signal_struct.
683 */
684 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
685 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
686 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
687 /*
688 * Pending notifications to parent.
689 */
690 #define SIGNAL_CLD_STOPPED 0x00000010
691 #define SIGNAL_CLD_CONTINUED 0x00000020
692 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
693
694 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
695
696 /* If true, all threads except ->group_exit_task have pending SIGKILL */
697 static inline int signal_group_exit(const struct signal_struct *sig)
698 {
699 return (sig->flags & SIGNAL_GROUP_EXIT) ||
700 (sig->group_exit_task != NULL);
701 }
702
703 /*
704 * Some day this will be a full-fledged user tracking system..
705 */
706 struct user_struct {
707 atomic_t __count; /* reference count */
708 atomic_t processes; /* How many processes does this user have? */
709 atomic_t files; /* How many open files does this user have? */
710 atomic_t sigpending; /* How many pending signals does this user have? */
711 #ifdef CONFIG_INOTIFY_USER
712 atomic_t inotify_watches; /* How many inotify watches does this user have? */
713 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
714 #endif
715 #ifdef CONFIG_FANOTIFY
716 atomic_t fanotify_listeners;
717 #endif
718 #ifdef CONFIG_EPOLL
719 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
720 #endif
721 #ifdef CONFIG_POSIX_MQUEUE
722 /* protected by mq_lock */
723 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
724 #endif
725 unsigned long locked_shm; /* How many pages of mlocked shm ? */
726
727 #ifdef CONFIG_KEYS
728 struct key *uid_keyring; /* UID specific keyring */
729 struct key *session_keyring; /* UID's default session keyring */
730 #endif
731
732 /* Hash table maintenance information */
733 struct hlist_node uidhash_node;
734 kuid_t uid;
735
736 #ifdef CONFIG_PERF_EVENTS
737 atomic_long_t locked_vm;
738 #endif
739 };
740
741 extern int uids_sysfs_init(void);
742
743 extern struct user_struct *find_user(kuid_t);
744
745 extern struct user_struct root_user;
746 #define INIT_USER (&root_user)
747
748
749 struct backing_dev_info;
750 struct reclaim_state;
751
752 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
753 struct sched_info {
754 /* cumulative counters */
755 unsigned long pcount; /* # of times run on this cpu */
756 unsigned long long run_delay; /* time spent waiting on a runqueue */
757
758 /* timestamps */
759 unsigned long long last_arrival,/* when we last ran on a cpu */
760 last_queued; /* when we were last queued to run */
761 };
762 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
763
764 #ifdef CONFIG_TASK_DELAY_ACCT
765 struct task_delay_info {
766 spinlock_t lock;
767 unsigned int flags; /* Private per-task flags */
768
769 /* For each stat XXX, add following, aligned appropriately
770 *
771 * struct timespec XXX_start, XXX_end;
772 * u64 XXX_delay;
773 * u32 XXX_count;
774 *
775 * Atomicity of updates to XXX_delay, XXX_count protected by
776 * single lock above (split into XXX_lock if contention is an issue).
777 */
778
779 /*
780 * XXX_count is incremented on every XXX operation, the delay
781 * associated with the operation is added to XXX_delay.
782 * XXX_delay contains the accumulated delay time in nanoseconds.
783 */
784 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
785 u64 blkio_delay; /* wait for sync block io completion */
786 u64 swapin_delay; /* wait for swapin block io completion */
787 u32 blkio_count; /* total count of the number of sync block */
788 /* io operations performed */
789 u32 swapin_count; /* total count of the number of swapin block */
790 /* io operations performed */
791
792 struct timespec freepages_start, freepages_end;
793 u64 freepages_delay; /* wait for memory reclaim */
794 u32 freepages_count; /* total count of memory reclaim */
795 };
796 #endif /* CONFIG_TASK_DELAY_ACCT */
797
798 static inline int sched_info_on(void)
799 {
800 #ifdef CONFIG_SCHEDSTATS
801 return 1;
802 #elif defined(CONFIG_TASK_DELAY_ACCT)
803 extern int delayacct_on;
804 return delayacct_on;
805 #else
806 return 0;
807 #endif
808 }
809
810 enum cpu_idle_type {
811 CPU_IDLE,
812 CPU_NOT_IDLE,
813 CPU_NEWLY_IDLE,
814 CPU_MAX_IDLE_TYPES
815 };
816
817 /*
818 * Increase resolution of nice-level calculations for 64-bit architectures.
819 * The extra resolution improves shares distribution and load balancing of
820 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
821 * hierarchies, especially on larger systems. This is not a user-visible change
822 * and does not change the user-interface for setting shares/weights.
823 *
824 * We increase resolution only if we have enough bits to allow this increased
825 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
826 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
827 * increased costs.
828 */
829 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
830 # define SCHED_LOAD_RESOLUTION 10
831 # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
832 # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
833 #else
834 # define SCHED_LOAD_RESOLUTION 0
835 # define scale_load(w) (w)
836 # define scale_load_down(w) (w)
837 #endif
838
839 #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
840 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
841
842 /*
843 * Increase resolution of cpu_power calculations
844 */
845 #define SCHED_POWER_SHIFT 10
846 #define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT)
847
848 /*
849 * sched-domains (multiprocessor balancing) declarations:
850 */
851 #ifdef CONFIG_SMP
852 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
853 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
854 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
855 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
856 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
857 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
858 #define SD_PREFER_LOCAL 0x0040 /* Prefer to keep tasks local to this domain */
859 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
860 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
861 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
862 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
863 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
864 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
865
866 extern int __weak arch_sd_sibiling_asym_packing(void);
867
868 struct sched_group_power {
869 atomic_t ref;
870 /*
871 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
872 * single CPU.
873 */
874 unsigned int power, power_orig;
875 unsigned long next_update;
876 /*
877 * Number of busy cpus in this group.
878 */
879 atomic_t nr_busy_cpus;
880
881 unsigned long cpumask[0]; /* iteration mask */
882 };
883
884 struct sched_group {
885 struct sched_group *next; /* Must be a circular list */
886 atomic_t ref;
887
888 unsigned int group_weight;
889 struct sched_group_power *sgp;
890
891 /*
892 * The CPUs this group covers.
893 *
894 * NOTE: this field is variable length. (Allocated dynamically
895 * by attaching extra space to the end of the structure,
896 * depending on how many CPUs the kernel has booted up with)
897 */
898 unsigned long cpumask[0];
899 };
900
901 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
902 {
903 return to_cpumask(sg->cpumask);
904 }
905
906 /*
907 * cpumask masking which cpus in the group are allowed to iterate up the domain
908 * tree.
909 */
910 static inline struct cpumask *sched_group_mask(struct sched_group *sg)
911 {
912 return to_cpumask(sg->sgp->cpumask);
913 }
914
915 /**
916 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
917 * @group: The group whose first cpu is to be returned.
918 */
919 static inline unsigned int group_first_cpu(struct sched_group *group)
920 {
921 return cpumask_first(sched_group_cpus(group));
922 }
923
924 struct sched_domain_attr {
925 int relax_domain_level;
926 };
927
928 #define SD_ATTR_INIT (struct sched_domain_attr) { \
929 .relax_domain_level = -1, \
930 }
931
932 extern int sched_domain_level_max;
933
934 struct sched_domain {
935 /* These fields must be setup */
936 struct sched_domain *parent; /* top domain must be null terminated */
937 struct sched_domain *child; /* bottom domain must be null terminated */
938 struct sched_group *groups; /* the balancing groups of the domain */
939 unsigned long min_interval; /* Minimum balance interval ms */
940 unsigned long max_interval; /* Maximum balance interval ms */
941 unsigned int busy_factor; /* less balancing by factor if busy */
942 unsigned int imbalance_pct; /* No balance until over watermark */
943 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
944 unsigned int busy_idx;
945 unsigned int idle_idx;
946 unsigned int newidle_idx;
947 unsigned int wake_idx;
948 unsigned int forkexec_idx;
949 unsigned int smt_gain;
950 int flags; /* See SD_* */
951 int level;
952
953 /* Runtime fields. */
954 unsigned long last_balance; /* init to jiffies. units in jiffies */
955 unsigned int balance_interval; /* initialise to 1. units in ms. */
956 unsigned int nr_balance_failed; /* initialise to 0 */
957
958 u64 last_update;
959
960 #ifdef CONFIG_SCHEDSTATS
961 /* load_balance() stats */
962 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
963 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
964 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
965 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
966 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
967 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
968 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
969 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
970
971 /* Active load balancing */
972 unsigned int alb_count;
973 unsigned int alb_failed;
974 unsigned int alb_pushed;
975
976 /* SD_BALANCE_EXEC stats */
977 unsigned int sbe_count;
978 unsigned int sbe_balanced;
979 unsigned int sbe_pushed;
980
981 /* SD_BALANCE_FORK stats */
982 unsigned int sbf_count;
983 unsigned int sbf_balanced;
984 unsigned int sbf_pushed;
985
986 /* try_to_wake_up() stats */
987 unsigned int ttwu_wake_remote;
988 unsigned int ttwu_move_affine;
989 unsigned int ttwu_move_balance;
990 #endif
991 #ifdef CONFIG_SCHED_DEBUG
992 char *name;
993 #endif
994 union {
995 void *private; /* used during construction */
996 struct rcu_head rcu; /* used during destruction */
997 };
998
999 unsigned int span_weight;
1000 /*
1001 * Span of all CPUs in this domain.
