Merge branch 'next' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[deliverable/linux.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <uapi/linux/sched.h>
5
6
7 struct sched_param {
8 int sched_priority;
9 };
10
11 #include <asm/param.h> /* for HZ */
12
13 #include <linux/capability.h>
14 #include <linux/threads.h>
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/timex.h>
18 #include <linux/jiffies.h>
19 #include <linux/rbtree.h>
20 #include <linux/thread_info.h>
21 #include <linux/cpumask.h>
22 #include <linux/errno.h>
23 #include <linux/nodemask.h>
24 #include <linux/mm_types.h>
25
26 #include <asm/page.h>
27 #include <asm/ptrace.h>
28 #include <asm/cputime.h>
29
30 #include <linux/smp.h>
31 #include <linux/sem.h>
32 #include <linux/signal.h>
33 #include <linux/compiler.h>
34 #include <linux/completion.h>
35 #include <linux/pid.h>
36 #include <linux/percpu.h>
37 #include <linux/topology.h>
38 #include <linux/proportions.h>
39 #include <linux/seccomp.h>
40 #include <linux/rcupdate.h>
41 #include <linux/rculist.h>
42 #include <linux/rtmutex.h>
43
44 #include <linux/time.h>
45 #include <linux/param.h>
46 #include <linux/resource.h>
47 #include <linux/timer.h>
48 #include <linux/hrtimer.h>
49 #include <linux/task_io_accounting.h>
50 #include <linux/latencytop.h>
51 #include <linux/cred.h>
52 #include <linux/llist.h>
53 #include <linux/uidgid.h>
54 #include <linux/gfp.h>
55
56 #include <asm/processor.h>
57
58 struct exec_domain;
59 struct futex_pi_state;
60 struct robust_list_head;
61 struct bio_list;
62 struct fs_struct;
63 struct perf_event_context;
64 struct blk_plug;
65
66 /*
67 * List of flags we want to share for kernel threads,
68 * if only because they are not used by them anyway.
69 */
70 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
71
72 /*
73 * These are the constant used to fake the fixed-point load-average
74 * counting. Some notes:
75 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
76 * a load-average precision of 10 bits integer + 11 bits fractional
77 * - if you want to count load-averages more often, you need more
78 * precision, or rounding will get you. With 2-second counting freq,
79 * the EXP_n values would be 1981, 2034 and 2043 if still using only
80 * 11 bit fractions.
81 */
82 extern unsigned long avenrun[]; /* Load averages */
83 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
84
85 #define FSHIFT 11 /* nr of bits of precision */
86 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
87 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
88 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
89 #define EXP_5 2014 /* 1/exp(5sec/5min) */
90 #define EXP_15 2037 /* 1/exp(5sec/15min) */
91
92 #define CALC_LOAD(load,exp,n) \
93 load *= exp; \
94 load += n*(FIXED_1-exp); \
95 load >>= FSHIFT;
96
97 extern unsigned long total_forks;
98 extern int nr_threads;
99 DECLARE_PER_CPU(unsigned long, process_counts);
100 extern int nr_processes(void);
101 extern unsigned long nr_running(void);
102 extern unsigned long nr_iowait(void);
103 extern unsigned long nr_iowait_cpu(int cpu);
104 extern unsigned long this_cpu_load(void);
105
106
107 extern void calc_global_load(unsigned long ticks);
108 extern void update_cpu_load_nohz(void);
109
110 extern unsigned long get_parent_ip(unsigned long addr);
111
112 extern void dump_cpu_task(int cpu);
113
114 struct seq_file;
115 struct cfs_rq;
116 struct task_group;
117 #ifdef CONFIG_SCHED_DEBUG
118 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
119 extern void proc_sched_set_task(struct task_struct *p);
120 extern void
121 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
122 #endif
123
124 /*
125 * Task state bitmask. NOTE! These bits are also
126 * encoded in fs/proc/array.c: get_task_state().
127 *
128 * We have two separate sets of flags: task->state
129 * is about runnability, while task->exit_state are
130 * about the task exiting. Confusing, but this way
131 * modifying one set can't modify the other one by
132 * mistake.
133 */
134 #define TASK_RUNNING 0
135 #define TASK_INTERRUPTIBLE 1
136 #define TASK_UNINTERRUPTIBLE 2
137 #define __TASK_STOPPED 4
138 #define __TASK_TRACED 8
139 /* in tsk->exit_state */
140 #define EXIT_ZOMBIE 16
141 #define EXIT_DEAD 32
142 /* in tsk->state again */
143 #define TASK_DEAD 64
144 #define TASK_WAKEKILL 128
145 #define TASK_WAKING 256
146 #define TASK_PARKED 512
147 #define TASK_STATE_MAX 1024
148
149 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
150
151 extern char ___assert_task_state[1 - 2*!!(
152 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
153
154 /* Convenience macros for the sake of set_task_state */
155 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
156 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
157 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
158
159 /* Convenience macros for the sake of wake_up */
160 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
161 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
162
163 /* get_task_state() */
164 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
165 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
166 __TASK_TRACED)
167
168 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
169 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
170 #define task_is_dead(task) ((task)->exit_state != 0)
171 #define task_is_stopped_or_traced(task) \
172 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
173 #define task_contributes_to_load(task) \
174 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
175 (task->flags & PF_FROZEN) == 0)
176
177 #define __set_task_state(tsk, state_value) \
178 do { (tsk)->state = (state_value); } while (0)
179 #define set_task_state(tsk, state_value) \
180 set_mb((tsk)->state, (state_value))
181
182 /*
183 * set_current_state() includes a barrier so that the write of current->state
184 * is correctly serialised wrt the caller's subsequent test of whether to
185 * actually sleep:
186 *
187 * set_current_state(TASK_UNINTERRUPTIBLE);
188 * if (do_i_need_to_sleep())
189 * schedule();
190 *
191 * If the caller does not need such serialisation then use __set_current_state()
192 */
193 #define __set_current_state(state_value) \
194 do { current->state = (state_value); } while (0)
195 #define set_current_state(state_value) \
196 set_mb(current->state, (state_value))
197
198 /* Task command name length */
199 #define TASK_COMM_LEN 16
200
201 #include <linux/spinlock.h>
202
203 /*
204 * This serializes "schedule()" and also protects
205 * the run-queue from deletions/modifications (but
206 * _adding_ to the beginning of the run-queue has
207 * a separate lock).
208 */
209 extern rwlock_t tasklist_lock;
210 extern spinlock_t mmlist_lock;
211
212 struct task_struct;
213
214 #ifdef CONFIG_PROVE_RCU
215 extern int lockdep_tasklist_lock_is_held(void);
216 #endif /* #ifdef CONFIG_PROVE_RCU */
217
218 extern void sched_init(void);
219 extern void sched_init_smp(void);
220 extern asmlinkage void schedule_tail(struct task_struct *prev);
221 extern void init_idle(struct task_struct *idle, int cpu);
222 extern void init_idle_bootup_task(struct task_struct *idle);
223
224 extern int runqueue_is_locked(int cpu);
225
226 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
227 extern void nohz_balance_enter_idle(int cpu);
228 extern void set_cpu_sd_state_idle(void);
229 extern int get_nohz_timer_target(void);
230 #else
231 static inline void nohz_balance_enter_idle(int cpu) { }
232 static inline void set_cpu_sd_state_idle(void) { }
233 #endif
234
235 /*
236 * Only dump TASK_* tasks. (0 for all tasks)
237 */
238 extern void show_state_filter(unsigned long state_filter);
239
240 static inline void show_state(void)
241 {
242 show_state_filter(0);
243 }
244
245 extern void show_regs(struct pt_regs *);
246
247 /*
248 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
249 * task), SP is the stack pointer of the first frame that should be shown in the back
250 * trace (or NULL if the entire call-chain of the task should be shown).
251 */
252 extern void show_stack(struct task_struct *task, unsigned long *sp);
253
254 void io_schedule(void);
255 long io_schedule_timeout(long timeout);
256
257 extern void cpu_init (void);
258 extern void trap_init(void);
259 extern void update_process_times(int user);
260 extern void scheduler_tick(void);
261
262 extern void sched_show_task(struct task_struct *p);
263
264 #ifdef CONFIG_LOCKUP_DETECTOR
265 extern void touch_softlockup_watchdog(void);
266 extern void touch_softlockup_watchdog_sync(void);
267 extern void touch_all_softlockup_watchdogs(void);
268 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
269 void __user *buffer,
270 size_t *lenp, loff_t *ppos);
271 extern unsigned int softlockup_panic;
272 void lockup_detector_init(void);
273 #else
274 static inline void touch_softlockup_watchdog(void)
275 {
276 }
277 static inline void touch_softlockup_watchdog_sync(void)
278 {
279 }
280 static inline void touch_all_softlockup_watchdogs(void)
281 {
282 }
283 static inline void lockup_detector_init(void)
284 {
285 }
286 #endif
287
288 /* Attach to any functions which should be ignored in wchan output. */
289 #define __sched __attribute__((__section__(".sched.text")))
290
291 /* Linker adds these: start and end of __sched functions */
292 extern char __sched_text_start[], __sched_text_end[];
293
294 /* Is this address in the __sched functions? */
295 extern int in_sched_functions(unsigned long addr);
296
297 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
298 extern signed long schedule_timeout(signed long timeout);
299 extern signed long schedule_timeout_interruptible(signed long timeout);
300 extern signed long schedule_timeout_killable(signed long timeout);
301 extern signed long schedule_timeout_uninterruptible(signed long timeout);
302 asmlinkage void schedule(void);
303 extern void schedule_preempt_disabled(void);
304
305 struct nsproxy;
306 struct user_namespace;
307
308 #ifdef CONFIG_MMU
309 extern void arch_pick_mmap_layout(struct mm_struct *mm);
310 extern unsigned long
311 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
312 unsigned long, unsigned long);
313 extern unsigned long
314 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
315 unsigned long len, unsigned long pgoff,
316 unsigned long flags);
317 #else
318 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
319 #endif
320
321
322 extern void set_dumpable(struct mm_struct *mm, int value);
323 extern int get_dumpable(struct mm_struct *mm);
324
325 /* mm flags */
326 /* dumpable bits */
327 #define MMF_DUMPABLE 0 /* core dump is permitted */
328 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
329
330 #define MMF_DUMPABLE_BITS 2
331 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
332
333 /* coredump filter bits */
334 #define MMF_DUMP_ANON_PRIVATE 2
335 #define MMF_DUMP_ANON_SHARED 3
336 #define MMF_DUMP_MAPPED_PRIVATE 4
337 #define MMF_DUMP_MAPPED_SHARED 5
338 #define MMF_DUMP_ELF_HEADERS 6
339 #define MMF_DUMP_HUGETLB_PRIVATE 7
340 #define MMF_DUMP_HUGETLB_SHARED 8
341
342 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
343 #define MMF_DUMP_FILTER_BITS 7
344 #define MMF_DUMP_FILTER_MASK \
345 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
346 #define MMF_DUMP_FILTER_DEFAULT \
347 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
348 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
349
350 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
351 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
352 #else
353 # define MMF_DUMP_MASK_DEFAULT_ELF 0
354 #endif
355 /* leave room for more dump flags */
356 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
357 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
358 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
359
360 #define MMF_HAS_UPROBES 19 /* has uprobes */
361 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
362
363 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
364
365 struct sighand_struct {
366 atomic_t count;
367 struct k_sigaction action[_NSIG];
368 spinlock_t siglock;
369 wait_queue_head_t signalfd_wqh;
370 };
371
372 struct pacct_struct {
373 int ac_flag;
374 long ac_exitcode;
375 unsigned long ac_mem;
376 cputime_t ac_utime, ac_stime;
377 unsigned long ac_minflt, ac_majflt;
378 };
379
380 struct cpu_itimer {
381 cputime_t expires;
382 cputime_t incr;
383 u32 error;
384 u32 incr_error;
385 };
386
387 /**
388 * struct cputime - snaphsot of system and user cputime
389 * @utime: time spent in user mode
390 * @stime: time spent in system mode
391 *
392 * Gathers a generic snapshot of user and system time.
