[PATCH] idle cputime accounting
[deliverable/linux.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
29 #define CLONE_NEWNET 0x40000000 /* New network namespace */
30 #define CLONE_IO 0x80000000 /* Clone io context */
31
32 /*
33 * Scheduling policies
34 */
35 #define SCHED_NORMAL 0
36 #define SCHED_FIFO 1
37 #define SCHED_RR 2
38 #define SCHED_BATCH 3
39 /* SCHED_ISO: reserved but not implemented yet */
40 #define SCHED_IDLE 5
41
42 #ifdef __KERNEL__
43
44 struct sched_param {
45 int sched_priority;
46 };
47
48 #include <asm/param.h> /* for HZ */
49
50 #include <linux/capability.h>
51 #include <linux/threads.h>
52 #include <linux/kernel.h>
53 #include <linux/types.h>
54 #include <linux/timex.h>
55 #include <linux/jiffies.h>
56 #include <linux/rbtree.h>
57 #include <linux/thread_info.h>
58 #include <linux/cpumask.h>
59 #include <linux/errno.h>
60 #include <linux/nodemask.h>
61 #include <linux/mm_types.h>
62
63 #include <asm/system.h>
64 #include <asm/page.h>
65 #include <asm/ptrace.h>
66 #include <asm/cputime.h>
67
68 #include <linux/smp.h>
69 #include <linux/sem.h>
70 #include <linux/signal.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compiler.h>
73 #include <linux/completion.h>
74 #include <linux/pid.h>
75 #include <linux/percpu.h>
76 #include <linux/topology.h>
77 #include <linux/proportions.h>
78 #include <linux/seccomp.h>
79 #include <linux/rcupdate.h>
80 #include <linux/rtmutex.h>
81
82 #include <linux/time.h>
83 #include <linux/param.h>
84 #include <linux/resource.h>
85 #include <linux/timer.h>
86 #include <linux/hrtimer.h>
87 #include <linux/task_io_accounting.h>
88 #include <linux/kobject.h>
89 #include <linux/latencytop.h>
90 #include <linux/cred.h>
91
92 #include <asm/processor.h>
93
94 struct mem_cgroup;
95 struct exec_domain;
96 struct futex_pi_state;
97 struct robust_list_head;
98 struct bio;
99 struct bts_tracer;
100
101 /*
102 * List of flags we want to share for kernel threads,
103 * if only because they are not used by them anyway.
104 */
105 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
106
107 /*
108 * These are the constant used to fake the fixed-point load-average
109 * counting. Some notes:
110 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
111 * a load-average precision of 10 bits integer + 11 bits fractional
112 * - if you want to count load-averages more often, you need more
113 * precision, or rounding will get you. With 2-second counting freq,
114 * the EXP_n values would be 1981, 2034 and 2043 if still using only
115 * 11 bit fractions.
116 */
117 extern unsigned long avenrun[]; /* Load averages */
118
119 #define FSHIFT 11 /* nr of bits of precision */
120 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
121 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
122 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
123 #define EXP_5 2014 /* 1/exp(5sec/5min) */
124 #define EXP_15 2037 /* 1/exp(5sec/15min) */
125
126 #define CALC_LOAD(load,exp,n) \
127 load *= exp; \
128 load += n*(FIXED_1-exp); \
129 load >>= FSHIFT;
130
131 extern unsigned long total_forks;
132 extern int nr_threads;
133 DECLARE_PER_CPU(unsigned long, process_counts);
134 extern int nr_processes(void);
135 extern unsigned long nr_running(void);
136 extern unsigned long nr_uninterruptible(void);
137 extern unsigned long nr_active(void);
138 extern unsigned long nr_iowait(void);
139
140 struct seq_file;
141 struct cfs_rq;
142 struct task_group;
143 #ifdef CONFIG_SCHED_DEBUG
144 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
145 extern void proc_sched_set_task(struct task_struct *p);
146 extern void
147 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
148 #else
149 static inline void
150 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
151 {
152 }
153 static inline void proc_sched_set_task(struct task_struct *p)
154 {
155 }
156 static inline void
157 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
158 {
159 }
160 #endif
161
162 extern unsigned long long time_sync_thresh;
163
164 /*
165 * Task state bitmask. NOTE! These bits are also
166 * encoded in fs/proc/array.c: get_task_state().
167 *
168 * We have two separate sets of flags: task->state
169 * is about runnability, while task->exit_state are
170 * about the task exiting. Confusing, but this way
171 * modifying one set can't modify the other one by
172 * mistake.
173 */
174 #define TASK_RUNNING 0
175 #define TASK_INTERRUPTIBLE 1
176 #define TASK_UNINTERRUPTIBLE 2
177 #define __TASK_STOPPED 4
178 #define __TASK_TRACED 8
179 /* in tsk->exit_state */
180 #define EXIT_ZOMBIE 16
181 #define EXIT_DEAD 32
182 /* in tsk->state again */
183 #define TASK_DEAD 64
184 #define TASK_WAKEKILL 128
185
186 /* Convenience macros for the sake of set_task_state */
187 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
188 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
189 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
190
191 /* Convenience macros for the sake of wake_up */
192 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
193 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
194
195 /* get_task_state() */
196 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
197 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
198 __TASK_TRACED)
199
200 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
201 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
202 #define task_is_stopped_or_traced(task) \
203 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
204 #define task_contributes_to_load(task) \
205 ((task->state & TASK_UNINTERRUPTIBLE) != 0)
206
207 #define __set_task_state(tsk, state_value) \
208 do { (tsk)->state = (state_value); } while (0)
209 #define set_task_state(tsk, state_value) \
210 set_mb((tsk)->state, (state_value))
211
212 /*
213 * set_current_state() includes a barrier so that the write of current->state
214 * is correctly serialised wrt the caller's subsequent test of whether to
215 * actually sleep:
216 *
217 * set_current_state(TASK_UNINTERRUPTIBLE);
218 * if (do_i_need_to_sleep())
219 * schedule();
220 *
221 * If the caller does not need such serialisation then use __set_current_state()
222 */
223 #define __set_current_state(state_value) \
224 do { current->state = (state_value); } while (0)
225 #define set_current_state(state_value) \
226 set_mb(current->state, (state_value))
227
228 /* Task command name length */
229 #define TASK_COMM_LEN 16
230
231 #include <linux/spinlock.h>
232
233 /*
234 * This serializes "schedule()" and also protects
235 * the run-queue from deletions/modifications (but
236 * _adding_ to the beginning of the run-queue has
237 * a separate lock).
238 */
239 extern rwlock_t tasklist_lock;
240 extern spinlock_t mmlist_lock;
241
242 struct task_struct;
243
244 extern void sched_init(void);
245 extern void sched_init_smp(void);
246 extern asmlinkage void schedule_tail(struct task_struct *prev);
247 extern void init_idle(struct task_struct *idle, int cpu);
248 extern void init_idle_bootup_task(struct task_struct *idle);
249
250 extern int runqueue_is_locked(void);
251 extern void task_rq_unlock_wait(struct task_struct *p);
252
253 extern cpumask_t nohz_cpu_mask;
254 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
255 extern int select_nohz_load_balancer(int cpu);
256 #else
257 static inline int select_nohz_load_balancer(int cpu)
258 {
259 return 0;
260 }
261 #endif
262
263 /*
264 * Only dump TASK_* tasks. (0 for all tasks)
265 */
266 extern void show_state_filter(unsigned long state_filter);
267
268 static inline void show_state(void)
269 {
270 show_state_filter(0);
271 }
272
273 extern void show_regs(struct pt_regs *);
274
275 /*
276 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
277 * task), SP is the stack pointer of the first frame that should be shown in the back
278 * trace (or NULL if the entire call-chain of the task should be shown).