1002 *
1003 * NOTE: this field is variable length. (Allocated dynamically
1004 * by attaching extra space to the end of the structure,
1005 * depending on how many CPUs the kernel has booted up with)
1006 */
1007 unsigned long span[0];
1008 };
1009
1010 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1011 {
1012 return to_cpumask(sd->span);
1013 }
1014
1015 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1016 struct sched_domain_attr *dattr_new);
1017
1018 /* Allocate an array of sched domains, for partition_sched_domains(). */
1019 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1020 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1021
1022 /* Test a flag in parent sched domain */
1023 static inline int test_sd_parent(struct sched_domain *sd, int flag)
1024 {
1025 if (sd->parent && (sd->parent->flags & flag))
1026 return 1;
1027
1028 return 0;
1029 }
1030
1031 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
1032 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
1033
1034 bool cpus_share_cache(int this_cpu, int that_cpu);
1035
1036 #else /* CONFIG_SMP */
1037
1038 struct sched_domain_attr;
1039
1040 static inline void
1041 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1042 struct sched_domain_attr *dattr_new)
1043 {
1044 }
1045
1046 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1047 {
1048 return true;
1049 }
1050
1051 #endif /* !CONFIG_SMP */
1052
1053
1054 struct io_context; /* See blkdev.h */
1055
1056
1057 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1058 extern void prefetch_stack(struct task_struct *t);
1059 #else
1060 static inline void prefetch_stack(struct task_struct *t) { }
1061 #endif
1062
1063 struct audit_context; /* See audit.c */
1064 struct mempolicy;
1065 struct pipe_inode_info;
1066 struct uts_namespace;
1067
1068 struct rq;
1069 struct sched_domain;
1070
1071 /*
1072 * wake flags
1073 */
1074 #define WF_SYNC 0x01 /* waker goes to sleep after wakup */
1075 #define WF_FORK 0x02 /* child wakeup after fork */
1076 #define WF_MIGRATED 0x04 /* internal use, task got migrated */
1077
1078 #define ENQUEUE_WAKEUP 1
1079 #define ENQUEUE_HEAD 2
1080 #ifdef CONFIG_SMP
1081 #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
1082 #else
1083 #define ENQUEUE_WAKING 0
1084 #endif
1085
1086 #define DEQUEUE_SLEEP 1
1087
1088 struct sched_class {
1089 const struct sched_class *next;
1090
1091 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1092 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1093 void (*yield_task) (struct rq *rq);
1094 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1095
1096 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1097
1098 struct task_struct * (*pick_next_task) (struct rq *rq);
1099 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1100
1101 #ifdef CONFIG_SMP
1102 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
1103
1104 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1105 void (*post_schedule) (struct rq *this_rq);
1106 void (*task_waking) (struct task_struct *task);
1107 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1108
1109 void (*set_cpus_allowed)(struct task_struct *p,
1110 const struct cpumask *newmask);
1111
1112 void (*rq_online)(struct rq *rq);
1113 void (*rq_offline)(struct rq *rq);
1114 #endif
1115
1116 void (*set_curr_task) (struct rq *rq);
1117 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1118 void (*task_fork) (struct task_struct *p);
1119
1120 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1121 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1122 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1123 int oldprio);
1124
1125 unsigned int (*get_rr_interval) (struct rq *rq,
1126 struct task_struct *task);
1127
1128 #ifdef CONFIG_FAIR_GROUP_SCHED
1129 void (*task_move_group) (struct task_struct *p, int on_rq);
1130 #endif
1131 };
1132
1133 struct load_weight {
1134 unsigned long weight, inv_weight;
1135 };
1136
1137 #ifdef CONFIG_SCHEDSTATS
1138 struct sched_statistics {
1139 u64 wait_start;
1140 u64 wait_max;
1141 u64 wait_count;
1142 u64 wait_sum;
1143 u64 iowait_count;
1144 u64 iowait_sum;
1145
1146 u64 sleep_start;
1147 u64 sleep_max;
1148 s64 sum_sleep_runtime;
1149
1150 u64 block_start;
1151 u64 block_max;
1152 u64 exec_max;
1153 u64 slice_max;
1154
1155 u64 nr_migrations_cold;
1156 u64 nr_failed_migrations_affine;
1157 u64 nr_failed_migrations_running;
1158 u64 nr_failed_migrations_hot;
1159 u64 nr_forced_migrations;
1160
1161 u64 nr_wakeups;
1162 u64 nr_wakeups_sync;
1163 u64 nr_wakeups_migrate;
1164 u64 nr_wakeups_local;
1165 u64 nr_wakeups_remote;
1166 u64 nr_wakeups_affine;
1167 u64 nr_wakeups_affine_attempts;
1168 u64 nr_wakeups_passive;
1169 u64 nr_wakeups_idle;
1170 };
1171 #endif
1172
1173 struct sched_entity {
1174 struct load_weight load; /* for load-balancing */
1175 struct rb_node run_node;
1176 struct list_head group_node;
1177 unsigned int on_rq;
1178
1179 u64 exec_start;
1180 u64 sum_exec_runtime;
1181 u64 vruntime;
1182 u64 prev_sum_exec_runtime;
1183
1184 u64 nr_migrations;
1185
1186 #ifdef CONFIG_SCHEDSTATS
1187 struct sched_statistics statistics;
1188 #endif
1189
1190 #ifdef CONFIG_FAIR_GROUP_SCHED
1191 struct sched_entity *parent;
1192 /* rq on which this entity is (to be) queued: */
1193 struct cfs_rq *cfs_rq;
1194 /* rq "owned" by this entity/group: */
1195 struct cfs_rq *my_q;
1196 #endif
1197 };
1198
1199 struct sched_rt_entity {
1200 struct list_head run_list;
1201 unsigned long timeout;
1202 unsigned int time_slice;
1203
1204 struct sched_rt_entity *back;
1205 #ifdef CONFIG_RT_GROUP_SCHED
1206 struct sched_rt_entity *parent;
1207 /* rq on which this entity is (to be) queued: */
1208 struct rt_rq *rt_rq;
1209 /* rq "owned" by this entity/group: */
1210 struct rt_rq *my_q;
1211 #endif
1212 };
1213
1214 /*
1215 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1216 * Timeslices get refilled after they expire.
