Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs...
[deliverable/linux.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
29 #define CLONE_NEWNET 0x40000000 /* New network namespace */
30 #define CLONE_IO 0x80000000 /* Clone io context */
31
32 /*
33 * Scheduling policies
34 */
35 #define SCHED_NORMAL 0
36 #define SCHED_FIFO 1
37 #define SCHED_RR 2
38 #define SCHED_BATCH 3
39 /* SCHED_ISO: reserved but not implemented yet */
40 #define SCHED_IDLE 5
41
42 #ifdef __KERNEL__
43
44 struct sched_param {
45 int sched_priority;
46 };
47
48 #include <asm/param.h> /* for HZ */
49
50 #include <linux/capability.h>
51 #include <linux/threads.h>
52 #include <linux/kernel.h>
53 #include <linux/types.h>
54 #include <linux/timex.h>
55 #include <linux/jiffies.h>
56 #include <linux/rbtree.h>
57 #include <linux/thread_info.h>
58 #include <linux/cpumask.h>
59 #include <linux/errno.h>
60 #include <linux/nodemask.h>
61 #include <linux/mm_types.h>
62
63 #include <asm/system.h>
64 #include <asm/page.h>
65 #include <asm/ptrace.h>
66 #include <asm/cputime.h>
67
68 #include <linux/smp.h>
69 #include <linux/sem.h>
70 #include <linux/signal.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compiler.h>
73 #include <linux/completion.h>
74 #include <linux/pid.h>
75 #include <linux/percpu.h>
76 #include <linux/topology.h>
77 #include <linux/proportions.h>
78 #include <linux/seccomp.h>
79 #include <linux/rcupdate.h>
80 #include <linux/rtmutex.h>
81
82 #include <linux/time.h>
83 #include <linux/param.h>
84 #include <linux/resource.h>
85 #include <linux/timer.h>
86 #include <linux/hrtimer.h>
87 #include <linux/task_io_accounting.h>
88 #include <linux/kobject.h>
89 #include <linux/latencytop.h>
90 #include <linux/cred.h>
91
92 #include <asm/processor.h>
93
94 struct mem_cgroup;
95 struct exec_domain;
96 struct futex_pi_state;
97 struct robust_list_head;
98 struct bio;
99
100 /*
101 * List of flags we want to share for kernel threads,
102 * if only because they are not used by them anyway.
103 */
104 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
105
106 /*
107 * These are the constant used to fake the fixed-point load-average
108 * counting. Some notes:
109 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
110 * a load-average precision of 10 bits integer + 11 bits fractional
111 * - if you want to count load-averages more often, you need more
112 * precision, or rounding will get you. With 2-second counting freq,
113 * the EXP_n values would be 1981, 2034 and 2043 if still using only
114 * 11 bit fractions.
115 */
116 extern unsigned long avenrun[]; /* Load averages */
117
118 #define FSHIFT 11 /* nr of bits of precision */
119 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
120 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
121 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
122 #define EXP_5 2014 /* 1/exp(5sec/5min) */
123 #define EXP_15 2037 /* 1/exp(5sec/15min) */
124
125 #define CALC_LOAD(load,exp,n) \
126 load *= exp; \
127 load += n*(FIXED_1-exp); \
128 load >>= FSHIFT;
129
130 extern unsigned long total_forks;
131 extern int nr_threads;
132 DECLARE_PER_CPU(unsigned long, process_counts);
133 extern int nr_processes(void);
134 extern unsigned long nr_running(void);
135 extern unsigned long nr_uninterruptible(void);
136 extern unsigned long nr_active(void);
137 extern unsigned long nr_iowait(void);
138
139 struct seq_file;
140 struct cfs_rq;
141 struct task_group;
142 #ifdef CONFIG_SCHED_DEBUG
143 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
144 extern void proc_sched_set_task(struct task_struct *p);
145 extern void
146 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
147 #else
148 static inline void
149 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
150 {
151 }
152 static inline void proc_sched_set_task(struct task_struct *p)
153 {
154 }
155 static inline void
156 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
157 {
158 }
159 #endif
160
161 extern unsigned long long time_sync_thresh;
162
163 /*
164 * Task state bitmask. NOTE! These bits are also
165 * encoded in fs/proc/array.c: get_task_state().
166 *
167 * We have two separate sets of flags: task->state
168 * is about runnability, while task->exit_state are
169 * about the task exiting. Confusing, but this way
170 * modifying one set can't modify the other one by
171 * mistake.
172 */
173 #define TASK_RUNNING 0
174 #define TASK_INTERRUPTIBLE 1
175 #define TASK_UNINTERRUPTIBLE 2
176 #define __TASK_STOPPED 4
177 #define __TASK_TRACED 8
178 /* in tsk->exit_state */
179 #define EXIT_ZOMBIE 16
180 #define EXIT_DEAD 32
181 /* in tsk->state again */
182 #define TASK_DEAD 64
183 #define TASK_WAKEKILL 128
184
185 /* Convenience macros for the sake of set_task_state */
186 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
187 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
188 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
189
190 /* Convenience macros for the sake of wake_up */
191 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
192 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
193
194 /* get_task_state() */
195 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
196 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
197 __TASK_TRACED)
198
199 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
200 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
201 #define task_is_stopped_or_traced(task) \
202 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
203 #define task_contributes_to_load(task) \
204 ((task->state & TASK_UNINTERRUPTIBLE) != 0)
205
206 #define __set_task_state(tsk, state_value) \
207 do { (tsk)->state = (state_value); } while (0)
208 #define set_task_state(tsk, state_value) \
209 set_mb((tsk)->state, (state_value))
210
211 /*
212 * set_current_state() includes a barrier so that the write of current->state
213 * is correctly serialised wrt the caller's subsequent test of whether to
214 * actually sleep:
215 *
216 * set_current_state(TASK_UNINTERRUPTIBLE);
217 * if (do_i_need_to_sleep())
218 * schedule();
219 *
220 * If the caller does not need such serialisation then use __set_current_state()
221 */
222 #define __set_current_state(state_value) \
223 do { current->state = (state_value); } while (0)
224 #define set_current_state(state_value) \
225 set_mb(current->state, (state_value))
226
227 /* Task command name length */
228 #define TASK_COMM_LEN 16
229
230 #include <linux/spinlock.h>
231
232 /*
233 * This serializes "schedule()" and also protects
234 * the run-queue from deletions/modifications (but
235 * _adding_ to the beginning of the run-queue has
236 * a separate lock).
237 */
238 extern rwlock_t tasklist_lock;
239 extern spinlock_t mmlist_lock;
240
241 struct task_struct;
242
243 extern void sched_init(void);
244 extern void sched_init_smp(void);
245 extern asmlinkage void schedule_tail(struct task_struct *prev);
246 extern void init_idle(struct task_struct *idle, int cpu);
247 extern void init_idle_bootup_task(struct task_struct *idle);
248
249 extern int runqueue_is_locked(void);
250 extern void task_rq_unlock_wait(struct task_struct *p);
251
252 extern cpumask_t nohz_cpu_mask;
253 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
254 extern int select_nohz_load_balancer(int cpu);
255 #else
256 static inline int select_nohz_load_balancer(int cpu)
257 {
258 return 0;
259 }
260 #endif
261
262 extern unsigned long rt_needs_cpu(int cpu);
263
264 /*
265 * Only dump TASK_* tasks. (0 for all tasks)
266 */
267 extern void show_state_filter(unsigned long state_filter);
268
269 static inline void show_state(void)
270 {
271 show_state_filter(0);
272 }
273
274 extern void show_regs(struct pt_regs *);
275
276 /*
277 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
278 * task), SP is the stack pointer of the first frame that should be shown in the back
279 * trace (or NULL if the entire call-chain of the task should be shown).
280 */
281 extern void show_stack(struct task_struct *task, unsigned long *sp);
282
283 void io_schedule(void);
284 long io_schedule_timeout(long timeout);
285
286 extern void cpu_init (void);
287 extern void trap_init(void);
288 extern void account_process_tick(struct task_struct *task, int user);
289 extern void update_process_times(int user);
290 extern void scheduler_tick(void);
291
292 extern void sched_show_task(struct task_struct *p);
293
294 #ifdef CONFIG_DETECT_SOFTLOCKUP
295 extern void softlockup_tick(void);
296 extern void touch_softlockup_watchdog(void);
297 extern void touch_all_softlockup_watchdogs(void);
298 extern unsigned int softlockup_panic;
299 extern unsigned long sysctl_hung_task_check_count;
300 extern unsigned long sysctl_hung_task_timeout_secs;
301 extern unsigned long sysctl_hung_task_warnings;
302 extern int softlockup_thresh;
303 #else
304 static inline void softlockup_tick(void)
305 {
306 }
307 static inline void spawn_softlockup_task(void)
308 {
309 }
310 static inline void touch_softlockup_watchdog(void)
311 {
312 }
313 static inline void touch_all_softlockup_watchdogs(void)
314 {
315 }
316 #endif
317
318
319 /* Attach to any functions which should be ignored in wchan output. */
320 #define __sched __attribute__((__section__(".sched.text")))
321
322 /* Linker adds these: start and end of __sched functions */
323 extern char __sched_text_start[], __sched_text_end[];
324
325 /* Is this address in the __sched functions? */
326 extern int in_sched_functions(unsigned long addr);
327
328 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
329 extern signed long schedule_timeout(signed long timeout);
330 extern signed long schedule_timeout_interruptible(signed long timeout);
331 extern signed long schedule_timeout_killable(signed long timeout);
332 extern signed long schedule_timeout_uninterruptible(signed long timeout);
333 asmlinkage void schedule(void);
334
335 struct nsproxy;
336 struct user_namespace;
337
338 /* Maximum number of active map areas.. This is a random (large) number */
339 #define DEFAULT_MAX_MAP_COUNT 65536
340
341 extern int sysctl_max_map_count;
342
343 #include <linux/aio.h>
344
345 extern unsigned long
346 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
347 unsigned long, unsigned long);
348 extern unsigned long
349 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
350 unsigned long len, unsigned long pgoff,
351 unsigned long flags);
352 extern void arch_unmap_area(struct mm_struct *, unsigned long);
353 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
354
355 #if USE_SPLIT_PTLOCKS
356 /*
357 * The mm counters are not protected by its page_table_lock,
358 * so must be incremented atomically.