393 */
394 struct cputime {
395 cputime_t utime;
396 cputime_t stime;
397 };
398
399 /**
400 * struct task_cputime - collected CPU time counts
401 * @utime: time spent in user mode, in &cputime_t units
402 * @stime: time spent in kernel mode, in &cputime_t units
403 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
404 *
405 * This is an extension of struct cputime that includes the total runtime
406 * spent by the task from the scheduler point of view.
407 *
408 * As a result, this structure groups together three kinds of CPU time
409 * that are tracked for threads and thread groups. Most things considering
410 * CPU time want to group these counts together and treat all three
411 * of them in parallel.
412 */
413 struct task_cputime {
414 cputime_t utime;
415 cputime_t stime;
416 unsigned long long sum_exec_runtime;
417 };
418 /* Alternate field names when used to cache expirations. */
419 #define prof_exp stime
420 #define virt_exp utime
421 #define sched_exp sum_exec_runtime
422
423 #define INIT_CPUTIME \
424 (struct task_cputime) { \
425 .utime = 0, \
426 .stime = 0, \
427 .sum_exec_runtime = 0, \
428 }
429
430 /*
431 * Disable preemption until the scheduler is running.
432 * Reset by start_kernel()->sched_init()->init_idle().
433 *
434 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
435 * before the scheduler is active -- see should_resched().
436 */
437 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
438
439 /**
440 * struct thread_group_cputimer - thread group interval timer counts
441 * @cputime: thread group interval timers.
442 * @running: non-zero when there are timers running and
443 * @cputime receives updates.
444 * @lock: lock for fields in this struct.
445 *
446 * This structure contains the version of task_cputime, above, that is
447 * used for thread group CPU timer calculations.
448 */
449 struct thread_group_cputimer {
450 struct task_cputime cputime;
451 int running;
452 raw_spinlock_t lock;
453 };
454
455 #include <linux/rwsem.h>
456 struct autogroup;
457
458 /*
459 * NOTE! "signal_struct" does not have its own
460 * locking, because a shared signal_struct always
461 * implies a shared sighand_struct, so locking
462 * sighand_struct is always a proper superset of
463 * the locking of signal_struct.
464 */
465 struct signal_struct {
466 atomic_t sigcnt;
467 atomic_t live;
468 int nr_threads;
469
470 wait_queue_head_t wait_chldexit; /* for wait4() */
471
472 /* current thread group signal load-balancing target: */
473 struct task_struct *curr_target;
474
475 /* shared signal handling: */
476 struct sigpending shared_pending;
477
478 /* thread group exit support */
479 int group_exit_code;
480 /* overloaded:
481 * - notify group_exit_task when ->count is equal to notify_count
482 * - everyone except group_exit_task is stopped during signal delivery
483 * of fatal signals, group_exit_task processes the signal.
484 */
485 int notify_count;
486 struct task_struct *group_exit_task;
487
488 /* thread group stop support, overloads group_exit_code too */
489 int group_stop_count;
490 unsigned int flags; /* see SIGNAL_* flags below */
491
492 /*
493 * PR_SET_CHILD_SUBREAPER marks a process, like a service
494 * manager, to re-parent orphan (double-forking) child processes
495 * to this process instead of 'init'. The service manager is
496 * able to receive SIGCHLD signals and is able to investigate
497 * the process until it calls wait(). All children of this
498 * process will inherit a flag if they should look for a
499 * child_subreaper process at exit.
500 */
501 unsigned int is_child_subreaper:1;
502 unsigned int has_child_subreaper:1;
503
504 /* POSIX.1b Interval Timers */
505 int posix_timer_id;
506 struct list_head posix_timers;
507
508 /* ITIMER_REAL timer for the process */
509 struct hrtimer real_timer;
510 struct pid *leader_pid;
511 ktime_t it_real_incr;
512
513 /*
514 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
515 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
516 * values are defined to 0 and 1 respectively
517 */
518 struct cpu_itimer it[2];
519
520 /*
521 * Thread group totals for process CPU timers.
522 * See thread_group_cputimer(), et al, for details.
523 */
524 struct thread_group_cputimer cputimer;
525
526 /* Earliest-expiration cache. */
527 struct task_cputime cputime_expires;
528
529 struct list_head cpu_timers[3];
530
531 struct pid *tty_old_pgrp;
532
533 /* boolean value for session group leader */
534 int leader;
535
536 struct tty_struct *tty; /* NULL if no tty */
537
538 #ifdef CONFIG_SCHED_AUTOGROUP
539 struct autogroup *autogroup;
540 #endif
541 /*
542 * Cumulative resource counters for dead threads in the group,
543 * and for reaped dead child processes forked by this group.
544 * Live threads maintain their own counters and add to these
545 * in __exit_signal, except for the group leader.
546 */
547 cputime_t utime, stime, cutime, cstime;
548 cputime_t gtime;
549 cputime_t cgtime;
550 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
551 struct cputime prev_cputime;
552 #endif
553 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
554 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
555 unsigned long inblock, oublock, cinblock, coublock;
556 unsigned long maxrss, cmaxrss;
557 struct task_io_accounting ioac;
558
559 /*
560 * Cumulative ns of schedule CPU time fo dead threads in the
561 * group, not including a zombie group leader, (This only differs
562 * from jiffies_to_ns(utime + stime) if sched_clock uses something
563 * other than jiffies.)
564 */
565 unsigned long long sum_sched_runtime;
566
567 /*
568 * We don't bother to synchronize most readers of this at all,
569 * because there is no reader checking a limit that actually needs
570 * to get both rlim_cur and rlim_max atomically, and either one
571 * alone is a single word that can safely be read normally.
572 * getrlimit/setrlimit use task_lock(current->group_leader) to
573 * protect this instead of the siglock, because they really
574 * have no need to disable irqs.
575 */
576 struct rlimit rlim[RLIM_NLIMITS];
577
578 #ifdef CONFIG_BSD_PROCESS_ACCT
579 struct pacct_struct pacct; /* per-process accounting information */
580 #endif
581 #ifdef CONFIG_TASKSTATS
582 struct taskstats *stats;
583 #endif
584 #ifdef CONFIG_AUDIT
585 unsigned audit_tty;
586 unsigned audit_tty_log_passwd;
587 struct tty_audit_buf *tty_audit_buf;
588 #endif
589 #ifdef CONFIG_CGROUPS
590 /*
591 * group_rwsem prevents new tasks from entering the threadgroup and
592 * member tasks from exiting,a more specifically, setting of
593 * PF_EXITING. fork and exit paths are protected with this rwsem
594 * using threadgroup_change_begin/end(). Users which require
595 * threadgroup to remain stable should use threadgroup_[un]lock()
596 * which also takes care of exec path. Currently, cgroup is the
597 * only user.
598 */
599 struct rw_semaphore group_rwsem;
600 #endif
601
602 oom_flags_t oom_flags;
603 short oom_score_adj; /* OOM kill score adjustment */
604 short oom_score_adj_min; /* OOM kill score adjustment min value.
605 * Only settable by CAP_SYS_RESOURCE. */
606
607 struct mutex cred_guard_mutex; /* guard against foreign influences on
608 * credential calculations
609 * (notably. ptrace) */
610 };
611
612 /*
613 * Bits in flags field of signal_struct.
614 */
615 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
616 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
617 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
618 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
619 /*
620 * Pending notifications to parent.
621 */
622 #define SIGNAL_CLD_STOPPED 0x00000010
623 #define SIGNAL_CLD_CONTINUED 0x00000020
624 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
625
626 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
627
628 /* If true, all threads except ->group_exit_task have pending SIGKILL */
629 static inline int signal_group_exit(const struct signal_struct *sig)
630 {
631 return (sig->flags & SIGNAL_GROUP_EXIT) ||
632 (sig->group_exit_task != NULL);
633 }
634
635 /*
636 * Some day this will be a full-fledged user tracking system..