1217 */
1218 #define RR_TIMESLICE (100 * HZ / 1000)
1219
1220 struct rcu_node;
1221
1222 enum perf_event_task_context {
1223 perf_invalid_context = -1,
1224 perf_hw_context = 0,
1225 perf_sw_context,
1226 perf_nr_task_contexts,
1227 };
1228
1229 struct task_struct {
1230 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1231 void *stack;
1232 atomic_t usage;
1233 unsigned int flags; /* per process flags, defined below */
1234 unsigned int ptrace;
1235
1236 #ifdef CONFIG_SMP
1237 struct llist_node wake_entry;
1238 int on_cpu;
1239 #endif
1240 int on_rq;
1241
1242 int prio, static_prio, normal_prio;
1243 unsigned int rt_priority;
1244 const struct sched_class *sched_class;
1245 struct sched_entity se;
1246 struct sched_rt_entity rt;
1247
1248 #ifdef CONFIG_PREEMPT_NOTIFIERS
1249 /* list of struct preempt_notifier: */
1250 struct hlist_head preempt_notifiers;
1251 #endif
1252
1253 /*
1254 * fpu_counter contains the number of consecutive context switches
1255 * that the FPU is used. If this is over a threshold, the lazy fpu
1256 * saving becomes unlazy to save the trap. This is an unsigned char
1257 * so that after 256 times the counter wraps and the behavior turns
1258 * lazy again; this to deal with bursty apps that only use FPU for
1259 * a short time
1260 */
1261 unsigned char fpu_counter;
1262 #ifdef CONFIG_BLK_DEV_IO_TRACE
1263 unsigned int btrace_seq;
1264 #endif
1265
1266 unsigned int policy;
1267 int nr_cpus_allowed;
1268 cpumask_t cpus_allowed;
1269
1270 #ifdef CONFIG_PREEMPT_RCU
1271 int rcu_read_lock_nesting;
1272 char rcu_read_unlock_special;
1273 struct list_head rcu_node_entry;
1274 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1275 #ifdef CONFIG_TREE_PREEMPT_RCU
1276 struct rcu_node *rcu_blocked_node;
1277 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1278 #ifdef CONFIG_RCU_BOOST
1279 struct rt_mutex *rcu_boost_mutex;
1280 #endif /* #ifdef CONFIG_RCU_BOOST */
1281
1282 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1283 struct sched_info sched_info;
1284 #endif
1285
1286 struct list_head tasks;
1287 #ifdef CONFIG_SMP
1288 struct plist_node pushable_tasks;
1289 #endif
1290
1291 struct mm_struct *mm, *active_mm;
1292 #ifdef CONFIG_COMPAT_BRK
1293 unsigned brk_randomized:1;
1294 #endif
1295 #if defined(SPLIT_RSS_COUNTING)
1296 struct task_rss_stat rss_stat;
1297 #endif
1298 /* task state */
1299 int exit_state;
1300 int exit_code, exit_signal;
1301 int pdeath_signal; /* The signal sent when the parent dies */
1302 unsigned int jobctl; /* JOBCTL_*, siglock protected */
1303 /* ??? */
1304 unsigned int personality;
1305 unsigned did_exec:1;
1306 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1307 * execve */
1308 unsigned in_iowait:1;
1309
1310 /* task may not gain privileges */
1311 unsigned no_new_privs:1;
1312
1313 /* Revert to default priority/policy when forking */
1314 unsigned sched_reset_on_fork:1;
1315 unsigned sched_contributes_to_load:1;
1316
1317 pid_t pid;
1318 pid_t tgid;
1319
1320 #ifdef CONFIG_CC_STACKPROTECTOR
1321 /* Canary value for the -fstack-protector gcc feature */
1322 unsigned long stack_canary;
1323 #endif
1324 /*
1325 * pointers to (original) parent process, youngest child, younger sibling,
1326 * older sibling, respectively. (p->father can be replaced with
1327 * p->real_parent->pid)
1328 */
1329 struct task_struct __rcu *real_parent; /* real parent process */
1330 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1331 /*
1332 * children/sibling forms the list of my natural children
1333 */
1334 struct list_head children; /* list of my children */
1335 struct list_head sibling; /* linkage in my parent's children list */
1336 struct task_struct *group_leader; /* threadgroup leader */
1337
1338 /*
1339 * ptraced is the list of tasks this task is using ptrace on.
1340 * This includes both natural children and PTRACE_ATTACH targets.
1341 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1342 */
1343 struct list_head ptraced;
1344 struct list_head ptrace_entry;
1345
1346 /* PID/PID hash table linkage. */
1347 struct pid_link pids[PIDTYPE_MAX];
1348 struct list_head thread_group;
1349
1350 struct completion *vfork_done; /* for vfork() */
1351 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1352 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1353
1354 cputime_t utime, stime, utimescaled, stimescaled;
1355 cputime_t gtime;
1356 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1357 cputime_t prev_utime, prev_stime;
1358 #endif
1359 unsigned long nvcsw, nivcsw; /* context switch counts */
1360 struct timespec start_time; /* monotonic time */
1361 struct timespec real_start_time; /* boot based time */
1362 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1363 unsigned long min_flt, maj_flt;
1364
1365 struct task_cputime cputime_expires;
1366 struct list_head cpu_timers[3];
1367
1368 /* process credentials */
1369 const struct cred __rcu *real_cred; /* objective and real subjective task
1370 * credentials (COW) */
1371 const struct cred __rcu *cred; /* effective (overridable) subjective task
1372 * credentials (COW) */
1373 char comm[TASK_COMM_LEN]; /* executable name excluding path
1374 - access with [gs]et_task_comm (which lock
1375 it with task_lock())
1376 - initialized normally by setup_new_exec */
1377 /* file system info */
1378 int link_count, total_link_count;
1379 #ifdef CONFIG_SYSVIPC
1380 /* ipc stuff */
1381 struct sysv_sem sysvsem;
1382 #endif
1383 #ifdef CONFIG_DETECT_HUNG_TASK
1384 /* hung task detection */
1385 unsigned long last_switch_count;
1386 #endif
1387 /* CPU-specific state of this task */
1388 struct thread_struct thread;
1389 /* filesystem information */
1390 struct fs_struct *fs;
1391 /* open file information */
1392 struct files_struct *files;
1393 /* namespaces */
1394 struct nsproxy *nsproxy;
1395 /* signal handlers */
1396 struct signal_struct *signal;
1397 struct sighand_struct *sighand;
1398
1399 sigset_t blocked, real_blocked;
1400 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1401 struct sigpending pending;
1402
1403 unsigned long sas_ss_sp;
1404 size_t sas_ss_size;
1405 int (*notifier)(void *priv);
1406 void *notifier_data;
1407 sigset_t *notifier_mask;
1408 struct hlist_head task_works;
1409
1410 struct audit_context *audit_context;
1411 #ifdef CONFIG_AUDITSYSCALL
1412 uid_t loginuid;
1413 unsigned int sessionid;
1414 #endif
1415 struct seccomp seccomp;
1416
1417 /* Thread group tracking */
1418 u32 parent_exec_id;
1419 u32 self_exec_id;
1420 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1421 * mempolicy */
1422 spinlock_t alloc_lock;
1423
1424 /* Protection of the PI data structures: */
1425 raw_spinlock_t pi_lock;
1426
1427 #ifdef CONFIG_RT_MUTEXES
1428 /* PI waiters blocked on a rt_mutex held by this task */
1429 struct plist_head pi_waiters;
1430 /* Deadlock detection and priority inheritance handling */
1431 struct rt_mutex_waiter *pi_blocked_on;
1432 #endif
1433
1434 #ifdef CONFIG_DEBUG_MUTEXES
1435 /* mutex deadlock detection */
1436 struct mutex_waiter *blocked_on;
1437 #endif
1438 #ifdef CONFIG_TRACE_IRQFLAGS
1439 unsigned int irq_events;
1440 unsigned long hardirq_enable_ip;
1441 unsigned long hardirq_disable_ip;
1442 unsigned int hardirq_enable_event;
1443 unsigned int hardirq_disable_event;
1444 int hardirqs_enabled;
1445 int hardirq_context;
1446 unsigned long softirq_disable_ip;
1447 unsigned long softirq_enable_ip;
1448 unsigned int softirq_disable_event;
1449 unsigned int softirq_enable_event;
1450 int softirqs_enabled;
1451 int softirq_context;
1452 #endif
1453 #ifdef CONFIG_LOCKDEP
1454 # define MAX_LOCK_DEPTH 48UL
1455 u64 curr_chain_key;
1456 int lockdep_depth;
1457 unsigned int lockdep_recursion;
1458 struct held_lock held_locks[MAX_LOCK_DEPTH];
1459 gfp_t lockdep_reclaim_gfp;
1460 #endif
1461
1462 /* journalling filesystem info */
1463 void *journal_info;
1464
1465 /* stacked block device info */
1466 struct bio_list *bio_list;
1467
1468 #ifdef CONFIG_BLOCK
1469 /* stack plugging */
1470 struct blk_plug *plug;
1471 #endif
1472
1473 /* VM state */
1474 struct reclaim_state *reclaim_state;
1475
1476 struct backing_dev_info *backing_dev_info;
1477