359 */
360 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
361 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
362 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
363 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
364 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
365
366 #else /* !USE_SPLIT_PTLOCKS */
367 /*
368 * The mm counters are protected by its page_table_lock,
369 * so can be incremented directly.
370 */
371 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
372 #define get_mm_counter(mm, member) ((mm)->_##member)
373 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
374 #define inc_mm_counter(mm, member) (mm)->_##member++
375 #define dec_mm_counter(mm, member) (mm)->_##member--
376
377 #endif /* !USE_SPLIT_PTLOCKS */
378
379 #define get_mm_rss(mm) \
380 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
381 #define update_hiwater_rss(mm) do { \
382 unsigned long _rss = get_mm_rss(mm); \
383 if ((mm)->hiwater_rss < _rss) \
384 (mm)->hiwater_rss = _rss; \
385 } while (0)
386 #define update_hiwater_vm(mm) do { \
387 if ((mm)->hiwater_vm < (mm)->total_vm) \
388 (mm)->hiwater_vm = (mm)->total_vm; \
389 } while (0)
390
391 extern void set_dumpable(struct mm_struct *mm, int value);
392 extern int get_dumpable(struct mm_struct *mm);
393
394 /* mm flags */
395 /* dumpable bits */
396 #define MMF_DUMPABLE 0 /* core dump is permitted */
397 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
398 #define MMF_DUMPABLE_BITS 2
399
400 /* coredump filter bits */
401 #define MMF_DUMP_ANON_PRIVATE 2
402 #define MMF_DUMP_ANON_SHARED 3
403 #define MMF_DUMP_MAPPED_PRIVATE 4
404 #define MMF_DUMP_MAPPED_SHARED 5
405 #define MMF_DUMP_ELF_HEADERS 6
406 #define MMF_DUMP_HUGETLB_PRIVATE 7
407 #define MMF_DUMP_HUGETLB_SHARED 8
408 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
409 #define MMF_DUMP_FILTER_BITS 7
410 #define MMF_DUMP_FILTER_MASK \
411 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
412 #define MMF_DUMP_FILTER_DEFAULT \
413 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
414 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
415
416 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
417 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
418 #else
419 # define MMF_DUMP_MASK_DEFAULT_ELF 0
420 #endif
421
422 struct sighand_struct {
423 atomic_t count;
424 struct k_sigaction action[_NSIG];
425 spinlock_t siglock;
426 wait_queue_head_t signalfd_wqh;
427 };
428
429 struct pacct_struct {
430 int ac_flag;
431 long ac_exitcode;
432 unsigned long ac_mem;
433 cputime_t ac_utime, ac_stime;
434 unsigned long ac_minflt, ac_majflt;
435 };
436
437 /**
438 * struct task_cputime - collected CPU time counts
439 * @utime: time spent in user mode, in &cputime_t units
440 * @stime: time spent in kernel mode, in &cputime_t units
441 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
442 *
443 * This structure groups together three kinds of CPU time that are
444 * tracked for threads and thread groups. Most things considering
445 * CPU time want to group these counts together and treat all three
446 * of them in parallel.
447 */
448 struct task_cputime {
449 cputime_t utime;
450 cputime_t stime;
451 unsigned long long sum_exec_runtime;
452 };
453 /* Alternate field names when used to cache expirations. */
454 #define prof_exp stime
455 #define virt_exp utime
456 #define sched_exp sum_exec_runtime
457
458 /**
459 * struct thread_group_cputime - thread group interval timer counts
460 * @totals: thread group interval timers; substructure for
461 * uniprocessor kernel, per-cpu for SMP kernel.
462 *
463 * This structure contains the version of task_cputime, above, that is
464 * used for thread group CPU clock calculations.
465 */
466 struct thread_group_cputime {
467 struct task_cputime *totals;
468 };
469
470 /*
471 * NOTE! "signal_struct" does not have it's own
472 * locking, because a shared signal_struct always
473 * implies a shared sighand_struct, so locking
474 * sighand_struct is always a proper superset of
475 * the locking of signal_struct.
476 */
477 struct signal_struct {
478 atomic_t count;
479 atomic_t live;
480
481 wait_queue_head_t wait_chldexit; /* for wait4() */
482
483 /* current thread group signal load-balancing target: */
484 struct task_struct *curr_target;
485
486 /* shared signal handling: */
487 struct sigpending shared_pending;
488
489 /* thread group exit support */
490 int group_exit_code;
491 /* overloaded:
492 * - notify group_exit_task when ->count is equal to notify_count
493 * - everyone except group_exit_task is stopped during signal delivery
494 * of fatal signals, group_exit_task processes the signal.
495 */
496 int notify_count;
497 struct task_struct *group_exit_task;
498
499 /* thread group stop support, overloads group_exit_code too */
500 int group_stop_count;
501 unsigned int flags; /* see SIGNAL_* flags below */
502
503 /* POSIX.1b Interval Timers */
504 struct list_head posix_timers;
505
506 /* ITIMER_REAL timer for the process */
507 struct hrtimer real_timer;
508 struct pid *leader_pid;
509 ktime_t it_real_incr;
510
511 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
512 cputime_t it_prof_expires, it_virt_expires;
513 cputime_t it_prof_incr, it_virt_incr;
514
515 /*
516 * Thread group totals for process CPU clocks.
517 * See thread_group_cputime(), et al, for details.
518 */
519 struct thread_group_cputime cputime;
520
521 /* Earliest-expiration cache. */
522 struct task_cputime cputime_expires;
523
524 struct list_head cpu_timers[3];
525
526 /* job control IDs */
527
528 /*
529 * pgrp and session fields are deprecated.
530 * use the task_session_Xnr and task_pgrp_Xnr routines below
531 */
532
533 union {
534 pid_t pgrp __deprecated;
535 pid_t __pgrp;
536 };
537
538 struct pid *tty_old_pgrp;
539
540 union {
541 pid_t session __deprecated;
542 pid_t __session;
543 };
544
545 /* boolean value for session group leader */
546 int leader;
547
548 struct tty_struct *tty; /* NULL if no tty */
549
550 /*
551 * Cumulative resource counters for dead threads in the group,
552 * and for reaped dead child processes forked by this group.
553 * Live threads maintain their own counters and add to these
554 * in __exit_signal, except for the group leader.
555 */
556 cputime_t cutime, cstime;
557 cputime_t gtime;
558 cputime_t cgtime;
559 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
560 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
561 unsigned long inblock, oublock, cinblock, coublock;
562 struct task_io_accounting ioac;
563
564 /*
565 * We don't bother to synchronize most readers of this at all,
566 * because there is no reader checking a limit that actually needs
567 * to get both rlim_cur and rlim_max atomically, and either one
568 * alone is a single word that can safely be read normally.
569 * getrlimit/setrlimit use task_lock(current->group_leader) to
570 * protect this instead of the siglock, because they really
571 * have no need to disable irqs.
572 */
573 struct rlimit rlim[RLIM_NLIMITS];
574
575 /* keep the process-shared keyrings here so that they do the right
576 * thing in threads created with CLONE_THREAD */
577 #ifdef CONFIG_KEYS
578 struct key *session_keyring; /* keyring inherited over fork */
579 struct key *process_keyring; /* keyring private to this process */
580 #endif
581 #ifdef CONFIG_BSD_PROCESS_ACCT
582 struct pacct_struct pacct; /* per-process accounting information */
583 #endif
584 #ifdef CONFIG_TASKSTATS
585 struct taskstats *stats;
586 #endif
587 #ifdef CONFIG_AUDIT
588 unsigned audit_tty;
589 struct tty_audit_buf *tty_audit_buf;
590 #endif
591 };
592
593 /* Context switch must be unlocked if interrupts are to be enabled */
594 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
595 # define __ARCH_WANT_UNLOCKED_CTXSW
596 #endif
597
598 /*
599 * Bits in flags field of signal_struct.