279 */
280 extern void show_stack(struct task_struct *task, unsigned long *sp);
281
282 void io_schedule(void);
283 long io_schedule_timeout(long timeout);
284
285 extern void cpu_init (void);
286 extern void trap_init(void);
287 extern void update_process_times(int user);
288 extern void scheduler_tick(void);
289
290 extern void sched_show_task(struct task_struct *p);
291
292 #ifdef CONFIG_DETECT_SOFTLOCKUP
293 extern void softlockup_tick(void);
294 extern void touch_softlockup_watchdog(void);
295 extern void touch_all_softlockup_watchdogs(void);
296 extern unsigned int softlockup_panic;
297 extern unsigned long sysctl_hung_task_check_count;
298 extern unsigned long sysctl_hung_task_timeout_secs;
299 extern unsigned long sysctl_hung_task_warnings;
300 extern int softlockup_thresh;
301 #else
302 static inline void softlockup_tick(void)
303 {
304 }
305 static inline void spawn_softlockup_task(void)
306 {
307 }
308 static inline void touch_softlockup_watchdog(void)
309 {
310 }
311 static inline void touch_all_softlockup_watchdogs(void)
312 {
313 }
314 #endif
315
316
317 /* Attach to any functions which should be ignored in wchan output. */
318 #define __sched __attribute__((__section__(".sched.text")))
319
320 /* Linker adds these: start and end of __sched functions */
321 extern char __sched_text_start[], __sched_text_end[];
322
323 /* Is this address in the __sched functions? */
324 extern int in_sched_functions(unsigned long addr);
325
326 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
327 extern signed long schedule_timeout(signed long timeout);
328 extern signed long schedule_timeout_interruptible(signed long timeout);
329 extern signed long schedule_timeout_killable(signed long timeout);
330 extern signed long schedule_timeout_uninterruptible(signed long timeout);
331 asmlinkage void schedule(void);
332
333 struct nsproxy;
334 struct user_namespace;
335
336 /* Maximum number of active map areas.. This is a random (large) number */
337 #define DEFAULT_MAX_MAP_COUNT 65536
338
339 extern int sysctl_max_map_count;
340
341 #include <linux/aio.h>
342
343 extern unsigned long
344 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
345 unsigned long, unsigned long);
346 extern unsigned long
347 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
348 unsigned long len, unsigned long pgoff,
349 unsigned long flags);
350 extern void arch_unmap_area(struct mm_struct *, unsigned long);
351 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
352
353 #if USE_SPLIT_PTLOCKS
354 /*
355 * The mm counters are not protected by its page_table_lock,
356 * so must be incremented atomically.
357 */
358 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
359 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
360 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
361 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
362 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
363
364 #else /* !USE_SPLIT_PTLOCKS */
365 /*
366 * The mm counters are protected by its page_table_lock,
367 * so can be incremented directly.
368 */
369 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
370 #define get_mm_counter(mm, member) ((mm)->_##member)
371 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
372 #define inc_mm_counter(mm, member) (mm)->_##member++
373 #define dec_mm_counter(mm, member) (mm)->_##member--
374
375 #endif /* !USE_SPLIT_PTLOCKS */
376
377 #define get_mm_rss(mm) \
378 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
379 #define update_hiwater_rss(mm) do { \
380 unsigned long _rss = get_mm_rss(mm); \
381 if ((mm)->hiwater_rss < _rss) \
382 (mm)->hiwater_rss = _rss; \
383 } while (0)
384 #define update_hiwater_vm(mm) do { \
385 if ((mm)->hiwater_vm < (mm)->total_vm) \
386 (mm)->hiwater_vm = (mm)->total_vm; \
387 } while (0)
388
389 extern void set_dumpable(struct mm_struct *mm, int value);
390 extern int get_dumpable(struct mm_struct *mm);
391
392 /* mm flags */
393 /* dumpable bits */
394 #define MMF_DUMPABLE 0 /* core dump is permitted */
395 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
396 #define MMF_DUMPABLE_BITS 2
397
398 /* coredump filter bits */
399 #define MMF_DUMP_ANON_PRIVATE 2
400 #define MMF_DUMP_ANON_SHARED 3
401 #define MMF_DUMP_MAPPED_PRIVATE 4
402 #define MMF_DUMP_MAPPED_SHARED 5
403 #define MMF_DUMP_ELF_HEADERS 6
404 #define MMF_DUMP_HUGETLB_PRIVATE 7
405 #define MMF_DUMP_HUGETLB_SHARED 8
406 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
407 #define MMF_DUMP_FILTER_BITS 7
408 #define MMF_DUMP_FILTER_MASK \
409 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
410 #define MMF_DUMP_FILTER_DEFAULT \
411 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
412 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
413
414 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
415 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
416 #else
417 # define MMF_DUMP_MASK_DEFAULT_ELF 0
418 #endif
419
420 struct sighand_struct {
421 atomic_t count;
422 struct k_sigaction action[_NSIG];
423 spinlock_t siglock;
424 wait_queue_head_t signalfd_wqh;
425 };
426
427 struct pacct_struct {
428 int ac_flag;
429 long ac_exitcode;
430 unsigned long ac_mem;
431 cputime_t ac_utime, ac_stime;
432 unsigned long ac_minflt, ac_majflt;
433 };
434
435 /**
436 * struct task_cputime - collected CPU time counts
437 * @utime: time spent in user mode, in &cputime_t units
438 * @stime: time spent in kernel mode, in &cputime_t units
439 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
440 *
441 * This structure groups together three kinds of CPU time that are
442 * tracked for threads and thread groups. Most things considering
443 * CPU time want to group these counts together and treat all three
444 * of them in parallel.
445 */
446 struct task_cputime {
447 cputime_t utime;
448 cputime_t stime;
449 unsigned long long sum_exec_runtime;
450 };
451 /* Alternate field names when used to cache expirations. */
452 #define prof_exp stime
453 #define virt_exp utime
454 #define sched_exp sum_exec_runtime
455
456 /**
457 * struct thread_group_cputime - thread group interval timer counts
458 * @totals: thread group interval timers; substructure for
459 * uniprocessor kernel, per-cpu for SMP kernel.
460 *
461 * This structure contains the version of task_cputime, above, that is
462 * used for thread group CPU clock calculations.
463 */
464 struct thread_group_cputime {
465 struct task_cputime *totals;
466 };
467
468 /*
469 * NOTE! "signal_struct" does not have it's own
470 * locking, because a shared signal_struct always
471 * implies a shared sighand_struct, so locking
472 * sighand_struct is always a proper superset of
473 * the locking of signal_struct.
474 */
475 struct signal_struct {
476 atomic_t count;
477 atomic_t live;
478
479 wait_queue_head_t wait_chldexit; /* for wait4() */
480
481 /* current thread group signal load-balancing target: */
482 struct task_struct *curr_target;
483
484 /* shared signal handling: */
485 struct sigpending shared_pending;
486
487 /* thread group exit support */
488 int group_exit_code;
489 /* overloaded:
490 * - notify group_exit_task when ->count is equal to notify_count
491 * - everyone except group_exit_task is stopped during signal delivery
492 * of fatal signals, group_exit_task processes the signal.
493 */
494 int notify_count;
495 struct task_struct *group_exit_task;
496
497 /* thread group stop support, overloads group_exit_code too */
498 int group_stop_count;
499 unsigned int flags; /* see SIGNAL_* flags below */
500
501 /* POSIX.1b Interval Timers */
502 struct list_head posix_timers;
503
504 /* ITIMER_REAL timer for the process */
505 struct hrtimer real_timer;
506 struct pid *leader_pid;
507 ktime_t it_real_incr;
508
509 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
510 cputime_t it_prof_expires, it_virt_expires;
511 cputime_t it_prof_incr, it_virt_incr;
512
513 /*
514 * Thread group totals for process CPU clocks.
515 * See thread_group_cputime(), et al, for details.
516 */
517 struct thread_group_cputime cputime;
518
519 /* Earliest-expiration cache. */
520 struct task_cputime cputime_expires;
521
522 struct list_head cpu_timers[3];
523
524 /* job control IDs */
525
526 /*
527 * pgrp and session fields are deprecated.
528 * use the task_session_Xnr and task_pgrp_Xnr routines below
529 */
530
531 union {
532 pid_t pgrp __deprecated;
533 pid_t __pgrp;
534 };
535
536 struct pid *tty_old_pgrp;
537
538 union {
539 pid_t session __deprecated;
540 pid_t __session;
541 };
542
543 /* boolean value for session group leader */
544 int leader;
545
546 struct tty_struct *tty; /* NULL if no tty */
547
548 /*
549 * Cumulative resource counters for dead threads in the group,
550 * and for reaped dead child processes forked by this group.
551 * Live threads maintain their own counters and add to these
552 * in __exit_signal, except for the group leader.
553 */
554 cputime_t cutime, cstime;
555 cputime_t gtime;
556 cputime_t cgtime;
557 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
558 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
559 unsigned long inblock, oublock, cinblock, coublock;
560 struct task_io_accounting ioac;
561
562 /*
563 * We don't bother to synchronize most readers of this at all,
564 * because there is no reader checking a limit that actually needs
565 * to get both rlim_cur and rlim_max atomically, and either one
566 * alone is a single word that can safely be read normally.
567 * getrlimit/setrlimit use task_lock(current->group_leader) to
568 * protect this instead of the siglock, because they really
569 * have no need to disable irqs.
570 */
571 struct rlimit rlim[RLIM_NLIMITS];
572
573 #ifdef CONFIG_BSD_PROCESS_ACCT
574 struct pacct_struct pacct; /* per-process accounting information */
575 #endif
576 #ifdef CONFIG_TASKSTATS
577 struct taskstats *stats;
578 #endif
579 #ifdef CONFIG_AUDIT
580 unsigned audit_tty;
581 struct tty_audit_buf *tty_audit_buf;
582 #endif
583 };
584
585 /* Context switch must be unlocked if interrupts are to be enabled */
586 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
587 # define __ARCH_WANT_UNLOCKED_CTXSW
588 #endif
589
590 /*
591 * Bits in flags field of signal_struct.
