Merge branch 'x86-spinlocks-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <uapi/linux/sched.h>
5
6
7 struct sched_param {
8 int sched_priority;
9 };
10
11 #include <asm/param.h> /* for HZ */
12
13 #include <linux/capability.h>
14 #include <linux/threads.h>
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/timex.h>
18 #include <linux/jiffies.h>
19 #include <linux/rbtree.h>
20 #include <linux/thread_info.h>
21 #include <linux/cpumask.h>
22 #include <linux/errno.h>
23 #include <linux/nodemask.h>
24 #include <linux/mm_types.h>
25
26 #include <asm/page.h>
27 #include <asm/ptrace.h>
28 #include <asm/cputime.h>
29
30 #include <linux/smp.h>
31 #include <linux/sem.h>
32 #include <linux/signal.h>
33 #include <linux/compiler.h>
34 #include <linux/completion.h>
35 #include <linux/pid.h>
36 #include <linux/percpu.h>
37 #include <linux/topology.h>
38 #include <linux/proportions.h>
39 #include <linux/seccomp.h>
40 #include <linux/rcupdate.h>
41 #include <linux/rculist.h>
42 #include <linux/rtmutex.h>
43
44 #include <linux/time.h>
45 #include <linux/param.h>
46 #include <linux/resource.h>
47 #include <linux/timer.h>
48 #include <linux/hrtimer.h>
49 #include <linux/task_io_accounting.h>
50 #include <linux/latencytop.h>
51 #include <linux/cred.h>
52 #include <linux/llist.h>
53 #include <linux/uidgid.h>
54 #include <linux/gfp.h>
55
56 #include <asm/processor.h>
57
58 struct exec_domain;
59 struct futex_pi_state;
60 struct robust_list_head;
61 struct bio_list;
62 struct fs_struct;
63 struct perf_event_context;
64 struct blk_plug;
65
66 /*
67 * List of flags we want to share for kernel threads,
68 * if only because they are not used by them anyway.
69 */
70 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
71
72 /*
73 * These are the constant used to fake the fixed-point load-average
74 * counting. Some notes:
75 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
76 * a load-average precision of 10 bits integer + 11 bits fractional
77 * - if you want to count load-averages more often, you need more
78 * precision, or rounding will get you. With 2-second counting freq,
79 * the EXP_n values would be 1981, 2034 and 2043 if still using only
80 * 11 bit fractions.
81 */
82 extern unsigned long avenrun[]; /* Load averages */
83 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
84
85 #define FSHIFT 11 /* nr of bits of precision */
86 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
87 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
88 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
89 #define EXP_5 2014 /* 1/exp(5sec/5min) */
90 #define EXP_15 2037 /* 1/exp(5sec/15min) */
91
92 #define CALC_LOAD(load,exp,n) \
93 load *= exp; \
94 load += n*(FIXED_1-exp); \
95 load >>= FSHIFT;
96
97 extern unsigned long total_forks;
98 extern int nr_threads;
99 DECLARE_PER_CPU(unsigned long, process_counts);
100 extern int nr_processes(void);
101 extern unsigned long nr_running(void);
102 extern unsigned long nr_iowait(void);
103 extern unsigned long nr_iowait_cpu(int cpu);
104 extern unsigned long this_cpu_load(void);
105
106
107 extern void calc_global_load(unsigned long ticks);
108 extern void update_cpu_load_nohz(void);
109
110 /* Notifier for when a task gets migrated to a new CPU */
111 struct task_migration_notifier {
112 struct task_struct *task;
113 int from_cpu;
114 int to_cpu;
115 };
116 extern void register_task_migration_notifier(struct notifier_block *n);
117
118 extern unsigned long get_parent_ip(unsigned long addr);
119
120 extern void dump_cpu_task(int cpu);
121
122 struct seq_file;
123 struct cfs_rq;
124 struct task_group;
125 #ifdef CONFIG_SCHED_DEBUG
126 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
127 extern void proc_sched_set_task(struct task_struct *p);
128 extern void
129 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
130 #endif
131
132 /*
133 * Task state bitmask. NOTE! These bits are also
134 * encoded in fs/proc/array.c: get_task_state().
135 *
136 * We have two separate sets of flags: task->state
137 * is about runnability, while task->exit_state are
138 * about the task exiting. Confusing, but this way
139 * modifying one set can't modify the other one by
140 * mistake.
141 */
142 #define TASK_RUNNING 0
143 #define TASK_INTERRUPTIBLE 1
144 #define TASK_UNINTERRUPTIBLE 2
145 #define __TASK_STOPPED 4
146 #define __TASK_TRACED 8
147 /* in tsk->exit_state */
148 #define EXIT_ZOMBIE 16
149 #define EXIT_DEAD 32
150 /* in tsk->state again */
151 #define TASK_DEAD 64
152 #define TASK_WAKEKILL 128
153 #define TASK_WAKING 256
154 #define TASK_PARKED 512
155 #define TASK_STATE_MAX 1024
156
157 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
158
159 extern char ___assert_task_state[1 - 2*!!(
160 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
161
162 /* Convenience macros for the sake of set_task_state */
163 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
164 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
165 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
166
167 /* Convenience macros for the sake of wake_up */
168 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
169 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
170
171 /* get_task_state() */
172 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
173 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
174 __TASK_TRACED)
175
176 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
177 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
178 #define task_is_dead(task) ((task)->exit_state != 0)
179 #define task_is_stopped_or_traced(task) \
180 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
181 #define task_contributes_to_load(task) \
182 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
183 (task->flags & PF_FROZEN) == 0)
184
185 #define __set_task_state(tsk, state_value) \
186 do { (tsk)->state = (state_value); } while (0)
187 #define set_task_state(tsk, state_value) \
188 set_mb((tsk)->state, (state_value))
189
190 /*
191 * set_current_state() includes a barrier so that the write of current->state
192 * is correctly serialised wrt the caller's subsequent test of whether to
193 * actually sleep:
194 *
195 * set_current_state(TASK_UNINTERRUPTIBLE);
196 * if (do_i_need_to_sleep())
197 * schedule();
198 *
199 * If the caller does not need such serialisation then use __set_current_state()
200 */
201 #define __set_current_state(state_value) \
202 do { current->state = (state_value); } while (0)
203 #define set_current_state(state_value) \
204 set_mb(current->state, (state_value))
205
206 /* Task command name length */
207 #define TASK_COMM_LEN 16
208
209 #include <linux/spinlock.h>
210
211 /*
212 * This serializes "schedule()" and also protects
213 * the run-queue from deletions/modifications (but
214 * _adding_ to the beginning of the run-queue has
215 * a separate lock).
216 */
217 extern rwlock_t tasklist_lock;
218 extern spinlock_t mmlist_lock;
219
220 struct task_struct;
221
222 #ifdef CONFIG_PROVE_RCU
223 extern int lockdep_tasklist_lock_is_held(void);
224 #endif /* #ifdef CONFIG_PROVE_RCU */
225
226 extern void sched_init(void);
227 extern void sched_init_smp(void);
228 extern asmlinkage void schedule_tail(struct task_struct *prev);
229 extern void init_idle(struct task_struct *idle, int cpu);
230 extern void init_idle_bootup_task(struct task_struct *idle);
231
232 extern int runqueue_is_locked(int cpu);
233
234 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
235 extern void nohz_balance_enter_idle(int cpu);
236 extern void set_cpu_sd_state_idle(void);
237 extern int get_nohz_timer_target(void);
238 #else
239 static inline void nohz_balance_enter_idle(int cpu) { }
240 static inline void set_cpu_sd_state_idle(void) { }
241 #endif
242
243 /*
244 * Only dump TASK_* tasks. (0 for all tasks)
245 */
246 extern void show_state_filter(unsigned long state_filter);
247
248 static inline void show_state(void)
249 {
250 show_state_filter(0);
251 }
252
253 extern void show_regs(struct pt_regs *);
254
255 /*
256 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
257 * task), SP is the stack pointer of the first frame that should be shown in the back
258 * trace (or NULL if the entire call-chain of the task should be shown).