600 */
601 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
602 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
603 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
604 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
605 /*
606 * Pending notifications to parent.
607 */
608 #define SIGNAL_CLD_STOPPED 0x00000010
609 #define SIGNAL_CLD_CONTINUED 0x00000020
610 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
611
612 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
613
614 /* If true, all threads except ->group_exit_task have pending SIGKILL */
615 static inline int signal_group_exit(const struct signal_struct *sig)
616 {
617 return (sig->flags & SIGNAL_GROUP_EXIT) ||
618 (sig->group_exit_task != NULL);
619 }
620
621 /*
622 * Some day this will be a full-fledged user tracking system..
623 */
624 struct user_struct {
625 atomic_t __count; /* reference count */
626 atomic_t processes; /* How many processes does this user have? */
627 atomic_t files; /* How many open files does this user have? */
628 atomic_t sigpending; /* How many pending signals does this user have? */
629 #ifdef CONFIG_INOTIFY_USER
630 atomic_t inotify_watches; /* How many inotify watches does this user have? */
631 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
632 #endif
633 #ifdef CONFIG_EPOLL
634 atomic_t epoll_devs; /* The number of epoll descriptors currently open */
635 atomic_t epoll_watches; /* The number of file descriptors currently watched */
636 #endif
637 #ifdef CONFIG_POSIX_MQUEUE
638 /* protected by mq_lock */
639 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
640 #endif
641 unsigned long locked_shm; /* How many pages of mlocked shm ? */
642
643 #ifdef CONFIG_KEYS
644 struct key *uid_keyring; /* UID specific keyring */
645 struct key *session_keyring; /* UID's default session keyring */
646 #endif
647
648 /* Hash table maintenance information */
649 struct hlist_node uidhash_node;
650 uid_t uid;
651
652 #ifdef CONFIG_USER_SCHED
653 struct task_group *tg;
654 #ifdef CONFIG_SYSFS
655 struct kobject kobj;
656 struct work_struct work;
657 #endif
658 #endif
659 };
660
661 extern int uids_sysfs_init(void);
662
663 extern struct user_struct *find_user(uid_t);
664
665 extern struct user_struct root_user;
666 #define INIT_USER (&root_user)
667
668 struct backing_dev_info;
669 struct reclaim_state;
670
671 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
672 struct sched_info {
673 /* cumulative counters */
674 unsigned long pcount; /* # of times run on this cpu */
675 unsigned long long cpu_time, /* time spent on the cpu */
676 run_delay; /* time spent waiting on a runqueue */
677
678 /* timestamps */
679 unsigned long long last_arrival,/* when we last ran on a cpu */
680 last_queued; /* when we were last queued to run */
681 #ifdef CONFIG_SCHEDSTATS
682 /* BKL stats */
683 unsigned int bkl_count;
684 #endif
685 };
686 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
687
688 #ifdef CONFIG_TASK_DELAY_ACCT
689 struct task_delay_info {
690 spinlock_t lock;
691 unsigned int flags; /* Private per-task flags */
692
693 /* For each stat XXX, add following, aligned appropriately
694 *
695 * struct timespec XXX_start, XXX_end;
696 * u64 XXX_delay;
697 * u32 XXX_count;
698 *
699 * Atomicity of updates to XXX_delay, XXX_count protected by
700 * single lock above (split into XXX_lock if contention is an issue).
701 */
702
703 /*
704 * XXX_count is incremented on every XXX operation, the delay
705 * associated with the operation is added to XXX_delay.
706 * XXX_delay contains the accumulated delay time in nanoseconds.
707 */
708 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
709 u64 blkio_delay; /* wait for sync block io completion */
710 u64 swapin_delay; /* wait for swapin block io completion */
711 u32 blkio_count; /* total count of the number of sync block */
712 /* io operations performed */
713 u32 swapin_count; /* total count of the number of swapin block */
714 /* io operations performed */
715
716 struct timespec freepages_start, freepages_end;
717 u64 freepages_delay; /* wait for memory reclaim */
718 u32 freepages_count; /* total count of memory reclaim */
719 };
720 #endif /* CONFIG_TASK_DELAY_ACCT */
721
722 static inline int sched_info_on(void)
723 {
724 #ifdef CONFIG_SCHEDSTATS
725 return 1;
726 #elif defined(CONFIG_TASK_DELAY_ACCT)
727 extern int delayacct_on;
728 return delayacct_on;
729 #else
730 return 0;
731 #endif
732 }
733
734 enum cpu_idle_type {
735 CPU_IDLE,
736 CPU_NOT_IDLE,
737 CPU_NEWLY_IDLE,
738 CPU_MAX_IDLE_TYPES
739 };
740
741 /*
742 * sched-domains (multiprocessor balancing) declarations:
743 */
744
745 /*
746 * Increase resolution of nice-level calculations:
747 */
748 #define SCHED_LOAD_SHIFT 10
749 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
750
751 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
752
753 #ifdef CONFIG_SMP
754 #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */
755 #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */
756 #define SD_BALANCE_EXEC 4 /* Balance on exec */
757 #define SD_BALANCE_FORK 8 /* Balance on fork, clone */
758 #define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */
759 #define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */
760 #define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */
761 #define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */
762 #define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */
763 #define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */
764 #define SD_SERIALIZE 1024 /* Only a single load balancing instance */
765 #define SD_WAKE_IDLE_FAR 2048 /* Gain latency sacrificing cache hit */
766
767 #define BALANCE_FOR_MC_POWER \
768 (sched_smt_power_savings ? SD_POWERSAVINGS_BALANCE : 0)
769
770 #define BALANCE_FOR_PKG_POWER \
771 ((sched_mc_power_savings || sched_smt_power_savings) ? \
772 SD_POWERSAVINGS_BALANCE : 0)
773
774 #define test_sd_parent(sd, flag) ((sd->parent && \
775 (sd->parent->flags & flag)) ? 1 : 0)
776
777
778 struct sched_group {
779 struct sched_group *next; /* Must be a circular list */
780 cpumask_t cpumask;
781
782 /*
783 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
784 * single CPU. This is read only (except for setup, hotplug CPU).
785 * Note : Never change cpu_power without recompute its reciprocal
786 */
787 unsigned int __cpu_power;
788 /*
789 * reciprocal value of cpu_power to avoid expensive divides
790 * (see include/linux/reciprocal_div.h)
791 */
792 u32 reciprocal_cpu_power;
793 };
794
795 enum sched_domain_level {
796 SD_LV_NONE = 0,
797 SD_LV_SIBLING,
798 SD_LV_MC,
799 SD_LV_CPU,
800 SD_LV_NODE,
801 SD_LV_ALLNODES,
802 SD_LV_MAX
803 };
804
805 struct sched_domain_attr {
806 int relax_domain_level;
807 };
808
809 #define SD_ATTR_INIT (struct sched_domain_attr) { \
810 .relax_domain_level = -1, \
811 }
812
813 struct sched_domain {
814 /* These fields must be setup */
815 struct sched_domain *parent; /* top domain must be null terminated */
816 struct sched_domain *child; /* bottom domain must be null terminated */
817 struct sched_group *groups; /* the balancing groups of the domain */
818 cpumask_t span; /* span of all CPUs in this domain */
819 unsigned long min_interval; /* Minimum balance interval ms */
820 unsigned long max_interval; /* Maximum balance interval ms */
821 unsigned int busy_factor; /* less balancing by factor if busy */
822 unsigned int imbalance_pct; /* No balance until over watermark */
823 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
824 unsigned int busy_idx;
825 unsigned int idle_idx;
826 unsigned int newidle_idx;
827 unsigned int wake_idx;
828 unsigned int forkexec_idx;
829 int flags; /* See SD_* */
830 enum sched_domain_level level;
831
832 /* Runtime fields. */
833 unsigned long last_balance; /* init to jiffies. units in jiffies */
834 unsigned int balance_interval; /* initialise to 1. units in ms. */
835 unsigned int nr_balance_failed; /* initialise to 0 */
836
837 u64 last_update;
838
839 #ifdef CONFIG_SCHEDSTATS
840 /* load_balance() stats */
841 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
842 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
843 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
844 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
845 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
846 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
847 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
848 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
849
850 /* Active load balancing */
851 unsigned int alb_count;
852 unsigned int alb_failed;
853 unsigned int alb_pushed;
854
855 /* SD_BALANCE_EXEC stats */
856 unsigned int sbe_count;
857 unsigned int sbe_balanced;
858 unsigned int sbe_pushed;
859
860 /* SD_BALANCE_FORK stats */
861 unsigned int sbf_count;
862 unsigned int sbf_balanced;
863 unsigned int sbf_pushed;
864
865 /* try_to_wake_up() stats */
866 unsigned int ttwu_wake_remote;
867 unsigned int ttwu_move_affine;
868 unsigned int ttwu_move_balance;
869 #endif
870 #ifdef CONFIG_SCHED_DEBUG
871 char *name;
872 #endif
873 };
874
875 extern void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
876 struct sched_domain_attr *dattr_new);
877 extern int arch_reinit_sched_domains(void);
878
879 #else /* CONFIG_SMP */
880
881 struct sched_domain_attr;
882
883 static inline void
884 partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
885 struct sched_domain_attr *dattr_new)
886 {
887 }
888 #endif /* !CONFIG_SMP */
889
890 struct io_context; /* See blkdev.h */
891 #define NGROUPS_SMALL 32
892 #define NGROUPS_PER_BLOCK ((unsigned int)(PAGE_SIZE / sizeof(gid_t)))
893 struct group_info {
894 int ngroups;
895 atomic_t usage;
896 gid_t small_block[NGROUPS_SMALL];
897 int nblocks;
898 gid_t *blocks[0];
899 };
900
901 /*
902 * get_group_info() must be called with the owning task locked (via task_lock())
903 * when task != current. The reason being that the vast majority of callers are
904 * looking at current->group_info, which can not be changed except by the
905 * current task. Changing current->group_info requires the task lock, too.