592 */
593 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
594 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
595 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
596 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
597 /*
598 * Pending notifications to parent.
599 */
600 #define SIGNAL_CLD_STOPPED 0x00000010
601 #define SIGNAL_CLD_CONTINUED 0x00000020
602 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
603
604 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
605
606 /* If true, all threads except ->group_exit_task have pending SIGKILL */
607 static inline int signal_group_exit(const struct signal_struct *sig)
608 {
609 return (sig->flags & SIGNAL_GROUP_EXIT) ||
610 (sig->group_exit_task != NULL);
611 }
612
613 /*
614 * Some day this will be a full-fledged user tracking system..
615 */
616 struct user_struct {
617 atomic_t __count; /* reference count */
618 atomic_t processes; /* How many processes does this user have? */
619 atomic_t files; /* How many open files does this user have? */
620 atomic_t sigpending; /* How many pending signals does this user have? */
621 #ifdef CONFIG_INOTIFY_USER
622 atomic_t inotify_watches; /* How many inotify watches does this user have? */
623 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
624 #endif
625 #ifdef CONFIG_EPOLL
626 atomic_t epoll_devs; /* The number of epoll descriptors currently open */
627 atomic_t epoll_watches; /* The number of file descriptors currently watched */
628 #endif
629 #ifdef CONFIG_POSIX_MQUEUE
630 /* protected by mq_lock */
631 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
632 #endif
633 unsigned long locked_shm; /* How many pages of mlocked shm ? */
634
635 #ifdef CONFIG_KEYS
636 struct key *uid_keyring; /* UID specific keyring */
637 struct key *session_keyring; /* UID's default session keyring */
638 #endif
639
640 /* Hash table maintenance information */
641 struct hlist_node uidhash_node;
642 uid_t uid;
643 struct user_namespace *user_ns;
644
645 #ifdef CONFIG_USER_SCHED
646 struct task_group *tg;
647 #ifdef CONFIG_SYSFS
648 struct kobject kobj;
649 struct work_struct work;
650 #endif
651 #endif
652 };
653
654 extern int uids_sysfs_init(void);
655
656 extern struct user_struct *find_user(uid_t);
657
658 extern struct user_struct root_user;
659 #define INIT_USER (&root_user)
660
661
662 struct backing_dev_info;
663 struct reclaim_state;
664
665 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
666 struct sched_info {
667 /* cumulative counters */
668 unsigned long pcount; /* # of times run on this cpu */
669 unsigned long long run_delay; /* time spent waiting on a runqueue */
670
671 /* timestamps */
672 unsigned long long last_arrival,/* when we last ran on a cpu */
673 last_queued; /* when we were last queued to run */
674 #ifdef CONFIG_SCHEDSTATS
675 /* BKL stats */
676 unsigned int bkl_count;
677 #endif
678 };
679 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
680
681 #ifdef CONFIG_TASK_DELAY_ACCT
682 struct task_delay_info {
683 spinlock_t lock;
684 unsigned int flags; /* Private per-task flags */
685
686 /* For each stat XXX, add following, aligned appropriately
687 *
688 * struct timespec XXX_start, XXX_end;
689 * u64 XXX_delay;
690 * u32 XXX_count;
691 *
692 * Atomicity of updates to XXX_delay, XXX_count protected by
693 * single lock above (split into XXX_lock if contention is an issue).
694 */
695
696 /*
697 * XXX_count is incremented on every XXX operation, the delay
698 * associated with the operation is added to XXX_delay.
699 * XXX_delay contains the accumulated delay time in nanoseconds.
700 */
701 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
702 u64 blkio_delay; /* wait for sync block io completion */
703 u64 swapin_delay; /* wait for swapin block io completion */
704 u32 blkio_count; /* total count of the number of sync block */
705 /* io operations performed */
706 u32 swapin_count; /* total count of the number of swapin block */
707 /* io operations performed */
708
709 struct timespec freepages_start, freepages_end;
710 u64 freepages_delay; /* wait for memory reclaim */
711 u32 freepages_count; /* total count of memory reclaim */
712 };
713 #endif /* CONFIG_TASK_DELAY_ACCT */
714
715 static inline int sched_info_on(void)
716 {
717 #ifdef CONFIG_SCHEDSTATS
718 return 1;
719 #elif defined(CONFIG_TASK_DELAY_ACCT)
720 extern int delayacct_on;
721 return delayacct_on;
722 #else
723 return 0;
724 #endif
725 }
726
727 enum cpu_idle_type {
728 CPU_IDLE,
729 CPU_NOT_IDLE,
730 CPU_NEWLY_IDLE,
731 CPU_MAX_IDLE_TYPES
732 };
733
734 /*
735 * sched-domains (multiprocessor balancing) declarations:
736 */
737
738 /*
739 * Increase resolution of nice-level calculations:
740 */
741 #define SCHED_LOAD_SHIFT 10
742 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
743
744 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
745
746 #ifdef CONFIG_SMP
747 #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */
748 #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */
749 #define SD_BALANCE_EXEC 4 /* Balance on exec */
750 #define SD_BALANCE_FORK 8 /* Balance on fork, clone */
751 #define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */
752 #define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */
753 #define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */
754 #define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */
755 #define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */
756 #define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */
757 #define SD_SERIALIZE 1024 /* Only a single load balancing instance */
758 #define SD_WAKE_IDLE_FAR 2048 /* Gain latency sacrificing cache hit */
759
760 #define BALANCE_FOR_MC_POWER \
761 (sched_smt_power_savings ? SD_POWERSAVINGS_BALANCE : 0)
762
763 #define BALANCE_FOR_PKG_POWER \
764 ((sched_mc_power_savings || sched_smt_power_savings) ? \
765 SD_POWERSAVINGS_BALANCE : 0)
766
767 #define test_sd_parent(sd, flag) ((sd->parent && \
768 (sd->parent->flags & flag)) ? 1 : 0)
769
770
771 struct sched_group {
772 struct sched_group *next; /* Must be a circular list */
773 cpumask_t cpumask;
774
775 /*
776 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
777 * single CPU. This is read only (except for setup, hotplug CPU).
778 * Note : Never change cpu_power without recompute its reciprocal
779 */
780 unsigned int __cpu_power;
781 /*
782 * reciprocal value of cpu_power to avoid expensive divides
783 * (see include/linux/reciprocal_div.h)
784 */
785 u32 reciprocal_cpu_power;
786 };
787
788 enum sched_domain_level {
789 SD_LV_NONE = 0,
790 SD_LV_SIBLING,
791 SD_LV_MC,
792 SD_LV_CPU,
793 SD_LV_NODE,
794 SD_LV_ALLNODES,
795 SD_LV_MAX
796 };
797
798 struct sched_domain_attr {
799 int relax_domain_level;
800 };
801
802 #define SD_ATTR_INIT (struct sched_domain_attr) { \
803 .relax_domain_level = -1, \
804 }
805
806 struct sched_domain {
807 /* These fields must be setup */
808 struct sched_domain *parent; /* top domain must be null terminated */
809 struct sched_domain *child; /* bottom domain must be null terminated */
810 struct sched_group *groups; /* the balancing groups of the domain */
811 cpumask_t span; /* span of all CPUs in this domain */
812 unsigned long min_interval; /* Minimum balance interval ms */
813 unsigned long max_interval; /* Maximum balance interval ms */
814 unsigned int busy_factor; /* less balancing by factor if busy */
815 unsigned int imbalance_pct; /* No balance until over watermark */
816 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
817 unsigned int busy_idx;
818 unsigned int idle_idx;
819 unsigned int newidle_idx;
820 unsigned int wake_idx;
821 unsigned int forkexec_idx;
822 int flags; /* See SD_* */
823 enum sched_domain_level level;
824
825 /* Runtime fields. */
826 unsigned long last_balance; /* init to jiffies. units in jiffies */
827 unsigned int balance_interval; /* initialise to 1. units in ms. */
828 unsigned int nr_balance_failed; /* initialise to 0 */
829
830 u64 last_update;
831
832 #ifdef CONFIG_SCHEDSTATS
833 /* load_balance() stats */
834 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
835 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
836 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
837 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
838 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
839 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
840 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
841 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