637 */
638 struct user_struct {
639 atomic_t __count; /* reference count */
640 atomic_t processes; /* How many processes does this user have? */
641 atomic_t files; /* How many open files does this user have? */
642 atomic_t sigpending; /* How many pending signals does this user have? */
643 #ifdef CONFIG_INOTIFY_USER
644 atomic_t inotify_watches; /* How many inotify watches does this user have? */
645 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
646 #endif
647 #ifdef CONFIG_FANOTIFY
648 atomic_t fanotify_listeners;
649 #endif
650 #ifdef CONFIG_EPOLL
651 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
652 #endif
653 #ifdef CONFIG_POSIX_MQUEUE
654 /* protected by mq_lock */
655 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
656 #endif
657 unsigned long locked_shm; /* How many pages of mlocked shm ? */
658
659 #ifdef CONFIG_KEYS
660 struct key *uid_keyring; /* UID specific keyring */
661 struct key *session_keyring; /* UID's default session keyring */
662 #endif
663
664 /* Hash table maintenance information */
665 struct hlist_node uidhash_node;
666 kuid_t uid;
667
668 #ifdef CONFIG_PERF_EVENTS
669 atomic_long_t locked_vm;
670 #endif
671 };
672
673 extern int uids_sysfs_init(void);
674
675 extern struct user_struct *find_user(kuid_t);
676
677 extern struct user_struct root_user;
678 #define INIT_USER (&root_user)
679
680
681 struct backing_dev_info;
682 struct reclaim_state;
683
684 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
685 struct sched_info {
686 /* cumulative counters */
687 unsigned long pcount; /* # of times run on this cpu */
688 unsigned long long run_delay; /* time spent waiting on a runqueue */
689
690 /* timestamps */
691 unsigned long long last_arrival,/* when we last ran on a cpu */
692 last_queued; /* when we were last queued to run */
693 };
694 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
695
696 #ifdef CONFIG_TASK_DELAY_ACCT
697 struct task_delay_info {
698 spinlock_t lock;
699 unsigned int flags; /* Private per-task flags */
700
701 /* For each stat XXX, add following, aligned appropriately
702 *
703 * struct timespec XXX_start, XXX_end;
704 * u64 XXX_delay;
705 * u32 XXX_count;
706 *
707 * Atomicity of updates to XXX_delay, XXX_count protected by
708 * single lock above (split into XXX_lock if contention is an issue).
709 */
710
711 /*
712 * XXX_count is incremented on every XXX operation, the delay
713 * associated with the operation is added to XXX_delay.
714 * XXX_delay contains the accumulated delay time in nanoseconds.
715 */
716 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
717 u64 blkio_delay; /* wait for sync block io completion */
718 u64 swapin_delay; /* wait for swapin block io completion */
719 u32 blkio_count; /* total count of the number of sync block */
720 /* io operations performed */
721 u32 swapin_count; /* total count of the number of swapin block */
722 /* io operations performed */
723
724 struct timespec freepages_start, freepages_end;
725 u64 freepages_delay; /* wait for memory reclaim */
726 u32 freepages_count; /* total count of memory reclaim */
727 };
728 #endif /* CONFIG_TASK_DELAY_ACCT */
729
730 static inline int sched_info_on(void)
731 {
732 #ifdef CONFIG_SCHEDSTATS
733 return 1;
734 #elif defined(CONFIG_TASK_DELAY_ACCT)
735 extern int delayacct_on;
736 return delayacct_on;
737 #else
738 return 0;
739 #endif
740 }
741
742 enum cpu_idle_type {
743 CPU_IDLE,
744 CPU_NOT_IDLE,
745 CPU_NEWLY_IDLE,
746 CPU_MAX_IDLE_TYPES
747 };
748
749 /*
750 * Increase resolution of cpu_power calculations
751 */
752 #define SCHED_POWER_SHIFT 10
753 #define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT)
754
755 /*
756 * sched-domains (multiprocessor balancing) declarations:
757 */
758 #ifdef CONFIG_SMP
759 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
760 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
761 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
762 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
763 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
764 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
765 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
766 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
767 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
768 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
769 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
770 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
771
772 extern int __weak arch_sd_sibiling_asym_packing(void);
773
774 struct sched_domain_attr {
775 int relax_domain_level;
776 };
777
778 #define SD_ATTR_INIT (struct sched_domain_attr) { \
779 .relax_domain_level = -1, \
780 }
781
782 extern int sched_domain_level_max;
783
784 struct sched_group;
785
786 struct sched_domain {
787 /* These fields must be setup */
788 struct sched_domain *parent; /* top domain must be null terminated */
789 struct sched_domain *child; /* bottom domain must be null terminated */
790 struct sched_group *groups; /* the balancing groups of the domain */
791 unsigned long min_interval; /* Minimum balance interval ms */
792 unsigned long max_interval; /* Maximum balance interval ms */
793 unsigned int busy_factor; /* less balancing by factor if busy */
794 unsigned int imbalance_pct; /* No balance until over watermark */
795 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
796 unsigned int busy_idx;
797 unsigned int idle_idx;
798 unsigned int newidle_idx;
799 unsigned int wake_idx;
800 unsigned int forkexec_idx;
801 unsigned int smt_gain;
802
803 int nohz_idle; /* NOHZ IDLE status */
804 int flags; /* See SD_* */
805 int level;
806
807 /* Runtime fields. */
808 unsigned long last_balance; /* init to jiffies. units in jiffies */
809 unsigned int balance_interval; /* initialise to 1. units in ms. */
810 unsigned int nr_balance_failed; /* initialise to 0 */
811
812 u64 last_update;
813
814 #ifdef CONFIG_SCHEDSTATS
815 /* load_balance() stats */
816 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
817 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
818 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
819 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
820 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
821 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
822 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
823 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
824
825 /* Active load balancing */
826 unsigned int alb_count;
827 unsigned int alb_failed;
828 unsigned int alb_pushed;
829
830 /* SD_BALANCE_EXEC stats */
831 unsigned int sbe_count;
832 unsigned int sbe_balanced;
833 unsigned int sbe_pushed;
834
835 /* SD_BALANCE_FORK stats */
836 unsigned int sbf_count;
837 unsigned int sbf_balanced;
838 unsigned int sbf_pushed;
839
840 /* try_to_wake_up() stats */
841 unsigned int ttwu_wake_remote;
842 unsigned int ttwu_move_affine;
843 unsigned int ttwu_move_balance;
844 #endif
845 #ifdef CONFIG_SCHED_DEBUG
846 char *name;
847 #endif
848 union {
849 void *private; /* used during construction */
850 struct rcu_head rcu; /* used during destruction */
851 };
852
853 unsigned int span_weight;
854 /*
855 * Span of all CPUs in this domain.
856 *
857 * NOTE: this field is variable length. (Allocated dynamically
858 * by attaching extra space to the end of the structure,
859 * depending on how many CPUs the kernel has booted up with)
860 */
861 unsigned long span[0];
862 };
863
864 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
865 {
866 return to_cpumask(sd->span);
867 }
868
869 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
870 struct sched_domain_attr *dattr_new);
871
872 /* Allocate an array of sched domains, for partition_sched_domains(). */
873 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
874 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
875
876 bool cpus_share_cache(int this_cpu, int that_cpu);
877
878 #else /* CONFIG_SMP */
879
880 struct sched_domain_attr;
881
882 static inline void
883 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
884 struct sched_domain_attr *dattr_new)
885 {
886 }
887
888 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
889 {
890 return true;
891 }
892
893 #endif /* !CONFIG_SMP */
894
895
896 struct io_context; /* See blkdev.h */
897
898
899 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
900 extern void prefetch_stack(struct task_struct *t);
901 #else
902 static inline void prefetch_stack(struct task_struct *t) { }
903 #endif
904
905 struct audit_context; /* See audit.c */
906 struct mempolicy;
907 struct pipe_inode_info;
908 struct uts_namespace;
909
910 struct load_weight {
911 unsigned long weight, inv_weight;
912 };
913
914 struct sched_avg {
915 /*
916 * These sums represent an infinite geometric series and so are bound
917 * above by 1024/(1-y). Thus we only need a u32 to store them for all
918 * choices of y < 1-2^(-32)*1024.