906 */
907 #define get_group_info(group_info) do { \
908 atomic_inc(&(group_info)->usage); \
909 } while (0)
910
911 #define put_group_info(group_info) do { \
912 if (atomic_dec_and_test(&(group_info)->usage)) \
913 groups_free(group_info); \
914 } while (0)
915
916 extern struct group_info *groups_alloc(int gidsetsize);
917 extern void groups_free(struct group_info *group_info);
918 extern int set_current_groups(struct group_info *group_info);
919 extern int groups_search(struct group_info *group_info, gid_t grp);
920 /* access the groups "array" with this macro */
921 #define GROUP_AT(gi, i) \
922 ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK])
923
924 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
925 extern void prefetch_stack(struct task_struct *t);
926 #else
927 static inline void prefetch_stack(struct task_struct *t) { }
928 #endif
929
930 struct audit_context; /* See audit.c */
931 struct mempolicy;
932 struct pipe_inode_info;
933 struct uts_namespace;
934
935 struct rq;
936 struct sched_domain;
937
938 struct sched_class {
939 const struct sched_class *next;
940
941 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
942 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
943 void (*yield_task) (struct rq *rq);
944
945 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int sync);
946
947 struct task_struct * (*pick_next_task) (struct rq *rq);
948 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
949
950 #ifdef CONFIG_SMP
951 int (*select_task_rq)(struct task_struct *p, int sync);
952
953 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
954 struct rq *busiest, unsigned long max_load_move,
955 struct sched_domain *sd, enum cpu_idle_type idle,
956 int *all_pinned, int *this_best_prio);
957
958 int (*move_one_task) (struct rq *this_rq, int this_cpu,
959 struct rq *busiest, struct sched_domain *sd,
960 enum cpu_idle_type idle);
961 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
962 void (*post_schedule) (struct rq *this_rq);
963 void (*task_wake_up) (struct rq *this_rq, struct task_struct *task);
964
965 void (*set_cpus_allowed)(struct task_struct *p,
966 const cpumask_t *newmask);
967
968 void (*rq_online)(struct rq *rq);
969 void (*rq_offline)(struct rq *rq);
970 #endif
971
972 void (*set_curr_task) (struct rq *rq);
973 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
974 void (*task_new) (struct rq *rq, struct task_struct *p);
975
976 void (*switched_from) (struct rq *this_rq, struct task_struct *task,
977 int running);
978 void (*switched_to) (struct rq *this_rq, struct task_struct *task,
979 int running);
980 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
981 int oldprio, int running);
982
983 #ifdef CONFIG_FAIR_GROUP_SCHED
984 void (*moved_group) (struct task_struct *p);
985 #endif
986 };
987
988 struct load_weight {
989 unsigned long weight, inv_weight;
990 };
991
992 /*
993 * CFS stats for a schedulable entity (task, task-group etc)
994 *
995 * Current field usage histogram:
996 *
997 * 4 se->block_start
998 * 4 se->run_node
999 * 4 se->sleep_start
1000 * 6 se->load.weight
1001 */
1002 struct sched_entity {
1003 struct load_weight load; /* for load-balancing */
1004 struct rb_node run_node;
1005 struct list_head group_node;
1006 unsigned int on_rq;
1007
1008 u64 exec_start;
1009 u64 sum_exec_runtime;
1010 u64 vruntime;
1011 u64 prev_sum_exec_runtime;
1012
1013 u64 last_wakeup;
1014 u64 avg_overlap;
1015
1016 #ifdef CONFIG_SCHEDSTATS
1017 u64 wait_start;
1018 u64 wait_max;
1019 u64 wait_count;
1020 u64 wait_sum;
1021
1022 u64 sleep_start;
1023 u64 sleep_max;
1024 s64 sum_sleep_runtime;
1025
1026 u64 block_start;
1027 u64 block_max;
1028 u64 exec_max;
1029 u64 slice_max;
1030
1031 u64 nr_migrations;
1032 u64 nr_migrations_cold;
1033 u64 nr_failed_migrations_affine;
1034 u64 nr_failed_migrations_running;
1035 u64 nr_failed_migrations_hot;
1036 u64 nr_forced_migrations;
1037 u64 nr_forced2_migrations;
1038
1039 u64 nr_wakeups;
1040 u64 nr_wakeups_sync;
1041 u64 nr_wakeups_migrate;
1042 u64 nr_wakeups_local;
1043 u64 nr_wakeups_remote;
1044 u64 nr_wakeups_affine;
1045 u64 nr_wakeups_affine_attempts;
1046 u64 nr_wakeups_passive;
1047 u64 nr_wakeups_idle;
1048 #endif
1049
1050 #ifdef CONFIG_FAIR_GROUP_SCHED
1051 struct sched_entity *parent;
1052 /* rq on which this entity is (to be) queued: */
1053 struct cfs_rq *cfs_rq;
1054 /* rq "owned" by this entity/group: */
1055 struct cfs_rq *my_q;
1056 #endif
1057 };
1058
1059 struct sched_rt_entity {
1060 struct list_head run_list;
1061 unsigned long timeout;
1062 unsigned int time_slice;
1063 int nr_cpus_allowed;
1064
1065 struct sched_rt_entity *back;
1066 #ifdef CONFIG_RT_GROUP_SCHED
1067 struct sched_rt_entity *parent;
1068 /* rq on which this entity is (to be) queued: */
1069 struct rt_rq *rt_rq;
1070 /* rq "owned" by this entity/group: */
1071 struct rt_rq *my_q;
1072 #endif
1073 };
1074
1075 struct task_struct {
1076 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1077 void *stack;
1078 atomic_t usage;
1079 unsigned int flags; /* per process flags, defined below */
1080 unsigned int ptrace;
1081
1082 int lock_depth; /* BKL lock depth */
1083
1084 #ifdef CONFIG_SMP
1085 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1086 int oncpu;
1087 #endif
1088 #endif
1089
1090 int prio, static_prio, normal_prio;
1091 unsigned int rt_priority;
1092 const struct sched_class *sched_class;
1093 struct sched_entity se;
1094 struct sched_rt_entity rt;
1095
1096 #ifdef CONFIG_PREEMPT_NOTIFIERS
1097 /* list of struct preempt_notifier: */
1098 struct hlist_head preempt_notifiers;
1099 #endif
1100
1101 /*
1102 * fpu_counter contains the number of consecutive context switches
1103 * that the FPU is used. If this is over a threshold, the lazy fpu
1104 * saving becomes unlazy to save the trap. This is an unsigned char
1105 * so that after 256 times the counter wraps and the behavior turns
1106 * lazy again; this to deal with bursty apps that only use FPU for
1107 * a short time
1108 */
1109 unsigned char fpu_counter;
1110 s8 oomkilladj; /* OOM kill score adjustment (bit shift). */
1111 #ifdef CONFIG_BLK_DEV_IO_TRACE
1112 unsigned int btrace_seq;
1113 #endif
1114
1115 unsigned int policy;
1116 cpumask_t cpus_allowed;
1117
1118 #ifdef CONFIG_PREEMPT_RCU
1119 int rcu_read_lock_nesting;
1120 int rcu_flipctr_idx;
1121 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1122
1123 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1124 struct sched_info sched_info;
1125 #endif
1126
1127 struct list_head tasks;
1128
1129 struct mm_struct *mm, *active_mm;
1130
1131 /* task state */
1132 struct linux_binfmt *binfmt;
1133 int exit_state;
1134 int exit_code, exit_signal;
1135 int pdeath_signal; /* The signal sent when the parent dies */
1136 /* ??? */
1137 unsigned int personality;
1138 unsigned did_exec:1;
1139 pid_t pid;
1140 pid_t tgid;
1141
1142 #ifdef CONFIG_CC_STACKPROTECTOR
1143 /* Canary value for the -fstack-protector gcc feature */
1144 unsigned long stack_canary;
1145 #endif
1146 /*
1147 * pointers to (original) parent process, youngest child, younger sibling,
1148 * older sibling, respectively. (p->father can be replaced with
1149 * p->real_parent->pid)
1150 */
1151 struct task_struct *real_parent; /* real parent process */
1152 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1153 /*
1154 * children/sibling forms the list of my natural children
1155 */
1156 struct list_head children; /* list of my children */
1157 struct list_head sibling; /* linkage in my parent's children list */
1158 struct task_struct *group_leader; /* threadgroup leader */
1159
1160 /*
1161 * ptraced is the list of tasks this task is using ptrace on.