842
843 /* Active load balancing */
844 unsigned int alb_count;
845 unsigned int alb_failed;
846 unsigned int alb_pushed;
847
848 /* SD_BALANCE_EXEC stats */
849 unsigned int sbe_count;
850 unsigned int sbe_balanced;
851 unsigned int sbe_pushed;
852
853 /* SD_BALANCE_FORK stats */
854 unsigned int sbf_count;
855 unsigned int sbf_balanced;
856 unsigned int sbf_pushed;
857
858 /* try_to_wake_up() stats */
859 unsigned int ttwu_wake_remote;
860 unsigned int ttwu_move_affine;
861 unsigned int ttwu_move_balance;
862 #endif
863 #ifdef CONFIG_SCHED_DEBUG
864 char *name;
865 #endif
866 };
867
868 extern void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
869 struct sched_domain_attr *dattr_new);
870 extern int arch_reinit_sched_domains(void);
871
872 #else /* CONFIG_SMP */
873
874 struct sched_domain_attr;
875
876 static inline void
877 partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
878 struct sched_domain_attr *dattr_new)
879 {
880 }
881 #endif /* !CONFIG_SMP */
882
883 struct io_context; /* See blkdev.h */
884
885
886 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
887 extern void prefetch_stack(struct task_struct *t);
888 #else
889 static inline void prefetch_stack(struct task_struct *t) { }
890 #endif
891
892 struct audit_context; /* See audit.c */
893 struct mempolicy;
894 struct pipe_inode_info;
895 struct uts_namespace;
896
897 struct rq;
898 struct sched_domain;
899
900 struct sched_class {
901 const struct sched_class *next;
902
903 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
904 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
905 void (*yield_task) (struct rq *rq);
906
907 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int sync);
908
909 struct task_struct * (*pick_next_task) (struct rq *rq);
910 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
911
912 #ifdef CONFIG_SMP
913 int (*select_task_rq)(struct task_struct *p, int sync);
914
915 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
916 struct rq *busiest, unsigned long max_load_move,
917 struct sched_domain *sd, enum cpu_idle_type idle,
918 int *all_pinned, int *this_best_prio);
919
920 int (*move_one_task) (struct rq *this_rq, int this_cpu,
921 struct rq *busiest, struct sched_domain *sd,
922 enum cpu_idle_type idle);
923 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
924 void (*post_schedule) (struct rq *this_rq);
925 void (*task_wake_up) (struct rq *this_rq, struct task_struct *task);
926
927 void (*set_cpus_allowed)(struct task_struct *p,
928 const cpumask_t *newmask);
929
930 void (*rq_online)(struct rq *rq);
931 void (*rq_offline)(struct rq *rq);
932 #endif
933
934 void (*set_curr_task) (struct rq *rq);
935 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
936 void (*task_new) (struct rq *rq, struct task_struct *p);
937
938 void (*switched_from) (struct rq *this_rq, struct task_struct *task,
939 int running);
940 void (*switched_to) (struct rq *this_rq, struct task_struct *task,
941 int running);
942 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
943 int oldprio, int running);
944
945 #ifdef CONFIG_FAIR_GROUP_SCHED
946 void (*moved_group) (struct task_struct *p);
947 #endif
948 };
949
950 struct load_weight {
951 unsigned long weight, inv_weight;
952 };
953
954 /*
955 * CFS stats for a schedulable entity (task, task-group etc)
956 *
957 * Current field usage histogram:
958 *
959 * 4 se->block_start
960 * 4 se->run_node
961 * 4 se->sleep_start
962 * 6 se->load.weight
963 */
964 struct sched_entity {
965 struct load_weight load; /* for load-balancing */
966 struct rb_node run_node;
967 struct list_head group_node;
968 unsigned int on_rq;
969
970 u64 exec_start;
971 u64 sum_exec_runtime;
972 u64 vruntime;
973 u64 prev_sum_exec_runtime;
974
975 u64 last_wakeup;
976 u64 avg_overlap;
977
978 #ifdef CONFIG_SCHEDSTATS
979 u64 wait_start;
980 u64 wait_max;
981 u64 wait_count;
982 u64 wait_sum;
983
984 u64 sleep_start;
985 u64 sleep_max;
986 s64 sum_sleep_runtime;
987
988 u64 block_start;
989 u64 block_max;
990 u64 exec_max;
991 u64 slice_max;
992
993 u64 nr_migrations;
994 u64 nr_migrations_cold;
995 u64 nr_failed_migrations_affine;
996 u64 nr_failed_migrations_running;
997 u64 nr_failed_migrations_hot;
998 u64 nr_forced_migrations;
999 u64 nr_forced2_migrations;
1000
1001 u64 nr_wakeups;
1002 u64 nr_wakeups_sync;
1003 u64 nr_wakeups_migrate;
1004 u64 nr_wakeups_local;
1005 u64 nr_wakeups_remote;
1006 u64 nr_wakeups_affine;
1007 u64 nr_wakeups_affine_attempts;
1008 u64 nr_wakeups_passive;
1009 u64 nr_wakeups_idle;
1010 #endif
1011
1012 #ifdef CONFIG_FAIR_GROUP_SCHED
1013 struct sched_entity *parent;
1014 /* rq on which this entity is (to be) queued: */
1015 struct cfs_rq *cfs_rq;
1016 /* rq "owned" by this entity/group: */
1017 struct cfs_rq *my_q;
1018 #endif
1019 };
1020
1021 struct sched_rt_entity {
1022 struct list_head run_list;
1023 unsigned long timeout;
1024 unsigned int time_slice;
1025 int nr_cpus_allowed;
1026
1027 struct sched_rt_entity *back;
1028 #ifdef CONFIG_RT_GROUP_SCHED
1029 struct sched_rt_entity *parent;
1030 /* rq on which this entity is (to be) queued: */
1031 struct rt_rq *rt_rq;
1032 /* rq "owned" by this entity/group: */
1033 struct rt_rq *my_q;
1034 #endif
1035 };
1036
1037 struct task_struct {
1038 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1039 void *stack;
1040 atomic_t usage;
1041 unsigned int flags; /* per process flags, defined below */
1042 unsigned int ptrace;
1043
1044 int lock_depth; /* BKL lock depth */
1045
1046 #ifdef CONFIG_SMP
1047 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1048 int oncpu;
1049 #endif
1050 #endif
1051
1052 int prio, static_prio, normal_prio;
1053 unsigned int rt_priority;
1054 const struct sched_class *sched_class;
1055 struct sched_entity se;
1056 struct sched_rt_entity rt;
1057
1058 #ifdef CONFIG_PREEMPT_NOTIFIERS
1059 /* list of struct preempt_notifier: */
1060 struct hlist_head preempt_notifiers;
1061 #endif
1062
1063 /*
1064 * fpu_counter contains the number of consecutive context switches
1065 * that the FPU is used. If this is over a threshold, the lazy fpu
1066 * saving becomes unlazy to save the trap. This is an unsigned char
1067 * so that after 256 times the counter wraps and the behavior turns
1068 * lazy again; this to deal with bursty apps that only use FPU for
1069 * a short time
1070 */
1071 unsigned char fpu_counter;
1072 s8 oomkilladj; /* OOM kill score adjustment (bit shift). */
1073 #ifdef CONFIG_BLK_DEV_IO_TRACE
1074 unsigned int btrace_seq;
1075 #endif
1076
1077 unsigned int policy;
1078 cpumask_t cpus_allowed;
1079
1080 #ifdef CONFIG_PREEMPT_RCU
1081 int rcu_read_lock_nesting;
1082 int rcu_flipctr_idx;
1083 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1084
1085 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1086 struct sched_info sched_info;
1087 #endif
1088
1089 struct list_head tasks;
1090
1091 struct mm_struct *mm, *active_mm;
1092
1093 /* task state */
1094 struct linux_binfmt *binfmt;
1095 int exit_state;
1096 int exit_code, exit_signal;
1097 int pdeath_signal; /* The signal sent when the parent dies */
1098 /* ??? */
1099 unsigned int personality;
1100 unsigned did_exec:1;
1101 pid_t pid;
1102 pid_t tgid;
1103
1104 #ifdef CONFIG_CC_STACKPROTECTOR
1105 /* Canary value for the -fstack-protector gcc feature */
1106 unsigned long stack_canary;
1107 #endif
1108 /*
1109 * pointers to (original) parent process, youngest child, younger sibling,
1110 * older sibling, respectively. (p->father can be replaced with
1111 * p->real_parent->pid)
1112 */
1113 struct task_struct *real_parent; /* real parent process */
1114 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1115 /*
1116 * children/sibling forms the list of my natural children
1117 */
1118 struct list_head children; /* list of my children */
1119 struct list_head sibling; /* linkage in my parent's children list */
1120 struct task_struct *group_leader; /* threadgroup leader */
1121
1122 /*
1123 * ptraced is the list of tasks this task is using ptrace on.
1124 * This includes both natural children and PTRACE_ATTACH targets.
1125 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1126 */
1127 struct list_head ptraced;
1128 struct list_head ptrace_entry;
1129
1130 #ifdef CONFIG_X86_PTRACE_BTS
1131 /*
1132 * This is the tracer handle for the ptrace BTS extension.
1133 * This field actually belongs to the ptracer task.
1134 */
1135 struct bts_tracer *bts;
1136 /*
1137 * The buffer to hold the BTS data.