919 */
920 u32 runnable_avg_sum, runnable_avg_period;
921 u64 last_runnable_update;
922 s64 decay_count;
923 unsigned long load_avg_contrib;
924 };
925
926 #ifdef CONFIG_SCHEDSTATS
927 struct sched_statistics {
928 u64 wait_start;
929 u64 wait_max;
930 u64 wait_count;
931 u64 wait_sum;
932 u64 iowait_count;
933 u64 iowait_sum;
934
935 u64 sleep_start;
936 u64 sleep_max;
937 s64 sum_sleep_runtime;
938
939 u64 block_start;
940 u64 block_max;
941 u64 exec_max;
942 u64 slice_max;
943
944 u64 nr_migrations_cold;
945 u64 nr_failed_migrations_affine;
946 u64 nr_failed_migrations_running;
947 u64 nr_failed_migrations_hot;
948 u64 nr_forced_migrations;
949
950 u64 nr_wakeups;
951 u64 nr_wakeups_sync;
952 u64 nr_wakeups_migrate;
953 u64 nr_wakeups_local;
954 u64 nr_wakeups_remote;
955 u64 nr_wakeups_affine;
956 u64 nr_wakeups_affine_attempts;
957 u64 nr_wakeups_passive;
958 u64 nr_wakeups_idle;
959 };
960 #endif
961
962 struct sched_entity {
963 struct load_weight load; /* for load-balancing */
964 struct rb_node run_node;
965 struct list_head group_node;
966 unsigned int on_rq;
967
968 u64 exec_start;
969 u64 sum_exec_runtime;
970 u64 vruntime;
971 u64 prev_sum_exec_runtime;
972
973 u64 nr_migrations;
974
975 #ifdef CONFIG_SCHEDSTATS
976 struct sched_statistics statistics;
977 #endif
978
979 #ifdef CONFIG_FAIR_GROUP_SCHED
980 struct sched_entity *parent;
981 /* rq on which this entity is (to be) queued: */
982 struct cfs_rq *cfs_rq;
983 /* rq "owned" by this entity/group: */
984 struct cfs_rq *my_q;
985 #endif
986
987 #ifdef CONFIG_SMP
988 /* Per-entity load-tracking */
989 struct sched_avg avg;
990 #endif
991 };
992
993 struct sched_rt_entity {
994 struct list_head run_list;
995 unsigned long timeout;
996 unsigned long watchdog_stamp;
997 unsigned int time_slice;
998
999 struct sched_rt_entity *back;
1000 #ifdef CONFIG_RT_GROUP_SCHED
1001 struct sched_rt_entity *parent;
1002 /* rq on which this entity is (to be) queued: */
1003 struct rt_rq *rt_rq;
1004 /* rq "owned" by this entity/group: */
1005 struct rt_rq *my_q;
1006 #endif
1007 };
1008
1009
1010 struct rcu_node;
1011
1012 enum perf_event_task_context {
1013 perf_invalid_context = -1,
1014 perf_hw_context = 0,
1015 perf_sw_context,
1016 perf_nr_task_contexts,
1017 };
1018
1019 struct task_struct {
1020 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1021 void *stack;
1022 atomic_t usage;
1023 unsigned int flags; /* per process flags, defined below */
1024 unsigned int ptrace;
1025
1026 #ifdef CONFIG_SMP
1027 struct llist_node wake_entry;
1028 int on_cpu;
1029 struct task_struct *last_wakee;
1030 unsigned long wakee_flips;
1031 unsigned long wakee_flip_decay_ts;
1032 #endif
1033 int on_rq;
1034
1035 int prio, static_prio, normal_prio;
1036 unsigned int rt_priority;
1037 const struct sched_class *sched_class;
1038 struct sched_entity se;
1039 struct sched_rt_entity rt;
1040 #ifdef CONFIG_CGROUP_SCHED
1041 struct task_group *sched_task_group;
1042 #endif
1043
1044 #ifdef CONFIG_PREEMPT_NOTIFIERS
1045 /* list of struct preempt_notifier: */
1046 struct hlist_head preempt_notifiers;
1047 #endif
1048
1049 /*
1050 * fpu_counter contains the number of consecutive context switches
1051 * that the FPU is used. If this is over a threshold, the lazy fpu
1052 * saving becomes unlazy to save the trap. This is an unsigned char
1053 * so that after 256 times the counter wraps and the behavior turns
1054 * lazy again; this to deal with bursty apps that only use FPU for
1055 * a short time
1056 */
1057 unsigned char fpu_counter;
1058 #ifdef CONFIG_BLK_DEV_IO_TRACE
1059 unsigned int btrace_seq;
1060 #endif
1061
1062 unsigned int policy;
1063 int nr_cpus_allowed;
1064 cpumask_t cpus_allowed;
1065
1066 #ifdef CONFIG_PREEMPT_RCU
1067 int rcu_read_lock_nesting;
1068 char rcu_read_unlock_special;
1069 struct list_head rcu_node_entry;
1070 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1071 #ifdef CONFIG_TREE_PREEMPT_RCU
1072 struct rcu_node *rcu_blocked_node;
1073 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1074 #ifdef CONFIG_RCU_BOOST
1075 struct rt_mutex *rcu_boost_mutex;
1076 #endif /* #ifdef CONFIG_RCU_BOOST */
1077
1078 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1079 struct sched_info sched_info;
1080 #endif
1081
1082 struct list_head tasks;
1083 #ifdef CONFIG_SMP
1084 struct plist_node pushable_tasks;
1085 #endif
1086
1087 struct mm_struct *mm, *active_mm;
1088 #ifdef CONFIG_COMPAT_BRK
1089 unsigned brk_randomized:1;
1090 #endif
1091 #if defined(SPLIT_RSS_COUNTING)
1092 struct task_rss_stat rss_stat;
1093 #endif
1094 /* task state */
1095 int exit_state;
1096 int exit_code, exit_signal;
1097 int pdeath_signal; /* The signal sent when the parent dies */
1098 unsigned int jobctl; /* JOBCTL_*, siglock protected */
1099
1100 /* Used for emulating ABI behavior of previous Linux versions */
1101 unsigned int personality;
1102
1103 unsigned did_exec:1;
1104 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1105 * execve */
1106 unsigned in_iowait:1;
1107
1108 /* task may not gain privileges */
1109 unsigned no_new_privs:1;
1110
1111 /* Revert to default priority/policy when forking */
1112 unsigned sched_reset_on_fork:1;
1113 unsigned sched_contributes_to_load:1;
1114
1115 pid_t pid;
1116 pid_t tgid;
1117
1118 #ifdef CONFIG_CC_STACKPROTECTOR
1119 /* Canary value for the -fstack-protector gcc feature */
1120 unsigned long stack_canary;
1121 #endif
1122 /*
1123 * pointers to (original) parent process, youngest child, younger sibling,
1124 * older sibling, respectively. (p->father can be replaced with
1125 * p->real_parent->pid)
1126 */
1127 struct task_struct __rcu *real_parent; /* real parent process */
1128 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1129 /*
1130 * children/sibling forms the list of my natural children
1131 */
1132 struct list_head children; /* list of my children */
1133 struct list_head sibling; /* linkage in my parent's children list */
1134 struct task_struct *group_leader; /* threadgroup leader */
1135
1136 /*
1137 * ptraced is the list of tasks this task is using ptrace on.
1138 * This includes both natural children and PTRACE_ATTACH targets.
1139 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1140 */
1141 struct list_head ptraced;
1142 struct list_head ptrace_entry;
1143
1144 /* PID/PID hash table linkage. */
1145 struct pid_link pids[PIDTYPE_MAX];
1146 struct list_head thread_group;
1147
1148 struct completion *vfork_done; /* for vfork() */
1149 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1150 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1151
1152 cputime_t utime, stime, utimescaled, stimescaled;
1153 cputime_t gtime;
1154 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1155 struct cputime prev_cputime;
1156 #endif
1157 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1158 seqlock_t vtime_seqlock;
1159 unsigned long long vtime_snap;
1160 enum {
1161 VTIME_SLEEPING = 0,
1162 VTIME_USER,
1163 VTIME_SYS,
1164 } vtime_snap_whence;
1165 #endif
1166 unsigned long nvcsw, nivcsw; /* context switch counts */
1167 struct timespec start_time; /* monotonic time */
1168 struct timespec real_start_time; /* boot based time */
1169 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1170 unsigned long min_flt, maj_flt;
1171
1172 struct task_cputime cputime_expires;
1173 struct list_head cpu_timers[3];
1174
1175 /* process credentials */
1176 const struct cred __rcu *real_cred; /* objective and real subjective task
1177 * credentials (COW) */
1178 const struct cred __rcu *cred; /* effective (overridable) subjective task
1179 * credentials (COW) */
1180 char comm[TASK_COMM_LEN]; /* executable name excluding path
1181 - access with [gs]et_task_comm (which lock
1182 it with task_lock())
1183 - initialized normally by setup_new_exec */
1184 /* file system info */
1185 int link_count, total_link_count;
1186 #ifdef CONFIG_SYSVIPC
1187 /* ipc stuff */
1188 struct sysv_sem sysvsem;
1189 #endif
1190 #ifdef CONFIG_DETECT_HUNG_TASK
1191 /* hung task detection */
1192 unsigned long last_switch_count;
1193 #endif
1194 /* CPU-specific state of this task */
1195 struct thread_struct thread;
1196 /* filesystem information */
1197 struct fs_struct *fs;
1198 /* open file information */
1199 struct files_struct *files;
1200 /* namespaces */
1201 struct nsproxy *nsproxy;
1202 /* signal handlers */
1203 struct signal_struct *signal;
1204 struct sighand_struct *sighand;
1205
1206 sigset_t blocked, real_blocked;
1207 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1208 struct sigpending pending;
1209
1210 unsigned long sas_ss_sp;
1211 size_t sas_ss_size;
1212 int (*notifier)(void *priv);
1213 void *notifier_data;
1214 sigset_t *notifier_mask;
1215 struct callback_head *task_works;
1216
1217 struct audit_context *audit_context;
1218 #ifdef CONFIG_AUDITSYSCALL
1219 kuid_t loginuid;
1220 unsigned int sessionid;
1221 #endif
1222 struct seccomp seccomp;
1223
1224 /* Thread group tracking */
1225 u32 parent_exec_id;
1226 u32 self_exec_id;
1227 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1228 * mempolicy */
1229 spinlock_t alloc_lock;
1230
1231 /* Protection of the PI data structures: */
1232 raw_spinlock_t pi_lock;
1233
1234 #ifdef CONFIG_RT_MUTEXES
1235 /* PI waiters blocked on a rt_mutex held by this task */
1236 struct plist_head pi_waiters;
1237 /* Deadlock detection and priority inheritance handling */
1238 struct rt_mutex_waiter *pi_blocked_on;
1239 #endif
1240
1241 #ifdef CONFIG_DEBUG_MUTEXES
1242 /* mutex deadlock detection */
1243 struct mutex_waiter *blocked_on;
1244 #endif
1245 #ifdef CONFIG_TRACE_IRQFLAGS
1246 unsigned int irq_events;
1247 unsigned long hardirq_enable_ip;
1248 unsigned long hardirq_disable_ip;
1249 unsigned int hardirq_enable_event;
1250 unsigned int hardirq_disable_event;
1251 int hardirqs_enabled;
1252 int hardirq_context;
1253 unsigned long softirq_disable_ip;
1254 unsigned long softirq_enable_ip;
1255 unsigned int softirq_disable_event;
1256 unsigned int softirq_enable_event;
1257 int softirqs_enabled;
1258 int softirq_context;
1259 #endif
1260 #ifdef CONFIG_LOCKDEP
1261 # define MAX_LOCK_DEPTH 48UL
1262 u64 curr_chain_key;
1263 int lockdep_depth;
1264 unsigned int lockdep_recursion;
1265 struct held_lock held_locks[MAX_LOCK_DEPTH];
1266 gfp_t lockdep_reclaim_gfp;
1267 #endif
1268
1269 /* journalling filesystem info */
1270 void *journal_info;
1271
1272 /* stacked block device info */
1273 struct bio_list *bio_list;
1274
1275 #ifdef CONFIG_BLOCK
1276 /* stack plugging */
1277 struct blk_plug *plug;
1278 #endif
1279
1280 /* VM state */
1281 struct reclaim_state *reclaim_state;
1282
1283 struct backing_dev_info *backing_dev_info;
1284
1285 struct io_context *io_context;
1286
1287 unsigned long ptrace_message;
1288 siginfo_t *last_siginfo; /* For ptrace use. */
1289 struct task_io_accounting ioac;
1290 #if defined(CONFIG_TASK_XACCT)
1291 u64 acct_rss_mem1; /* accumulated rss usage */
1292 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1293 cputime_t acct_timexpd; /* stime + utime since last update */
1294 #endif
1295 #ifdef CONFIG_CPUSETS