1162 * This includes both natural children and PTRACE_ATTACH targets.
1163 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1164 */
1165 struct list_head ptraced;
1166 struct list_head ptrace_entry;
1167
1168 /* PID/PID hash table linkage. */
1169 struct pid_link pids[PIDTYPE_MAX];
1170 struct list_head thread_group;
1171
1172 struct completion *vfork_done; /* for vfork() */
1173 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1174 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1175
1176 cputime_t utime, stime, utimescaled, stimescaled;
1177 cputime_t gtime;
1178 cputime_t prev_utime, prev_stime;
1179 unsigned long nvcsw, nivcsw; /* context switch counts */
1180 struct timespec start_time; /* monotonic time */
1181 struct timespec real_start_time; /* boot based time */
1182 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1183 unsigned long min_flt, maj_flt;
1184
1185 struct task_cputime cputime_expires;
1186 struct list_head cpu_timers[3];
1187
1188 /* process credentials */
1189 uid_t uid,euid,suid,fsuid;
1190 gid_t gid,egid,sgid,fsgid;
1191 struct group_info *group_info;
1192 kernel_cap_t cap_effective, cap_inheritable, cap_permitted, cap_bset;
1193 struct user_struct *user;
1194 unsigned securebits;
1195 #ifdef CONFIG_KEYS
1196 unsigned char jit_keyring; /* default keyring to attach requested keys to */
1197 struct key *request_key_auth; /* assumed request_key authority */
1198 struct key *thread_keyring; /* keyring private to this thread */
1199 #endif
1200 char comm[TASK_COMM_LEN]; /* executable name excluding path
1201 - access with [gs]et_task_comm (which lock
1202 it with task_lock())
1203 - initialized normally by flush_old_exec */
1204 /* file system info */
1205 int link_count, total_link_count;
1206 #ifdef CONFIG_SYSVIPC
1207 /* ipc stuff */
1208 struct sysv_sem sysvsem;
1209 #endif
1210 #ifdef CONFIG_DETECT_SOFTLOCKUP
1211 /* hung task detection */
1212 unsigned long last_switch_timestamp;
1213 unsigned long last_switch_count;
1214 #endif
1215 /* CPU-specific state of this task */
1216 struct thread_struct thread;
1217 /* filesystem information */
1218 struct fs_struct *fs;
1219 /* open file information */
1220 struct files_struct *files;
1221 /* namespaces */
1222 struct nsproxy *nsproxy;
1223 /* signal handlers */
1224 struct signal_struct *signal;
1225 struct sighand_struct *sighand;
1226
1227 sigset_t blocked, real_blocked;
1228 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1229 struct sigpending pending;
1230
1231 unsigned long sas_ss_sp;
1232 size_t sas_ss_size;
1233 int (*notifier)(void *priv);
1234 void *notifier_data;
1235 sigset_t *notifier_mask;
1236 #ifdef CONFIG_SECURITY
1237 void *security;
1238 #endif
1239 struct audit_context *audit_context;
1240 #ifdef CONFIG_AUDITSYSCALL
1241 uid_t loginuid;
1242 unsigned int sessionid;
1243 #endif
1244 seccomp_t seccomp;
1245
1246 /* Thread group tracking */
1247 u32 parent_exec_id;
1248 u32 self_exec_id;
1249 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
1250 spinlock_t alloc_lock;
1251
1252 /* Protection of the PI data structures: */
1253 spinlock_t pi_lock;
1254
1255 #ifdef CONFIG_RT_MUTEXES
1256 /* PI waiters blocked on a rt_mutex held by this task */
1257 struct plist_head pi_waiters;
1258 /* Deadlock detection and priority inheritance handling */
1259 struct rt_mutex_waiter *pi_blocked_on;
1260 #endif
1261
1262 #ifdef CONFIG_DEBUG_MUTEXES
1263 /* mutex deadlock detection */
1264 struct mutex_waiter *blocked_on;
1265 #endif
1266 #ifdef CONFIG_TRACE_IRQFLAGS
1267 unsigned int irq_events;
1268 int hardirqs_enabled;
1269 unsigned long hardirq_enable_ip;
1270 unsigned int hardirq_enable_event;
1271 unsigned long hardirq_disable_ip;
1272 unsigned int hardirq_disable_event;
1273 int softirqs_enabled;
1274 unsigned long softirq_disable_ip;
1275 unsigned int softirq_disable_event;
1276 unsigned long softirq_enable_ip;
1277 unsigned int softirq_enable_event;
1278 int hardirq_context;
1279 int softirq_context;
1280 #endif
1281 #ifdef CONFIG_LOCKDEP
1282 # define MAX_LOCK_DEPTH 48UL
1283 u64 curr_chain_key;
1284 int lockdep_depth;
1285 unsigned int lockdep_recursion;
1286 struct held_lock held_locks[MAX_LOCK_DEPTH];
1287 #endif
1288
1289 /* journalling filesystem info */
1290 void *journal_info;
1291
1292 /* stacked block device info */
1293 struct bio *bio_list, **bio_tail;
1294
1295 /* VM state */
1296 struct reclaim_state *reclaim_state;
1297
1298 struct backing_dev_info *backing_dev_info;
1299
1300 struct io_context *io_context;
1301
1302 unsigned long ptrace_message;
1303 siginfo_t *last_siginfo; /* For ptrace use. */
1304 struct task_io_accounting ioac;
1305 #if defined(CONFIG_TASK_XACCT)
1306 u64 acct_rss_mem1; /* accumulated rss usage */
1307 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1308 cputime_t acct_timexpd; /* stime + utime since last update */
1309 #endif
1310 #ifdef CONFIG_CPUSETS
1311 nodemask_t mems_allowed;
1312 int cpuset_mems_generation;
1313 int cpuset_mem_spread_rotor;
1314 #endif
1315 #ifdef CONFIG_CGROUPS
1316 /* Control Group info protected by css_set_lock */
1317 struct css_set *cgroups;
1318 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1319 struct list_head cg_list;
1320 #endif
1321 #ifdef CONFIG_FUTEX
1322 struct robust_list_head __user *robust_list;
1323 #ifdef CONFIG_COMPAT
1324 struct compat_robust_list_head __user *compat_robust_list;
1325 #endif
1326 struct list_head pi_state_list;
1327 struct futex_pi_state *pi_state_cache;
1328 #endif
1329 #ifdef CONFIG_NUMA
1330 struct mempolicy *mempolicy;
1331 short il_next;
1332 #endif
1333 atomic_t fs_excl; /* holding fs exclusive resources */
1334 struct rcu_head rcu;
1335
1336 /*
1337 * cache last used pipe for splice
1338 */
1339 struct pipe_inode_info *splice_pipe;
1340 #ifdef CONFIG_TASK_DELAY_ACCT
1341 struct task_delay_info *delays;
1342 #endif
1343 #ifdef CONFIG_FAULT_INJECTION
1344 int make_it_fail;
1345 #endif
1346 struct prop_local_single dirties;
1347 #ifdef CONFIG_LATENCYTOP
1348 int latency_record_count;
1349 struct latency_record latency_record[LT_SAVECOUNT];
1350 #endif
1351 /*
1352 * time slack values; these are used to round up poll() and
1353 * select() etc timeout values. These are in nanoseconds.
1354 */
1355 unsigned long timer_slack_ns;
1356 unsigned long default_timer_slack_ns;
1357
1358 struct list_head *scm_work_list;
1359 };
1360
1361 /*
1362 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1363 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1364 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1365 * values are inverted: lower p->prio value means higher priority.
1366 *
1367 * The MAX_USER_RT_PRIO value allows the actual maximum
1368 * RT priority to be separate from the value exported to
1369 * user-space. This allows kernel threads to set their
1370 * priority to a value higher than any user task. Note:
1371 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1372 */
1373
1374 #define MAX_USER_RT_PRIO 100
1375 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1376
1377 #define MAX_PRIO (MAX_RT_PRIO + 40)
1378 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1379
1380 static inline int rt_prio(int prio)
1381 {
1382 if (unlikely(prio < MAX_RT_PRIO))
1383 return 1;
1384 return 0;
1385 }
1386
1387 static inline int rt_task(struct task_struct *p)
1388 {
1389 return rt_prio(p->prio);
1390 }
1391
1392 static inline void set_task_session(struct task_struct *tsk, pid_t session)
1393 {
1394 tsk->signal->__session = session;
1395 }
1396
1397 static inline void set_task_pgrp(struct task_struct *tsk, pid_t pgrp)
1398 {
1399 tsk->signal->__pgrp = pgrp;
1400 }
1401
1402 static inline struct pid *task_pid(struct task_struct *task)
1403 {
1404 return task->pids[PIDTYPE_PID].pid;
1405 }
1406
1407 static inline struct pid *task_tgid(struct task_struct *task)
1408 {
1409 return task->group_leader->pids[PIDTYPE_PID].pid;
1410 }
1411
1412 static inline struct pid *task_pgrp(struct task_struct *task)
1413 {
1414 return task->group_leader->pids[PIDTYPE_PGID].pid;
1415 }
1416
1417 static inline struct pid *task_session(struct task_struct *task)
1418 {
1419 return task->group_leader->pids[PIDTYPE_SID].pid;
1420 }
1421
1422 struct pid_namespace;
1423
1424 /*
1425 * the helpers to get the task's different pids as they are seen
1426 * from various namespaces
1427 *
1428 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1429 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1430 * current.