1138 */
1139 void *bts_buffer;
1140 size_t bts_size;
1141 #endif /* CONFIG_X86_PTRACE_BTS */
1142
1143 /* PID/PID hash table linkage. */
1144 struct pid_link pids[PIDTYPE_MAX];
1145 struct list_head thread_group;
1146
1147 struct completion *vfork_done; /* for vfork() */
1148 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1149 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1150
1151 cputime_t utime, stime, utimescaled, stimescaled;
1152 cputime_t gtime;
1153 cputime_t prev_utime, prev_stime;
1154 unsigned long nvcsw, nivcsw; /* context switch counts */
1155 struct timespec start_time; /* monotonic time */
1156 struct timespec real_start_time; /* boot based time */
1157 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1158 unsigned long min_flt, maj_flt;
1159
1160 struct task_cputime cputime_expires;
1161 struct list_head cpu_timers[3];
1162
1163 /* process credentials */
1164 const struct cred *real_cred; /* objective and real subjective task
1165 * credentials (COW) */
1166 const struct cred *cred; /* effective (overridable) subjective task
1167 * credentials (COW) */
1168 struct mutex cred_exec_mutex; /* execve vs ptrace cred calculation mutex */
1169
1170 char comm[TASK_COMM_LEN]; /* executable name excluding path
1171 - access with [gs]et_task_comm (which lock
1172 it with task_lock())
1173 - initialized normally by flush_old_exec */
1174 /* file system info */
1175 int link_count, total_link_count;
1176 #ifdef CONFIG_SYSVIPC
1177 /* ipc stuff */
1178 struct sysv_sem sysvsem;
1179 #endif
1180 #ifdef CONFIG_DETECT_SOFTLOCKUP
1181 /* hung task detection */
1182 unsigned long last_switch_timestamp;
1183 unsigned long last_switch_count;
1184 #endif
1185 /* CPU-specific state of this task */
1186 struct thread_struct thread;
1187 /* filesystem information */
1188 struct fs_struct *fs;
1189 /* open file information */
1190 struct files_struct *files;
1191 /* namespaces */
1192 struct nsproxy *nsproxy;
1193 /* signal handlers */
1194 struct signal_struct *signal;
1195 struct sighand_struct *sighand;
1196
1197 sigset_t blocked, real_blocked;
1198 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1199 struct sigpending pending;
1200
1201 unsigned long sas_ss_sp;
1202 size_t sas_ss_size;
1203 int (*notifier)(void *priv);
1204 void *notifier_data;
1205 sigset_t *notifier_mask;
1206 struct audit_context *audit_context;
1207 #ifdef CONFIG_AUDITSYSCALL
1208 uid_t loginuid;
1209 unsigned int sessionid;
1210 #endif
1211 seccomp_t seccomp;
1212
1213 /* Thread group tracking */
1214 u32 parent_exec_id;
1215 u32 self_exec_id;
1216 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
1217 spinlock_t alloc_lock;
1218
1219 /* Protection of the PI data structures: */
1220 spinlock_t pi_lock;
1221
1222 #ifdef CONFIG_RT_MUTEXES
1223 /* PI waiters blocked on a rt_mutex held by this task */
1224 struct plist_head pi_waiters;
1225 /* Deadlock detection and priority inheritance handling */
1226 struct rt_mutex_waiter *pi_blocked_on;
1227 #endif
1228
1229 #ifdef CONFIG_DEBUG_MUTEXES
1230 /* mutex deadlock detection */
1231 struct mutex_waiter *blocked_on;
1232 #endif
1233 #ifdef CONFIG_TRACE_IRQFLAGS
1234 unsigned int irq_events;
1235 int hardirqs_enabled;
1236 unsigned long hardirq_enable_ip;
1237 unsigned int hardirq_enable_event;
1238 unsigned long hardirq_disable_ip;
1239 unsigned int hardirq_disable_event;
1240 int softirqs_enabled;
1241 unsigned long softirq_disable_ip;
1242 unsigned int softirq_disable_event;
1243 unsigned long softirq_enable_ip;
1244 unsigned int softirq_enable_event;
1245 int hardirq_context;
1246 int softirq_context;
1247 #endif
1248 #ifdef CONFIG_LOCKDEP
1249 # define MAX_LOCK_DEPTH 48UL
1250 u64 curr_chain_key;
1251 int lockdep_depth;
1252 unsigned int lockdep_recursion;
1253 struct held_lock held_locks[MAX_LOCK_DEPTH];
1254 #endif
1255
1256 /* journalling filesystem info */
1257 void *journal_info;
1258
1259 /* stacked block device info */
1260 struct bio *bio_list, **bio_tail;
1261
1262 /* VM state */
1263 struct reclaim_state *reclaim_state;
1264
1265 struct backing_dev_info *backing_dev_info;
1266
1267 struct io_context *io_context;
1268
1269 unsigned long ptrace_message;
1270 siginfo_t *last_siginfo; /* For ptrace use. */
1271 struct task_io_accounting ioac;
1272 #if defined(CONFIG_TASK_XACCT)
1273 u64 acct_rss_mem1; /* accumulated rss usage */
1274 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1275 cputime_t acct_timexpd; /* stime + utime since last update */
1276 #endif
1277 #ifdef CONFIG_CPUSETS
1278 nodemask_t mems_allowed;
1279 int cpuset_mems_generation;
1280 int cpuset_mem_spread_rotor;
1281 #endif
1282 #ifdef CONFIG_CGROUPS
1283 /* Control Group info protected by css_set_lock */
1284 struct css_set *cgroups;
1285 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1286 struct list_head cg_list;
1287 #endif
1288 #ifdef CONFIG_FUTEX
1289 struct robust_list_head __user *robust_list;
1290 #ifdef CONFIG_COMPAT
1291 struct compat_robust_list_head __user *compat_robust_list;
1292 #endif
1293 struct list_head pi_state_list;
1294 struct futex_pi_state *pi_state_cache;
1295 #endif
1296 #ifdef CONFIG_NUMA
1297 struct mempolicy *mempolicy;
1298 short il_next;
1299 #endif
1300 atomic_t fs_excl; /* holding fs exclusive resources */
1301 struct rcu_head rcu;
1302
1303 /*
1304 * cache last used pipe for splice
1305 */
1306 struct pipe_inode_info *splice_pipe;
1307 #ifdef CONFIG_TASK_DELAY_ACCT
1308 struct task_delay_info *delays;
1309 #endif
1310 #ifdef CONFIG_FAULT_INJECTION
1311 int make_it_fail;
1312 #endif
1313 struct prop_local_single dirties;
1314 #ifdef CONFIG_LATENCYTOP
1315 int latency_record_count;
1316 struct latency_record latency_record[LT_SAVECOUNT];
1317 #endif
1318 /*
1319 * time slack values; these are used to round up poll() and
1320 * select() etc timeout values. These are in nanoseconds.
1321 */
1322 unsigned long timer_slack_ns;
1323 unsigned long default_timer_slack_ns;
1324
1325 struct list_head *scm_work_list;
1326 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1327 /* Index of current stored adress in ret_stack */
1328 int curr_ret_stack;
1329 /* Stack of return addresses for return function tracing */
1330 struct ftrace_ret_stack *ret_stack;
1331 /*
1332 * Number of functions that haven't been traced
1333 * because of depth overrun.
1334 */
1335 atomic_t trace_overrun;
1336 /* Pause for the tracing */
1337 atomic_t tracing_graph_pause;
1338 #endif
1339 #ifdef CONFIG_TRACING
1340 /* state flags for use by tracers */
1341 unsigned long trace;
1342 #endif
1343 };
1344
1345 /*
1346 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1347 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1348 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1349 * values are inverted: lower p->prio value means higher priority.
1350 *
1351 * The MAX_USER_RT_PRIO value allows the actual maximum
1352 * RT priority to be separate from the value exported to
1353 * user-space. This allows kernel threads to set their
1354 * priority to a value higher than any user task. Note:
1355 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1356 */
1357
1358 #define MAX_USER_RT_PRIO 100
1359 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1360
1361 #define MAX_PRIO (MAX_RT_PRIO + 40)
1362 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1363
1364 static inline int rt_prio(int prio)
1365 {
1366 if (unlikely(prio < MAX_RT_PRIO))
1367 return 1;
1368 return 0;
1369 }
1370
1371 static inline int rt_task(struct task_struct *p)
1372 {
1373 return rt_prio(p->prio);
1374 }
1375
1376 static inline void set_task_session(struct task_struct *tsk, pid_t session)
1377 {
1378 tsk->signal->__session = session;
1379 }
1380
1381 static inline void set_task_pgrp(struct task_struct *tsk, pid_t pgrp)
1382 {
1383 tsk->signal->__pgrp = pgrp;
1384 }
1385
1386 static inline struct pid *task_pid(struct task_struct *task)
1387 {
1388 return task->pids[PIDTYPE_PID].pid;
1389 }
1390
1391 static inline struct pid *task_tgid(struct task_struct *task)
1392 {
1393 return task->group_leader->pids[PIDTYPE_PID].pid;
1394 }
1395
1396 static inline struct pid *task_pgrp(struct task_struct *task)
1397 {
1398 return task->group_leader->pids[PIDTYPE_PGID].pid;
1399 }
1400
1401 static inline struct pid *task_session(struct task_struct *task)
1402 {
1403 return task->group_leader->pids[PIDTYPE_SID].pid;
1404 }
1405
1406 struct pid_namespace;
1407
1408 /*
1409 * the helpers to get the task's different pids as they are seen
1410 * from various namespaces
1411 *
1412 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1413 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1414 * current.