1478 struct io_context *io_context;
1479
1480 unsigned long ptrace_message;
1481 siginfo_t *last_siginfo; /* For ptrace use. */
1482 struct task_io_accounting ioac;
1483 #if defined(CONFIG_TASK_XACCT)
1484 u64 acct_rss_mem1; /* accumulated rss usage */
1485 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1486 cputime_t acct_timexpd; /* stime + utime since last update */
1487 #endif
1488 #ifdef CONFIG_CPUSETS
1489 nodemask_t mems_allowed; /* Protected by alloc_lock */
1490 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
1491 int cpuset_mem_spread_rotor;
1492 int cpuset_slab_spread_rotor;
1493 #endif
1494 #ifdef CONFIG_CGROUPS
1495 /* Control Group info protected by css_set_lock */
1496 struct css_set __rcu *cgroups;
1497 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1498 struct list_head cg_list;
1499 #endif
1500 #ifdef CONFIG_FUTEX
1501 struct robust_list_head __user *robust_list;
1502 #ifdef CONFIG_COMPAT
1503 struct compat_robust_list_head __user *compat_robust_list;
1504 #endif
1505 struct list_head pi_state_list;
1506 struct futex_pi_state *pi_state_cache;
1507 #endif
1508 #ifdef CONFIG_PERF_EVENTS
1509 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1510 struct mutex perf_event_mutex;
1511 struct list_head perf_event_list;
1512 #endif
1513 #ifdef CONFIG_NUMA
1514 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1515 short il_next;
1516 short pref_node_fork;
1517 #endif
1518 struct rcu_head rcu;
1519
1520 /*
1521 * cache last used pipe for splice
1522 */
1523 struct pipe_inode_info *splice_pipe;
1524 #ifdef CONFIG_TASK_DELAY_ACCT
1525 struct task_delay_info *delays;
1526 #endif
1527 #ifdef CONFIG_FAULT_INJECTION
1528 int make_it_fail;
1529 #endif
1530 /*
1531 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1532 * balance_dirty_pages() for some dirty throttling pause
1533 */
1534 int nr_dirtied;
1535 int nr_dirtied_pause;
1536 unsigned long dirty_paused_when; /* start of a write-and-pause period */
1537
1538 #ifdef CONFIG_LATENCYTOP
1539 int latency_record_count;
1540 struct latency_record latency_record[LT_SAVECOUNT];
1541 #endif
1542 /*
1543 * time slack values; these are used to round up poll() and
1544 * select() etc timeout values. These are in nanoseconds.
1545 */
1546 unsigned long timer_slack_ns;
1547 unsigned long default_timer_slack_ns;
1548
1549 struct list_head *scm_work_list;
1550 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1551 /* Index of current stored address in ret_stack */
1552 int curr_ret_stack;
1553 /* Stack of return addresses for return function tracing */
1554 struct ftrace_ret_stack *ret_stack;
1555 /* time stamp for last schedule */
1556 unsigned long long ftrace_timestamp;
1557 /*
1558 * Number of functions that haven't been traced
1559 * because of depth overrun.
1560 */
1561 atomic_t trace_overrun;
1562 /* Pause for the tracing */
1563 atomic_t tracing_graph_pause;
1564 #endif
1565 #ifdef CONFIG_TRACING
1566 /* state flags for use by tracers */
1567 unsigned long trace;
1568 /* bitmask and counter of trace recursion */
1569 unsigned long trace_recursion;
1570 #endif /* CONFIG_TRACING */
1571 #ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */
1572 struct memcg_batch_info {
1573 int do_batch; /* incremented when batch uncharge started */
1574 struct mem_cgroup *memcg; /* target memcg of uncharge */
1575 unsigned long nr_pages; /* uncharged usage */
1576 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1577 } memcg_batch;
1578 #endif
1579 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1580 atomic_t ptrace_bp_refcnt;
1581 #endif
1582 #ifdef CONFIG_UPROBES
1583 struct uprobe_task *utask;
1584 int uprobe_srcu_id;
1585 #endif
1586 };
1587
1588 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1589 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1590
1591 /*
1592 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1593 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1594 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1595 * values are inverted: lower p->prio value means higher priority.
1596 *
1597 * The MAX_USER_RT_PRIO value allows the actual maximum
1598 * RT priority to be separate from the value exported to
1599 * user-space. This allows kernel threads to set their
1600 * priority to a value higher than any user task. Note:
1601 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1602 */
1603
1604 #define MAX_USER_RT_PRIO 100
1605 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1606
1607 #define MAX_PRIO (MAX_RT_PRIO + 40)
1608 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1609
1610 static inline int rt_prio(int prio)
1611 {
1612 if (unlikely(prio < MAX_RT_PRIO))
1613 return 1;
1614 return 0;
1615 }
1616
1617 static inline int rt_task(struct task_struct *p)
1618 {
1619 return rt_prio(p->prio);
1620 }
1621
1622 static inline struct pid *task_pid(struct task_struct *task)
1623 {
1624 return task->pids[PIDTYPE_PID].pid;
1625 }
1626
1627 static inline struct pid *task_tgid(struct task_struct *task)
1628 {
1629 return task->group_leader->pids[PIDTYPE_PID].pid;
1630 }
1631
1632 /*
1633 * Without tasklist or rcu lock it is not safe to dereference
1634 * the result of task_pgrp/task_session even if task == current,
1635 * we can race with another thread doing sys_setsid/sys_setpgid.
1636 */
1637 static inline struct pid *task_pgrp(struct task_struct *task)
1638 {
1639 return task->group_leader->pids[PIDTYPE_PGID].pid;
1640 }
1641
1642 static inline struct pid *task_session(struct task_struct *task)
1643 {
1644 return task->group_leader->pids[PIDTYPE_SID].pid;
1645 }
1646
1647 struct pid_namespace;
1648
1649 /*
1650 * the helpers to get the task's different pids as they are seen
1651 * from various namespaces
1652 *
1653 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1654 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1655 * current.
1656 * task_xid_nr_ns() : id seen from the ns specified;
1657 *
1658 * set_task_vxid() : assigns a virtual id to a task;
1659 *
1660 * see also pid_nr() etc in include/linux/pid.h
1661 */
1662 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1663 struct pid_namespace *ns);
1664
1665 static inline pid_t task_pid_nr(struct task_struct *tsk)
1666 {
1667 return tsk->pid;
1668 }
1669
1670 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1671 struct pid_namespace *ns)
1672 {
1673 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1674 }
1675
1676 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1677 {
1678 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1679 }
1680
1681
1682 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1683 {
1684 return tsk->tgid;
1685 }
1686
1687 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1688
1689 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1690 {
1691 return pid_vnr(task_tgid(tsk));
1692 }
1693
1694
1695 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1696 struct pid_namespace *ns)
1697 {
1698 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1699 }
1700
1701 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1702 {
1703 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1704 }
1705
1706
1707 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1708 struct pid_namespace *ns)
1709 {
1710 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1711 }
1712
1713 static inline pid_t task_session_vnr(struct task_struct *tsk)
1714 {
1715 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1716 }
1717
1718 /* obsolete, do not use */
1719 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1720 {
1721 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1722 }
1723
1724 /**
1725 * pid_alive - check that a task structure is not stale
1726 * @p: Task structure to be checked.
1727 *
1728 * Test if a process is not yet dead (at most zombie state)
1729 * If pid_alive fails, then pointers within the task structure
1730 * can be stale and must not be dereferenced.
1731 */
1732 static inline int pid_alive(struct task_struct *p)
1733 {
1734 return p->pids[PIDTYPE_PID].pid != NULL;
1735 }
1736
1737 /**
1738 * is_global_init - check if a task structure is init
1739 * @tsk: Task structure to be checked.