1431 * task_xid_nr_ns() : id seen from the ns specified;
1432 *
1433 * set_task_vxid() : assigns a virtual id to a task;
1434 *
1435 * see also pid_nr() etc in include/linux/pid.h
1436 */
1437
1438 static inline pid_t task_pid_nr(struct task_struct *tsk)
1439 {
1440 return tsk->pid;
1441 }
1442
1443 pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1444
1445 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1446 {
1447 return pid_vnr(task_pid(tsk));
1448 }
1449
1450
1451 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1452 {
1453 return tsk->tgid;
1454 }
1455
1456 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1457
1458 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1459 {
1460 return pid_vnr(task_tgid(tsk));
1461 }
1462
1463
1464 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1465 {
1466 return tsk->signal->__pgrp;
1467 }
1468
1469 pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1470
1471 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1472 {
1473 return pid_vnr(task_pgrp(tsk));
1474 }
1475
1476
1477 static inline pid_t task_session_nr(struct task_struct *tsk)
1478 {
1479 return tsk->signal->__session;
1480 }
1481
1482 pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1483
1484 static inline pid_t task_session_vnr(struct task_struct *tsk)
1485 {
1486 return pid_vnr(task_session(tsk));
1487 }
1488
1489
1490 /**
1491 * pid_alive - check that a task structure is not stale
1492 * @p: Task structure to be checked.
1493 *
1494 * Test if a process is not yet dead (at most zombie state)
1495 * If pid_alive fails, then pointers within the task structure
1496 * can be stale and must not be dereferenced.
1497 */
1498 static inline int pid_alive(struct task_struct *p)
1499 {
1500 return p->pids[PIDTYPE_PID].pid != NULL;
1501 }
1502
1503 /**
1504 * is_global_init - check if a task structure is init
1505 * @tsk: Task structure to be checked.
1506 *
1507 * Check if a task structure is the first user space task the kernel created.
1508 */
1509 static inline int is_global_init(struct task_struct *tsk)
1510 {
1511 return tsk->pid == 1;
1512 }
1513
1514 /*
1515 * is_container_init:
1516 * check whether in the task is init in its own pid namespace.
1517 */
1518 extern int is_container_init(struct task_struct *tsk);
1519
1520 extern struct pid *cad_pid;
1521
1522 extern void free_task(struct task_struct *tsk);
1523 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1524
1525 extern void __put_task_struct(struct task_struct *t);
1526
1527 static inline void put_task_struct(struct task_struct *t)
1528 {
1529 if (atomic_dec_and_test(&t->usage))
1530 __put_task_struct(t);
1531 }
1532
1533 extern cputime_t task_utime(struct task_struct *p);
1534 extern cputime_t task_stime(struct task_struct *p);
1535 extern cputime_t task_gtime(struct task_struct *p);
1536
1537 /*
1538 * Per process flags
1539 */
1540 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1541 /* Not implemented yet, only for 486*/
1542 #define PF_STARTING 0x00000002 /* being created */
1543 #define PF_EXITING 0x00000004 /* getting shut down */
1544 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1545 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1546 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1547 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1548 #define PF_DUMPCORE 0x00000200 /* dumped core */
1549 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1550 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1551 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1552 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1553 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1554 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1555 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1556 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1557 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */
1558 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1559 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1560 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1561 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1562 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1563 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1564 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1565 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1566 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1567 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1568 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */
1569
1570 /*
1571 * Only the _current_ task can read/write to tsk->flags, but other
1572 * tasks can access tsk->flags in readonly mode for example
1573 * with tsk_used_math (like during threaded core dumping).
1574 * There is however an exception to this rule during ptrace
1575 * or during fork: the ptracer task is allowed to write to the
1576 * child->flags of its traced child (same goes for fork, the parent
1577 * can write to the child->flags), because we're guaranteed the
1578 * child is not running and in turn not changing child->flags
1579 * at the same time the parent does it.
1580 */
1581 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1582 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1583 #define clear_used_math() clear_stopped_child_used_math(current)
1584 #define set_used_math() set_stopped_child_used_math(current)
1585 #define conditional_stopped_child_used_math(condition, child) \
1586 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1587 #define conditional_used_math(condition) \
1588 conditional_stopped_child_used_math(condition, current)
1589 #define copy_to_stopped_child_used_math(child) \
1590 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1591 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1592 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1593 #define used_math() tsk_used_math(current)
1594
1595 #ifdef CONFIG_SMP
1596 extern int set_cpus_allowed_ptr(struct task_struct *p,
1597 const cpumask_t *new_mask);
1598 #else
1599 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1600 const cpumask_t *new_mask)
1601 {
1602 if (!cpu_isset(0, *new_mask))
1603 return -EINVAL;
1604 return 0;
1605 }
1606 #endif
1607 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1608 {
1609 return set_cpus_allowed_ptr(p, &new_mask);
1610 }
1611
1612 extern unsigned long long sched_clock(void);
1613
1614 extern void sched_clock_init(void);
1615 extern u64 sched_clock_cpu(int cpu);
1616
1617 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1618 static inline void sched_clock_tick(void)
1619 {
1620 }
1621
1622 static inline void sched_clock_idle_sleep_event(void)
1623 {
1624 }
1625
1626 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1627 {
1628 }
1629 #else
1630 extern void sched_clock_tick(void);
1631 extern void sched_clock_idle_sleep_event(void);
1632 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1633 #endif
1634
1635 /*
1636 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1637 * clock constructed from sched_clock():
1638 */
1639 extern unsigned long long cpu_clock(int cpu);
1640
1641 extern unsigned long long
1642 task_sched_runtime(struct task_struct *task);
1643 extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1644
1645 /* sched_exec is called by processes performing an exec */
1646 #ifdef CONFIG_SMP
1647 extern void sched_exec(void);
1648 #else
1649 #define sched_exec() {}
1650 #endif
1651
1652 extern void sched_clock_idle_sleep_event(void);
1653 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1654
1655 #ifdef CONFIG_HOTPLUG_CPU
1656 extern void idle_task_exit(void);
1657 #else
1658 static inline void idle_task_exit(void) {}
1659 #endif
1660
1661 extern void sched_idle_next(void);
1662
1663 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1664 extern void wake_up_idle_cpu(int cpu);
1665 #else
1666 static inline void wake_up_idle_cpu(int cpu) { }
1667 #endif
1668
1669 #ifdef CONFIG_SCHED_DEBUG
1670 extern unsigned int sysctl_sched_latency;
1671 extern unsigned int sysctl_sched_min_granularity;
1672 extern unsigned int sysctl_sched_wakeup_granularity;
1673 extern unsigned int sysctl_sched_child_runs_first;
1674 extern unsigned int sysctl_sched_features;
1675 extern unsigned int sysctl_sched_migration_cost;
1676 extern unsigned int sysctl_sched_nr_migrate;
1677 extern unsigned int sysctl_sched_shares_ratelimit;
1678 extern unsigned int sysctl_sched_shares_thresh;
1679
1680 int sched_nr_latency_handler(struct ctl_table *table, int write,
1681 struct file *file, void __user *buffer, size_t *length,
1682 loff_t *ppos);
1683 #endif
1684 extern unsigned int sysctl_sched_rt_period;
1685 extern int sysctl_sched_rt_runtime;
1686
1687 int sched_rt_handler(struct ctl_table *table, int write,
1688 struct file *filp, void __user *buffer, size_t *lenp,
1689 loff_t *ppos);
1690
1691 extern unsigned int sysctl_sched_compat_yield;
1692
1693 #ifdef CONFIG_RT_MUTEXES
1694 extern int rt_mutex_getprio(struct task_struct *p);
1695 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1696 extern void rt_mutex_adjust_pi(struct task_struct *p);
1697 #else
1698 static inline int rt_mutex_getprio(struct task_struct *p)
1699 {
1700 return p->normal_prio;
1701 }
1702 # define rt_mutex_adjust_pi(p) do { } while (0)
1703 #endif
1704
1705 extern void set_user_nice(struct task_struct *p, long nice);
1706 extern int task_prio(const struct task_struct *p);
1707 extern int task_nice(const struct task_struct *p);
1708 extern int can_nice(const struct task_struct *p, const int nice);
1709 extern int task_curr(const struct task_struct *p);
1710 extern int idle_cpu(int cpu);
1711 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1712 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1713 struct sched_param *);
1714 extern struct task_struct *idle_task(int cpu);
1715 extern struct task_struct *curr_task(int cpu);
1716 extern void set_curr_task(int cpu, struct task_struct *p);
1717
1718 void yield(void);
1719
1720 /*
1721 * The default (Linux) execution domain.