1296 nodemask_t mems_allowed; /* Protected by alloc_lock */
1297 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
1298 int cpuset_mem_spread_rotor;
1299 int cpuset_slab_spread_rotor;
1300 #endif
1301 #ifdef CONFIG_CGROUPS
1302 /* Control Group info protected by css_set_lock */
1303 struct css_set __rcu *cgroups;
1304 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1305 struct list_head cg_list;
1306 #endif
1307 #ifdef CONFIG_FUTEX
1308 struct robust_list_head __user *robust_list;
1309 #ifdef CONFIG_COMPAT
1310 struct compat_robust_list_head __user *compat_robust_list;
1311 #endif
1312 struct list_head pi_state_list;
1313 struct futex_pi_state *pi_state_cache;
1314 #endif
1315 #ifdef CONFIG_PERF_EVENTS
1316 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1317 struct mutex perf_event_mutex;
1318 struct list_head perf_event_list;
1319 #endif
1320 #ifdef CONFIG_NUMA
1321 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1322 short il_next;
1323 short pref_node_fork;
1324 #endif
1325 #ifdef CONFIG_NUMA_BALANCING
1326 int numa_scan_seq;
1327 int numa_migrate_seq;
1328 unsigned int numa_scan_period;
1329 u64 node_stamp; /* migration stamp */
1330 struct callback_head numa_work;
1331 #endif /* CONFIG_NUMA_BALANCING */
1332
1333 struct rcu_head rcu;
1334
1335 /*
1336 * cache last used pipe for splice
1337 */
1338 struct pipe_inode_info *splice_pipe;
1339
1340 struct page_frag task_frag;
1341
1342 #ifdef CONFIG_TASK_DELAY_ACCT
1343 struct task_delay_info *delays;
1344 #endif
1345 #ifdef CONFIG_FAULT_INJECTION
1346 int make_it_fail;
1347 #endif
1348 /*
1349 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1350 * balance_dirty_pages() for some dirty throttling pause
1351 */
1352 int nr_dirtied;
1353 int nr_dirtied_pause;
1354 unsigned long dirty_paused_when; /* start of a write-and-pause period */
1355
1356 #ifdef CONFIG_LATENCYTOP
1357 int latency_record_count;
1358 struct latency_record latency_record[LT_SAVECOUNT];
1359 #endif
1360 /*
1361 * time slack values; these are used to round up poll() and
1362 * select() etc timeout values. These are in nanoseconds.
1363 */
1364 unsigned long timer_slack_ns;
1365 unsigned long default_timer_slack_ns;
1366
1367 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1368 /* Index of current stored address in ret_stack */
1369 int curr_ret_stack;
1370 /* Stack of return addresses for return function tracing */
1371 struct ftrace_ret_stack *ret_stack;
1372 /* time stamp for last schedule */
1373 unsigned long long ftrace_timestamp;
1374 /*
1375 * Number of functions that haven't been traced
1376 * because of depth overrun.
1377 */
1378 atomic_t trace_overrun;
1379 /* Pause for the tracing */
1380 atomic_t tracing_graph_pause;
1381 #endif
1382 #ifdef CONFIG_TRACING
1383 /* state flags for use by tracers */
1384 unsigned long trace;
1385 /* bitmask and counter of trace recursion */
1386 unsigned long trace_recursion;
1387 #endif /* CONFIG_TRACING */
1388 #ifdef CONFIG_MEMCG /* memcg uses this to do batch job */
1389 struct memcg_batch_info {
1390 int do_batch; /* incremented when batch uncharge started */
1391 struct mem_cgroup *memcg; /* target memcg of uncharge */
1392 unsigned long nr_pages; /* uncharged usage */
1393 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1394 } memcg_batch;
1395 unsigned int memcg_kmem_skip_account;
1396 #endif
1397 #ifdef CONFIG_UPROBES
1398 struct uprobe_task *utask;
1399 #endif
1400 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1401 unsigned int sequential_io;
1402 unsigned int sequential_io_avg;
1403 #endif
1404 };
1405
1406 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1407 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1408
1409 #ifdef CONFIG_NUMA_BALANCING
1410 extern void task_numa_fault(int node, int pages, bool migrated);
1411 extern void set_numabalancing_state(bool enabled);
1412 #else
1413 static inline void task_numa_fault(int node, int pages, bool migrated)
1414 {
1415 }
1416 static inline void set_numabalancing_state(bool enabled)
1417 {
1418 }
1419 #endif
1420
1421 static inline struct pid *task_pid(struct task_struct *task)
1422 {
1423 return task->pids[PIDTYPE_PID].pid;
1424 }
1425
1426 static inline struct pid *task_tgid(struct task_struct *task)
1427 {
1428 return task->group_leader->pids[PIDTYPE_PID].pid;
1429 }
1430
1431 /*
1432 * Without tasklist or rcu lock it is not safe to dereference
1433 * the result of task_pgrp/task_session even if task == current,
1434 * we can race with another thread doing sys_setsid/sys_setpgid.
1435 */
1436 static inline struct pid *task_pgrp(struct task_struct *task)
1437 {
1438 return task->group_leader->pids[PIDTYPE_PGID].pid;
1439 }
1440
1441 static inline struct pid *task_session(struct task_struct *task)
1442 {
1443 return task->group_leader->pids[PIDTYPE_SID].pid;
1444 }
1445
1446 struct pid_namespace;
1447
1448 /*
1449 * the helpers to get the task's different pids as they are seen
1450 * from various namespaces
1451 *
1452 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1453 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1454 * current.
1455 * task_xid_nr_ns() : id seen from the ns specified;
1456 *
1457 * set_task_vxid() : assigns a virtual id to a task;
1458 *
1459 * see also pid_nr() etc in include/linux/pid.h
1460 */
1461 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1462 struct pid_namespace *ns);
1463
1464 static inline pid_t task_pid_nr(struct task_struct *tsk)
1465 {
1466 return tsk->pid;
1467 }
1468
1469 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1470 struct pid_namespace *ns)
1471 {
1472 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1473 }
1474
1475 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1476 {
1477 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1478 }
1479
1480
1481 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1482 {
1483 return tsk->tgid;
1484 }
1485
1486 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1487
1488 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1489 {
1490 return pid_vnr(task_tgid(tsk));
1491 }
1492
1493
1494 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1495 struct pid_namespace *ns)
1496 {
1497 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1498 }
1499
1500 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1501 {
1502 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1503 }
1504
1505
1506 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1507 struct pid_namespace *ns)
1508 {
1509 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1510 }
1511
1512 static inline pid_t task_session_vnr(struct task_struct *tsk)
1513 {
1514 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1515 }
1516
1517 /* obsolete, do not use */
1518 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1519 {
1520 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1521 }
1522
1523 /**
1524 * pid_alive - check that a task structure is not stale
1525 * @p: Task structure to be checked.
1526 *
1527 * Test if a process is not yet dead (at most zombie state)
1528 * If pid_alive fails, then pointers within the task structure
1529 * can be stale and must not be dereferenced.
1530 *
1531 * Return: 1 if the process is alive. 0 otherwise.
1532 */
1533 static inline int pid_alive(struct task_struct *p)
1534 {
1535 return p->pids[PIDTYPE_PID].pid != NULL;
1536 }
1537
1538 /**
1539 * is_global_init - check if a task structure is init
1540 * @tsk: Task structure to be checked.
1541 *
1542 * Check if a task structure is the first user space task the kernel created.
1543 *
1544 * Return: 1 if the task structure is init. 0 otherwise.
1545 */
1546 static inline int is_global_init(struct task_struct *tsk)
1547 {
1548 return tsk->pid == 1;
1549 }
1550
1551 extern struct pid *cad_pid;
1552
1553 extern void free_task(struct task_struct *tsk);
1554 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1555
1556 extern void __put_task_struct(struct task_struct *t);
1557
1558 static inline void put_task_struct(struct task_struct *t)
1559 {
1560 if (atomic_dec_and_test(&t->usage))
1561 __put_task_struct(t);
1562 }
1563
1564 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1565 extern void task_cputime(struct task_struct *t,
1566 cputime_t *utime, cputime_t *stime);
1567 extern void task_cputime_scaled(struct task_struct *t,
1568 cputime_t *utimescaled, cputime_t *stimescaled);
1569 extern cputime_t task_gtime(struct task_struct *t);
1570 #else
1571 static inline void task_cputime(struct task_struct *t,
1572 cputime_t *utime, cputime_t *stime)
1573 {
1574 if (utime)
1575 *utime = t->utime;
1576 if (stime)
1577 *stime = t->stime;
1578 }
1579
1580 static inline void task_cputime_scaled(struct task_struct *t,
1581 cputime_t *utimescaled,
1582 cputime_t *stimescaled)
1583 {
1584 if (utimescaled)
1585 *utimescaled = t->utimescaled;
1586 if (stimescaled)
1587 *stimescaled = t->stimescaled;
1588 }
1589
1590 static inline cputime_t task_gtime(struct task_struct *t)
1591 {
1592 return t->gtime;
1593 }
1594 #endif
1595 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1596 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1597
1598 /*
1599 * Per process flags
1600 */
1601 #define PF_EXITING 0x00000004 /* getting shut down */
1602 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1603 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1604 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1605 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1606 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1607 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1608 #define PF_DUMPCORE 0x00000200 /* dumped core */
1609 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1610 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1611 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1612 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1613 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1614 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1615 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1616 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1617 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1618 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1619 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1620 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1621 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1622 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1623 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1624 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1625 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
1626 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1627 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1628 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1629 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1630 #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
1631
1632 /*
1633 * Only the _current_ task can read/write to tsk->flags, but other
1634 * tasks can access tsk->flags in readonly mode for example
1635 * with tsk_used_math (like during threaded core dumping).