1740 *
1741 * Check if a task structure is the first user space task the kernel created.
1742 */
1743 static inline int is_global_init(struct task_struct *tsk)
1744 {
1745 return tsk->pid == 1;
1746 }
1747
1748 /*
1749 * is_container_init:
1750 * check whether in the task is init in its own pid namespace.
1751 */
1752 extern int is_container_init(struct task_struct *tsk);
1753
1754 extern struct pid *cad_pid;
1755
1756 extern void free_task(struct task_struct *tsk);
1757 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1758
1759 extern void __put_task_struct(struct task_struct *t);
1760
1761 static inline void put_task_struct(struct task_struct *t)
1762 {
1763 if (atomic_dec_and_test(&t->usage))
1764 __put_task_struct(t);
1765 }
1766
1767 extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1768 extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1769
1770 /*
1771 * Per process flags
1772 */
1773 #define PF_EXITING 0x00000004 /* getting shut down */
1774 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1775 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1776 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1777 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1778 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1779 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1780 #define PF_DUMPCORE 0x00000200 /* dumped core */
1781 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1782 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1783 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1784 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1785 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1786 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1787 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1788 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1789 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1790 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1791 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1792 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1793 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1794 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1795 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1796 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1797 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1798 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1799 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1800
1801 /*
1802 * Only the _current_ task can read/write to tsk->flags, but other
1803 * tasks can access tsk->flags in readonly mode for example
1804 * with tsk_used_math (like during threaded core dumping).
1805 * There is however an exception to this rule during ptrace
1806 * or during fork: the ptracer task is allowed to write to the
1807 * child->flags of its traced child (same goes for fork, the parent
1808 * can write to the child->flags), because we're guaranteed the
1809 * child is not running and in turn not changing child->flags
1810 * at the same time the parent does it.
1811 */
1812 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1813 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1814 #define clear_used_math() clear_stopped_child_used_math(current)
1815 #define set_used_math() set_stopped_child_used_math(current)
1816 #define conditional_stopped_child_used_math(condition, child) \
1817 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1818 #define conditional_used_math(condition) \
1819 conditional_stopped_child_used_math(condition, current)
1820 #define copy_to_stopped_child_used_math(child) \
1821 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1822 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1823 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1824 #define used_math() tsk_used_math(current)
1825
1826 /*
1827 * task->jobctl flags
1828 */
1829 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
1830
1831 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
1832 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
1833 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
1834 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
1835 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
1836 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
1837 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
1838
1839 #define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT)
1840 #define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT)
1841 #define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT)
1842 #define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT)
1843 #define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT)
1844 #define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT)
1845 #define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT)
1846
1847 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1848 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1849
1850 extern bool task_set_jobctl_pending(struct task_struct *task,
1851 unsigned int mask);
1852 extern void task_clear_jobctl_trapping(struct task_struct *task);
1853 extern void task_clear_jobctl_pending(struct task_struct *task,
1854 unsigned int mask);
1855
1856 #ifdef CONFIG_PREEMPT_RCU
1857
1858 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1859 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1860
1861 static inline void rcu_copy_process(struct task_struct *p)
1862 {
1863 p->rcu_read_lock_nesting = 0;
1864 p->rcu_read_unlock_special = 0;
1865 #ifdef CONFIG_TREE_PREEMPT_RCU
1866 p->rcu_blocked_node = NULL;
1867 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1868 #ifdef CONFIG_RCU_BOOST
1869 p->rcu_boost_mutex = NULL;
1870 #endif /* #ifdef CONFIG_RCU_BOOST */
1871 INIT_LIST_HEAD(&p->rcu_node_entry);
1872 }
1873
1874 static inline void rcu_switch_from(struct task_struct *prev)
1875 {
1876 if (prev->rcu_read_lock_nesting != 0)
1877 rcu_preempt_note_context_switch();
1878 }
1879
1880 #else
1881
1882 static inline void rcu_copy_process(struct task_struct *p)
1883 {
1884 }
1885
1886 static inline void rcu_switch_from(struct task_struct *prev)
1887 {
1888 }
1889
1890 #endif
1891
1892 #ifdef CONFIG_SMP
1893 extern void do_set_cpus_allowed(struct task_struct *p,
1894 const struct cpumask *new_mask);
1895
1896 extern int set_cpus_allowed_ptr(struct task_struct *p,
1897 const struct cpumask *new_mask);
1898 #else
1899 static inline void do_set_cpus_allowed(struct task_struct *p,
1900 const struct cpumask *new_mask)
1901 {
1902 }
1903 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1904 const struct cpumask *new_mask)
1905 {
1906 if (!cpumask_test_cpu(0, new_mask))
1907 return -EINVAL;
1908 return 0;
1909 }
1910 #endif
1911
1912 #ifndef CONFIG_CPUMASK_OFFSTACK
1913 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1914 {
1915 return set_cpus_allowed_ptr(p, &new_mask);
1916 }
1917 #endif
1918
1919 /*
1920 * Do not use outside of architecture code which knows its limitations.
1921 *
1922 * sched_clock() has no promise of monotonicity or bounded drift between
1923 * CPUs, use (which you should not) requires disabling IRQs.
1924 *
1925 * Please use one of the three interfaces below.
1926 */
1927 extern unsigned long long notrace sched_clock(void);
1928 /*
1929 * See the comment in kernel/sched/clock.c
1930 */
1931 extern u64 cpu_clock(int cpu);
1932 extern u64 local_clock(void);
1933 extern u64 sched_clock_cpu(int cpu);
1934
1935
1936 extern void sched_clock_init(void);
1937
1938 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1939 static inline void sched_clock_tick(void)
1940 {
1941 }
1942
1943 static inline void sched_clock_idle_sleep_event(void)
1944 {
1945 }
1946
1947 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1948 {
1949 }
1950 #else
1951 /*
1952 * Architectures can set this to 1 if they have specified
1953 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1954 * but then during bootup it turns out that sched_clock()
1955 * is reliable after all:
1956 */
1957 extern int sched_clock_stable;
1958
1959 extern void sched_clock_tick(void);
1960 extern void sched_clock_idle_sleep_event(void);
1961 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1962 #endif
1963
1964 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1965 /*
1966 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1967 * The reason for this explicit opt-in is not to have perf penalty with
1968 * slow sched_clocks.