1722 */
1723 extern struct exec_domain default_exec_domain;
1724
1725 union thread_union {
1726 struct thread_info thread_info;
1727 unsigned long stack[THREAD_SIZE/sizeof(long)];
1728 };
1729
1730 #ifndef __HAVE_ARCH_KSTACK_END
1731 static inline int kstack_end(void *addr)
1732 {
1733 /* Reliable end of stack detection:
1734 * Some APM bios versions misalign the stack
1735 */
1736 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1737 }
1738 #endif
1739
1740 extern union thread_union init_thread_union;
1741 extern struct task_struct init_task;
1742
1743 extern struct mm_struct init_mm;
1744
1745 extern struct pid_namespace init_pid_ns;
1746
1747 /*
1748 * find a task by one of its numerical ids
1749 *
1750 * find_task_by_pid_type_ns():
1751 * it is the most generic call - it finds a task by all id,
1752 * type and namespace specified
1753 * find_task_by_pid_ns():
1754 * finds a task by its pid in the specified namespace
1755 * find_task_by_vpid():
1756 * finds a task by its virtual pid
1757 *
1758 * see also find_vpid() etc in include/linux/pid.h
1759 */
1760
1761 extern struct task_struct *find_task_by_pid_type_ns(int type, int pid,
1762 struct pid_namespace *ns);
1763
1764 extern struct task_struct *find_task_by_vpid(pid_t nr);
1765 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1766 struct pid_namespace *ns);
1767
1768 extern void __set_special_pids(struct pid *pid);
1769
1770 /* per-UID process charging. */
1771 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1772 static inline struct user_struct *get_uid(struct user_struct *u)
1773 {
1774 atomic_inc(&u->__count);
1775 return u;
1776 }
1777 extern void free_uid(struct user_struct *);
1778 extern void switch_uid(struct user_struct *);
1779 extern void release_uids(struct user_namespace *ns);
1780
1781 #include <asm/current.h>
1782
1783 extern void do_timer(unsigned long ticks);
1784
1785 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1786 extern int wake_up_process(struct task_struct *tsk);
1787 extern void wake_up_new_task(struct task_struct *tsk,
1788 unsigned long clone_flags);
1789 #ifdef CONFIG_SMP
1790 extern void kick_process(struct task_struct *tsk);
1791 #else
1792 static inline void kick_process(struct task_struct *tsk) { }
1793 #endif
1794 extern void sched_fork(struct task_struct *p, int clone_flags);
1795 extern void sched_dead(struct task_struct *p);
1796
1797 extern int in_group_p(gid_t);
1798 extern int in_egroup_p(gid_t);
1799
1800 extern void proc_caches_init(void);
1801 extern void flush_signals(struct task_struct *);
1802 extern void ignore_signals(struct task_struct *);
1803 extern void flush_signal_handlers(struct task_struct *, int force_default);
1804 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1805
1806 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1807 {
1808 unsigned long flags;
1809 int ret;
1810
1811 spin_lock_irqsave(&tsk->sighand->siglock, flags);
1812 ret = dequeue_signal(tsk, mask, info);
1813 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1814
1815 return ret;
1816 }
1817
1818 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1819 sigset_t *mask);
1820 extern void unblock_all_signals(void);
1821 extern void release_task(struct task_struct * p);
1822 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1823 extern int force_sigsegv(int, struct task_struct *);
1824 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1825 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1826 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
1827 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
1828 extern int kill_pgrp(struct pid *pid, int sig, int priv);
1829 extern int kill_pid(struct pid *pid, int sig, int priv);
1830 extern int kill_proc_info(int, struct siginfo *, pid_t);
1831 extern int do_notify_parent(struct task_struct *, int);
1832 extern void force_sig(int, struct task_struct *);
1833 extern void force_sig_specific(int, struct task_struct *);
1834 extern int send_sig(int, struct task_struct *, int);
1835 extern void zap_other_threads(struct task_struct *p);
1836 extern struct sigqueue *sigqueue_alloc(void);
1837 extern void sigqueue_free(struct sigqueue *);
1838 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
1839 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1840 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1841
1842 static inline int kill_cad_pid(int sig, int priv)
1843 {
1844 return kill_pid(cad_pid, sig, priv);
1845 }
1846
1847 /* These can be the second arg to send_sig_info/send_group_sig_info. */
1848 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
1849 #define SEND_SIG_PRIV ((struct siginfo *) 1)
1850 #define SEND_SIG_FORCED ((struct siginfo *) 2)
1851
1852 static inline int is_si_special(const struct siginfo *info)
1853 {
1854 return info <= SEND_SIG_FORCED;
1855 }
1856
1857 /* True if we are on the alternate signal stack. */
1858
1859 static inline int on_sig_stack(unsigned long sp)
1860 {
1861 return (sp - current->sas_ss_sp < current->sas_ss_size);
1862 }
1863
1864 static inline int sas_ss_flags(unsigned long sp)
1865 {
1866 return (current->sas_ss_size == 0 ? SS_DISABLE
1867 : on_sig_stack(sp) ? SS_ONSTACK : 0);
1868 }
1869
1870 /*
1871 * Routines for handling mm_structs
1872 */
1873 extern struct mm_struct * mm_alloc(void);
1874
1875 /* mmdrop drops the mm and the page tables */
1876 extern void __mmdrop(struct mm_struct *);
1877 static inline void mmdrop(struct mm_struct * mm)
1878 {
1879 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1880 __mmdrop(mm);
1881 }
1882
1883 /* mmput gets rid of the mappings and all user-space */
1884 extern void mmput(struct mm_struct *);
1885 /* Grab a reference to a task's mm, if it is not already going away */
1886 extern struct mm_struct *get_task_mm(struct task_struct *task);
1887 /* Remove the current tasks stale references to the old mm_struct */
1888 extern void mm_release(struct task_struct *, struct mm_struct *);
1889 /* Allocate a new mm structure and copy contents from tsk->mm */
1890 extern struct mm_struct *dup_mm(struct task_struct *tsk);
1891
1892 extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
1893 extern void flush_thread(void);
1894 extern void exit_thread(void);
1895
1896 extern void exit_files(struct task_struct *);
1897 extern void __cleanup_signal(struct signal_struct *);
1898 extern void __cleanup_sighand(struct sighand_struct *);
1899
1900 extern void exit_itimers(struct signal_struct *);
1901 extern void flush_itimer_signals(void);
1902
1903 extern NORET_TYPE void do_group_exit(int);
1904
1905 extern void daemonize(const char *, ...);
1906 extern int allow_signal(int);
1907 extern int disallow_signal(int);
1908
1909 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
1910 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
1911 struct task_struct *fork_idle(int);
1912
1913 extern void set_task_comm(struct task_struct *tsk, char *from);
1914 extern char *get_task_comm(char *to, struct task_struct *tsk);
1915
1916 #ifdef CONFIG_SMP
1917 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1918 #else
1919 static inline unsigned long wait_task_inactive(struct task_struct *p,
1920 long match_state)
1921 {
1922 return 1;
1923 }
1924 #endif
1925
1926 #define next_task(p) list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks)
1927
1928 #define for_each_process(p) \
1929 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
1930
1931 /*
1932 * Careful: do_each_thread/while_each_thread is a double loop so
1933 * 'break' will not work as expected - use goto instead.
1934 */
1935 #define do_each_thread(g, t) \
1936 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
1937
1938 #define while_each_thread(g, t) \
1939 while ((t = next_thread(t)) != g)
1940
1941 /* de_thread depends on thread_group_leader not being a pid based check */
1942 #define thread_group_leader(p) (p == p->group_leader)
1943
1944 /* Do to the insanities of de_thread it is possible for a process
1945 * to have the pid of the thread group leader without actually being
1946 * the thread group leader. For iteration through the pids in proc
1947 * all we care about is that we have a task with the appropriate
1948 * pid, we don't actually care if we have the right task.
1949 */
1950 static inline int has_group_leader_pid(struct task_struct *p)
1951 {
1952 return p->pid == p->tgid;
1953 }
1954
1955 static inline
1956 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
1957 {
1958 return p1->tgid == p2->tgid;
1959 }
1960
1961 static inline struct task_struct *next_thread(const struct task_struct *p)
1962 {
1963 return list_entry(rcu_dereference(p->thread_group.next),
1964 struct task_struct, thread_group);
1965 }
1966
1967 static inline int thread_group_empty(struct task_struct *p)
1968 {
1969 return list_empty(&p->thread_group);
1970 }
1971
1972 #define delay_group_leader(p) \
1973 (thread_group_leader(p) && !thread_group_empty(p))
1974
1975 /*
1976 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
1977 * subscriptions and synchronises with wait4(). Also used in procfs. Also
1978 * pins the final release of task.io_context. Also protects ->cpuset and
1979 * ->cgroup.subsys[].