259 */
260 extern void show_stack(struct task_struct *task, unsigned long *sp);
261
262 void io_schedule(void);
263 long io_schedule_timeout(long timeout);
264
265 extern void cpu_init (void);
266 extern void trap_init(void);
267 extern void update_process_times(int user);
268 extern void scheduler_tick(void);
269
270 extern void sched_show_task(struct task_struct *p);
271
272 #ifdef CONFIG_LOCKUP_DETECTOR
273 extern void touch_softlockup_watchdog(void);
274 extern void touch_softlockup_watchdog_sync(void);
275 extern void touch_all_softlockup_watchdogs(void);
276 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
277 void __user *buffer,
278 size_t *lenp, loff_t *ppos);
279 extern unsigned int softlockup_panic;
280 void lockup_detector_init(void);
281 #else
282 static inline void touch_softlockup_watchdog(void)
283 {
284 }
285 static inline void touch_softlockup_watchdog_sync(void)
286 {
287 }
288 static inline void touch_all_softlockup_watchdogs(void)
289 {
290 }
291 static inline void lockup_detector_init(void)
292 {
293 }
294 #endif
295
296 /* Attach to any functions which should be ignored in wchan output. */
297 #define __sched __attribute__((__section__(".sched.text")))
298
299 /* Linker adds these: start and end of __sched functions */
300 extern char __sched_text_start[], __sched_text_end[];
301
302 /* Is this address in the __sched functions? */
303 extern int in_sched_functions(unsigned long addr);
304
305 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
306 extern signed long schedule_timeout(signed long timeout);
307 extern signed long schedule_timeout_interruptible(signed long timeout);
308 extern signed long schedule_timeout_killable(signed long timeout);
309 extern signed long schedule_timeout_uninterruptible(signed long timeout);
310 asmlinkage void schedule(void);
311 extern void schedule_preempt_disabled(void);
312
313 struct nsproxy;
314 struct user_namespace;
315
316 #ifdef CONFIG_MMU
317 extern void arch_pick_mmap_layout(struct mm_struct *mm);
318 extern unsigned long
319 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
320 unsigned long, unsigned long);
321 extern unsigned long
322 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
323 unsigned long len, unsigned long pgoff,
324 unsigned long flags);
325 #else
326 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
327 #endif
328
329
330 extern void set_dumpable(struct mm_struct *mm, int value);
331 extern int get_dumpable(struct mm_struct *mm);
332
333 /* mm flags */
334 /* dumpable bits */
335 #define MMF_DUMPABLE 0 /* core dump is permitted */
336 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
337
338 #define MMF_DUMPABLE_BITS 2
339 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
340
341 /* coredump filter bits */
342 #define MMF_DUMP_ANON_PRIVATE 2
343 #define MMF_DUMP_ANON_SHARED 3
344 #define MMF_DUMP_MAPPED_PRIVATE 4
345 #define MMF_DUMP_MAPPED_SHARED 5
346 #define MMF_DUMP_ELF_HEADERS 6
347 #define MMF_DUMP_HUGETLB_PRIVATE 7
348 #define MMF_DUMP_HUGETLB_SHARED 8
349
350 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
351 #define MMF_DUMP_FILTER_BITS 7
352 #define MMF_DUMP_FILTER_MASK \
353 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
354 #define MMF_DUMP_FILTER_DEFAULT \
355 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
356 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
357
358 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
359 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
360 #else
361 # define MMF_DUMP_MASK_DEFAULT_ELF 0
362 #endif
363 /* leave room for more dump flags */
364 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
365 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
366 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
367
368 #define MMF_HAS_UPROBES 19 /* has uprobes */
369 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
370
371 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
372
373 struct sighand_struct {
374 atomic_t count;
375 struct k_sigaction action[_NSIG];
376 spinlock_t siglock;
377 wait_queue_head_t signalfd_wqh;
378 };
379
380 struct pacct_struct {
381 int ac_flag;
382 long ac_exitcode;
383 unsigned long ac_mem;
384 cputime_t ac_utime, ac_stime;
385 unsigned long ac_minflt, ac_majflt;
386 };
387
388 struct cpu_itimer {
389 cputime_t expires;
390 cputime_t incr;
391 u32 error;
392 u32 incr_error;
393 };
394
395 /**
396 * struct cputime - snaphsot of system and user cputime
397 * @utime: time spent in user mode
398 * @stime: time spent in system mode
399 *
400 * Gathers a generic snapshot of user and system time.
401 */
402 struct cputime {
403 cputime_t utime;
404 cputime_t stime;
405 };
406
407 /**
408 * struct task_cputime - collected CPU time counts
409 * @utime: time spent in user mode, in &cputime_t units
410 * @stime: time spent in kernel mode, in &cputime_t units
411 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
412 *
413 * This is an extension of struct cputime that includes the total runtime
414 * spent by the task from the scheduler point of view.
415 *
416 * As a result, this structure groups together three kinds of CPU time
417 * that are tracked for threads and thread groups. Most things considering
418 * CPU time want to group these counts together and treat all three
419 * of them in parallel.
420 */
421 struct task_cputime {
422 cputime_t utime;
423 cputime_t stime;
424 unsigned long long sum_exec_runtime;
425 };
426 /* Alternate field names when used to cache expirations. */
427 #define prof_exp stime
428 #define virt_exp utime
429 #define sched_exp sum_exec_runtime
430
431 #define INIT_CPUTIME \
432 (struct task_cputime) { \
433 .utime = 0, \
434 .stime = 0, \
435 .sum_exec_runtime = 0, \
436 }
437
438 /*
439 * Disable preemption until the scheduler is running.
440 * Reset by start_kernel()->sched_init()->init_idle().
441 *
442 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
443 * before the scheduler is active -- see should_resched().
444 */
445 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
446
447 /**
448 * struct thread_group_cputimer - thread group interval timer counts
449 * @cputime: thread group interval timers.
450 * @running: non-zero when there are timers running and
451 * @cputime receives updates.
452 * @lock: lock for fields in this struct.
453 *
454 * This structure contains the version of task_cputime, above, that is
455 * used for thread group CPU timer calculations.
456 */
457 struct thread_group_cputimer {
458 struct task_cputime cputime;
459 int running;
460 raw_spinlock_t lock;
461 };
462
463 #include <linux/rwsem.h>
464 struct autogroup;
465
466 /*
467 * NOTE! "signal_struct" does not have its own
468 * locking, because a shared signal_struct always
469 * implies a shared sighand_struct, so locking
470 * sighand_struct is always a proper superset of
471 * the locking of signal_struct.
472 */
473 struct signal_struct {
474 atomic_t sigcnt;
475 atomic_t live;
476 int nr_threads;
477
478 wait_queue_head_t wait_chldexit; /* for wait4() */
479
480 /* current thread group signal load-balancing target: */
481 struct task_struct *curr_target;
482
483 /* shared signal handling: */
484 struct sigpending shared_pending;
485
486 /* thread group exit support */
487 int group_exit_code;
488 /* overloaded:
489 * - notify group_exit_task when ->count is equal to notify_count
490 * - everyone except group_exit_task is stopped during signal delivery
491 * of fatal signals, group_exit_task processes the signal.
492 */
493 int notify_count;
494 struct task_struct *group_exit_task;
495
496 /* thread group stop support, overloads group_exit_code too */
497 int group_stop_count;
498 unsigned int flags; /* see SIGNAL_* flags below */
499
500 /*
501 * PR_SET_CHILD_SUBREAPER marks a process, like a service
502 * manager, to re-parent orphan (double-forking) child processes
503 * to this process instead of 'init'. The service manager is
504 * able to receive SIGCHLD signals and is able to investigate
505 * the process until it calls wait(). All children of this
506 * process will inherit a flag if they should look for a
507 * child_subreaper process at exit.
508 */
509 unsigned int is_child_subreaper:1;
510 unsigned int has_child_subreaper:1;
511
512 /* POSIX.1b Interval Timers */
513 int posix_timer_id;
514 struct list_head posix_timers;
515
516 /* ITIMER_REAL timer for the process */
517 struct hrtimer real_timer;
518 struct pid *leader_pid;
519 ktime_t it_real_incr;
520
521 /*
522 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
523 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
524 * values are defined to 0 and 1 respectively
525 */
526 struct cpu_itimer it[2];
527
528 /*
529 * Thread group totals for process CPU timers.
530 * See thread_group_cputimer(), et al, for details.
531 */
532 struct thread_group_cputimer cputimer;
533
534 /* Earliest-expiration cache. */
535 struct task_cputime cputime_expires;
536
537 struct list_head cpu_timers[3];
538
539 struct pid *tty_old_pgrp;
540
541 /* boolean value for session group leader */
542 int leader;
543
544 struct tty_struct *tty; /* NULL if no tty */
545
546 #ifdef CONFIG_SCHED_AUTOGROUP
547 struct autogroup *autogroup;
548 #endif
549 /*
550 * Cumulative resource counters for dead threads in the group,
551 * and for reaped dead child processes forked by this group.
552 * Live threads maintain their own counters and add to these
553 * in __exit_signal, except for the group leader.
554 */
555 cputime_t utime, stime, cutime, cstime;
556 cputime_t gtime;
557 cputime_t cgtime;
558 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
559 struct cputime prev_cputime;
560 #endif
561 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
562 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
563 unsigned long inblock, oublock, cinblock, coublock;
564 unsigned long maxrss, cmaxrss;
565 struct task_io_accounting ioac;
566
567 /*
568 * Cumulative ns of schedule CPU time fo dead threads in the
569 * group, not including a zombie group leader, (This only differs
570 * from jiffies_to_ns(utime + stime) if sched_clock uses something
571 * other than jiffies.)
572 */
573 unsigned long long sum_sched_runtime;
574
575 /*
576 * We don't bother to synchronize most readers of this at all,
577 * because there is no reader checking a limit that actually needs
578 * to get both rlim_cur and rlim_max atomically, and either one
579 * alone is a single word that can safely be read normally.
580 * getrlimit/setrlimit use task_lock(current->group_leader) to
581 * protect this instead of the siglock, because they really
582 * have no need to disable irqs.
583 */
584 struct rlimit rlim[RLIM_NLIMITS];
585
586 #ifdef CONFIG_BSD_PROCESS_ACCT
587 struct pacct_struct pacct; /* per-process accounting information */
588 #endif
589 #ifdef CONFIG_TASKSTATS
590 struct taskstats *stats;
591 #endif
592 #ifdef CONFIG_AUDIT
593 unsigned audit_tty;
594 unsigned audit_tty_log_passwd;
595 struct tty_audit_buf *tty_audit_buf;
596 #endif
597 #ifdef CONFIG_CGROUPS
598 /*
599 * group_rwsem prevents new tasks from entering the threadgroup and
600 * member tasks from exiting,a more specifically, setting of
601 * PF_EXITING. fork and exit paths are protected with this rwsem
602 * using threadgroup_change_begin/end(). Users which require
603 * threadgroup to remain stable should use threadgroup_[un]lock()
604 * which also takes care of exec path. Currently, cgroup is the
605 * only user.
606 */
607 struct rw_semaphore group_rwsem;
608 #endif
609
610 oom_flags_t oom_flags;
611 short oom_score_adj; /* OOM kill score adjustment */
612 short oom_score_adj_min; /* OOM kill score adjustment min value.
613 * Only settable by CAP_SYS_RESOURCE. */
614
615 struct mutex cred_guard_mutex; /* guard against foreign influences on
616 * credential calculations
617 * (notably. ptrace) */
618 };
619
620 /*
621 * Bits in flags field of signal_struct.
622 */
623 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
624 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
625 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
626 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
627 /*
628 * Pending notifications to parent.
629 */
630 #define SIGNAL_CLD_STOPPED 0x00000010
631 #define SIGNAL_CLD_CONTINUED 0x00000020
632 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
633
634 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
635
636 /* If true, all threads except ->group_exit_task have pending SIGKILL */
637 static inline int signal_group_exit(const struct signal_struct *sig)
638 {
639 return (sig->flags & SIGNAL_GROUP_EXIT) ||
640 (sig->group_exit_task != NULL);
641 }
642
643 /*
644 * Some day this will be a full-fledged user tracking system..