1969 */
1970 extern void enable_sched_clock_irqtime(void);
1971 extern void disable_sched_clock_irqtime(void);
1972 #else
1973 static inline void enable_sched_clock_irqtime(void) {}
1974 static inline void disable_sched_clock_irqtime(void) {}
1975 #endif
1976
1977 extern unsigned long long
1978 task_sched_runtime(struct task_struct *task);
1979
1980 /* sched_exec is called by processes performing an exec */
1981 #ifdef CONFIG_SMP
1982 extern void sched_exec(void);
1983 #else
1984 #define sched_exec() {}
1985 #endif
1986
1987 extern void sched_clock_idle_sleep_event(void);
1988 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1989
1990 #ifdef CONFIG_HOTPLUG_CPU
1991 extern void idle_task_exit(void);
1992 #else
1993 static inline void idle_task_exit(void) {}
1994 #endif
1995
1996 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1997 extern void wake_up_idle_cpu(int cpu);
1998 #else
1999 static inline void wake_up_idle_cpu(int cpu) { }
2000 #endif
2001
2002 extern unsigned int sysctl_sched_latency;
2003 extern unsigned int sysctl_sched_min_granularity;
2004 extern unsigned int sysctl_sched_wakeup_granularity;
2005 extern unsigned int sysctl_sched_child_runs_first;
2006
2007 enum sched_tunable_scaling {
2008 SCHED_TUNABLESCALING_NONE,
2009 SCHED_TUNABLESCALING_LOG,
2010 SCHED_TUNABLESCALING_LINEAR,
2011 SCHED_TUNABLESCALING_END,
2012 };
2013 extern enum sched_tunable_scaling sysctl_sched_tunable_scaling;
2014
2015 #ifdef CONFIG_SCHED_DEBUG
2016 extern unsigned int sysctl_sched_migration_cost;
2017 extern unsigned int sysctl_sched_nr_migrate;
2018 extern unsigned int sysctl_sched_time_avg;
2019 extern unsigned int sysctl_timer_migration;
2020 extern unsigned int sysctl_sched_shares_window;
2021
2022 int sched_proc_update_handler(struct ctl_table *table, int write,
2023 void __user *buffer, size_t *length,
2024 loff_t *ppos);
2025 #endif
2026 #ifdef CONFIG_SCHED_DEBUG
2027 static inline unsigned int get_sysctl_timer_migration(void)
2028 {
2029 return sysctl_timer_migration;
2030 }
2031 #else
2032 static inline unsigned int get_sysctl_timer_migration(void)
2033 {
2034 return 1;
2035 }
2036 #endif
2037 extern unsigned int sysctl_sched_rt_period;
2038 extern int sysctl_sched_rt_runtime;
2039
2040 int sched_rt_handler(struct ctl_table *table, int write,
2041 void __user *buffer, size_t *lenp,
2042 loff_t *ppos);
2043
2044 #ifdef CONFIG_SCHED_AUTOGROUP
2045 extern unsigned int sysctl_sched_autogroup_enabled;
2046
2047 extern void sched_autogroup_create_attach(struct task_struct *p);
2048 extern void sched_autogroup_detach(struct task_struct *p);
2049 extern void sched_autogroup_fork(struct signal_struct *sig);
2050 extern void sched_autogroup_exit(struct signal_struct *sig);
2051 #ifdef CONFIG_PROC_FS
2052 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2053 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2054 #endif
2055 #else
2056 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2057 static inline void sched_autogroup_detach(struct task_struct *p) { }
2058 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2059 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2060 #endif
2061
2062 #ifdef CONFIG_CFS_BANDWIDTH
2063 extern unsigned int sysctl_sched_cfs_bandwidth_slice;
2064 #endif
2065
2066 #ifdef CONFIG_RT_MUTEXES
2067 extern int rt_mutex_getprio(struct task_struct *p);
2068 extern void rt_mutex_setprio(struct task_struct *p, int prio);
2069 extern void rt_mutex_adjust_pi(struct task_struct *p);
2070 static inline bool tsk_is_pi_blocked(struct task_struct *tsk)
2071 {
2072 return tsk->pi_blocked_on != NULL;
2073 }
2074 #else
2075 static inline int rt_mutex_getprio(struct task_struct *p)
2076 {
2077 return p->normal_prio;
2078 }
2079 # define rt_mutex_adjust_pi(p) do { } while (0)
2080 static inline bool tsk_is_pi_blocked(struct task_struct *tsk)
2081 {
2082 return false;
2083 }
2084 #endif
2085
2086 extern bool yield_to(struct task_struct *p, bool preempt);
2087 extern void set_user_nice(struct task_struct *p, long nice);
2088 extern int task_prio(const struct task_struct *p);
2089 extern int task_nice(const struct task_struct *p);
2090 extern int can_nice(const struct task_struct *p, const int nice);
2091 extern int task_curr(const struct task_struct *p);
2092 extern int idle_cpu(int cpu);
2093 extern int sched_setscheduler(struct task_struct *, int,
2094 const struct sched_param *);
2095 extern int sched_setscheduler_nocheck(struct task_struct *, int,
2096 const struct sched_param *);
2097 extern struct task_struct *idle_task(int cpu);
2098 /**
2099 * is_idle_task - is the specified task an idle task?
2100 * @p: the task in question.
2101 */
2102 static inline bool is_idle_task(const struct task_struct *p)
2103 {
2104 return p->pid == 0;
2105 }
2106 extern struct task_struct *curr_task(int cpu);
2107 extern void set_curr_task(int cpu, struct task_struct *p);
2108
2109 void yield(void);
2110
2111 /*
2112 * The default (Linux) execution domain.
2113 */
2114 extern struct exec_domain default_exec_domain;
2115
2116 union thread_union {
2117 struct thread_info thread_info;
2118 unsigned long stack[THREAD_SIZE/sizeof(long)];
2119 };
2120
2121 #ifndef __HAVE_ARCH_KSTACK_END
2122 static inline int kstack_end(void *addr)
2123 {
2124 /* Reliable end of stack detection:
2125 * Some APM bios versions misalign the stack
2126 */
2127 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2128 }
2129 #endif
2130
2131 extern union thread_union init_thread_union;
2132 extern struct task_struct init_task;
2133
2134 extern struct mm_struct init_mm;
2135
2136 extern struct pid_namespace init_pid_ns;
2137
2138 /*
2139 * find a task by one of its numerical ids
2140 *
2141 * find_task_by_pid_ns():
2142 * finds a task by its pid in the specified namespace
2143 * find_task_by_vpid():
2144 * finds a task by its virtual pid
2145 *
2146 * see also find_vpid() etc in include/linux/pid.h
2147 */
2148
2149 extern struct task_struct *find_task_by_vpid(pid_t nr);
2150 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2151 struct pid_namespace *ns);
2152
2153 extern void __set_special_pids(struct pid *pid);
2154
2155 /* per-UID process charging. */
2156 extern struct user_struct * alloc_uid(kuid_t);
2157 static inline struct user_struct *get_uid(struct user_struct *u)
2158 {
2159 atomic_inc(&u->__count);
2160 return u;
2161 }
2162 extern void free_uid(struct user_struct *);
2163
2164 #include <asm/current.h>
2165
2166 extern void xtime_update(unsigned long ticks);
2167
2168 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2169 extern int wake_up_process(struct task_struct *tsk);
2170 extern void wake_up_new_task(struct task_struct *tsk);
2171 #ifdef CONFIG_SMP
2172 extern void kick_process(struct task_struct *tsk);
2173 #else
2174 static inline void kick_process(struct task_struct *tsk) { }
2175 #endif
2176 extern void sched_fork(struct task_struct *p);
2177 extern void sched_dead(struct task_struct *p);
2178
2179 extern void proc_caches_init(void);
2180 extern void flush_signals(struct task_struct *);
2181 extern void __flush_signals(struct task_struct *);
2182 extern void ignore_signals(struct task_struct *);
2183 extern void flush_signal_handlers(struct task_struct *, int force_default);
2184 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2185
2186 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2187 {
2188 unsigned long flags;
2189 int ret;
2190
2191 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2192 ret = dequeue_signal(tsk, mask, info);
2193 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2194
2195 return ret;
2196 }
2197
2198 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2199 sigset_t *mask);
2200 extern void unblock_all_signals(void);
2201 extern void release_task(struct task_struct * p);
2202 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2203 extern int force_sigsegv(int, struct task_struct *);
2204 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2205 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2206 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2207 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2208 const struct cred *, u32);
2209 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2210 extern int kill_pid(struct pid *pid, int sig, int priv);
2211 extern int kill_proc_info(int, struct siginfo *, pid_t);
2212 extern __must_check bool do_notify_parent(struct task_struct *, int);
2213 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2214 extern void force_sig(int, struct task_struct *);
2215 extern int send_sig(int, struct task_struct *, int);
2216 extern int zap_other_threads(struct task_struct *p);
2217 extern struct sigqueue *sigqueue_alloc(void);
2218 extern void sigqueue_free(struct sigqueue *);
2219 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2220 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2221 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2222
2223 static inline void restore_saved_sigmask(void)
2224 {
2225 if (test_and_clear_restore_sigmask())
2226 __set_current_blocked(&current->saved_sigmask);
2227 }
2228
2229 static inline sigset_t *sigmask_to_save(void)
2230 {
2231 sigset_t *res = &current->blocked;
2232 if (unlikely(test_restore_sigmask()))
2233 res = &current->saved_sigmask;
2234 return res;
2235 }
2236
2237 static inline int kill_cad_pid(int sig, int priv)
2238 {
2239 return kill_pid(cad_pid, sig, priv);
2240 }
2241
2242 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2243 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2244 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2245 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2246
2247 /*
2248 * True if we are on the alternate signal stack.