1636 * There is however an exception to this rule during ptrace
1637 * or during fork: the ptracer task is allowed to write to the
1638 * child->flags of its traced child (same goes for fork, the parent
1639 * can write to the child->flags), because we're guaranteed the
1640 * child is not running and in turn not changing child->flags
1641 * at the same time the parent does it.
1642 */
1643 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1644 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1645 #define clear_used_math() clear_stopped_child_used_math(current)
1646 #define set_used_math() set_stopped_child_used_math(current)
1647 #define conditional_stopped_child_used_math(condition, child) \
1648 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1649 #define conditional_used_math(condition) \
1650 conditional_stopped_child_used_math(condition, current)
1651 #define copy_to_stopped_child_used_math(child) \
1652 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1653 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1654 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1655 #define used_math() tsk_used_math(current)
1656
1657 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags */
1658 static inline gfp_t memalloc_noio_flags(gfp_t flags)
1659 {
1660 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
1661 flags &= ~__GFP_IO;
1662 return flags;
1663 }
1664
1665 static inline unsigned int memalloc_noio_save(void)
1666 {
1667 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
1668 current->flags |= PF_MEMALLOC_NOIO;
1669 return flags;
1670 }
1671
1672 static inline void memalloc_noio_restore(unsigned int flags)
1673 {
1674 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
1675 }
1676
1677 /*
1678 * task->jobctl flags
1679 */
1680 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
1681
1682 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
1683 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
1684 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
1685 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
1686 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
1687 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
1688 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
1689
1690 #define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT)
1691 #define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT)
1692 #define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT)
1693 #define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT)
1694 #define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT)
1695 #define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT)
1696 #define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT)
1697
1698 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1699 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1700
1701 extern bool task_set_jobctl_pending(struct task_struct *task,
1702 unsigned int mask);
1703 extern void task_clear_jobctl_trapping(struct task_struct *task);
1704 extern void task_clear_jobctl_pending(struct task_struct *task,
1705 unsigned int mask);
1706
1707 #ifdef CONFIG_PREEMPT_RCU
1708
1709 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1710 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1711
1712 static inline void rcu_copy_process(struct task_struct *p)
1713 {
1714 p->rcu_read_lock_nesting = 0;
1715 p->rcu_read_unlock_special = 0;
1716 #ifdef CONFIG_TREE_PREEMPT_RCU
1717 p->rcu_blocked_node = NULL;
1718 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1719 #ifdef CONFIG_RCU_BOOST
1720 p->rcu_boost_mutex = NULL;
1721 #endif /* #ifdef CONFIG_RCU_BOOST */
1722 INIT_LIST_HEAD(&p->rcu_node_entry);
1723 }
1724
1725 #else
1726
1727 static inline void rcu_copy_process(struct task_struct *p)
1728 {
1729 }
1730
1731 #endif
1732
1733 static inline void tsk_restore_flags(struct task_struct *task,
1734 unsigned long orig_flags, unsigned long flags)
1735 {
1736 task->flags &= ~flags;
1737 task->flags |= orig_flags & flags;
1738 }
1739
1740 #ifdef CONFIG_SMP
1741 extern void do_set_cpus_allowed(struct task_struct *p,
1742 const struct cpumask *new_mask);
1743
1744 extern int set_cpus_allowed_ptr(struct task_struct *p,
1745 const struct cpumask *new_mask);
1746 #else
1747 static inline void do_set_cpus_allowed(struct task_struct *p,
1748 const struct cpumask *new_mask)
1749 {
1750 }
1751 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1752 const struct cpumask *new_mask)
1753 {
1754 if (!cpumask_test_cpu(0, new_mask))
1755 return -EINVAL;
1756 return 0;
1757 }
1758 #endif
1759
1760 #ifdef CONFIG_NO_HZ_COMMON
1761 void calc_load_enter_idle(void);
1762 void calc_load_exit_idle(void);
1763 #else
1764 static inline void calc_load_enter_idle(void) { }
1765 static inline void calc_load_exit_idle(void) { }
1766 #endif /* CONFIG_NO_HZ_COMMON */
1767
1768 #ifndef CONFIG_CPUMASK_OFFSTACK
1769 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1770 {
1771 return set_cpus_allowed_ptr(p, &new_mask);
1772 }
1773 #endif
1774
1775 /*
1776 * Do not use outside of architecture code which knows its limitations.
1777 *
1778 * sched_clock() has no promise of monotonicity or bounded drift between
1779 * CPUs, use (which you should not) requires disabling IRQs.
1780 *
1781 * Please use one of the three interfaces below.
1782 */
1783 extern unsigned long long notrace sched_clock(void);
1784 /*
1785 * See the comment in kernel/sched/clock.c
1786 */
1787 extern u64 cpu_clock(int cpu);
1788 extern u64 local_clock(void);
1789 extern u64 sched_clock_cpu(int cpu);
1790
1791
1792 extern void sched_clock_init(void);
1793
1794 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1795 static inline void sched_clock_tick(void)
1796 {
1797 }
1798
1799 static inline void sched_clock_idle_sleep_event(void)
1800 {
1801 }
1802
1803 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1804 {
1805 }
1806 #else
1807 /*
1808 * Architectures can set this to 1 if they have specified
1809 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1810 * but then during bootup it turns out that sched_clock()
1811 * is reliable after all:
1812 */
1813 extern int sched_clock_stable;
1814
1815 extern void sched_clock_tick(void);
1816 extern void sched_clock_idle_sleep_event(void);
1817 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1818 #endif
1819
1820 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1821 /*
1822 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1823 * The reason for this explicit opt-in is not to have perf penalty with
1824 * slow sched_clocks.
1825 */
1826 extern void enable_sched_clock_irqtime(void);
1827 extern void disable_sched_clock_irqtime(void);
1828 #else
1829 static inline void enable_sched_clock_irqtime(void) {}
1830 static inline void disable_sched_clock_irqtime(void) {}
1831 #endif
1832
1833 extern unsigned long long
1834 task_sched_runtime(struct task_struct *task);
1835
1836 /* sched_exec is called by processes performing an exec */
1837 #ifdef CONFIG_SMP
1838 extern void sched_exec(void);
1839 #else
1840 #define sched_exec() {}
1841 #endif
1842
1843 extern void sched_clock_idle_sleep_event(void);
1844 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1845
1846 #ifdef CONFIG_HOTPLUG_CPU
1847 extern void idle_task_exit(void);
1848 #else
1849 static inline void idle_task_exit(void) {}
1850 #endif
1851
1852 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
1853 extern void wake_up_nohz_cpu(int cpu);
1854 #else
1855 static inline void wake_up_nohz_cpu(int cpu) { }
1856 #endif
1857
1858 #ifdef CONFIG_NO_HZ_FULL
1859 extern bool sched_can_stop_tick(void);
1860 extern u64 scheduler_tick_max_deferment(void);
1861 #else
1862 static inline bool sched_can_stop_tick(void) { return false; }
1863 #endif
1864
1865 #ifdef CONFIG_SCHED_AUTOGROUP
1866 extern void sched_autogroup_create_attach(struct task_struct *p);
1867 extern void sched_autogroup_detach(struct task_struct *p);
1868 extern void sched_autogroup_fork(struct signal_struct *sig);
1869 extern void sched_autogroup_exit(struct signal_struct *sig);
1870 #ifdef CONFIG_PROC_FS
1871 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
1872 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
1873 #endif
1874 #else
1875 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
1876 static inline void sched_autogroup_detach(struct task_struct *p) { }
1877 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
1878 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
1879 #endif
1880
1881 extern bool yield_to(struct task_struct *p, bool preempt);
1882 extern void set_user_nice(struct task_struct *p, long nice);
1883 extern int task_prio(const struct task_struct *p);
1884 extern int task_nice(const struct task_struct *p);
1885 extern int can_nice(const struct task_struct *p, const int nice);
1886 extern int task_curr(const struct task_struct *p);
1887 extern int idle_cpu(int cpu);
1888 extern int sched_setscheduler(struct task_struct *, int,
1889 const struct sched_param *);
1890 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1891 const struct sched_param *);
1892 extern struct task_struct *idle_task(int cpu);
1893 /**
1894 * is_idle_task - is the specified task an idle task?
1895 * @p: the task in question.
1896 *
1897 * Return: 1 if @p is an idle task. 0 otherwise.
1898 */
1899 static inline bool is_idle_task(const struct task_struct *p)
1900 {
1901 return p->pid == 0;
1902 }
1903 extern struct task_struct *curr_task(int cpu);
1904 extern void set_curr_task(int cpu, struct task_struct *p);
1905
1906 void yield(void);
1907
1908 /*
1909 * The default (Linux) execution domain.