645 */
646 struct user_struct {
647 atomic_t __count; /* reference count */
648 atomic_t processes; /* How many processes does this user have? */
649 atomic_t files; /* How many open files does this user have? */
650 atomic_t sigpending; /* How many pending signals does this user have? */
651 #ifdef CONFIG_INOTIFY_USER
652 atomic_t inotify_watches; /* How many inotify watches does this user have? */
653 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
654 #endif
655 #ifdef CONFIG_FANOTIFY
656 atomic_t fanotify_listeners;
657 #endif
658 #ifdef CONFIG_EPOLL
659 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
660 #endif
661 #ifdef CONFIG_POSIX_MQUEUE
662 /* protected by mq_lock */
663 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
664 #endif
665 unsigned long locked_shm; /* How many pages of mlocked shm ? */
666
667 #ifdef CONFIG_KEYS
668 struct key *uid_keyring; /* UID specific keyring */
669 struct key *session_keyring; /* UID's default session keyring */
670 #endif
671
672 /* Hash table maintenance information */
673 struct hlist_node uidhash_node;
674 kuid_t uid;
675
676 #ifdef CONFIG_PERF_EVENTS
677 atomic_long_t locked_vm;
678 #endif
679 };
680
681 extern int uids_sysfs_init(void);
682
683 extern struct user_struct *find_user(kuid_t);
684
685 extern struct user_struct root_user;
686 #define INIT_USER (&root_user)
687
688
689 struct backing_dev_info;
690 struct reclaim_state;
691
692 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
693 struct sched_info {
694 /* cumulative counters */
695 unsigned long pcount; /* # of times run on this cpu */
696 unsigned long long run_delay; /* time spent waiting on a runqueue */
697
698 /* timestamps */
699 unsigned long long last_arrival,/* when we last ran on a cpu */
700 last_queued; /* when we were last queued to run */
701 };
702 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
703
704 #ifdef CONFIG_TASK_DELAY_ACCT
705 struct task_delay_info {
706 spinlock_t lock;
707 unsigned int flags; /* Private per-task flags */
708
709 /* For each stat XXX, add following, aligned appropriately
710 *
711 * struct timespec XXX_start, XXX_end;
712 * u64 XXX_delay;
713 * u32 XXX_count;
714 *
715 * Atomicity of updates to XXX_delay, XXX_count protected by
716 * single lock above (split into XXX_lock if contention is an issue).
717 */
718
719 /*
720 * XXX_count is incremented on every XXX operation, the delay
721 * associated with the operation is added to XXX_delay.
722 * XXX_delay contains the accumulated delay time in nanoseconds.
723 */
724 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
725 u64 blkio_delay; /* wait for sync block io completion */
726 u64 swapin_delay; /* wait for swapin block io completion */
727 u32 blkio_count; /* total count of the number of sync block */
728 /* io operations performed */
729 u32 swapin_count; /* total count of the number of swapin block */
730 /* io operations performed */
731
732 struct timespec freepages_start, freepages_end;
733 u64 freepages_delay; /* wait for memory reclaim */
734 u32 freepages_count; /* total count of memory reclaim */
735 };
736 #endif /* CONFIG_TASK_DELAY_ACCT */
737
738 static inline int sched_info_on(void)
739 {
740 #ifdef CONFIG_SCHEDSTATS
741 return 1;
742 #elif defined(CONFIG_TASK_DELAY_ACCT)
743 extern int delayacct_on;
744 return delayacct_on;
745 #else
746 return 0;
747 #endif
748 }
749
750 enum cpu_idle_type {
751 CPU_IDLE,
752 CPU_NOT_IDLE,
753 CPU_NEWLY_IDLE,
754 CPU_MAX_IDLE_TYPES
755 };
756
757 /*
758 * Increase resolution of cpu_power calculations
759 */
760 #define SCHED_POWER_SHIFT 10
761 #define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT)
762
763 /*
764 * sched-domains (multiprocessor balancing) declarations:
765 */
766 #ifdef CONFIG_SMP
767 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
768 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
769 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
770 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
771 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
772 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
773 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
774 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
775 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
776 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
777 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
778 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
779
780 extern int __weak arch_sd_sibiling_asym_packing(void);
781
782 struct sched_domain_attr {
783 int relax_domain_level;
784 };
785
786 #define SD_ATTR_INIT (struct sched_domain_attr) { \
787 .relax_domain_level = -1, \
788 }
789
790 extern int sched_domain_level_max;
791
792 struct sched_group;
793
794 struct sched_domain {
795 /* These fields must be setup */
796 struct sched_domain *parent; /* top domain must be null terminated */
797 struct sched_domain *child; /* bottom domain must be null terminated */
798 struct sched_group *groups; /* the balancing groups of the domain */
799 unsigned long min_interval; /* Minimum balance interval ms */
800 unsigned long max_interval; /* Maximum balance interval ms */
801 unsigned int busy_factor; /* less balancing by factor if busy */
802 unsigned int imbalance_pct; /* No balance until over watermark */
803 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
804 unsigned int busy_idx;
805 unsigned int idle_idx;
806 unsigned int newidle_idx;
807 unsigned int wake_idx;
808 unsigned int forkexec_idx;
809 unsigned int smt_gain;
810
811 int nohz_idle; /* NOHZ IDLE status */
812 int flags; /* See SD_* */
813 int level;
814
815 /* Runtime fields. */
816 unsigned long last_balance; /* init to jiffies. units in jiffies */
817 unsigned int balance_interval; /* initialise to 1. units in ms. */
818 unsigned int nr_balance_failed; /* initialise to 0 */
819
820 u64 last_update;
821
822 #ifdef CONFIG_SCHEDSTATS
823 /* load_balance() stats */
824 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
825 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
826 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
827 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
828 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
829 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
830 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
831 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
832
833 /* Active load balancing */
834 unsigned int alb_count;
835 unsigned int alb_failed;
836 unsigned int alb_pushed;
837
838 /* SD_BALANCE_EXEC stats */
839 unsigned int sbe_count;
840 unsigned int sbe_balanced;
841 unsigned int sbe_pushed;
842
843 /* SD_BALANCE_FORK stats */
844 unsigned int sbf_count;
845 unsigned int sbf_balanced;
846 unsigned int sbf_pushed;
847
848 /* try_to_wake_up() stats */
849 unsigned int ttwu_wake_remote;
850 unsigned int ttwu_move_affine;
851 unsigned int ttwu_move_balance;
852 #endif
853 #ifdef CONFIG_SCHED_DEBUG
854 char *name;
855 #endif
856 union {
857 void *private; /* used during construction */
858 struct rcu_head rcu; /* used during destruction */
859 };
860
861 unsigned int span_weight;
862 /*
863 * Span of all CPUs in this domain.
864 *
865 * NOTE: this field is variable length. (Allocated dynamically
866 * by attaching extra space to the end of the structure,
867 * depending on how many CPUs the kernel has booted up with)
868 */
869 unsigned long span[0];
870 };
871
872 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
873 {
874 return to_cpumask(sd->span);
875 }
876
877 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
878 struct sched_domain_attr *dattr_new);
879
880 /* Allocate an array of sched domains, for partition_sched_domains(). */
881 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
882 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
883
884 bool cpus_share_cache(int this_cpu, int that_cpu);
885
886 #else /* CONFIG_SMP */
887
888 struct sched_domain_attr;
889
890 static inline void
891 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
892 struct sched_domain_attr *dattr_new)
893 {
894 }
895
896 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
897 {
898 return true;
899 }
900
901 #endif /* !CONFIG_SMP */
902
903
904 struct io_context; /* See blkdev.h */
905
906
907 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
908 extern void prefetch_stack(struct task_struct *t);
909 #else
910 static inline void prefetch_stack(struct task_struct *t) { }
911 #endif
912
913 struct audit_context; /* See audit.c */
914 struct mempolicy;
915 struct pipe_inode_info;
916 struct uts_namespace;
917
918 struct load_weight {
919 unsigned long weight, inv_weight;
920 };
921
922 struct sched_avg {
923 /*
924 * These sums represent an infinite geometric series and so are bound
925 * above by 1024/(1-y). Thus we only need a u32 to store them for all
926 * choices of y < 1-2^(-32)*1024.