1980 *
1981 * Nests both inside and outside of read_lock(&tasklist_lock).
1982 * It must not be nested with write_lock_irq(&tasklist_lock),
1983 * neither inside nor outside.
1984 */
1985 static inline void task_lock(struct task_struct *p)
1986 {
1987 spin_lock(&p->alloc_lock);
1988 }
1989
1990 static inline void task_unlock(struct task_struct *p)
1991 {
1992 spin_unlock(&p->alloc_lock);
1993 }
1994
1995 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
1996 unsigned long *flags);
1997
1998 static inline void unlock_task_sighand(struct task_struct *tsk,
1999 unsigned long *flags)
2000 {
2001 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2002 }
2003
2004 #ifndef __HAVE_THREAD_FUNCTIONS
2005
2006 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2007 #define task_stack_page(task) ((task)->stack)
2008
2009 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2010 {
2011 *task_thread_info(p) = *task_thread_info(org);
2012 task_thread_info(p)->task = p;
2013 }
2014
2015 static inline unsigned long *end_of_stack(struct task_struct *p)
2016 {
2017 return (unsigned long *)(task_thread_info(p) + 1);
2018 }
2019
2020 #endif
2021
2022 static inline int object_is_on_stack(void *obj)
2023 {
2024 void *stack = task_stack_page(current);
2025
2026 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2027 }
2028
2029 extern void thread_info_cache_init(void);
2030
2031 /* set thread flags in other task's structures
2032 * - see asm/thread_info.h for TIF_xxxx flags available
2033 */
2034 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2035 {
2036 set_ti_thread_flag(task_thread_info(tsk), flag);
2037 }
2038
2039 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2040 {
2041 clear_ti_thread_flag(task_thread_info(tsk), flag);
2042 }
2043
2044 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2045 {
2046 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2047 }
2048
2049 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2050 {
2051 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2052 }
2053
2054 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2055 {
2056 return test_ti_thread_flag(task_thread_info(tsk), flag);
2057 }
2058
2059 static inline void set_tsk_need_resched(struct task_struct *tsk)
2060 {
2061 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2062 }
2063
2064 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2065 {
2066 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2067 }
2068
2069 static inline int test_tsk_need_resched(struct task_struct *tsk)
2070 {
2071 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2072 }
2073
2074 static inline int signal_pending(struct task_struct *p)
2075 {
2076 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2077 }
2078
2079 extern int __fatal_signal_pending(struct task_struct *p);
2080
2081 static inline int fatal_signal_pending(struct task_struct *p)
2082 {
2083 return signal_pending(p) && __fatal_signal_pending(p);
2084 }
2085
2086 static inline int signal_pending_state(long state, struct task_struct *p)
2087 {
2088 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2089 return 0;
2090 if (!signal_pending(p))
2091 return 0;
2092
2093 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2094 }
2095
2096 static inline int need_resched(void)
2097 {
2098 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2099 }
2100
2101 /*
2102 * cond_resched() and cond_resched_lock(): latency reduction via
2103 * explicit rescheduling in places that are safe. The return
2104 * value indicates whether a reschedule was done in fact.
2105 * cond_resched_lock() will drop the spinlock before scheduling,
2106 * cond_resched_softirq() will enable bhs before scheduling.
2107 */
2108 extern int _cond_resched(void);
2109 #ifdef CONFIG_PREEMPT_BKL
2110 static inline int cond_resched(void)
2111 {
2112 return 0;
2113 }
2114 #else
2115 static inline int cond_resched(void)
2116 {
2117 return _cond_resched();
2118 }
2119 #endif
2120 extern int cond_resched_lock(spinlock_t * lock);
2121 extern int cond_resched_softirq(void);
2122 static inline int cond_resched_bkl(void)
2123 {
2124 return _cond_resched();
2125 }
2126
2127 /*
2128 * Does a critical section need to be broken due to another
2129 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2130 * but a general need for low latency)
2131 */
2132 static inline int spin_needbreak(spinlock_t *lock)
2133 {
2134 #ifdef CONFIG_PREEMPT
2135 return spin_is_contended(lock);
2136 #else
2137 return 0;
2138 #endif
2139 }
2140
2141 /*
2142 * Thread group CPU time accounting.
2143 */
2144
2145 extern int thread_group_cputime_alloc(struct task_struct *);
2146 extern void thread_group_cputime(struct task_struct *, struct task_cputime *);
2147
2148 static inline void thread_group_cputime_init(struct signal_struct *sig)
2149 {
2150 sig->cputime.totals = NULL;
2151 }
2152
2153 static inline int thread_group_cputime_clone_thread(struct task_struct *curr)
2154 {
2155 if (curr->signal->cputime.totals)
2156 return 0;
2157 return thread_group_cputime_alloc(curr);
2158 }
2159
2160 static inline void thread_group_cputime_free(struct signal_struct *sig)
2161 {
2162 free_percpu(sig->cputime.totals);
2163 }
2164
2165 /*
2166 * Reevaluate whether the task has signals pending delivery.
2167 * Wake the task if so.
2168 * This is required every time the blocked sigset_t changes.
2169 * callers must hold sighand->siglock.
2170 */
2171 extern void recalc_sigpending_and_wake(struct task_struct *t);
2172 extern void recalc_sigpending(void);
2173
2174 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2175
2176 /*
2177 * Wrappers for p->thread_info->cpu access. No-op on UP.
2178 */
2179 #ifdef CONFIG_SMP
2180
2181 static inline unsigned int task_cpu(const struct task_struct *p)
2182 {
2183 return task_thread_info(p)->cpu;
2184 }
2185
2186 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2187
2188 #else
2189
2190 static inline unsigned int task_cpu(const struct task_struct *p)
2191 {
2192 return 0;
2193 }
2194
2195 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2196 {
2197 }
2198
2199 #endif /* CONFIG_SMP */
2200
2201 extern void arch_pick_mmap_layout(struct mm_struct *mm);
2202
2203 #ifdef CONFIG_TRACING
2204 extern void
2205 __trace_special(void *__tr, void *__data,
2206 unsigned long arg1, unsigned long arg2, unsigned long arg3);
2207 #else
2208 static inline void
2209 __trace_special(void *__tr, void *__data,
2210 unsigned long arg1, unsigned long arg2, unsigned long arg3)
2211 {
2212 }
2213 #endif
2214
2215 extern long sched_setaffinity(pid_t pid, const cpumask_t *new_mask);
2216 extern long sched_getaffinity(pid_t pid, cpumask_t *mask);
2217
2218 extern int sched_mc_power_savings, sched_smt_power_savings;
2219
2220 extern void normalize_rt_tasks(void);
2221
2222 #ifdef CONFIG_GROUP_SCHED
2223
2224 extern struct task_group init_task_group;
2225 #ifdef CONFIG_USER_SCHED
2226 extern struct task_group root_task_group;
2227 #endif
2228
2229 extern struct task_group *sched_create_group(struct task_group *parent);
2230 extern void sched_destroy_group(struct task_group *tg);
2231 extern void sched_move_task(struct task_struct *tsk);
2232 #ifdef CONFIG_FAIR_GROUP_SCHED
2233 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2234 extern unsigned long sched_group_shares(struct task_group *tg);
2235 #endif
2236 #ifdef CONFIG_RT_GROUP_SCHED
2237 extern int sched_group_set_rt_runtime(struct task_group *tg,
2238 long rt_runtime_us);
2239 extern long sched_group_rt_runtime(struct task_group *tg);
2240 extern int sched_group_set_rt_period(struct task_group *tg,
2241 long rt_period_us);
2242 extern long sched_group_rt_period(struct task_group *tg);
2243 #endif
2244 #endif
2245
2246 #ifdef CONFIG_TASK_XACCT
2247 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2248 {
2249 tsk->ioac.rchar += amt;
2250 }
2251
2252 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2253 {
2254 tsk->ioac.wchar += amt;
2255 }
2256
2257 static inline void inc_syscr(struct task_struct *tsk)
2258 {
2259 tsk->ioac.syscr++;
2260 }
2261
2262 static inline void inc_syscw(struct task_struct *tsk)
2263 {
2264 tsk->ioac.syscw++;
2265 }
2266 #else
2267 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2268 {
2269 }
2270
2271 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2272 {
2273 }
2274
2275 static inline void inc_syscr(struct task_struct *tsk)
2276 {
2277 }
2278
2279 static inline void inc_syscw(struct task_struct *tsk)
2280 {
2281 }
2282 #endif
2283
2284 #ifndef TASK_SIZE_OF
2285 #define TASK_SIZE_OF(tsk) TASK_SIZE
2286 #endif
2287
2288 #ifdef CONFIG_MM_OWNER
2289 extern void mm_update_next_owner(struct mm_struct *mm);
2290 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2291 #else
2292 static inline void mm_update_next_owner(struct mm_struct *mm)
2293 {
2294 }
2295
2296 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2297 {
2298 }
2299 #endif /* CONFIG_MM_OWNER */
2300
2301 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
2302
2303 #endif /* __KERNEL__ */
2304
2305 #endif
This page took 0.074703 seconds and 6 git commands to generate.