1415 * task_xid_nr_ns() : id seen from the ns specified;
1416 *
1417 * set_task_vxid() : assigns a virtual id to a task;
1418 *
1419 * see also pid_nr() etc in include/linux/pid.h
1420 */
1421
1422 static inline pid_t task_pid_nr(struct task_struct *tsk)
1423 {
1424 return tsk->pid;
1425 }
1426
1427 pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1428
1429 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1430 {
1431 return pid_vnr(task_pid(tsk));
1432 }
1433
1434
1435 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1436 {
1437 return tsk->tgid;
1438 }
1439
1440 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1441
1442 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1443 {
1444 return pid_vnr(task_tgid(tsk));
1445 }
1446
1447
1448 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1449 {
1450 return tsk->signal->__pgrp;
1451 }
1452
1453 pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1454
1455 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1456 {
1457 return pid_vnr(task_pgrp(tsk));
1458 }
1459
1460
1461 static inline pid_t task_session_nr(struct task_struct *tsk)
1462 {
1463 return tsk->signal->__session;
1464 }
1465
1466 pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1467
1468 static inline pid_t task_session_vnr(struct task_struct *tsk)
1469 {
1470 return pid_vnr(task_session(tsk));
1471 }
1472
1473
1474 /**
1475 * pid_alive - check that a task structure is not stale
1476 * @p: Task structure to be checked.
1477 *
1478 * Test if a process is not yet dead (at most zombie state)
1479 * If pid_alive fails, then pointers within the task structure
1480 * can be stale and must not be dereferenced.
1481 */
1482 static inline int pid_alive(struct task_struct *p)
1483 {
1484 return p->pids[PIDTYPE_PID].pid != NULL;
1485 }
1486
1487 /**
1488 * is_global_init - check if a task structure is init
1489 * @tsk: Task structure to be checked.
1490 *
1491 * Check if a task structure is the first user space task the kernel created.
1492 */
1493 static inline int is_global_init(struct task_struct *tsk)
1494 {
1495 return tsk->pid == 1;
1496 }
1497
1498 /*
1499 * is_container_init:
1500 * check whether in the task is init in its own pid namespace.
1501 */
1502 extern int is_container_init(struct task_struct *tsk);
1503
1504 extern struct pid *cad_pid;
1505
1506 extern void free_task(struct task_struct *tsk);
1507 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1508
1509 extern void __put_task_struct(struct task_struct *t);
1510
1511 static inline void put_task_struct(struct task_struct *t)
1512 {
1513 if (atomic_dec_and_test(&t->usage))
1514 __put_task_struct(t);
1515 }
1516
1517 extern cputime_t task_utime(struct task_struct *p);
1518 extern cputime_t task_stime(struct task_struct *p);
1519 extern cputime_t task_gtime(struct task_struct *p);
1520
1521 /*
1522 * Per process flags
1523 */
1524 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1525 /* Not implemented yet, only for 486*/
1526 #define PF_STARTING 0x00000002 /* being created */
1527 #define PF_EXITING 0x00000004 /* getting shut down */
1528 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1529 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1530 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1531 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1532 #define PF_DUMPCORE 0x00000200 /* dumped core */
1533 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1534 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1535 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1536 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1537 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1538 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1539 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1540 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1541 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */
1542 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1543 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1544 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1545 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1546 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1547 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1548 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1549 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1550 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1551 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1552 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */
1553
1554 /*
1555 * Only the _current_ task can read/write to tsk->flags, but other
1556 * tasks can access tsk->flags in readonly mode for example
1557 * with tsk_used_math (like during threaded core dumping).
1558 * There is however an exception to this rule during ptrace
1559 * or during fork: the ptracer task is allowed to write to the
1560 * child->flags of its traced child (same goes for fork, the parent
1561 * can write to the child->flags), because we're guaranteed the
1562 * child is not running and in turn not changing child->flags
1563 * at the same time the parent does it.
1564 */
1565 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1566 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1567 #define clear_used_math() clear_stopped_child_used_math(current)
1568 #define set_used_math() set_stopped_child_used_math(current)
1569 #define conditional_stopped_child_used_math(condition, child) \
1570 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1571 #define conditional_used_math(condition) \
1572 conditional_stopped_child_used_math(condition, current)
1573 #define copy_to_stopped_child_used_math(child) \
1574 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1575 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1576 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1577 #define used_math() tsk_used_math(current)
1578
1579 #ifdef CONFIG_SMP
1580 extern int set_cpus_allowed_ptr(struct task_struct *p,
1581 const cpumask_t *new_mask);
1582 #else
1583 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1584 const cpumask_t *new_mask)
1585 {
1586 if (!cpu_isset(0, *new_mask))
1587 return -EINVAL;
1588 return 0;
1589 }
1590 #endif
1591 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1592 {
1593 return set_cpus_allowed_ptr(p, &new_mask);
1594 }
1595
1596 extern unsigned long long sched_clock(void);
1597
1598 extern void sched_clock_init(void);
1599 extern u64 sched_clock_cpu(int cpu);
1600
1601 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1602 static inline void sched_clock_tick(void)
1603 {
1604 }
1605
1606 static inline void sched_clock_idle_sleep_event(void)
1607 {
1608 }
1609
1610 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1611 {
1612 }
1613 #else
1614 extern void sched_clock_tick(void);
1615 extern void sched_clock_idle_sleep_event(void);
1616 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1617 #endif
1618
1619 /*
1620 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1621 * clock constructed from sched_clock():
1622 */
1623 extern unsigned long long cpu_clock(int cpu);
1624
1625 extern unsigned long long
1626 task_sched_runtime(struct task_struct *task);
1627 extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1628
1629 /* sched_exec is called by processes performing an exec */
1630 #ifdef CONFIG_SMP
1631 extern void sched_exec(void);
1632 #else
1633 #define sched_exec() {}
1634 #endif
1635
1636 extern void sched_clock_idle_sleep_event(void);
1637 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1638
1639 #ifdef CONFIG_HOTPLUG_CPU
1640 extern void idle_task_exit(void);
1641 #else
1642 static inline void idle_task_exit(void) {}
1643 #endif
1644
1645 extern void sched_idle_next(void);
1646
1647 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1648 extern void wake_up_idle_cpu(int cpu);
1649 #else
1650 static inline void wake_up_idle_cpu(int cpu) { }
1651 #endif
1652
1653 #ifdef CONFIG_SCHED_DEBUG
1654 extern unsigned int sysctl_sched_latency;
1655 extern unsigned int sysctl_sched_min_granularity;
1656 extern unsigned int sysctl_sched_wakeup_granularity;
1657 extern unsigned int sysctl_sched_child_runs_first;
1658 extern unsigned int sysctl_sched_features;
1659 extern unsigned int sysctl_sched_migration_cost;
1660 extern unsigned int sysctl_sched_nr_migrate;
1661 extern unsigned int sysctl_sched_shares_ratelimit;
1662 extern unsigned int sysctl_sched_shares_thresh;
1663
1664 int sched_nr_latency_handler(struct ctl_table *table, int write,
1665 struct file *file, void __user *buffer, size_t *length,
1666 loff_t *ppos);
1667 #endif
1668 extern unsigned int sysctl_sched_rt_period;
1669 extern int sysctl_sched_rt_runtime;
1670
1671 int sched_rt_handler(struct ctl_table *table, int write,
1672 struct file *filp, void __user *buffer, size_t *lenp,
1673 loff_t *ppos);
1674
1675 extern unsigned int sysctl_sched_compat_yield;
1676
1677 #ifdef CONFIG_RT_MUTEXES
1678 extern int rt_mutex_getprio(struct task_struct *p);
1679 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1680 extern void rt_mutex_adjust_pi(struct task_struct *p);
1681 #else
1682 static inline int rt_mutex_getprio(struct task_struct *p)
1683 {
1684 return p->normal_prio;
1685 }
1686 # define rt_mutex_adjust_pi(p) do { } while (0)
1687 #endif
1688
1689 extern void set_user_nice(struct task_struct *p, long nice);
1690 extern int task_prio(const struct task_struct *p);
1691 extern int task_nice(const struct task_struct *p);
1692 extern int can_nice(const struct task_struct *p, const int nice);
1693 extern int task_curr(const struct task_struct *p);
1694 extern int idle_cpu(int cpu);
1695 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1696 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1697 struct sched_param *);
1698 extern struct task_struct *idle_task(int cpu);
1699 extern struct task_struct *curr_task(int cpu);
1700 extern void set_curr_task(int cpu, struct task_struct *p);
1701
1702 void yield(void);
1703
1704 /*
1705 * The default (Linux) execution domain.