2249 */
2250 static inline int on_sig_stack(unsigned long sp)
2251 {
2252 #ifdef CONFIG_STACK_GROWSUP
2253 return sp >= current->sas_ss_sp &&
2254 sp - current->sas_ss_sp < current->sas_ss_size;
2255 #else
2256 return sp > current->sas_ss_sp &&
2257 sp - current->sas_ss_sp <= current->sas_ss_size;
2258 #endif
2259 }
2260
2261 static inline int sas_ss_flags(unsigned long sp)
2262 {
2263 return (current->sas_ss_size == 0 ? SS_DISABLE
2264 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2265 }
2266
2267 /*
2268 * Routines for handling mm_structs
2269 */
2270 extern struct mm_struct * mm_alloc(void);
2271
2272 /* mmdrop drops the mm and the page tables */
2273 extern void __mmdrop(struct mm_struct *);
2274 static inline void mmdrop(struct mm_struct * mm)
2275 {
2276 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2277 __mmdrop(mm);
2278 }
2279
2280 /* mmput gets rid of the mappings and all user-space */
2281 extern void mmput(struct mm_struct *);
2282 /* Grab a reference to a task's mm, if it is not already going away */
2283 extern struct mm_struct *get_task_mm(struct task_struct *task);
2284 /*
2285 * Grab a reference to a task's mm, if it is not already going away
2286 * and ptrace_may_access with the mode parameter passed to it
2287 * succeeds.
2288 */
2289 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2290 /* Remove the current tasks stale references to the old mm_struct */
2291 extern void mm_release(struct task_struct *, struct mm_struct *);
2292 /* Allocate a new mm structure and copy contents from tsk->mm */
2293 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2294
2295 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2296 struct task_struct *, struct pt_regs *);
2297 extern void flush_thread(void);
2298 extern void exit_thread(void);
2299
2300 extern void exit_files(struct task_struct *);
2301 extern void __cleanup_sighand(struct sighand_struct *);
2302
2303 extern void exit_itimers(struct signal_struct *);
2304 extern void flush_itimer_signals(void);
2305
2306 extern void do_group_exit(int);
2307
2308 extern void daemonize(const char *, ...);
2309 extern int allow_signal(int);
2310 extern int disallow_signal(int);
2311
2312 extern int do_execve(const char *,
2313 const char __user * const __user *,
2314 const char __user * const __user *, struct pt_regs *);
2315 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2316 struct task_struct *fork_idle(int);
2317
2318 extern void set_task_comm(struct task_struct *tsk, char *from);
2319 extern char *get_task_comm(char *to, struct task_struct *tsk);
2320
2321 #ifdef CONFIG_SMP
2322 void scheduler_ipi(void);
2323 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2324 #else
2325 static inline void scheduler_ipi(void) { }
2326 static inline unsigned long wait_task_inactive(struct task_struct *p,
2327 long match_state)
2328 {
2329 return 1;
2330 }
2331 #endif
2332
2333 #define next_task(p) \
2334 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2335
2336 #define for_each_process(p) \
2337 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2338
2339 extern bool current_is_single_threaded(void);
2340
2341 /*
2342 * Careful: do_each_thread/while_each_thread is a double loop so
2343 * 'break' will not work as expected - use goto instead.
2344 */
2345 #define do_each_thread(g, t) \
2346 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2347
2348 #define while_each_thread(g, t) \
2349 while ((t = next_thread(t)) != g)
2350
2351 static inline int get_nr_threads(struct task_struct *tsk)
2352 {
2353 return tsk->signal->nr_threads;
2354 }
2355
2356 static inline bool thread_group_leader(struct task_struct *p)
2357 {
2358 return p->exit_signal >= 0;
2359 }
2360
2361 /* Do to the insanities of de_thread it is possible for a process
2362 * to have the pid of the thread group leader without actually being
2363 * the thread group leader. For iteration through the pids in proc
2364 * all we care about is that we have a task with the appropriate
2365 * pid, we don't actually care if we have the right task.
2366 */
2367 static inline int has_group_leader_pid(struct task_struct *p)
2368 {
2369 return p->pid == p->tgid;
2370 }
2371
2372 static inline
2373 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2374 {
2375 return p1->tgid == p2->tgid;
2376 }
2377
2378 static inline struct task_struct *next_thread(const struct task_struct *p)
2379 {
2380 return list_entry_rcu(p->thread_group.next,
2381 struct task_struct, thread_group);
2382 }
2383
2384 static inline int thread_group_empty(struct task_struct *p)
2385 {
2386 return list_empty(&p->thread_group);
2387 }
2388
2389 #define delay_group_leader(p) \
2390 (thread_group_leader(p) && !thread_group_empty(p))
2391
2392 /*
2393 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2394 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2395 * pins the final release of task.io_context. Also protects ->cpuset and
2396 * ->cgroup.subsys[]. And ->vfork_done.
2397 *
2398 * Nests both inside and outside of read_lock(&tasklist_lock).
2399 * It must not be nested with write_lock_irq(&tasklist_lock),
2400 * neither inside nor outside.
2401 */
2402 static inline void task_lock(struct task_struct *p)
2403 {
2404 spin_lock(&p->alloc_lock);
2405 }
2406
2407 static inline void task_unlock(struct task_struct *p)
2408 {
2409 spin_unlock(&p->alloc_lock);
2410 }
2411
2412 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2413 unsigned long *flags);
2414
2415 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2416 unsigned long *flags)
2417 {
2418 struct sighand_struct *ret;
2419
2420 ret = __lock_task_sighand(tsk, flags);
2421 (void)__cond_lock(&tsk->sighand->siglock, ret);
2422 return ret;
2423 }
2424
2425 static inline void unlock_task_sighand(struct task_struct *tsk,
2426 unsigned long *flags)
2427 {
2428 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2429 }
2430
2431 #ifdef CONFIG_CGROUPS
2432 static inline void threadgroup_change_begin(struct task_struct *tsk)
2433 {
2434 down_read(&tsk->signal->group_rwsem);
2435 }
2436 static inline void threadgroup_change_end(struct task_struct *tsk)
2437 {
2438 up_read(&tsk->signal->group_rwsem);
2439 }
2440
2441 /**
2442 * threadgroup_lock - lock threadgroup
2443 * @tsk: member task of the threadgroup to lock
2444 *
2445 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter
2446 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2447 * perform exec. This is useful for cases where the threadgroup needs to
2448 * stay stable across blockable operations.
2449 *
2450 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2451 * synchronization. While held, no new task will be added to threadgroup
2452 * and no existing live task will have its PF_EXITING set.
2453 *
2454 * During exec, a task goes and puts its thread group through unusual
2455 * changes. After de-threading, exclusive access is assumed to resources
2456 * which are usually shared by tasks in the same group - e.g. sighand may
2457 * be replaced with a new one. Also, the exec'ing task takes over group
2458 * leader role including its pid. Exclude these changes while locked by
2459 * grabbing cred_guard_mutex which is used to synchronize exec path.
2460 */
2461 static inline void threadgroup_lock(struct task_struct *tsk)
2462 {
2463 /*
2464 * exec uses exit for de-threading nesting group_rwsem inside
2465 * cred_guard_mutex. Grab cred_guard_mutex first.
2466 */
2467 mutex_lock(&tsk->signal->cred_guard_mutex);
2468 down_write(&tsk->signal->group_rwsem);
2469 }
2470
2471 /**
2472 * threadgroup_unlock - unlock threadgroup
2473 * @tsk: member task of the threadgroup to unlock
2474 *
2475 * Reverse threadgroup_lock().