927 */
928 u32 runnable_avg_sum, runnable_avg_period;
929 u64 last_runnable_update;
930 s64 decay_count;
931 unsigned long load_avg_contrib;
932 };
933
934 #ifdef CONFIG_SCHEDSTATS
935 struct sched_statistics {
936 u64 wait_start;
937 u64 wait_max;
938 u64 wait_count;
939 u64 wait_sum;
940 u64 iowait_count;
941 u64 iowait_sum;
942
943 u64 sleep_start;
944 u64 sleep_max;
945 s64 sum_sleep_runtime;
946
947 u64 block_start;
948 u64 block_max;
949 u64 exec_max;
950 u64 slice_max;
951
952 u64 nr_migrations_cold;
953 u64 nr_failed_migrations_affine;
954 u64 nr_failed_migrations_running;
955 u64 nr_failed_migrations_hot;
956 u64 nr_forced_migrations;
957
958 u64 nr_wakeups;
959 u64 nr_wakeups_sync;
960 u64 nr_wakeups_migrate;
961 u64 nr_wakeups_local;
962 u64 nr_wakeups_remote;
963 u64 nr_wakeups_affine;
964 u64 nr_wakeups_affine_attempts;
965 u64 nr_wakeups_passive;
966 u64 nr_wakeups_idle;
967 };
968 #endif
969
970 struct sched_entity {
971 struct load_weight load; /* for load-balancing */
972 struct rb_node run_node;
973 struct list_head group_node;
974 unsigned int on_rq;
975
976 u64 exec_start;
977 u64 sum_exec_runtime;
978 u64 vruntime;
979 u64 prev_sum_exec_runtime;
980
981 u64 nr_migrations;
982
983 #ifdef CONFIG_SCHEDSTATS
984 struct sched_statistics statistics;
985 #endif
986
987 #ifdef CONFIG_FAIR_GROUP_SCHED
988 struct sched_entity *parent;
989 /* rq on which this entity is (to be) queued: */
990 struct cfs_rq *cfs_rq;
991 /* rq "owned" by this entity/group: */
992 struct cfs_rq *my_q;
993 #endif
994
995 #ifdef CONFIG_SMP
996 /* Per-entity load-tracking */
997 struct sched_avg avg;
998 #endif
999 };
1000
1001 struct sched_rt_entity {
1002 struct list_head run_list;
1003 unsigned long timeout;
1004 unsigned long watchdog_stamp;
1005 unsigned int time_slice;
1006
1007 struct sched_rt_entity *back;
1008 #ifdef CONFIG_RT_GROUP_SCHED
1009 struct sched_rt_entity *parent;
1010 /* rq on which this entity is (to be) queued: */
1011 struct rt_rq *rt_rq;
1012 /* rq "owned" by this entity/group: */
1013 struct rt_rq *my_q;
1014 #endif
1015 };
1016
1017
1018 struct rcu_node;
1019
1020 enum perf_event_task_context {
1021 perf_invalid_context = -1,
1022 perf_hw_context = 0,
1023 perf_sw_context,
1024 perf_nr_task_contexts,
1025 };
1026
1027 struct task_struct {
1028 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1029 void *stack;
1030 atomic_t usage;
1031 unsigned int flags; /* per process flags, defined below */
1032 unsigned int ptrace;
1033
1034 #ifdef CONFIG_SMP
1035 struct llist_node wake_entry;
1036 int on_cpu;
1037 struct task_struct *last_wakee;
1038 unsigned long wakee_flips;
1039 unsigned long wakee_flip_decay_ts;
1040 #endif
1041 int on_rq;
1042
1043 int prio, static_prio, normal_prio;
1044 unsigned int rt_priority;
1045 const struct sched_class *sched_class;
1046 struct sched_entity se;
1047 struct sched_rt_entity rt;
1048 #ifdef CONFIG_CGROUP_SCHED
1049 struct task_group *sched_task_group;
1050 #endif
1051
1052 #ifdef CONFIG_PREEMPT_NOTIFIERS
1053 /* list of struct preempt_notifier: */
1054 struct hlist_head preempt_notifiers;
1055 #endif
1056
1057 /*
1058 * fpu_counter contains the number of consecutive context switches
1059 * that the FPU is used. If this is over a threshold, the lazy fpu
1060 * saving becomes unlazy to save the trap. This is an unsigned char
1061 * so that after 256 times the counter wraps and the behavior turns
1062 * lazy again; this to deal with bursty apps that only use FPU for
1063 * a short time
1064 */
1065 unsigned char fpu_counter;
1066 #ifdef CONFIG_BLK_DEV_IO_TRACE
1067 unsigned int btrace_seq;
1068 #endif
1069
1070 unsigned int policy;
1071 int nr_cpus_allowed;
1072 cpumask_t cpus_allowed;
1073
1074 #ifdef CONFIG_PREEMPT_RCU
1075 int rcu_read_lock_nesting;
1076 char rcu_read_unlock_special;
1077 struct list_head rcu_node_entry;
1078 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1079 #ifdef CONFIG_TREE_PREEMPT_RCU
1080 struct rcu_node *rcu_blocked_node;
1081 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1082 #ifdef CONFIG_RCU_BOOST
1083 struct rt_mutex *rcu_boost_mutex;
1084 #endif /* #ifdef CONFIG_RCU_BOOST */
1085
1086 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1087 struct sched_info sched_info;
1088 #endif
1089
1090 struct list_head tasks;
1091 #ifdef CONFIG_SMP
1092 struct plist_node pushable_tasks;
1093 #endif
1094
1095 struct mm_struct *mm, *active_mm;
1096 #ifdef CONFIG_COMPAT_BRK
1097 unsigned brk_randomized:1;
1098 #endif
1099 #if defined(SPLIT_RSS_COUNTING)
1100 struct task_rss_stat rss_stat;
1101 #endif
1102 /* task state */
1103 int exit_state;
1104 int exit_code, exit_signal;
1105 int pdeath_signal; /* The signal sent when the parent dies */
1106 unsigned int jobctl; /* JOBCTL_*, siglock protected */
1107
1108 /* Used for emulating ABI behavior of previous Linux versions */
1109 unsigned int personality;
1110
1111 unsigned did_exec:1;
1112 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1113 * execve */
1114 unsigned in_iowait:1;
1115
1116 /* task may not gain privileges */
1117 unsigned no_new_privs:1;
1118
1119 /* Revert to default priority/policy when forking */
1120 unsigned sched_reset_on_fork:1;
1121 unsigned sched_contributes_to_load:1;
1122
1123 pid_t pid;
1124 pid_t tgid;
1125
1126 #ifdef CONFIG_CC_STACKPROTECTOR
1127 /* Canary value for the -fstack-protector gcc feature */
1128 unsigned long stack_canary;
1129 #endif
1130 /*
1131 * pointers to (original) parent process, youngest child, younger sibling,
1132 * older sibling, respectively. (p->father can be replaced with
1133 * p->real_parent->pid)
1134 */
1135 struct task_struct __rcu *real_parent; /* real parent process */
1136 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1137 /*
1138 * children/sibling forms the list of my natural children
1139 */
1140 struct list_head children; /* list of my children */
1141 struct list_head sibling; /* linkage in my parent's children list */
1142 struct task_struct *group_leader; /* threadgroup leader */
1143
1144 /*
1145 * ptraced is the list of tasks this task is using ptrace on.
1146 * This includes both natural children and PTRACE_ATTACH targets.
1147 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1148 */
1149 struct list_head ptraced;
1150 struct list_head ptrace_entry;
1151
1152 /* PID/PID hash table linkage. */
1153 struct pid_link pids[PIDTYPE_MAX];
1154 struct list_head thread_group;
1155
1156 struct completion *vfork_done; /* for vfork() */
1157 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1158 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1159
1160 cputime_t utime, stime, utimescaled, stimescaled;
1161 cputime_t gtime;
1162 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1163 struct cputime prev_cputime;
1164 #endif
1165 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1166 seqlock_t vtime_seqlock;
1167 unsigned long long vtime_snap;
1168 enum {
1169 VTIME_SLEEPING = 0,
1170 VTIME_USER,
1171 VTIME_SYS,
1172 } vtime_snap_whence;
1173 #endif
1174 unsigned long nvcsw, nivcsw; /* context switch counts */
1175 struct timespec start_time; /* monotonic time */
1176 struct timespec real_start_time; /* boot based time */
1177 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1178 unsigned long min_flt, maj_flt;
1179
1180 struct task_cputime cputime_expires;
1181 struct list_head cpu_timers[3];
1182
1183 /* process credentials */
1184 const struct cred __rcu *real_cred; /* objective and real subjective task
1185 * credentials (COW) */
1186 const struct cred __rcu *cred; /* effective (overridable) subjective task
1187 * credentials (COW) */
1188 char comm[TASK_COMM_LEN]; /* executable name excluding path
1189 - access with [gs]et_task_comm (which lock
1190 it with task_lock())
1191 - initialized normally by setup_new_exec */
1192 /* file system info */
1193 int link_count, total_link_count;
1194 #ifdef CONFIG_SYSVIPC
1195 /* ipc stuff */
1196 struct sysv_sem sysvsem;
1197 #endif
1198 #ifdef CONFIG_DETECT_HUNG_TASK
1199 /* hung task detection */
1200 unsigned long last_switch_count;
1201 #endif
1202 /* CPU-specific state of this task */
1203 struct thread_struct thread;
1204 /* filesystem information */
1205 struct fs_struct *fs;
1206 /* open file information */
1207 struct files_struct *files;
1208 /* namespaces */
1209 struct nsproxy *nsproxy;
1210 /* signal handlers */
1211 struct signal_struct *signal;
1212 struct sighand_struct *sighand;
1213
1214 sigset_t blocked, real_blocked;
1215 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1216 struct sigpending pending;
1217
1218 unsigned long sas_ss_sp;
1219 size_t sas_ss_size;
1220 int (*notifier)(void *priv);
1221 void *notifier_data;
1222 sigset_t *notifier_mask;
1223 struct callback_head *task_works;
1224
1225 struct audit_context *audit_context;
1226 #ifdef CONFIG_AUDITSYSCALL
1227 kuid_t loginuid;
1228 unsigned int sessionid;
1229 #endif
1230 struct seccomp seccomp;
1231
1232 /* Thread group tracking */
1233 u32 parent_exec_id;
1234 u32 self_exec_id;
1235 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1236 * mempolicy */
1237 spinlock_t alloc_lock;
1238
1239 /* Protection of the PI data structures: */
1240 raw_spinlock_t pi_lock;
1241
1242 #ifdef CONFIG_RT_MUTEXES
1243 /* PI waiters blocked on a rt_mutex held by this task */
1244 struct plist_head pi_waiters;
1245 /* Deadlock detection and priority inheritance handling */
1246 struct rt_mutex_waiter *pi_blocked_on;
1247 #endif
1248
1249 #ifdef CONFIG_DEBUG_MUTEXES
1250 /* mutex deadlock detection */
1251 struct mutex_waiter *blocked_on;
1252 #endif
1253 #ifdef CONFIG_TRACE_IRQFLAGS
1254 unsigned int irq_events;
1255 unsigned long hardirq_enable_ip;
1256 unsigned long hardirq_disable_ip;
1257 unsigned int hardirq_enable_event;
1258 unsigned int hardirq_disable_event;
1259 int hardirqs_enabled;
1260 int hardirq_context;
1261 unsigned long softirq_disable_ip;
1262 unsigned long softirq_enable_ip;
1263 unsigned int softirq_disable_event;
1264 unsigned int softirq_enable_event;
1265 int softirqs_enabled;
1266 int softirq_context;
1267 #endif
1268 #ifdef CONFIG_LOCKDEP
1269 # define MAX_LOCK_DEPTH 48UL
1270 u64 curr_chain_key;
1271 int lockdep_depth;
1272 unsigned int lockdep_recursion;
1273 struct held_lock held_locks[MAX_LOCK_DEPTH];
1274 gfp_t lockdep_reclaim_gfp;
1275 #endif
1276
1277 /* journalling filesystem info */
1278 void *journal_info;
1279
1280 /* stacked block device info */
1281 struct bio_list *bio_list;
1282
1283 #ifdef CONFIG_BLOCK
1284 /* stack plugging */
1285 struct blk_plug *plug;
1286 #endif
1287
1288 /* VM state */
1289 struct reclaim_state *reclaim_state;
1290
1291 struct backing_dev_info *backing_dev_info;
1292
1293 struct io_context *io_context;
1294
1295 unsigned long ptrace_message;
1296 siginfo_t *last_siginfo; /* For ptrace use. */
1297 struct task_io_accounting ioac;
1298 #if defined(CONFIG_TASK_XACCT)
1299 u64 acct_rss_mem1; /* accumulated rss usage */
1300 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1301 cputime_t acct_timexpd; /* stime + utime since last update */
1302 #endif
1303 #ifdef CONFIG_CPUSETS