1706 */
1707 extern struct exec_domain default_exec_domain;
1708
1709 union thread_union {
1710 struct thread_info thread_info;
1711 unsigned long stack[THREAD_SIZE/sizeof(long)];
1712 };
1713
1714 #ifndef __HAVE_ARCH_KSTACK_END
1715 static inline int kstack_end(void *addr)
1716 {
1717 /* Reliable end of stack detection:
1718 * Some APM bios versions misalign the stack
1719 */
1720 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1721 }
1722 #endif
1723
1724 extern union thread_union init_thread_union;
1725 extern struct task_struct init_task;
1726
1727 extern struct mm_struct init_mm;
1728
1729 extern struct pid_namespace init_pid_ns;
1730
1731 /*
1732 * find a task by one of its numerical ids
1733 *
1734 * find_task_by_pid_type_ns():
1735 * it is the most generic call - it finds a task by all id,
1736 * type and namespace specified
1737 * find_task_by_pid_ns():
1738 * finds a task by its pid in the specified namespace
1739 * find_task_by_vpid():
1740 * finds a task by its virtual pid
1741 *
1742 * see also find_vpid() etc in include/linux/pid.h
1743 */
1744
1745 extern struct task_struct *find_task_by_pid_type_ns(int type, int pid,
1746 struct pid_namespace *ns);
1747
1748 extern struct task_struct *find_task_by_vpid(pid_t nr);
1749 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1750 struct pid_namespace *ns);
1751
1752 extern void __set_special_pids(struct pid *pid);
1753
1754 /* per-UID process charging. */
1755 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1756 static inline struct user_struct *get_uid(struct user_struct *u)
1757 {
1758 atomic_inc(&u->__count);
1759 return u;
1760 }
1761 extern void free_uid(struct user_struct *);
1762 extern void release_uids(struct user_namespace *ns);
1763
1764 #include <asm/current.h>
1765
1766 extern void do_timer(unsigned long ticks);
1767
1768 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1769 extern int wake_up_process(struct task_struct *tsk);
1770 extern void wake_up_new_task(struct task_struct *tsk,
1771 unsigned long clone_flags);
1772 #ifdef CONFIG_SMP
1773 extern void kick_process(struct task_struct *tsk);
1774 #else
1775 static inline void kick_process(struct task_struct *tsk) { }
1776 #endif
1777 extern void sched_fork(struct task_struct *p, int clone_flags);
1778 extern void sched_dead(struct task_struct *p);
1779
1780 extern void proc_caches_init(void);
1781 extern void flush_signals(struct task_struct *);
1782 extern void ignore_signals(struct task_struct *);
1783 extern void flush_signal_handlers(struct task_struct *, int force_default);
1784 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1785
1786 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1787 {
1788 unsigned long flags;
1789 int ret;
1790
1791 spin_lock_irqsave(&tsk->sighand->siglock, flags);
1792 ret = dequeue_signal(tsk, mask, info);
1793 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1794
1795 return ret;
1796 }
1797
1798 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1799 sigset_t *mask);
1800 extern void unblock_all_signals(void);
1801 extern void release_task(struct task_struct * p);
1802 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1803 extern int force_sigsegv(int, struct task_struct *);
1804 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1805 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1806 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
1807 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
1808 extern int kill_pgrp(struct pid *pid, int sig, int priv);
1809 extern int kill_pid(struct pid *pid, int sig, int priv);
1810 extern int kill_proc_info(int, struct siginfo *, pid_t);
1811 extern int do_notify_parent(struct task_struct *, int);
1812 extern void force_sig(int, struct task_struct *);
1813 extern void force_sig_specific(int, struct task_struct *);
1814 extern int send_sig(int, struct task_struct *, int);
1815 extern void zap_other_threads(struct task_struct *p);
1816 extern struct sigqueue *sigqueue_alloc(void);
1817 extern void sigqueue_free(struct sigqueue *);
1818 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
1819 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1820 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1821
1822 static inline int kill_cad_pid(int sig, int priv)
1823 {
1824 return kill_pid(cad_pid, sig, priv);
1825 }
1826
1827 /* These can be the second arg to send_sig_info/send_group_sig_info. */
1828 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
1829 #define SEND_SIG_PRIV ((struct siginfo *) 1)
1830 #define SEND_SIG_FORCED ((struct siginfo *) 2)
1831
1832 static inline int is_si_special(const struct siginfo *info)
1833 {
1834 return info <= SEND_SIG_FORCED;
1835 }
1836
1837 /* True if we are on the alternate signal stack. */
1838
1839 static inline int on_sig_stack(unsigned long sp)
1840 {
1841 return (sp - current->sas_ss_sp < current->sas_ss_size);
1842 }
1843
1844 static inline int sas_ss_flags(unsigned long sp)
1845 {
1846 return (current->sas_ss_size == 0 ? SS_DISABLE
1847 : on_sig_stack(sp) ? SS_ONSTACK : 0);
1848 }
1849
1850 /*
1851 * Routines for handling mm_structs
1852 */
1853 extern struct mm_struct * mm_alloc(void);
1854
1855 /* mmdrop drops the mm and the page tables */
1856 extern void __mmdrop(struct mm_struct *);
1857 static inline void mmdrop(struct mm_struct * mm)
1858 {
1859 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1860 __mmdrop(mm);
1861 }
1862
1863 /* mmput gets rid of the mappings and all user-space */
1864 extern void mmput(struct mm_struct *);
1865 /* Grab a reference to a task's mm, if it is not already going away */
1866 extern struct mm_struct *get_task_mm(struct task_struct *task);
1867 /* Remove the current tasks stale references to the old mm_struct */
1868 extern void mm_release(struct task_struct *, struct mm_struct *);
1869 /* Allocate a new mm structure and copy contents from tsk->mm */
1870 extern struct mm_struct *dup_mm(struct task_struct *tsk);
1871
1872 extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
1873 extern void flush_thread(void);
1874 extern void exit_thread(void);
1875
1876 extern void exit_files(struct task_struct *);
1877 extern void __cleanup_signal(struct signal_struct *);
1878 extern void __cleanup_sighand(struct sighand_struct *);
1879
1880 extern void exit_itimers(struct signal_struct *);
1881 extern void flush_itimer_signals(void);
1882
1883 extern NORET_TYPE void do_group_exit(int);
1884
1885 extern void daemonize(const char *, ...);
1886 extern int allow_signal(int);
1887 extern int disallow_signal(int);
1888
1889 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
1890 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
1891 struct task_struct *fork_idle(int);
1892
1893 extern void set_task_comm(struct task_struct *tsk, char *from);
1894 extern char *get_task_comm(char *to, struct task_struct *tsk);
1895
1896 #ifdef CONFIG_SMP
1897 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1898 #else
1899 static inline unsigned long wait_task_inactive(struct task_struct *p,
1900 long match_state)
1901 {
1902 return 1;
1903 }
1904 #endif
1905
1906 #define next_task(p) list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks)
1907
1908 #define for_each_process(p) \
1909 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
1910
1911 extern bool is_single_threaded(struct task_struct *);
1912
1913 /*
1914 * Careful: do_each_thread/while_each_thread is a double loop so
1915 * 'break' will not work as expected - use goto instead.
1916 */
1917 #define do_each_thread(g, t) \
1918 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
1919
1920 #define while_each_thread(g, t) \
1921 while ((t = next_thread(t)) != g)
1922
1923 /* de_thread depends on thread_group_leader not being a pid based check */
1924 #define thread_group_leader(p) (p == p->group_leader)
1925
1926 /* Do to the insanities of de_thread it is possible for a process
1927 * to have the pid of the thread group leader without actually being
1928 * the thread group leader. For iteration through the pids in proc
1929 * all we care about is that we have a task with the appropriate
1930 * pid, we don't actually care if we have the right task.
1931 */
1932 static inline int has_group_leader_pid(struct task_struct *p)
1933 {
1934 return p->pid == p->tgid;
1935 }
1936
1937 static inline
1938 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
1939 {
1940 return p1->tgid == p2->tgid;
1941 }
1942
1943 static inline struct task_struct *next_thread(const struct task_struct *p)
1944 {
1945 return list_entry(rcu_dereference(p->thread_group.next),
1946 struct task_struct, thread_group);
1947 }
1948
1949 static inline int thread_group_empty(struct task_struct *p)
1950 {
1951 return list_empty(&p->thread_group);
1952 }
1953
1954 #define delay_group_leader(p) \
1955 (thread_group_leader(p) && !thread_group_empty(p))
1956
1957 /*
1958 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
1959 * subscriptions and synchronises with wait4(). Also used in procfs. Also
1960 * pins the final release of task.io_context. Also protects ->cpuset and
1961 * ->cgroup.subsys[].
1962 *
1963 * Nests both inside and outside of read_lock(&tasklist_lock).
1964 * It must not be nested with write_lock_irq(&tasklist_lock),
1965 * neither inside nor outside.