2476 */
2477 static inline void threadgroup_unlock(struct task_struct *tsk)
2478 {
2479 up_write(&tsk->signal->group_rwsem);
2480 mutex_unlock(&tsk->signal->cred_guard_mutex);
2481 }
2482 #else
2483 static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2484 static inline void threadgroup_change_end(struct task_struct *tsk) {}
2485 static inline void threadgroup_lock(struct task_struct *tsk) {}
2486 static inline void threadgroup_unlock(struct task_struct *tsk) {}
2487 #endif
2488
2489 #ifndef __HAVE_THREAD_FUNCTIONS
2490
2491 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2492 #define task_stack_page(task) ((task)->stack)
2493
2494 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2495 {
2496 *task_thread_info(p) = *task_thread_info(org);
2497 task_thread_info(p)->task = p;
2498 }
2499
2500 static inline unsigned long *end_of_stack(struct task_struct *p)
2501 {
2502 return (unsigned long *)(task_thread_info(p) + 1);
2503 }
2504
2505 #endif
2506
2507 static inline int object_is_on_stack(void *obj)
2508 {
2509 void *stack = task_stack_page(current);
2510
2511 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2512 }
2513
2514 extern void thread_info_cache_init(void);
2515
2516 #ifdef CONFIG_DEBUG_STACK_USAGE
2517 static inline unsigned long stack_not_used(struct task_struct *p)
2518 {
2519 unsigned long *n = end_of_stack(p);
2520
2521 do { /* Skip over canary */
2522 n++;
2523 } while (!*n);
2524
2525 return (unsigned long)n - (unsigned long)end_of_stack(p);
2526 }
2527 #endif
2528
2529 /* set thread flags in other task's structures
2530 * - see asm/thread_info.h for TIF_xxxx flags available
2531 */
2532 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2533 {
2534 set_ti_thread_flag(task_thread_info(tsk), flag);
2535 }
2536
2537 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2538 {
2539 clear_ti_thread_flag(task_thread_info(tsk), flag);
2540 }
2541
2542 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2543 {
2544 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2545 }
2546
2547 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2548 {
2549 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2550 }
2551
2552 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2553 {
2554 return test_ti_thread_flag(task_thread_info(tsk), flag);
2555 }
2556
2557 static inline void set_tsk_need_resched(struct task_struct *tsk)
2558 {
2559 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2560 }
2561
2562 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2563 {
2564 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2565 }
2566
2567 static inline int test_tsk_need_resched(struct task_struct *tsk)
2568 {
2569 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2570 }
2571
2572 static inline int restart_syscall(void)
2573 {
2574 set_tsk_thread_flag(current, TIF_SIGPENDING);
2575 return -ERESTARTNOINTR;
2576 }
2577
2578 static inline int signal_pending(struct task_struct *p)
2579 {
2580 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2581 }
2582
2583 static inline int __fatal_signal_pending(struct task_struct *p)
2584 {
2585 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2586 }
2587
2588 static inline int fatal_signal_pending(struct task_struct *p)
2589 {
2590 return signal_pending(p) && __fatal_signal_pending(p);
2591 }
2592
2593 static inline int signal_pending_state(long state, struct task_struct *p)
2594 {
2595 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2596 return 0;
2597 if (!signal_pending(p))
2598 return 0;
2599
2600 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2601 }
2602
2603 static inline int need_resched(void)
2604 {
2605 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2606 }
2607
2608 /*
2609 * cond_resched() and cond_resched_lock(): latency reduction via
2610 * explicit rescheduling in places that are safe. The return
2611 * value indicates whether a reschedule was done in fact.
2612 * cond_resched_lock() will drop the spinlock before scheduling,
2613 * cond_resched_softirq() will enable bhs before scheduling.
2614 */
2615 extern int _cond_resched(void);
2616
2617 #define cond_resched() ({ \
2618 __might_sleep(__FILE__, __LINE__, 0); \
2619 _cond_resched(); \
2620 })
2621
2622 extern int __cond_resched_lock(spinlock_t *lock);
2623
2624 #ifdef CONFIG_PREEMPT_COUNT
2625 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2626 #else
2627 #define PREEMPT_LOCK_OFFSET 0
2628 #endif
2629
2630 #define cond_resched_lock(lock) ({ \
2631 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2632 __cond_resched_lock(lock); \
2633 })
2634
2635 extern int __cond_resched_softirq(void);
2636
2637 #define cond_resched_softirq() ({ \
2638 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2639 __cond_resched_softirq(); \
2640 })
2641
2642 /*
2643 * Does a critical section need to be broken due to another
2644 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2645 * but a general need for low latency)
2646 */
2647 static inline int spin_needbreak(spinlock_t *lock)
2648 {
2649 #ifdef CONFIG_PREEMPT
2650 return spin_is_contended(lock);
2651 #else
2652 return 0;
2653 #endif
2654 }
2655
2656 /*
2657 * Thread group CPU time accounting.
2658 */
2659 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2660 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2661
2662 static inline void thread_group_cputime_init(struct signal_struct *sig)
2663 {
2664 raw_spin_lock_init(&sig->cputimer.lock);
2665 }
2666
2667 /*
2668 * Reevaluate whether the task has signals pending delivery.
2669 * Wake the task if so.
2670 * This is required every time the blocked sigset_t changes.
2671 * callers must hold sighand->siglock.
2672 */
2673 extern void recalc_sigpending_and_wake(struct task_struct *t);
2674 extern void recalc_sigpending(void);
2675
2676 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2677
2678 /*
2679 * Wrappers for p->thread_info->cpu access. No-op on UP.
2680 */
2681 #ifdef CONFIG_SMP
2682
2683 static inline unsigned int task_cpu(const struct task_struct *p)
2684 {
2685 return task_thread_info(p)->cpu;
2686 }
2687
2688 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2689
2690 #else
2691
2692 static inline unsigned int task_cpu(const struct task_struct *p)
2693 {
2694 return 0;
2695 }
2696
2697 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2698 {
2699 }
2700
2701 #endif /* CONFIG_SMP */
2702
2703 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2704 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2705
2706 extern void normalize_rt_tasks(void);
2707
2708 #ifdef CONFIG_CGROUP_SCHED
2709
2710 extern struct task_group root_task_group;
2711
2712 extern struct task_group *sched_create_group(struct task_group *parent);
2713 extern void sched_destroy_group(struct task_group *tg);
2714 extern void sched_move_task(struct task_struct *tsk);
2715 #ifdef CONFIG_FAIR_GROUP_SCHED
2716 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2717 extern unsigned long sched_group_shares(struct task_group *tg);
2718 #endif
2719 #ifdef CONFIG_RT_GROUP_SCHED
2720 extern int sched_group_set_rt_runtime(struct task_group *tg,
2721 long rt_runtime_us);
2722 extern long sched_group_rt_runtime(struct task_group *tg);
2723 extern int sched_group_set_rt_period(struct task_group *tg,
2724 long rt_period_us);
2725 extern long sched_group_rt_period(struct task_group *tg);
2726 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2727 #endif
2728 #endif
2729
2730 extern int task_can_switch_user(struct user_struct *up,
2731 struct task_struct *tsk);
2732
2733 #ifdef CONFIG_TASK_XACCT
2734 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2735 {
2736 tsk->ioac.rchar += amt;
2737 }
2738
2739 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2740 {
2741 tsk->ioac.wchar += amt;
2742 }
2743
2744 static inline void inc_syscr(struct task_struct *tsk)
2745 {
2746 tsk->ioac.syscr++;
2747 }
2748
2749 static inline void inc_syscw(struct task_struct *tsk)
2750 {
2751 tsk->ioac.syscw++;
2752 }
2753 #else
2754 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2755 {
2756 }
2757
2758 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2759 {
2760 }
2761
2762 static inline void inc_syscr(struct task_struct *tsk)
2763 {
2764 }
2765
2766 static inline void inc_syscw(struct task_struct *tsk)
2767 {
2768 }
2769 #endif
2770
2771 #ifndef TASK_SIZE_OF
2772 #define TASK_SIZE_OF(tsk) TASK_SIZE
2773 #endif
2774
2775 #ifdef CONFIG_MM_OWNER
2776 extern void mm_update_next_owner(struct mm_struct *mm);
2777 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2778 #else
2779 static inline void mm_update_next_owner(struct mm_struct *mm)
2780 {
2781 }
2782
2783 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2784 {
2785 }
2786 #endif /* CONFIG_MM_OWNER */
2787
2788 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2789 unsigned int limit)
2790 {
2791 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2792 }
2793
2794 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2795 unsigned int limit)
2796 {
2797 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2798 }
2799
2800 static inline unsigned long rlimit(unsigned int limit)
2801 {
2802 return task_rlimit(current, limit);
2803 }
2804
2805 static inline unsigned long rlimit_max(unsigned int limit)
2806 {
2807 return task_rlimit_max(current, limit);
2808 }
2809
2810 #endif /* __KERNEL__ */
2811
2812 #endif
This page took 0.103287 seconds and 6 git commands to generate.