1304 nodemask_t mems_allowed; /* Protected by alloc_lock */
1305 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
1306 int cpuset_mem_spread_rotor;
1307 int cpuset_slab_spread_rotor;
1308 #endif
1309 #ifdef CONFIG_CGROUPS
1310 /* Control Group info protected by css_set_lock */
1311 struct css_set __rcu *cgroups;
1312 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1313 struct list_head cg_list;
1314 #endif
1315 #ifdef CONFIG_FUTEX
1316 struct robust_list_head __user *robust_list;
1317 #ifdef CONFIG_COMPAT
1318 struct compat_robust_list_head __user *compat_robust_list;
1319 #endif
1320 struct list_head pi_state_list;
1321 struct futex_pi_state *pi_state_cache;
1322 #endif
1323 #ifdef CONFIG_PERF_EVENTS
1324 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1325 struct mutex perf_event_mutex;
1326 struct list_head perf_event_list;
1327 #endif
1328 #ifdef CONFIG_NUMA
1329 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1330 short il_next;
1331 short pref_node_fork;
1332 #endif
1333 #ifdef CONFIG_NUMA_BALANCING
1334 int numa_scan_seq;
1335 int numa_migrate_seq;
1336 unsigned int numa_scan_period;
1337 u64 node_stamp; /* migration stamp */
1338 struct callback_head numa_work;
1339 #endif /* CONFIG_NUMA_BALANCING */
1340
1341 struct rcu_head rcu;
1342
1343 /*
1344 * cache last used pipe for splice
1345 */
1346 struct pipe_inode_info *splice_pipe;
1347
1348 struct page_frag task_frag;
1349
1350 #ifdef CONFIG_TASK_DELAY_ACCT
1351 struct task_delay_info *delays;
1352 #endif
1353 #ifdef CONFIG_FAULT_INJECTION
1354 int make_it_fail;
1355 #endif
1356 /*
1357 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1358 * balance_dirty_pages() for some dirty throttling pause
1359 */
1360 int nr_dirtied;
1361 int nr_dirtied_pause;
1362 unsigned long dirty_paused_when; /* start of a write-and-pause period */
1363
1364 #ifdef CONFIG_LATENCYTOP
1365 int latency_record_count;
1366 struct latency_record latency_record[LT_SAVECOUNT];
1367 #endif
1368 /*
1369 * time slack values; these are used to round up poll() and
1370 * select() etc timeout values. These are in nanoseconds.
1371 */
1372 unsigned long timer_slack_ns;
1373 unsigned long default_timer_slack_ns;
1374
1375 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1376 /* Index of current stored address in ret_stack */
1377 int curr_ret_stack;
1378 /* Stack of return addresses for return function tracing */
1379 struct ftrace_ret_stack *ret_stack;
1380 /* time stamp for last schedule */
1381 unsigned long long ftrace_timestamp;
1382 /*
1383 * Number of functions that haven't been traced
1384 * because of depth overrun.
1385 */
1386 atomic_t trace_overrun;
1387 /* Pause for the tracing */
1388 atomic_t tracing_graph_pause;
1389 #endif
1390 #ifdef CONFIG_TRACING
1391 /* state flags for use by tracers */
1392 unsigned long trace;
1393 /* bitmask and counter of trace recursion */
1394 unsigned long trace_recursion;
1395 #endif /* CONFIG_TRACING */
1396 #ifdef CONFIG_MEMCG /* memcg uses this to do batch job */
1397 struct memcg_batch_info {
1398 int do_batch; /* incremented when batch uncharge started */
1399 struct mem_cgroup *memcg; /* target memcg of uncharge */
1400 unsigned long nr_pages; /* uncharged usage */
1401 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1402 } memcg_batch;
1403 unsigned int memcg_kmem_skip_account;
1404 #endif
1405 #ifdef CONFIG_UPROBES
1406 struct uprobe_task *utask;
1407 #endif
1408 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1409 unsigned int sequential_io;
1410 unsigned int sequential_io_avg;
1411 #endif
1412 };
1413
1414 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1415 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1416
1417 #ifdef CONFIG_NUMA_BALANCING
1418 extern void task_numa_fault(int node, int pages, bool migrated);
1419 extern void set_numabalancing_state(bool enabled);
1420 #else
1421 static inline void task_numa_fault(int node, int pages, bool migrated)
1422 {
1423 }
1424 static inline void set_numabalancing_state(bool enabled)
1425 {
1426 }
1427 #endif
1428
1429 static inline struct pid *task_pid(struct task_struct *task)
1430 {
1431 return task->pids[PIDTYPE_PID].pid;
1432 }
1433
1434 static inline struct pid *task_tgid(struct task_struct *task)
1435 {
1436 return task->group_leader->pids[PIDTYPE_PID].pid;
1437 }
1438
1439 /*
1440 * Without tasklist or rcu lock it is not safe to dereference
1441 * the result of task_pgrp/task_session even if task == current,
1442 * we can race with another thread doing sys_setsid/sys_setpgid.
1443 */
1444 static inline struct pid *task_pgrp(struct task_struct *task)
1445 {
1446 return task->group_leader->pids[PIDTYPE_PGID].pid;
1447 }
1448
1449 static inline struct pid *task_session(struct task_struct *task)
1450 {
1451 return task->group_leader->pids[PIDTYPE_SID].pid;
1452 }
1453
1454 struct pid_namespace;
1455
1456 /*
1457 * the helpers to get the task's different pids as they are seen
1458 * from various namespaces
1459 *
1460 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1461 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1462 * current.
1463 * task_xid_nr_ns() : id seen from the ns specified;
1464 *
1465 * set_task_vxid() : assigns a virtual id to a task;
1466 *
1467 * see also pid_nr() etc in include/linux/pid.h
1468 */
1469 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1470 struct pid_namespace *ns);
1471
1472 static inline pid_t task_pid_nr(struct task_struct *tsk)
1473 {
1474 return tsk->pid;
1475 }
1476
1477 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1478 struct pid_namespace *ns)
1479 {
1480 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1481 }
1482
1483 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1484 {
1485 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1486 }
1487
1488
1489 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1490 {
1491 return tsk->tgid;
1492 }
1493
1494 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1495
1496 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1497 {
1498 return pid_vnr(task_tgid(tsk));
1499 }
1500
1501
1502 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1503 struct pid_namespace *ns)
1504 {
1505 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1506 }
1507
1508 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1509 {
1510 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1511 }
1512
1513
1514 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1515 struct pid_namespace *ns)
1516 {
1517 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1518 }
1519
1520 static inline pid_t task_session_vnr(struct task_struct *tsk)
1521 {
1522 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1523 }
1524
1525 /* obsolete, do not use */
1526 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1527 {
1528 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1529 }
1530
1531 /**
1532 * pid_alive - check that a task structure is not stale
1533 * @p: Task structure to be checked.
1534 *
1535 * Test if a process is not yet dead (at most zombie state)
1536 * If pid_alive fails, then pointers within the task structure
1537 * can be stale and must not be dereferenced.
1538 *
1539 * Return: 1 if the process is alive. 0 otherwise.
1540 */
1541 static inline int pid_alive(struct task_struct *p)
1542 {
1543 return p->pids[PIDTYPE_PID].pid != NULL;
1544 }
1545
1546 /**
1547 * is_global_init - check if a task structure is init
1548 * @tsk: Task structure to be checked.
1549 *
1550 * Check if a task structure is the first user space task the kernel created.
1551 *
1552 * Return: 1 if the task structure is init. 0 otherwise.
1553 */
1554 static inline int is_global_init(struct task_struct *tsk)
1555 {
1556 return tsk->pid == 1;
1557 }
1558
1559 extern struct pid *cad_pid;
1560
1561 extern void free_task(struct task_struct *tsk);
1562 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1563
1564 extern void __put_task_struct(struct task_struct *t);
1565
1566 static inline void put_task_struct(struct task_struct *t)
1567 {
1568 if (atomic_dec_and_test(&t->usage))
1569 __put_task_struct(t);
1570 }
1571
1572 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1573 extern void task_cputime(struct task_struct *t,
1574 cputime_t *utime, cputime_t *stime);
1575 extern void task_cputime_scaled(struct task_struct *t,
1576 cputime_t *utimescaled, cputime_t *stimescaled);
1577 extern cputime_t task_gtime(struct task_struct *t);
1578 #else
1579 static inline void task_cputime(struct task_struct *t,
1580 cputime_t *utime, cputime_t *stime)
1581 {
1582 if (utime)
1583 *utime = t->utime;
1584 if (stime)
1585 *stime = t->stime;
1586 }
1587
1588 static inline void task_cputime_scaled(struct task_struct *t,
1589 cputime_t *utimescaled,
1590 cputime_t *stimescaled)
1591 {
1592 if (utimescaled)
1593 *utimescaled = t->utimescaled;
1594 if (stimescaled)
1595 *stimescaled = t->stimescaled;
1596 }
1597
1598 static inline cputime_t task_gtime(struct task_struct *t)
1599 {
1600 return t->gtime;
1601 }
1602 #endif
1603 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1604 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1605
1606 /*
1607 * Per process flags
1608 */
1609 #define PF_EXITING 0x00000004 /* getting shut down */
1610 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1611 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1612 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1613 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1614 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1615 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1616 #define PF_DUMPCORE 0x00000200 /* dumped core */
1617 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1618 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1619 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1620 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1621 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1622 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1623 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1624 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1625 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1626 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1627 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1628 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1629 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1630 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1631 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1632 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1633 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
1634 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1635 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1636 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1637 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1638 #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
1639
1640 /*
1641 * Only the _current_ task can read/write to tsk->flags, but other
1642 * tasks can access tsk->flags in readonly mode for example
1643 * with tsk_used_math (like during threaded core dumping).