1966 */
1967 static inline void task_lock(struct task_struct *p)
1968 {
1969 spin_lock(&p->alloc_lock);
1970 }
1971
1972 static inline void task_unlock(struct task_struct *p)
1973 {
1974 spin_unlock(&p->alloc_lock);
1975 }
1976
1977 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
1978 unsigned long *flags);
1979
1980 static inline void unlock_task_sighand(struct task_struct *tsk,
1981 unsigned long *flags)
1982 {
1983 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
1984 }
1985
1986 #ifndef __HAVE_THREAD_FUNCTIONS
1987
1988 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
1989 #define task_stack_page(task) ((task)->stack)
1990
1991 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
1992 {
1993 *task_thread_info(p) = *task_thread_info(org);
1994 task_thread_info(p)->task = p;
1995 }
1996
1997 static inline unsigned long *end_of_stack(struct task_struct *p)
1998 {
1999 return (unsigned long *)(task_thread_info(p) + 1);
2000 }
2001
2002 #endif
2003
2004 static inline int object_is_on_stack(void *obj)
2005 {
2006 void *stack = task_stack_page(current);
2007
2008 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2009 }
2010
2011 extern void thread_info_cache_init(void);
2012
2013 /* set thread flags in other task's structures
2014 * - see asm/thread_info.h for TIF_xxxx flags available
2015 */
2016 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2017 {
2018 set_ti_thread_flag(task_thread_info(tsk), flag);
2019 }
2020
2021 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2022 {
2023 clear_ti_thread_flag(task_thread_info(tsk), flag);
2024 }
2025
2026 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2027 {
2028 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2029 }
2030
2031 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2032 {
2033 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2034 }
2035
2036 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2037 {
2038 return test_ti_thread_flag(task_thread_info(tsk), flag);
2039 }
2040
2041 static inline void set_tsk_need_resched(struct task_struct *tsk)
2042 {
2043 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2044 }
2045
2046 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2047 {
2048 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2049 }
2050
2051 static inline int test_tsk_need_resched(struct task_struct *tsk)
2052 {
2053 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2054 }
2055
2056 static inline int signal_pending(struct task_struct *p)
2057 {
2058 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2059 }
2060
2061 extern int __fatal_signal_pending(struct task_struct *p);
2062
2063 static inline int fatal_signal_pending(struct task_struct *p)
2064 {
2065 return signal_pending(p) && __fatal_signal_pending(p);
2066 }
2067
2068 static inline int signal_pending_state(long state, struct task_struct *p)
2069 {
2070 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2071 return 0;
2072 if (!signal_pending(p))
2073 return 0;
2074
2075 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2076 }
2077
2078 static inline int need_resched(void)
2079 {
2080 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2081 }
2082
2083 /*
2084 * cond_resched() and cond_resched_lock(): latency reduction via
2085 * explicit rescheduling in places that are safe. The return
2086 * value indicates whether a reschedule was done in fact.
2087 * cond_resched_lock() will drop the spinlock before scheduling,
2088 * cond_resched_softirq() will enable bhs before scheduling.
2089 */
2090 extern int _cond_resched(void);
2091 #ifdef CONFIG_PREEMPT_BKL
2092 static inline int cond_resched(void)
2093 {
2094 return 0;
2095 }
2096 #else
2097 static inline int cond_resched(void)
2098 {
2099 return _cond_resched();
2100 }
2101 #endif
2102 extern int cond_resched_lock(spinlock_t * lock);
2103 extern int cond_resched_softirq(void);
2104 static inline int cond_resched_bkl(void)
2105 {
2106 return _cond_resched();
2107 }
2108
2109 /*
2110 * Does a critical section need to be broken due to another
2111 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2112 * but a general need for low latency)
2113 */
2114 static inline int spin_needbreak(spinlock_t *lock)
2115 {
2116 #ifdef CONFIG_PREEMPT
2117 return spin_is_contended(lock);
2118 #else
2119 return 0;
2120 #endif
2121 }
2122
2123 /*
2124 * Thread group CPU time accounting.
2125 */
2126
2127 extern int thread_group_cputime_alloc(struct task_struct *);
2128 extern void thread_group_cputime(struct task_struct *, struct task_cputime *);
2129
2130 static inline void thread_group_cputime_init(struct signal_struct *sig)
2131 {
2132 sig->cputime.totals = NULL;
2133 }
2134
2135 static inline int thread_group_cputime_clone_thread(struct task_struct *curr)
2136 {
2137 if (curr->signal->cputime.totals)
2138 return 0;
2139 return thread_group_cputime_alloc(curr);
2140 }
2141
2142 static inline void thread_group_cputime_free(struct signal_struct *sig)
2143 {
2144 free_percpu(sig->cputime.totals);
2145 }
2146
2147 /*
2148 * Reevaluate whether the task has signals pending delivery.
2149 * Wake the task if so.
2150 * This is required every time the blocked sigset_t changes.
2151 * callers must hold sighand->siglock.
2152 */
2153 extern void recalc_sigpending_and_wake(struct task_struct *t);
2154 extern void recalc_sigpending(void);
2155
2156 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2157
2158 /*
2159 * Wrappers for p->thread_info->cpu access. No-op on UP.
2160 */
2161 #ifdef CONFIG_SMP
2162
2163 static inline unsigned int task_cpu(const struct task_struct *p)
2164 {
2165 return task_thread_info(p)->cpu;
2166 }
2167
2168 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2169
2170 #else
2171
2172 static inline unsigned int task_cpu(const struct task_struct *p)
2173 {
2174 return 0;
2175 }
2176
2177 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2178 {
2179 }
2180
2181 #endif /* CONFIG_SMP */
2182
2183 extern void arch_pick_mmap_layout(struct mm_struct *mm);
2184
2185 #ifdef CONFIG_TRACING
2186 extern void
2187 __trace_special(void *__tr, void *__data,
2188 unsigned long arg1, unsigned long arg2, unsigned long arg3);
2189 #else
2190 static inline void
2191 __trace_special(void *__tr, void *__data,
2192 unsigned long arg1, unsigned long arg2, unsigned long arg3)
2193 {
2194 }
2195 #endif
2196
2197 extern long sched_setaffinity(pid_t pid, const cpumask_t *new_mask);
2198 extern long sched_getaffinity(pid_t pid, cpumask_t *mask);
2199
2200 extern int sched_mc_power_savings, sched_smt_power_savings;
2201
2202 extern void normalize_rt_tasks(void);
2203
2204 #ifdef CONFIG_GROUP_SCHED
2205
2206 extern struct task_group init_task_group;
2207 #ifdef CONFIG_USER_SCHED
2208 extern struct task_group root_task_group;
2209 extern void set_tg_uid(struct user_struct *user);
2210 #endif
2211
2212 extern struct task_group *sched_create_group(struct task_group *parent);
2213 extern void sched_destroy_group(struct task_group *tg);
2214 extern void sched_move_task(struct task_struct *tsk);
2215 #ifdef CONFIG_FAIR_GROUP_SCHED
2216 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2217 extern unsigned long sched_group_shares(struct task_group *tg);
2218 #endif
2219 #ifdef CONFIG_RT_GROUP_SCHED
2220 extern int sched_group_set_rt_runtime(struct task_group *tg,
2221 long rt_runtime_us);
2222 extern long sched_group_rt_runtime(struct task_group *tg);
2223 extern int sched_group_set_rt_period(struct task_group *tg,
2224 long rt_period_us);
2225 extern long sched_group_rt_period(struct task_group *tg);
2226 #endif
2227 #endif
2228
2229 #ifdef CONFIG_TASK_XACCT
2230 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2231 {
2232 tsk->ioac.rchar += amt;
2233 }
2234
2235 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2236 {
2237 tsk->ioac.wchar += amt;
2238 }
2239
2240 static inline void inc_syscr(struct task_struct *tsk)
2241 {
2242 tsk->ioac.syscr++;
2243 }
2244
2245 static inline void inc_syscw(struct task_struct *tsk)
2246 {
2247 tsk->ioac.syscw++;
2248 }
2249 #else
2250 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2251 {
2252 }
2253
2254 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2255 {
2256 }
2257
2258 static inline void inc_syscr(struct task_struct *tsk)
2259 {
2260 }
2261
2262 static inline void inc_syscw(struct task_struct *tsk)
2263 {
2264 }
2265 #endif
2266
2267 #ifndef TASK_SIZE_OF
2268 #define TASK_SIZE_OF(tsk) TASK_SIZE
2269 #endif
2270
2271 #ifdef CONFIG_MM_OWNER
2272 extern void mm_update_next_owner(struct mm_struct *mm);
2273 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2274 #else
2275 static inline void mm_update_next_owner(struct mm_struct *mm)
2276 {
2277 }
2278
2279 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2280 {
2281 }
2282 #endif /* CONFIG_MM_OWNER */
2283
2284 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
2285
2286 #endif /* __KERNEL__ */
2287
2288 #endif
This page took 0.119352 seconds and 6 git commands to generate.