1910 */
1911 extern struct exec_domain default_exec_domain;
1912
1913 union thread_union {
1914 struct thread_info thread_info;
1915 unsigned long stack[THREAD_SIZE/sizeof(long)];
1916 };
1917
1918 #ifndef __HAVE_ARCH_KSTACK_END
1919 static inline int kstack_end(void *addr)
1920 {
1921 /* Reliable end of stack detection:
1922 * Some APM bios versions misalign the stack
1923 */
1924 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1925 }
1926 #endif
1927
1928 extern union thread_union init_thread_union;
1929 extern struct task_struct init_task;
1930
1931 extern struct mm_struct init_mm;
1932
1933 extern struct pid_namespace init_pid_ns;
1934
1935 /*
1936 * find a task by one of its numerical ids
1937 *
1938 * find_task_by_pid_ns():
1939 * finds a task by its pid in the specified namespace
1940 * find_task_by_vpid():
1941 * finds a task by its virtual pid
1942 *
1943 * see also find_vpid() etc in include/linux/pid.h
1944 */
1945
1946 extern struct task_struct *find_task_by_vpid(pid_t nr);
1947 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1948 struct pid_namespace *ns);
1949
1950 /* per-UID process charging. */
1951 extern struct user_struct * alloc_uid(kuid_t);
1952 static inline struct user_struct *get_uid(struct user_struct *u)
1953 {
1954 atomic_inc(&u->__count);
1955 return u;
1956 }
1957 extern void free_uid(struct user_struct *);
1958
1959 #include <asm/current.h>
1960
1961 extern void xtime_update(unsigned long ticks);
1962
1963 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1964 extern int wake_up_process(struct task_struct *tsk);
1965 extern void wake_up_new_task(struct task_struct *tsk);
1966 #ifdef CONFIG_SMP
1967 extern void kick_process(struct task_struct *tsk);
1968 #else
1969 static inline void kick_process(struct task_struct *tsk) { }
1970 #endif
1971 extern void sched_fork(struct task_struct *p);
1972 extern void sched_dead(struct task_struct *p);
1973
1974 extern void proc_caches_init(void);
1975 extern void flush_signals(struct task_struct *);
1976 extern void __flush_signals(struct task_struct *);
1977 extern void ignore_signals(struct task_struct *);
1978 extern void flush_signal_handlers(struct task_struct *, int force_default);
1979 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1980
1981 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1982 {
1983 unsigned long flags;
1984 int ret;
1985
1986 spin_lock_irqsave(&tsk->sighand->siglock, flags);
1987 ret = dequeue_signal(tsk, mask, info);
1988 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1989
1990 return ret;
1991 }
1992
1993 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1994 sigset_t *mask);
1995 extern void unblock_all_signals(void);
1996 extern void release_task(struct task_struct * p);
1997 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1998 extern int force_sigsegv(int, struct task_struct *);
1999 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2000 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2001 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2002 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2003 const struct cred *, u32);
2004 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2005 extern int kill_pid(struct pid *pid, int sig, int priv);
2006 extern int kill_proc_info(int, struct siginfo *, pid_t);
2007 extern __must_check bool do_notify_parent(struct task_struct *, int);
2008 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2009 extern void force_sig(int, struct task_struct *);
2010 extern int send_sig(int, struct task_struct *, int);
2011 extern int zap_other_threads(struct task_struct *p);
2012 extern struct sigqueue *sigqueue_alloc(void);
2013 extern void sigqueue_free(struct sigqueue *);
2014 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2015 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2016
2017 static inline void restore_saved_sigmask(void)
2018 {
2019 if (test_and_clear_restore_sigmask())
2020 __set_current_blocked(&current->saved_sigmask);
2021 }
2022
2023 static inline sigset_t *sigmask_to_save(void)
2024 {
2025 sigset_t *res = &current->blocked;
2026 if (unlikely(test_restore_sigmask()))
2027 res = &current->saved_sigmask;
2028 return res;
2029 }
2030
2031 static inline int kill_cad_pid(int sig, int priv)
2032 {
2033 return kill_pid(cad_pid, sig, priv);
2034 }
2035
2036 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2037 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2038 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2039 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2040
2041 /*
2042 * True if we are on the alternate signal stack.
2043 */
2044 static inline int on_sig_stack(unsigned long sp)
2045 {
2046 #ifdef CONFIG_STACK_GROWSUP
2047 return sp >= current->sas_ss_sp &&
2048 sp - current->sas_ss_sp < current->sas_ss_size;
2049 #else
2050 return sp > current->sas_ss_sp &&
2051 sp - current->sas_ss_sp <= current->sas_ss_size;
2052 #endif
2053 }
2054
2055 static inline int sas_ss_flags(unsigned long sp)
2056 {
2057 return (current->sas_ss_size == 0 ? SS_DISABLE
2058 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2059 }
2060
2061 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2062 {
2063 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2064 #ifdef CONFIG_STACK_GROWSUP
2065 return current->sas_ss_sp;
2066 #else
2067 return current->sas_ss_sp + current->sas_ss_size;
2068 #endif
2069 return sp;
2070 }
2071
2072 /*
2073 * Routines for handling mm_structs
2074 */
2075 extern struct mm_struct * mm_alloc(void);
2076
2077 /* mmdrop drops the mm and the page tables */
2078 extern void __mmdrop(struct mm_struct *);
2079 static inline void mmdrop(struct mm_struct * mm)
2080 {
2081 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2082 __mmdrop(mm);
2083 }
2084
2085 /* mmput gets rid of the mappings and all user-space */
2086 extern void mmput(struct mm_struct *);
2087 /* Grab a reference to a task's mm, if it is not already going away */
2088 extern struct mm_struct *get_task_mm(struct task_struct *task);
2089 /*
2090 * Grab a reference to a task's mm, if it is not already going away
2091 * and ptrace_may_access with the mode parameter passed to it
2092 * succeeds.
2093 */
2094 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2095 /* Remove the current tasks stale references to the old mm_struct */
2096 extern void mm_release(struct task_struct *, struct mm_struct *);
2097 /* Allocate a new mm structure and copy contents from tsk->mm */
2098 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2099
2100 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2101 struct task_struct *);
2102 extern void flush_thread(void);
2103 extern void exit_thread(void);
2104
2105 extern void exit_files(struct task_struct *);
2106 extern void __cleanup_sighand(struct sighand_struct *);
2107
2108 extern void exit_itimers(struct signal_struct *);
2109 extern void flush_itimer_signals(void);
2110
2111 extern void do_group_exit(int);
2112
2113 extern int allow_signal(int);
2114 extern int disallow_signal(int);
2115
2116 extern int do_execve(const char *,
2117 const char __user * const __user *,
2118 const char __user * const __user *);
2119 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2120 struct task_struct *fork_idle(int);
2121 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2122
2123 extern void set_task_comm(struct task_struct *tsk, char *from);
2124 extern char *get_task_comm(char *to, struct task_struct *tsk);
2125
2126 #ifdef CONFIG_SMP
2127 void scheduler_ipi(void);
2128 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2129 #else
2130 static inline void scheduler_ipi(void) { }
2131 static inline unsigned long wait_task_inactive(struct task_struct *p,
2132 long match_state)
2133 {
2134 return 1;
2135 }
2136 #endif
2137
2138 #define next_task(p) \
2139 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2140
2141 #define for_each_process(p) \
2142 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2143
2144 extern bool current_is_single_threaded(void);
2145
2146 /*
2147 * Careful: do_each_thread/while_each_thread is a double loop so
2148 * 'break' will not work as expected - use goto instead.
2149 */
2150 #define do_each_thread(g, t) \
2151 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2152
2153 #define while_each_thread(g, t) \
2154 while ((t = next_thread(t)) != g)
2155
2156 static inline int get_nr_threads(struct task_struct *tsk)
2157 {
2158 return tsk->signal->nr_threads;
2159 }
2160
2161 static inline bool thread_group_leader(struct task_struct *p)
2162 {
2163 return p->exit_signal >= 0;
2164 }
2165
2166 /* Do to the insanities of de_thread it is possible for a process
2167 * to have the pid of the thread group leader without actually being
2168 * the thread group leader. For iteration through the pids in proc
2169 * all we care about is that we have a task with the appropriate
2170 * pid, we don't actually care if we have the right task.
2171 */
2172 static inline int has_group_leader_pid(struct task_struct *p)
2173 {
2174 return p->pid == p->tgid;
2175 }
2176
2177 static inline
2178 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2179 {
2180 return p1->tgid == p2->tgid;
2181 }
2182
2183 static inline struct task_struct *next_thread(const struct task_struct *p)
2184 {
2185 return list_entry_rcu(p->thread_group.next,
2186 struct task_struct, thread_group);
2187 }
2188
2189 static inline int thread_group_empty(struct task_struct *p)
2190 {
2191 return list_empty(&p->thread_group);
2192 }
2193
2194 #define delay_group_leader(p) \
2195 (thread_group_leader(p) && !thread_group_empty(p))
2196
2197 /*
2198 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2199 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2200 * pins the final release of task.io_context. Also protects ->cpuset and
2201 * ->cgroup.subsys[]. And ->vfork_done.
2202 *
2203 * Nests both inside and outside of read_lock(&tasklist_lock).
2204 * It must not be nested with write_lock_irq(&tasklist_lock),
2205 * neither inside nor outside.
2206 */
2207 static inline void task_lock(struct task_struct *p)
2208 {
2209 spin_lock(&p->alloc_lock);
2210 }
2211
2212 static inline void task_unlock(struct task_struct *p)
2213 {
2214 spin_unlock(&p->alloc_lock);
2215 }
2216
2217 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2218 unsigned long *flags);
2219
2220 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2221 unsigned long *flags)
2222 {
2223 struct sighand_struct *ret;
2224
2225 ret = __lock_task_sighand(tsk, flags);
2226 (void)__cond_lock(&tsk->sighand->siglock, ret);
2227 return ret;
2228 }
2229
2230 static inline void unlock_task_sighand(struct task_struct *tsk,
2231 unsigned long *flags)
2232 {
2233 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2234 }
2235
2236 #ifdef CONFIG_CGROUPS
2237 static inline void threadgroup_change_begin(struct task_struct *tsk)
2238 {
2239 down_read(&tsk->signal->group_rwsem);
2240 }
2241 static inline void threadgroup_change_end(struct task_struct *tsk)
2242 {
2243 up_read(&tsk->signal->group_rwsem);
2244 }
2245
2246 /**
2247 * threadgroup_lock - lock threadgroup
2248 * @tsk: member task of the threadgroup to lock
2249 *
2250 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter
2251 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2252 * change ->group_leader/pid. This is useful for cases where the threadgroup
2253 * needs to stay stable across blockable operations.
2254 *
2255 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2256 * synchronization. While held, no new task will be added to threadgroup
2257 * and no existing live task will have its PF_EXITING set.
2258 *
2259 * de_thread() does threadgroup_change_{begin|end}() when a non-leader
2260 * sub-thread becomes a new leader.