1644 * There is however an exception to this rule during ptrace
1645 * or during fork: the ptracer task is allowed to write to the
1646 * child->flags of its traced child (same goes for fork, the parent
1647 * can write to the child->flags), because we're guaranteed the
1648 * child is not running and in turn not changing child->flags
1649 * at the same time the parent does it.
1650 */
1651 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1652 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1653 #define clear_used_math() clear_stopped_child_used_math(current)
1654 #define set_used_math() set_stopped_child_used_math(current)
1655 #define conditional_stopped_child_used_math(condition, child) \
1656 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1657 #define conditional_used_math(condition) \
1658 conditional_stopped_child_used_math(condition, current)
1659 #define copy_to_stopped_child_used_math(child) \
1660 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1661 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1662 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1663 #define used_math() tsk_used_math(current)
1664
1665 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags */
1666 static inline gfp_t memalloc_noio_flags(gfp_t flags)
1667 {
1668 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
1669 flags &= ~__GFP_IO;
1670 return flags;
1671 }
1672
1673 static inline unsigned int memalloc_noio_save(void)
1674 {
1675 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
1676 current->flags |= PF_MEMALLOC_NOIO;
1677 return flags;
1678 }
1679
1680 static inline void memalloc_noio_restore(unsigned int flags)
1681 {
1682 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
1683 }
1684
1685 /*
1686 * task->jobctl flags
1687 */
1688 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
1689
1690 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
1691 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
1692 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
1693 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
1694 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
1695 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
1696 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
1697
1698 #define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT)
1699 #define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT)
1700 #define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT)
1701 #define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT)
1702 #define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT)
1703 #define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT)
1704 #define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT)
1705
1706 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1707 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1708
1709 extern bool task_set_jobctl_pending(struct task_struct *task,
1710 unsigned int mask);
1711 extern void task_clear_jobctl_trapping(struct task_struct *task);
1712 extern void task_clear_jobctl_pending(struct task_struct *task,
1713 unsigned int mask);
1714
1715 #ifdef CONFIG_PREEMPT_RCU
1716
1717 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1718 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1719
1720 static inline void rcu_copy_process(struct task_struct *p)
1721 {
1722 p->rcu_read_lock_nesting = 0;
1723 p->rcu_read_unlock_special = 0;
1724 #ifdef CONFIG_TREE_PREEMPT_RCU
1725 p->rcu_blocked_node = NULL;
1726 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1727 #ifdef CONFIG_RCU_BOOST
1728 p->rcu_boost_mutex = NULL;
1729 #endif /* #ifdef CONFIG_RCU_BOOST */
1730 INIT_LIST_HEAD(&p->rcu_node_entry);
1731 }
1732
1733 #else
1734
1735 static inline void rcu_copy_process(struct task_struct *p)
1736 {
1737 }
1738
1739 #endif
1740
1741 static inline void tsk_restore_flags(struct task_struct *task,
1742 unsigned long orig_flags, unsigned long flags)
1743 {
1744 task->flags &= ~flags;
1745 task->flags |= orig_flags & flags;
1746 }
1747
1748 #ifdef CONFIG_SMP
1749 extern void do_set_cpus_allowed(struct task_struct *p,
1750 const struct cpumask *new_mask);
1751
1752 extern int set_cpus_allowed_ptr(struct task_struct *p,
1753 const struct cpumask *new_mask);
1754 #else
1755 static inline void do_set_cpus_allowed(struct task_struct *p,
1756 const struct cpumask *new_mask)
1757 {
1758 }
1759 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1760 const struct cpumask *new_mask)
1761 {
1762 if (!cpumask_test_cpu(0, new_mask))
1763 return -EINVAL;
1764 return 0;
1765 }
1766 #endif
1767
1768 #ifdef CONFIG_NO_HZ_COMMON
1769 void calc_load_enter_idle(void);
1770 void calc_load_exit_idle(void);
1771 #else
1772 static inline void calc_load_enter_idle(void) { }
1773 static inline void calc_load_exit_idle(void) { }
1774 #endif /* CONFIG_NO_HZ_COMMON */
1775
1776 #ifndef CONFIG_CPUMASK_OFFSTACK
1777 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1778 {
1779 return set_cpus_allowed_ptr(p, &new_mask);
1780 }
1781 #endif
1782
1783 /*
1784 * Do not use outside of architecture code which knows its limitations.
1785 *
1786 * sched_clock() has no promise of monotonicity or bounded drift between
1787 * CPUs, use (which you should not) requires disabling IRQs.
1788 *
1789 * Please use one of the three interfaces below.
1790 */
1791 extern unsigned long long notrace sched_clock(void);
1792 /*
1793 * See the comment in kernel/sched/clock.c
1794 */
1795 extern u64 cpu_clock(int cpu);
1796 extern u64 local_clock(void);
1797 extern u64 sched_clock_cpu(int cpu);
1798
1799
1800 extern void sched_clock_init(void);
1801
1802 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1803 static inline void sched_clock_tick(void)
1804 {
1805 }
1806
1807 static inline void sched_clock_idle_sleep_event(void)
1808 {
1809 }
1810
1811 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1812 {
1813 }
1814 #else
1815 /*
1816 * Architectures can set this to 1 if they have specified
1817 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1818 * but then during bootup it turns out that sched_clock()
1819 * is reliable after all:
1820 */
1821 extern int sched_clock_stable;
1822
1823 extern void sched_clock_tick(void);
1824 extern void sched_clock_idle_sleep_event(void);
1825 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1826 #endif
1827
1828 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1829 /*
1830 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1831 * The reason for this explicit opt-in is not to have perf penalty with
1832 * slow sched_clocks.
1833 */
1834 extern void enable_sched_clock_irqtime(void);
1835 extern void disable_sched_clock_irqtime(void);
1836 #else
1837 static inline void enable_sched_clock_irqtime(void) {}
1838 static inline void disable_sched_clock_irqtime(void) {}
1839 #endif
1840
1841 extern unsigned long long
1842 task_sched_runtime(struct task_struct *task);
1843
1844 /* sched_exec is called by processes performing an exec */
1845 #ifdef CONFIG_SMP
1846 extern void sched_exec(void);
1847 #else
1848 #define sched_exec() {}
1849 #endif
1850
1851 extern void sched_clock_idle_sleep_event(void);
1852 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1853
1854 #ifdef CONFIG_HOTPLUG_CPU
1855 extern void idle_task_exit(void);
1856 #else
1857 static inline void idle_task_exit(void) {}
1858 #endif
1859
1860 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
1861 extern void wake_up_nohz_cpu(int cpu);
1862 #else
1863 static inline void wake_up_nohz_cpu(int cpu) { }
1864 #endif
1865
1866 #ifdef CONFIG_NO_HZ_FULL
1867 extern bool sched_can_stop_tick(void);
1868 extern u64 scheduler_tick_max_deferment(void);
1869 #else
1870 static inline bool sched_can_stop_tick(void) { return false; }
1871 #endif
1872
1873 #ifdef CONFIG_SCHED_AUTOGROUP
1874 extern void sched_autogroup_create_attach(struct task_struct *p);
1875 extern void sched_autogroup_detach(struct task_struct *p);
1876 extern void sched_autogroup_fork(struct signal_struct *sig);
1877 extern void sched_autogroup_exit(struct signal_struct *sig);
1878 #ifdef CONFIG_PROC_FS
1879 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
1880 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
1881 #endif
1882 #else
1883 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
1884 static inline void sched_autogroup_detach(struct task_struct *p) { }
1885 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
1886 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
1887 #endif
1888
1889 extern bool yield_to(struct task_struct *p, bool preempt);
1890 extern void set_user_nice(struct task_struct *p, long nice);
1891 extern int task_prio(const struct task_struct *p);
1892 extern int task_nice(const struct task_struct *p);
1893 extern int can_nice(const struct task_struct *p, const int nice);
1894 extern int task_curr(const struct task_struct *p);
1895 extern int idle_cpu(int cpu);
1896 extern int sched_setscheduler(struct task_struct *, int,
1897 const struct sched_param *);
1898 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1899 const struct sched_param *);
1900 extern struct task_struct *idle_task(int cpu);
1901 /**
1902 * is_idle_task - is the specified task an idle task?
1903 * @p: the task in question.
1904 *
1905 * Return: 1 if @p is an idle task. 0 otherwise.
1906 */
1907 static inline bool is_idle_task(const struct task_struct *p)
1908 {
1909 return p->pid == 0;
1910 }
1911 extern struct task_struct *curr_task(int cpu);
1912 extern void set_curr_task(int cpu, struct task_struct *p);
1913
1914 void yield(void);
1915
1916 /*
1917 * The default (Linux) execution domain.
1918 */
1919 extern struct exec_domain default_exec_domain;
1920
1921 union thread_union {
1922 struct thread_info thread_info;
1923 unsigned long stack[THREAD_SIZE/sizeof(long)];
1924 };
1925
1926 #ifndef __HAVE_ARCH_KSTACK_END
1927 static inline int kstack_end(void *addr)
1928 {
1929 /* Reliable end of stack detection:
1930 * Some APM bios versions misalign the stack
1931 */
1932 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1933 }
1934 #endif
1935
1936 extern union thread_union init_thread_union;
1937 extern struct task_struct init_task;
1938
1939 extern struct mm_struct init_mm;
1940
1941 extern struct pid_namespace init_pid_ns;
1942
1943 /*
1944 * find a task by one of its numerical ids
1945 *
1946 * find_task_by_pid_ns():
1947 * finds a task by its pid in the specified namespace
1948 * find_task_by_vpid():
1949 * finds a task by its virtual pid
1950 *
1951 * see also find_vpid() etc in include/linux/pid.h
1952 */
1953
1954 extern struct task_struct *find_task_by_vpid(pid_t nr);
1955 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1956 struct pid_namespace *ns);
1957
1958 /* per-UID process charging. */
1959 extern struct user_struct * alloc_uid(kuid_t);
1960 static inline struct user_struct *get_uid(struct user_struct *u)
1961 {
1962 atomic_inc(&u->__count);
1963 return u;
1964 }
1965 extern void free_uid(struct user_struct *);
1966
1967 #include <asm/current.h>
1968
1969 extern void xtime_update(unsigned long ticks);
1970
1971 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1972 extern int wake_up_process(struct task_struct *tsk);
1973 extern void wake_up_new_task(struct task_struct *tsk);
1974 #ifdef CONFIG_SMP
1975 extern void kick_process(struct task_struct *tsk);
1976 #else
1977 static inline void kick_process(struct task_struct *tsk) { }
1978 #endif
1979 extern void sched_fork(struct task_struct *p);
1980 extern void sched_dead(struct task_struct *p);
1981
1982 extern void proc_caches_init(void);
1983 extern void flush_signals(struct task_struct *);
1984 extern void __flush_signals(struct task_struct *);
1985 extern void ignore_signals(struct task_struct *);
1986 extern void flush_signal_handlers(struct task_struct *, int force_default);
1987 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1988
1989 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1990 {
1991 unsigned long flags;
1992 int ret;
1993
1994 spin_lock_irqsave(&tsk->sighand->siglock, flags);
1995 ret = dequeue_signal(tsk, mask, info);
1996 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1997
1998 return ret;
1999 }
2000
2001 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2002 sigset_t *mask);
2003 extern void unblock_all_signals(void);
2004 extern void release_task(struct task_struct * p);
2005 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2006 extern int force_sigsegv(int, struct task_struct *);
2007 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2008 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2009 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2010 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2011 const struct cred *, u32);
2012 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2013 extern int kill_pid(struct pid *pid, int sig, int priv);
2014 extern int kill_proc_info(int, struct siginfo *, pid_t);
2015 extern __must_check bool do_notify_parent(struct task_struct *, int);
2016 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2017 extern void force_sig(int, struct task_struct *);
2018 extern int send_sig(int, struct task_struct *, int);
2019 extern int zap_other_threads(struct task_struct *p);
2020 extern struct sigqueue *sigqueue_alloc(void);
2021 extern void sigqueue_free(struct sigqueue *);
2022 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2023 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2024
2025 static inline void restore_saved_sigmask(void)
2026 {
2027 if (test_and_clear_restore_sigmask())
2028 __set_current_blocked(&current->saved_sigmask);
2029 }
2030
2031 static inline sigset_t *sigmask_to_save(void)
2032 {
2033 sigset_t *res = &current->blocked;
2034 if (unlikely(test_restore_sigmask()))
2035 res = &current->saved_sigmask;
2036 return res;
2037 }
2038
2039 static inline int kill_cad_pid(int sig, int priv)
2040 {
2041 return kill_pid(cad_pid, sig, priv);
2042 }
2043
2044 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2045 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2046 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2047 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2048
2049 /*
2050 * True if we are on the alternate signal stack.
2051 */
2052 static inline int on_sig_stack(unsigned long sp)
2053 {
2054 #ifdef CONFIG_STACK_GROWSUP
2055 return sp >= current->sas_ss_sp &&
2056 sp - current->sas_ss_sp < current->sas_ss_size;
2057 #else
2058 return sp > current->sas_ss_sp &&
2059 sp - current->sas_ss_sp <= current->sas_ss_size;
2060 #endif
2061 }
2062
2063 static inline int sas_ss_flags(unsigned long sp)
2064 {
2065 return (current->sas_ss_size == 0 ? SS_DISABLE
2066 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2067 }
2068
2069 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2070 {
2071 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2072 #ifdef CONFIG_STACK_GROWSUP
2073 return current->sas_ss_sp;
2074 #else
2075 return current->sas_ss_sp + current->sas_ss_size;
2076 #endif
2077 return sp;
2078 }
2079
2080 /*
2081 * Routines for handling mm_structs
2082 */
2083 extern struct mm_struct * mm_alloc(void);
2084
2085 /* mmdrop drops the mm and the page tables */
2086 extern void __mmdrop(struct mm_struct *);
2087 static inline void mmdrop(struct mm_struct * mm)
2088 {
2089 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2090 __mmdrop(mm);
2091 }
2092
2093 /* mmput gets rid of the mappings and all user-space */
2094 extern void mmput(struct mm_struct *);
2095 /* Grab a reference to a task's mm, if it is not already going away */
2096 extern struct mm_struct *get_task_mm(struct task_struct *task);
2097 /*
2098 * Grab a reference to a task's mm, if it is not already going away
2099 * and ptrace_may_access with the mode parameter passed to it
2100 * succeeds.
2101 */
2102 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2103 /* Remove the current tasks stale references to the old mm_struct */
2104 extern void mm_release(struct task_struct *, struct mm_struct *);
2105 /* Allocate a new mm structure and copy contents from tsk->mm */
2106 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2107
2108 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2109 struct task_struct *);
2110 extern void flush_thread(void);
2111 extern void exit_thread(void);
2112
2113 extern void exit_files(struct task_struct *);
2114 extern void __cleanup_sighand(struct sighand_struct *);
2115
2116 extern void exit_itimers(struct signal_struct *);
2117 extern void flush_itimer_signals(void);
2118
2119 extern void do_group_exit(int);
2120
2121 extern int allow_signal(int);
2122 extern int disallow_signal(int);
2123
2124 extern int do_execve(const char *,
2125 const char __user * const __user *,
2126 const char __user * const __user *);
2127 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2128 struct task_struct *fork_idle(int);
2129 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2130
2131 extern void set_task_comm(struct task_struct *tsk, char *from);
2132 extern char *get_task_comm(char *to, struct task_struct *tsk);
2133
2134 #ifdef CONFIG_SMP
2135 void scheduler_ipi(void);
2136 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2137 #else
2138 static inline void scheduler_ipi(void) { }
2139 static inline unsigned long wait_task_inactive(struct task_struct *p,
2140 long match_state)
2141 {
2142 return 1;
2143 }
2144 #endif
2145
2146 #define next_task(p) \
2147 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2148
2149 #define for_each_process(p) \
2150 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2151
2152 extern bool current_is_single_threaded(void);
2153
2154 /*
2155 * Careful: do_each_thread/while_each_thread is a double loop so
2156 * 'break' will not work as expected - use goto instead.
2157 */
2158 #define do_each_thread(g, t) \
2159 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2160
2161 #define while_each_thread(g, t) \
2162 while ((t = next_thread(t)) != g)
2163
2164 static inline int get_nr_threads(struct task_struct *tsk)
2165 {
2166 return tsk->signal->nr_threads;
2167 }
2168
2169 static inline bool thread_group_leader(struct task_struct *p)
2170 {
2171 return p->exit_signal >= 0;
2172 }
2173
2174 /* Do to the insanities of de_thread it is possible for a process
2175 * to have the pid of the thread group leader without actually being
2176 * the thread group leader. For iteration through the pids in proc
2177 * all we care about is that we have a task with the appropriate
2178 * pid, we don't actually care if we have the right task.
2179 */
2180 static inline int has_group_leader_pid(struct task_struct *p)
2181 {
2182 return p->pid == p->tgid;
2183 }
2184
2185 static inline
2186 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2187 {
2188 return p1->tgid == p2->tgid;
2189 }
2190
2191 static inline struct task_struct *next_thread(const struct task_struct *p)
2192 {
2193 return list_entry_rcu(p->thread_group.next,
2194 struct task_struct, thread_group);
2195 }
2196
2197 static inline int thread_group_empty(struct task_struct *p)
2198 {
2199 return list_empty(&p->thread_group);
2200 }
2201
2202 #define delay_group_leader(p) \
2203 (thread_group_leader(p) && !thread_group_empty(p))
2204
2205 /*
2206 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2207 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2208 * pins the final release of task.io_context. Also protects ->cpuset and
2209 * ->cgroup.subsys[]. And ->vfork_done.
2210 *
2211 * Nests both inside and outside of read_lock(&tasklist_lock).
2212 * It must not be nested with write_lock_irq(&tasklist_lock),
2213 * neither inside nor outside.
2214 */
2215 static inline void task_lock(struct task_struct *p)
2216 {
2217 spin_lock(&p->alloc_lock);
2218 }
2219
2220 static inline void task_unlock(struct task_struct *p)
2221 {
2222 spin_unlock(&p->alloc_lock);
2223 }
2224
2225 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2226 unsigned long *flags);
2227
2228 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2229 unsigned long *flags)
2230 {
2231 struct sighand_struct *ret;
2232
2233 ret = __lock_task_sighand(tsk, flags);
2234 (void)__cond_lock(&tsk->sighand->siglock, ret);
2235 return ret;
2236 }
2237
2238 static inline void unlock_task_sighand(struct task_struct *tsk,
2239 unsigned long *flags)
2240 {
2241 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2242 }
2243
2244 #ifdef CONFIG_CGROUPS
2245 static inline void threadgroup_change_begin(struct task_struct *tsk)
2246 {
2247 down_read(&tsk->signal->group_rwsem);
2248 }
2249 static inline void threadgroup_change_end(struct task_struct *tsk)
2250 {
2251 up_read(&tsk->signal->group_rwsem);
2252 }
2253
2254 /**
2255 * threadgroup_lock - lock threadgroup
2256 * @tsk: member task of the threadgroup to lock
2257 *
2258 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter
2259 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2260 * change ->group_leader/pid. This is useful for cases where the threadgroup
2261 * needs to stay stable across blockable operations.
2262 *
2263 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2264 * synchronization. While held, no new task will be added to threadgroup
2265 * and no existing live task will have its PF_EXITING set.
2266 *
2267 * de_thread() does threadgroup_change_{begin|end}() when a non-leader
2268 * sub-thread becomes a new leader.