2261 */
2262 static inline void threadgroup_lock(struct task_struct *tsk)
2263 {
2264 down_write(&tsk->signal->group_rwsem);
2265 }
2266
2267 /**
2268 * threadgroup_unlock - unlock threadgroup
2269 * @tsk: member task of the threadgroup to unlock
2270 *
2271 * Reverse threadgroup_lock().
2272 */
2273 static inline void threadgroup_unlock(struct task_struct *tsk)
2274 {
2275 up_write(&tsk->signal->group_rwsem);
2276 }
2277 #else
2278 static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2279 static inline void threadgroup_change_end(struct task_struct *tsk) {}
2280 static inline void threadgroup_lock(struct task_struct *tsk) {}
2281 static inline void threadgroup_unlock(struct task_struct *tsk) {}
2282 #endif
2283
2284 #ifndef __HAVE_THREAD_FUNCTIONS
2285
2286 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2287 #define task_stack_page(task) ((task)->stack)
2288
2289 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2290 {
2291 *task_thread_info(p) = *task_thread_info(org);
2292 task_thread_info(p)->task = p;
2293 }
2294
2295 static inline unsigned long *end_of_stack(struct task_struct *p)
2296 {
2297 return (unsigned long *)(task_thread_info(p) + 1);
2298 }
2299
2300 #endif
2301
2302 static inline int object_is_on_stack(void *obj)
2303 {
2304 void *stack = task_stack_page(current);
2305
2306 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2307 }
2308
2309 extern void thread_info_cache_init(void);
2310
2311 #ifdef CONFIG_DEBUG_STACK_USAGE
2312 static inline unsigned long stack_not_used(struct task_struct *p)
2313 {
2314 unsigned long *n = end_of_stack(p);
2315
2316 do { /* Skip over canary */
2317 n++;
2318 } while (!*n);
2319
2320 return (unsigned long)n - (unsigned long)end_of_stack(p);
2321 }
2322 #endif
2323
2324 /* set thread flags in other task's structures
2325 * - see asm/thread_info.h for TIF_xxxx flags available
2326 */
2327 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2328 {
2329 set_ti_thread_flag(task_thread_info(tsk), flag);
2330 }
2331
2332 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2333 {
2334 clear_ti_thread_flag(task_thread_info(tsk), flag);
2335 }
2336
2337 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2338 {
2339 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2340 }
2341
2342 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2343 {
2344 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2345 }
2346
2347 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2348 {
2349 return test_ti_thread_flag(task_thread_info(tsk), flag);
2350 }
2351
2352 static inline void set_tsk_need_resched(struct task_struct *tsk)
2353 {
2354 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2355 }
2356
2357 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2358 {
2359 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2360 }
2361
2362 static inline int test_tsk_need_resched(struct task_struct *tsk)
2363 {
2364 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2365 }
2366
2367 static inline int restart_syscall(void)
2368 {
2369 set_tsk_thread_flag(current, TIF_SIGPENDING);
2370 return -ERESTARTNOINTR;
2371 }
2372
2373 static inline int signal_pending(struct task_struct *p)
2374 {
2375 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2376 }
2377
2378 static inline int __fatal_signal_pending(struct task_struct *p)
2379 {
2380 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2381 }
2382
2383 static inline int fatal_signal_pending(struct task_struct *p)
2384 {
2385 return signal_pending(p) && __fatal_signal_pending(p);
2386 }
2387
2388 static inline int signal_pending_state(long state, struct task_struct *p)
2389 {
2390 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2391 return 0;
2392 if (!signal_pending(p))
2393 return 0;
2394
2395 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2396 }
2397
2398 static inline int need_resched(void)
2399 {
2400 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2401 }
2402
2403 /*
2404 * cond_resched() and cond_resched_lock(): latency reduction via
2405 * explicit rescheduling in places that are safe. The return
2406 * value indicates whether a reschedule was done in fact.
2407 * cond_resched_lock() will drop the spinlock before scheduling,
2408 * cond_resched_softirq() will enable bhs before scheduling.
2409 */
2410 extern int _cond_resched(void);
2411
2412 #define cond_resched() ({ \
2413 __might_sleep(__FILE__, __LINE__, 0); \
2414 _cond_resched(); \
2415 })
2416
2417 extern int __cond_resched_lock(spinlock_t *lock);
2418
2419 #ifdef CONFIG_PREEMPT_COUNT
2420 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2421 #else
2422 #define PREEMPT_LOCK_OFFSET 0
2423 #endif
2424
2425 #define cond_resched_lock(lock) ({ \
2426 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2427 __cond_resched_lock(lock); \
2428 })
2429
2430 extern int __cond_resched_softirq(void);
2431
2432 #define cond_resched_softirq() ({ \
2433 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2434 __cond_resched_softirq(); \
2435 })
2436
2437 static inline void cond_resched_rcu(void)
2438 {
2439 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2440 rcu_read_unlock();
2441 cond_resched();
2442 rcu_read_lock();
2443 #endif
2444 }
2445
2446 /*
2447 * Does a critical section need to be broken due to another
2448 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2449 * but a general need for low latency)
2450 */
2451 static inline int spin_needbreak(spinlock_t *lock)
2452 {
2453 #ifdef CONFIG_PREEMPT
2454 return spin_is_contended(lock);
2455 #else
2456 return 0;
2457 #endif
2458 }
2459
2460 /*
2461 * Idle thread specific functions to determine the need_resched
2462 * polling state. We have two versions, one based on TS_POLLING in
2463 * thread_info.status and one based on TIF_POLLING_NRFLAG in
2464 * thread_info.flags
2465 */
2466 #ifdef TS_POLLING
2467 static inline int tsk_is_polling(struct task_struct *p)
2468 {
2469 return task_thread_info(p)->status & TS_POLLING;
2470 }
2471 static inline void current_set_polling(void)
2472 {
2473 current_thread_info()->status |= TS_POLLING;
2474 }
2475
2476 static inline void current_clr_polling(void)
2477 {
2478 current_thread_info()->status &= ~TS_POLLING;
2479 smp_mb__after_clear_bit();
2480 }
2481 #elif defined(TIF_POLLING_NRFLAG)
2482 static inline int tsk_is_polling(struct task_struct *p)
2483 {
2484 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2485 }
2486 static inline void current_set_polling(void)
2487 {
2488 set_thread_flag(TIF_POLLING_NRFLAG);
2489 }
2490
2491 static inline void current_clr_polling(void)
2492 {
2493 clear_thread_flag(TIF_POLLING_NRFLAG);
2494 }
2495 #else
2496 static inline int tsk_is_polling(struct task_struct *p) { return 0; }
2497 static inline void current_set_polling(void) { }
2498 static inline void current_clr_polling(void) { }
2499 #endif
2500
2501 /*
2502 * Thread group CPU time accounting.
2503 */
2504 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2505 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2506
2507 static inline void thread_group_cputime_init(struct signal_struct *sig)
2508 {
2509 raw_spin_lock_init(&sig->cputimer.lock);
2510 }
2511
2512 /*
2513 * Reevaluate whether the task has signals pending delivery.
2514 * Wake the task if so.
2515 * This is required every time the blocked sigset_t changes.
2516 * callers must hold sighand->siglock.
2517 */
2518 extern void recalc_sigpending_and_wake(struct task_struct *t);
2519 extern void recalc_sigpending(void);
2520
2521 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
2522
2523 static inline void signal_wake_up(struct task_struct *t, bool resume)
2524 {
2525 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
2526 }
2527 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
2528 {
2529 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
2530 }
2531
2532 /*
2533 * Wrappers for p->thread_info->cpu access. No-op on UP.
2534 */
2535 #ifdef CONFIG_SMP
2536
2537 static inline unsigned int task_cpu(const struct task_struct *p)
2538 {
2539 return task_thread_info(p)->cpu;
2540 }
2541
2542 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2543
2544 #else
2545
2546 static inline unsigned int task_cpu(const struct task_struct *p)
2547 {
2548 return 0;
2549 }
2550
2551 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2552 {
2553 }
2554
2555 #endif /* CONFIG_SMP */
2556
2557 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2558 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2559
2560 #ifdef CONFIG_CGROUP_SCHED
2561 extern struct task_group root_task_group;
2562 #endif /* CONFIG_CGROUP_SCHED */
2563
2564 extern int task_can_switch_user(struct user_struct *up,
2565 struct task_struct *tsk);
2566
2567 #ifdef CONFIG_TASK_XACCT
2568 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2569 {
2570 tsk->ioac.rchar += amt;
2571 }
2572
2573 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2574 {
2575 tsk->ioac.wchar += amt;
2576 }
2577
2578 static inline void inc_syscr(struct task_struct *tsk)
2579 {
2580 tsk->ioac.syscr++;
2581 }
2582
2583 static inline void inc_syscw(struct task_struct *tsk)
2584 {
2585 tsk->ioac.syscw++;
2586 }
2587 #else
2588 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2589 {
2590 }
2591
2592 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2593 {
2594 }
2595
2596 static inline void inc_syscr(struct task_struct *tsk)
2597 {
2598 }
2599
2600 static inline void inc_syscw(struct task_struct *tsk)
2601 {
2602 }
2603 #endif
2604
2605 #ifndef TASK_SIZE_OF
2606 #define TASK_SIZE_OF(tsk) TASK_SIZE
2607 #endif
2608
2609 #ifdef CONFIG_MM_OWNER
2610 extern void mm_update_next_owner(struct mm_struct *mm);
2611 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2612 #else
2613 static inline void mm_update_next_owner(struct mm_struct *mm)
2614 {
2615 }
2616
2617 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2618 {
2619 }
2620 #endif /* CONFIG_MM_OWNER */
2621
2622 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2623 unsigned int limit)
2624 {
2625 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2626 }
2627
2628 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2629 unsigned int limit)
2630 {
2631 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2632 }
2633
2634 static inline unsigned long rlimit(unsigned int limit)
2635 {
2636 return task_rlimit(current, limit);
2637 }
2638
2639 static inline unsigned long rlimit_max(unsigned int limit)
2640 {
2641 return task_rlimit_max(current, limit);
2642 }
2643
2644 #endif
This page took 0.158682 seconds and 6 git commands to generate.