2269 */
2270 static inline void threadgroup_lock(struct task_struct *tsk)
2271 {
2272 down_write(&tsk->signal->group_rwsem);
2273 }
2274
2275 /**
2276 * threadgroup_unlock - unlock threadgroup
2277 * @tsk: member task of the threadgroup to unlock
2278 *
2279 * Reverse threadgroup_lock().
2280 */
2281 static inline void threadgroup_unlock(struct task_struct *tsk)
2282 {
2283 up_write(&tsk->signal->group_rwsem);
2284 }
2285 #else
2286 static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2287 static inline void threadgroup_change_end(struct task_struct *tsk) {}
2288 static inline void threadgroup_lock(struct task_struct *tsk) {}
2289 static inline void threadgroup_unlock(struct task_struct *tsk) {}
2290 #endif
2291
2292 #ifndef __HAVE_THREAD_FUNCTIONS
2293
2294 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2295 #define task_stack_page(task) ((task)->stack)
2296
2297 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2298 {
2299 *task_thread_info(p) = *task_thread_info(org);
2300 task_thread_info(p)->task = p;
2301 }
2302
2303 static inline unsigned long *end_of_stack(struct task_struct *p)
2304 {
2305 return (unsigned long *)(task_thread_info(p) + 1);
2306 }
2307
2308 #endif
2309
2310 static inline int object_is_on_stack(void *obj)
2311 {
2312 void *stack = task_stack_page(current);
2313
2314 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2315 }
2316
2317 extern void thread_info_cache_init(void);
2318
2319 #ifdef CONFIG_DEBUG_STACK_USAGE
2320 static inline unsigned long stack_not_used(struct task_struct *p)
2321 {
2322 unsigned long *n = end_of_stack(p);
2323
2324 do { /* Skip over canary */
2325 n++;
2326 } while (!*n);
2327
2328 return (unsigned long)n - (unsigned long)end_of_stack(p);
2329 }
2330 #endif
2331
2332 /* set thread flags in other task's structures
2333 * - see asm/thread_info.h for TIF_xxxx flags available
2334 */
2335 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2336 {
2337 set_ti_thread_flag(task_thread_info(tsk), flag);
2338 }
2339
2340 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2341 {
2342 clear_ti_thread_flag(task_thread_info(tsk), flag);
2343 }
2344
2345 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2346 {
2347 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2348 }
2349
2350 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2351 {
2352 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2353 }
2354
2355 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2356 {
2357 return test_ti_thread_flag(task_thread_info(tsk), flag);
2358 }
2359
2360 static inline void set_tsk_need_resched(struct task_struct *tsk)
2361 {
2362 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2363 }
2364
2365 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2366 {
2367 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2368 }
2369
2370 static inline int test_tsk_need_resched(struct task_struct *tsk)
2371 {
2372 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2373 }
2374
2375 static inline int restart_syscall(void)
2376 {
2377 set_tsk_thread_flag(current, TIF_SIGPENDING);
2378 return -ERESTARTNOINTR;
2379 }
2380
2381 static inline int signal_pending(struct task_struct *p)
2382 {
2383 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2384 }
2385
2386 static inline int __fatal_signal_pending(struct task_struct *p)
2387 {
2388 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2389 }
2390
2391 static inline int fatal_signal_pending(struct task_struct *p)
2392 {
2393 return signal_pending(p) && __fatal_signal_pending(p);
2394 }
2395
2396 static inline int signal_pending_state(long state, struct task_struct *p)
2397 {
2398 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2399 return 0;
2400 if (!signal_pending(p))
2401 return 0;
2402
2403 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2404 }
2405
2406 static inline int need_resched(void)
2407 {
2408 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2409 }
2410
2411 /*
2412 * cond_resched() and cond_resched_lock(): latency reduction via
2413 * explicit rescheduling in places that are safe. The return
2414 * value indicates whether a reschedule was done in fact.
2415 * cond_resched_lock() will drop the spinlock before scheduling,
2416 * cond_resched_softirq() will enable bhs before scheduling.
2417 */
2418 extern int _cond_resched(void);
2419
2420 #define cond_resched() ({ \
2421 __might_sleep(__FILE__, __LINE__, 0); \
2422 _cond_resched(); \
2423 })
2424
2425 extern int __cond_resched_lock(spinlock_t *lock);
2426
2427 #ifdef CONFIG_PREEMPT_COUNT
2428 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2429 #else
2430 #define PREEMPT_LOCK_OFFSET 0
2431 #endif
2432
2433 #define cond_resched_lock(lock) ({ \
2434 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2435 __cond_resched_lock(lock); \
2436 })
2437
2438 extern int __cond_resched_softirq(void);
2439
2440 #define cond_resched_softirq() ({ \
2441 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2442 __cond_resched_softirq(); \
2443 })
2444
2445 static inline void cond_resched_rcu(void)
2446 {
2447 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2448 rcu_read_unlock();
2449 cond_resched();
2450 rcu_read_lock();
2451 #endif
2452 }
2453
2454 /*
2455 * Does a critical section need to be broken due to another
2456 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2457 * but a general need for low latency)
2458 */
2459 static inline int spin_needbreak(spinlock_t *lock)
2460 {
2461 #ifdef CONFIG_PREEMPT
2462 return spin_is_contended(lock);
2463 #else
2464 return 0;
2465 #endif
2466 }
2467
2468 /*
2469 * Idle thread specific functions to determine the need_resched
2470 * polling state. We have two versions, one based on TS_POLLING in
2471 * thread_info.status and one based on TIF_POLLING_NRFLAG in
2472 * thread_info.flags
2473 */
2474 #ifdef TS_POLLING
2475 static inline int tsk_is_polling(struct task_struct *p)
2476 {
2477 return task_thread_info(p)->status & TS_POLLING;
2478 }
2479 static inline void current_set_polling(void)
2480 {
2481 current_thread_info()->status |= TS_POLLING;
2482 }
2483
2484 static inline void current_clr_polling(void)
2485 {
2486 current_thread_info()->status &= ~TS_POLLING;
2487 smp_mb__after_clear_bit();
2488 }
2489 #elif defined(TIF_POLLING_NRFLAG)
2490 static inline int tsk_is_polling(struct task_struct *p)
2491 {
2492 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2493 }
2494 static inline void current_set_polling(void)
2495 {
2496 set_thread_flag(TIF_POLLING_NRFLAG);
2497 }
2498
2499 static inline void current_clr_polling(void)
2500 {
2501 clear_thread_flag(TIF_POLLING_NRFLAG);
2502 }
2503 #else
2504 static inline int tsk_is_polling(struct task_struct *p) { return 0; }
2505 static inline void current_set_polling(void) { }
2506 static inline void current_clr_polling(void) { }
2507 #endif
2508
2509 /*
2510 * Thread group CPU time accounting.
2511 */
2512 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2513 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2514
2515 static inline void thread_group_cputime_init(struct signal_struct *sig)
2516 {
2517 raw_spin_lock_init(&sig->cputimer.lock);
2518 }
2519
2520 /*
2521 * Reevaluate whether the task has signals pending delivery.
2522 * Wake the task if so.
2523 * This is required every time the blocked sigset_t changes.
2524 * callers must hold sighand->siglock.
2525 */
2526 extern void recalc_sigpending_and_wake(struct task_struct *t);
2527 extern void recalc_sigpending(void);
2528
2529 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
2530
2531 static inline void signal_wake_up(struct task_struct *t, bool resume)
2532 {
2533 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
2534 }
2535 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
2536 {
2537 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
2538 }
2539
2540 /*
2541 * Wrappers for p->thread_info->cpu access. No-op on UP.
2542 */
2543 #ifdef CONFIG_SMP
2544
2545 static inline unsigned int task_cpu(const struct task_struct *p)
2546 {
2547 return task_thread_info(p)->cpu;
2548 }
2549
2550 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2551
2552 #else
2553
2554 static inline unsigned int task_cpu(const struct task_struct *p)
2555 {
2556 return 0;
2557 }
2558
2559 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2560 {
2561 }
2562
2563 #endif /* CONFIG_SMP */
2564
2565 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2566 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2567
2568 #ifdef CONFIG_CGROUP_SCHED
2569 extern struct task_group root_task_group;
2570 #endif /* CONFIG_CGROUP_SCHED */
2571
2572 extern int task_can_switch_user(struct user_struct *up,
2573 struct task_struct *tsk);
2574
2575 #ifdef CONFIG_TASK_XACCT
2576 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2577 {
2578 tsk->ioac.rchar += amt;
2579 }
2580
2581 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2582 {
2583 tsk->ioac.wchar += amt;
2584 }
2585
2586 static inline void inc_syscr(struct task_struct *tsk)
2587 {
2588 tsk->ioac.syscr++;
2589 }
2590
2591 static inline void inc_syscw(struct task_struct *tsk)
2592 {
2593 tsk->ioac.syscw++;
2594 }
2595 #else
2596 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2597 {
2598 }
2599
2600 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2601 {
2602 }
2603
2604 static inline void inc_syscr(struct task_struct *tsk)
2605 {
2606 }
2607
2608 static inline void inc_syscw(struct task_struct *tsk)
2609 {
2610 }
2611 #endif
2612
2613 #ifndef TASK_SIZE_OF
2614 #define TASK_SIZE_OF(tsk) TASK_SIZE
2615 #endif
2616
2617 #ifdef CONFIG_MM_OWNER
2618 extern void mm_update_next_owner(struct mm_struct *mm);
2619 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2620 #else
2621 static inline void mm_update_next_owner(struct mm_struct *mm)
2622 {
2623 }
2624
2625 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2626 {
2627 }
2628 #endif /* CONFIG_MM_OWNER */
2629
2630 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2631 unsigned int limit)
2632 {
2633 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2634 }
2635
2636 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2637 unsigned int limit)
2638 {
2639 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2640 }
2641
2642 static inline unsigned long rlimit(unsigned int limit)
2643 {
2644 return task_rlimit(current, limit);
2645 }
2646
2647 static inline unsigned long rlimit_max(unsigned int limit)
2648 {
2649 return task_rlimit_max(current, limit);
2650 }
2651
2652 #endif
This page took 0.107043 seconds and 6 git commands to generate.